Merge branch 'for-4.16/remove-immediate' into for-linus
Pull 'immediate' feature removal from Miroslav Benes.
This commit is contained in:
commit
d05b695c25
8 changed files with 33 additions and 181 deletions
|
@ -72,8 +72,7 @@ example, they add a NULL pointer or a boundary check, fix a race by adding
|
|||
a missing memory barrier, or add some locking around a critical section.
|
||||
Most of these changes are self contained and the function presents itself
|
||||
the same way to the rest of the system. In this case, the functions might
|
||||
be updated independently one by one. (This can be done by setting the
|
||||
'immediate' flag in the klp_patch struct.)
|
||||
be updated independently one by one.
|
||||
|
||||
But there are more complex fixes. For example, a patch might change
|
||||
ordering of locking in multiple functions at the same time. Or a patch
|
||||
|
@ -125,12 +124,6 @@ safe to patch tasks:
|
|||
b) Patching CPU-bound user tasks. If the task is highly CPU-bound
|
||||
then it will get patched the next time it gets interrupted by an
|
||||
IRQ.
|
||||
c) In the future it could be useful for applying patches for
|
||||
architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In
|
||||
this case you would have to signal most of the tasks on the
|
||||
system. However this isn't supported yet because there's
|
||||
currently no way to patch kthreads without
|
||||
HAVE_RELIABLE_STACKTRACE.
|
||||
|
||||
3. For idle "swapper" tasks, since they don't ever exit the kernel, they
|
||||
instead have a klp_update_patch_state() call in the idle loop which
|
||||
|
@ -138,27 +131,16 @@ safe to patch tasks:
|
|||
|
||||
(Note there's not yet such an approach for kthreads.)
|
||||
|
||||
All the above approaches may be skipped by setting the 'immediate' flag
|
||||
in the 'klp_patch' struct, which will disable per-task consistency and
|
||||
patch all tasks immediately. This can be useful if the patch doesn't
|
||||
change any function or data semantics. Note that, even with this flag
|
||||
set, it's possible that some tasks may still be running with an old
|
||||
version of the function, until that function returns.
|
||||
Architectures which don't have HAVE_RELIABLE_STACKTRACE solely rely on
|
||||
the second approach. It's highly likely that some tasks may still be
|
||||
running with an old version of the function, until that function
|
||||
returns. In this case you would have to signal the tasks. This
|
||||
especially applies to kthreads. They may not be woken up and would need
|
||||
to be forced. See below for more information.
|
||||
|
||||
There's also an 'immediate' flag in the 'klp_func' struct which allows
|
||||
you to specify that certain functions in the patch can be applied
|
||||
without per-task consistency. This might be useful if you want to patch
|
||||
a common function like schedule(), and the function change doesn't need
|
||||
consistency but the rest of the patch does.
|
||||
|
||||
For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user
|
||||
must set patch->immediate which causes all tasks to be patched
|
||||
immediately. This option should be used with care, only when the patch
|
||||
doesn't change any function or data semantics.
|
||||
|
||||
In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE
|
||||
may be allowed to use per-task consistency if we can come up with
|
||||
another way to patch kthreads.
|
||||
Unless we can come up with another way to patch kthreads, architectures
|
||||
without HAVE_RELIABLE_STACKTRACE are not considered fully supported by
|
||||
the kernel livepatching.
|
||||
|
||||
The /sys/kernel/livepatch/<patch>/transition file shows whether a patch
|
||||
is in transition. Only a single patch (the topmost patch on the stack)
|
||||
|
@ -197,6 +179,11 @@ modules is permanently disabled when the force feature is used. It cannot be
|
|||
guaranteed there is no task sleeping in such module. It implies unbounded
|
||||
reference count if a patch module is disabled and enabled in a loop.
|
||||
|
||||
Moreover, the usage of force may also affect future applications of live
|
||||
patches and cause even more harm to the system. Administrator should first
|
||||
consider to simply cancel a transition (see above). If force is used, reboot
|
||||
should be planned and no more live patches applied.
