Rewrite MSI-HOWTO
I didn't find the previous version very useful, so I rewrote it. Signed-off-by: Matthew Wilcox <willy@linux.intel.com> Reviewed-by: Randy Dunlap <randy.dunlap@oracle.com> Reviewed-by: Grant Grundler <grundler@parisc-linunx.org> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
This commit is contained in:
parent
0994375e96
commit
c41ade2ee1
1 changed files with 222 additions and 426 deletions
|
@ -4,506 +4,302 @@
|
|||
Revised Feb 12, 2004 by Martine Silbermann
|
||||
email: Martine.Silbermann@hp.com
|
||||
Revised Jun 25, 2004 by Tom L Nguyen
|
||||
Revised Jul 9, 2008 by Matthew Wilcox <willy@linux.intel.com>
|
||||
Copyright 2003, 2008 Intel Corporation
|
||||
|
||||
1. About this guide
|
||||
|
||||
This guide describes the basics of Message Signaled Interrupts (MSI),
|
||||
the advantages of using MSI over traditional interrupt mechanisms,
|
||||
and how to enable your driver to use MSI or MSI-X. Also included is
|
||||
a Frequently Asked Questions (FAQ) section.
|
||||
This guide describes the basics of Message Signaled Interrupts (MSIs),
|
||||
the advantages of using MSI over traditional interrupt mechanisms, how
|
||||
to change your driver to use MSI or MSI-X and some basic diagnostics to
|
||||
try if a device doesn't support MSIs.
|
||||
|
||||
1.1 Terminology
|
||||
|
||||
PCI devices can be single-function or multi-function. In either case,
|
||||
when this text talks about enabling or disabling MSI on a "device
|
||||
function," it is referring to one specific PCI device and function and
|
||||
not to all functions on a PCI device (unless the PCI device has only
|
||||
one function).
|
||||
2. What are MSIs?
|
||||
|
||||
2. Copyright 2003 Intel Corporation
|
||||
A Message Signaled Interrupt is a write from the device to a special
|
||||
address which causes an interrupt to be received by the CPU.
|
||||
|
||||
3. What is MSI/MSI-X?
|
||||
The MSI capability was first specified in PCI 2.2 and was later enhanced
|
||||
in PCI 3.0 to allow each interrupt to be masked individually. The MSI-X
|
||||
capability was also introduced with PCI 3.0. It supports more interrupts
|
||||
per device than MSI and allows interrupts to be independently configured.
|
||||
|
||||
Message Signaled Interrupt (MSI), as described in the PCI Local Bus
|
||||
Specification Revision 2.3 or later, is an optional feature, and a
|
||||
required feature for PCI Express devices. MSI enables a device function
|
||||
to request service by sending an Inbound Memory Write on its PCI bus to
|
||||
the FSB as a Message Signal Interrupt transaction. Because MSI is
|
||||
generated in the form of a Memory Write, all transaction conditions,
|
||||
such as a Retry, Master-Abort, Target-Abort or normal completion, are
|
||||
supported.
|
||||
Devices may support both MSI and MSI-X, but only one can be enabled at
|
||||
a time.
|
||||
|
||||
A PCI device that supports MSI must also support pin IRQ assertion
|
||||
interrupt mechanism to provide backward compatibility for systems that
|
||||
do not support MSI. In systems which support MSI, the bus driver is
|
||||
responsible for initializing the message address and message data of
|
||||
the device function's MSI/MSI-X capability structure during device
|
||||
initial configuration.
|
||||
|
||||
An MSI capable device function indicates MSI support by implementing
|
||||
the MSI/MSI-X capability structure in its PCI capability list. The
|
||||
device function may implement both the MSI capability structure and
|
||||
the MSI-X capability structure; however, the bus driver should not
|
||||
enable both.
|
||||
3. Why use MSIs?
|
||||
|
||||
The MSI capability structure contains Message Control register,
|
||||
Message Address register and Message Data register. These registers
|
||||
provide the bus driver control over MSI. The Message Control register
|
||||
indicates the MSI capability supported by the device. The Message
|
||||
Address register specifies the target address and the Message Data
|
||||
register specifies the characteristics of the message. To request
|
||||
service, the device function writes the content of the Message Data
|
||||
register to the target address. The device and its software driver
|
||||
are prohibited from writing to these registers.
|
||||
There are three reasons why using MSIs can give an advantage over
|
||||
traditional pin-based interrupts.
|
||||
|
||||
The MSI-X capability structure is an optional extension to MSI. It
|
||||
uses an independent and separate capability structure. There are
|
||||
some key advantages to implementing the MSI-X capability structure
|
||||
over the MSI capability structure as described below.
|
||||
Pin-based PCI interrupts are often shared amongst several devices.
|
||||
To support this, the kernel must call each interrupt handler associated
|
||||
with an interrupt, which leads to reduced performance for the system as
|
||||
a whole. MSIs are never shared, so this problem cannot arise.
|
||||
|
||||
- Support a larger maximum number of vectors per function.
|
||||
When a device writes data to memory, then raises a pin-based interrupt,
|
||||
it is possible that the interrupt may arrive before all the data has
|
||||
arrived in memory (this becomes more likely with devices behind PCI-PCI
|
||||
bridges). In order to ensure that all the data has arrived in memory,
|
||||
the interrupt handler must read a register on the device which raised
|
||||
the interrupt. PCI transaction ordering rules require that all the data
|
||||
arrives in memory before the value can be returned from the register.
|
||||
Using MSIs avoids this problem as the interrupt-generating write cannot
|
||||
pass the data writes, so by the time the interrupt is raised, the driver
|
||||
knows that all the data has arrived in memory.
|
||||
|
||||
- Provide the ability for system software to configure
|
||||
each vector with an independent message address and message
|
||||
data, specified by a table that resides in Memory Space.
|
||||
PCI devices can only support a single pin-based interrupt per function.
|
||||
Often drivers have to query the device to find out what event has
|
||||
occurred, slowing down interrupt handling for the common case. With
|
||||
MSIs, a device can support more interrupts, allowing each interrupt
|
||||
to be specialised to a different purpose. One possible design gives
|
||||
infrequent conditions (such as errors) their own interrupt which allows
|
||||
the driver to handle the normal interrupt handling path more efficiently.
|
||||
Other possible designs include giving one interrupt to each packet queue
|
||||
in a network card or each port in a storage controller.
|
||||
|
||||
- MSI and MSI-X both support per-vector masking. Per-vector
|
||||
masking is an optional extension of MSI but a required
|
||||
feature for MSI-X. Per-vector masking provides the kernel the
|
||||
ability to mask/unmask a single MSI while running its
|
||||
interrupt service routine. If per-vector masking is
|
||||
not supported, then the device driver should provide the
|
||||