|
||||
|
||||
3.1 Adding consistency model support to new architectures
|
||||
---------------------------------------------------------
|
||||
|
||||
|
@ -234,13 +221,6 @@ few options:
|
|||
a good backup option for those architectures which don't have
|
||||
reliable stack traces yet.
|
||||
|
||||
In the meantime, patches for such architectures can bypass the
|
||||
consistency model by setting klp_patch.immediate to true. This option
|
||||
is perfectly fine for patches which don't change the semantics of the
|
||||
patched functions. In practice, this is usable for ~90% of security
|
||||
fixes. Use of this option also means the patch can't be unloaded after
|
||||
it has been disabled.
|
||||
|
||||
|
||||
4. Livepatch module
|
||||
===================
|
||||
|
@ -296,9 +276,6 @@ into three levels:
|
|||
only for a particular object ( vmlinux or a kernel module ). Note that
|
||||
kallsyms allows for searching symbols according to the object name.
|
||||
|
||||
There's also an 'immediate' flag which, when set, patches the
|
||||
function immediately, bypassing the consistency model safety checks.
|
||||
|
||||
+ struct klp_object defines an array of patched functions (struct
|
||||
klp_func) in the same object. Where the object is either vmlinux
|
||||
(NULL) or a module name.
|
||||
|
@ -317,9 +294,6 @@ into three levels:
|
|||
symbols are found. The only exception are symbols from objects
|
||||
(kernel modules) that have not been loaded yet.
|
||||
|
||||
Setting the 'immediate' flag applies the patch to all tasks
|
||||
immediately, bypassing the consistency model safety checks.
|
||||
|
||||
For more details on how the patch is applied on a per-task basis,
|
||||
see the "Consistency model" section.
|
||||
|
||||
|
@ -334,14 +308,12 @@ section "Livepatch life-cycle" below for more details about these
|
|||
two operations.
|
||||
|
||||
Module removal is only safe when there are no users of the underlying
|
||||
functions. The immediate consistency model is not able to detect this. The
|
||||
code just redirects the functions at the very beginning and it does not
|
||||
check if the functions are in use. In other words, it knows when the
|
||||
functions get called but it does not know when the functions return.
|
||||
Therefore it cannot be decided when the livepatch module can be safely
|
||||
removed. This is solved by a hybrid consistency model. When the system is
|
||||
transitioned to a new patch state (patched/unpatched) it is guaranteed that
|
||||
no task sleeps or runs in the old code.
|
||||
functions. This is the reason why the force feature permanently disables
|
||||
the removal. The forced tasks entered the functions but we cannot say
|
||||
that they returned back. Therefore it cannot be decided when the
|
||||
livepatch module can be safely removed. When the system is successfully
|
||||
transitioned to a new patch state (patched/unpatched) without being
|
||||
forced it is guaranteed that no task sleeps or runs in the old code.
|
||||
|
||||
|
||||
5. Livepatch life-cycle
|
||||
|
@ -355,19 +327,12 @@ First, the patch is applied only when all patched symbols for already
|
|||
loaded objects are found. The error handling is much easier if this
|
||||
check is done before particular functions get redirected.
|
||||
|
||||
Second, the immediate consistency model does not guarantee that anyone is not
|
||||
sleeping in the new code after the patch is reverted. This means that the new
|
||||
code needs to stay around "forever". If the code is there, one could apply it
|
||||
again. Therefore it makes sense to separate the operations that might be done
|
||||
once and those that need to be repeated when the patch is enabled (applied)
|
||||
again.
|
||||
|
||||
Third, it might take some time until the entire system is migrated
|
||||
when a more complex consistency model is used. The patch revert might
|
||||
block the livepatch module removal for too long. Therefore it is useful
|
||||
to revert the patch using a separate operation that might be called
|
||||
explicitly. But it does not make sense to remove all information
|
||||
until the livepatch module is really removed.
|
||||
Second, it might take some time until the entire system is migrated with
|
||||
the hybrid consistency model being used. The patch revert might block
|
||||
the livepatch module removal for too long. Therefore it is useful to
|
||||
revert the patch using a separate operation that might be called
|
||||
explicitly. But it does not make sense to remove all information until
|
||||
the livepatch module is really removed.
|
||||
|
||||
|
||||
5.1. Registration
|
||||
|
|
|
@ -40,7 +40,6 @@
|
|||
* @new_func: pointer to the patched function code
|
||||
* @old_sympos: a hint indicating which symbol position the old function
|
||||
* can be found (optional)
|
||||
* @immediate: patch the func immediately, bypassing safety mechanisms
|
||||
* @old_addr: the address of the function being patched
|
||||
* @kobj: kobject for sysfs resources
|
||||
* @stack_node: list node for klp_ops func_stack list
|
||||
|
@ -76,7 +75,6 @@ struct klp_func {
|
|||
* in kallsyms for the given object is used.
|
||||
*/
|
||||
unsigned long old_sympos;
|
||||
bool immediate;
|
||||
|
||||
/* internal */
|
||||
unsigned long old_addr;
|
||||
|
@ -137,7 +135,6 @@ struct klp_object {
|
|||
* struct klp_patch - patch structure for live patching
|
||||
* @mod: reference to the live patch module
|
||||
* @objs: object entries for kernel objects to be patched
|
||||
* @immediate: patch all funcs immediately, bypassing safety mechanisms
|
||||
* @list: list node for global list of registered patches
|
||||
* @kobj: kobject for sysfs resources
|
||||
* @enabled: the patch is enabled (but operation may be incomplete)
|
||||
|
@ -147,7 +144,6 @@ struct klp_patch {
|
|||
/* external */
|
||||
struct module *mod;
|
||||
struct klp_object *objs;
|
||||
bool immediate;
|
||||
|
||||
/* internal */
|
||||
struct list_head list;
|
||||
|
|
|
@ -366,11 +366,6 @@ static int __klp_enable_patch(struct klp_patch *patch)
|
|||
/*
|
||||
* A reference is taken on the patch module to prevent it from being
|
||||
* unloaded.
|
||||
*
|
||||
* Note: For immediate (no consistency model) patches we don't allow
|
||||
* patch modules to unload since there is no safe/sane method to
|
||||
* determine if a thread is still running in the patched code contained
|
||||
* in the patch module once the ftrace registration is successful.
|
||||
*/
|
||||
if (!try_module_get(patch->mod))
|
||||
return -ENODEV;
|
||||
|
@ -894,12 +889,7 @@ int klp_register_patch(struct klp_patch *patch)
|
|||
if (!klp_initialized())
|
||||
return -ENODEV;
|
||||
|
||||
/*
|
||||
* Architectures without reliable stack traces have to set
|
||||
* patch->immediate because there's currently no way to patch kthreads
|
||||
* with the consistency model.
|
||||
*/
|
||||
if (!klp_have_reliable_stack() && !patch->immediate) {
|
||||
if (!klp_have_reliable_stack()) {
|
||||
pr_err("This architecture doesn't have support for the livepatch consistency model.\n");
|
||||
return -ENOSYS;
|
||||
}
|
||||
|
|
|
@ -82,7 +82,6 @@ static void klp_complete_transition(void)
|
|||
struct klp_func *func;
|
||||
struct task_struct *g, *task;
|
||||
unsigned int cpu;
|
||||
bool immediate_func = false;
|
||||
|
||||
pr_debug("'%s': completing %s transition\n",
|
||||
klp_transition_patch->mod->name,
|
||||
|
@ -104,16 +103,9 @@ static void klp_complete_transition(void)
|
|||
klp_synchronize_transition();
|
||||
}
|
||||
|
||||
if (klp_transition_patch->immediate)
|
||||
goto done;
|
||||
|
||||
klp_for_each_object(klp_transition_patch, obj) {
|
||||
klp_for_each_func(obj, func) {
|
||||
klp_for_each_object(klp_transition_patch, obj)
|
||||
klp_for_each_func(obj, func)
|
||||
func->transition = false;
|
||||
if (func->immediate)
|
||||
immediate_func = true;
|
||||
}
|
||||
}
|
||||
|
||||
/* Prevent klp_ftrace_handler() from seeing KLP_UNDEFINED state */
|
||||
if (klp_target_state == KLP_PATCHED)
|
||||
|
@ -132,7 +124,6 @@ static void klp_complete_transition(void)
|
|||
task->patch_state = KLP_UNDEFINED;
|
||||
}
|
||||
|
||||
done:
|
||||
klp_for_each_object(klp_transition_patch, obj) {
|
||||
if (!klp_is_object_loaded(obj))
|
||||
continue;
|
||||
|
@ -146,16 +137,11 @@ static void klp_complete_transition(void)
|
|||
klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
|
||||
|
||||
/*
|
||||
* See complementary comment in __klp_enable_patch() for why we
|
||||
* keep the module reference for immediate patches.
|
||||
*
|
||||
* klp_forced or immediate_func set implies unbounded increase of
|
||||
* module's ref count if the module is disabled/enabled in a loop.
|
||||
* klp_forced set implies unbounded increase of module's ref count if
|
||||
* the module is disabled/enabled in a loop.
|
||||
*/
|
||||
if (!klp_forced && !klp_transition_patch->immediate &&
|
||||
!immediate_func && klp_target_state == KLP_UNPATCHED) {
|
||||
if (!klp_forced && klp_target_state == KLP_UNPATCHED)
|
||||
module_put(klp_transition_patch->mod);
|
||||
}
|
||||
|
||||
klp_target_state = KLP_UNDEFINED;
|
||||
klp_transition_patch = NULL;
|
||||
|
@ -223,9 +209,6 @@ static int klp_check_stack_func(struct klp_func *func,
|
|||
struct klp_ops *ops;
|
||||
int i;
|
||||
|
||||
if (func->immediate)
|
||||
return 0;
|
||||
|
||||
for (i = 0; i < trace->nr_entries; i++) {
|
||||
address = trace->entries[i];
|
||||
|
||||
|
@ -387,13 +370,6 @@ void klp_try_complete_transition(void)
|
|||
|
||||
WARN_ON_ONCE(klp_target_state == KLP_UNDEFINED);
|
||||
|
||||
/*
|
||||
* If the patch can be applied or reverted immediately, skip the
|
||||
* per-task transitions.
|
||||
*/
|
||||
if (klp_transition_patch->immediate)
|
||||
goto success;
|
||||
|
||||
/*
|
||||
* Try to switch the tasks to the target patch state by walking their
|
||||
* stacks and looking for any to-be-patched or to-be-unpatched
|
||||
|
@ -437,7 +413,6 @@ void klp_try_complete_transition(void)
|
|||
return;
|
||||
}
|
||||
|
||||
success:
|
||||
/* we're done, now cleanup the data structures */
|
||||
klp_complete_transition();
|
||||
}
|
||||
|
@ -457,13 +432,6 @@ void klp_start_transition(void)
|
|||
klp_transition_patch->mod->name,
|
||||
klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
|
||||
|
||||
/*
|
||||
* If the patch can be applied or reverted immediately, skip the
|
||||
* per-task transitions.
|
||||
*/
|
||||
if (klp_transition_patch->immediate)
|
||||
return;
|
||||
|
||||
/*
|
||||
* Mark all normal tasks as needing a patch state update. They'll
|
||||
* switch either in klp_try_complete_transition() or as they exit the
|
||||
|
@ -513,13 +481,6 @@ void klp_init_transition(struct klp_patch *patch, int state)
|
|||
pr_debug("'%s': initializing %s transition\n", patch->mod->name,
|
||||
klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
|
||||
|
||||
/*
|
||||
* If the patch can be applied or reverted immediately, skip the
|
||||
* per-task transitions.
|
||||
*/
|
||||
if (patch->immediate)
|
||||
return;
|
||||
|
||||
/*
|
||||
* Initialize all tasks to the initial patch state to prepare them for
|
||||
* switching to the target state.
|
||||
|
|
|
@ -197,21 +197,6 @@ static int livepatch_callbacks_demo_init(void)
|
|||
{
|
||||
int ret;
|
||||
|
||||
if (!klp_have_reliable_stack() && !patch.immediate) {
|
||||
/*
|
||||
* WARNING: Be very careful when using 'patch.immediate' in
|
||||
* your patches. It's ok to use it for simple patches like
|
||||
* this, but for more complex patches which change function
|
||||
* semantics, locking semantics, or data structures, it may not
|
||||
* be safe. Use of this option will also prevent removal of
|
||||
* the patch.
|
||||
*
|
||||
* See Documentation/livepatch/livepatch.txt for more details.
|
||||
*/
|
||||
patch.immediate = true;
|
||||
pr_notice("The consistency model isn't supported for your architecture. Bypassing safety mechanisms and applying the patch immediately.\n");
|
||||
}
|
||||
|
||||
ret = klp_register_patch(&patch);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
|
|
@ -71,21 +71,6 @@ static int livepatch_init(void)
|
|||
{
|
||||
int ret;
|
||||
|
||||
if (!klp_have_reliable_stack() && !patch.immediate) {
|
||||
/*
|
||||
* WARNING: Be very careful when using 'patch.immediate' in
|
||||
* your patches. It's ok to use it for simple patches like
|
||||
* this, but for more complex patches which change function
|
||||
* semantics, locking semantics, or data structures, it may not
|
||||
* be safe. Use of this option will also prevent removal of
|
||||
* the patch.
|
||||
*
|
||||
* See Documentation/livepatch/livepatch.txt for more details.
|
||||
*/
|
||||
patch.immediate = true;
|
||||
pr_notice("The consistency model isn't supported for your architecture. Bypassing safety mechanisms and applying the patch immediately.\n");
|
||||
}
|
||||
|
||||
ret = klp_register_patch(&patch);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
|
|
@ -133,21 +133,6 @@ static int livepatch_shadow_fix1_init(void)
|
|||
{
|
||||
int ret;
|
||||
|
||||
if (!klp_have_reliable_stack() && !patch.immediate) {
|
||||
/*
|
||||
* WARNING: Be very careful when using 'patch.immediate' in
|
||||
* your patches. It's ok to use it for simple patches like
|
||||
* this, but for more complex patches which change function
|
||||
* semantics, locking semantics, or data structures, it may not
|
||||
* be safe. Use of this option will also prevent removal of
|
||||
* the patch.
|
||||
*
|
||||
* See Documentation/livepatch/livepatch.txt for more details.
|
||||
*/
|
||||
patch.immediate = true;
|
||||
pr_notice("The consistency model isn't supported for your architecture. Bypassing safety mechanisms and applying the patch immediately.\n");
|
||||
}
|
||||
|
||||
ret = klp_register_patch(&patch);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
|
|
@ -128,21 +128,6 @@ static int livepatch_shadow_fix2_init(void)
|
|||
{
|
||||
int ret;
|
||||
|
||||
if (!klp_have_reliable_stack() && !patch.immediate) {
|
||||
/*
|
||||
* WARNING: Be very careful when using 'patch.immediate' in
|
||||
* your patches. It's ok to use it for simple patches like
|
||||
* this, but for more complex patches which change function
|
||||
* semantics, locking semantics, or data structures, it may not
|
||||
* be safe. Use of this option will also prevent removal of
|
||||
* the patch.
|
||||
*
|
||||
* See Documentation/livepatch/livepatch.txt for more details.
|
||||
*/
|
||||
patch.immediate = true;
|
||||
pr_notice("The consistency model isn't supported for your architecture. Bypassing safety mechanisms and applying the patch immediately.\n");
|
||||
}
|
||||
|
||||
ret = klp_register_patch(&patch);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
|
Loading…
Reference in a new issue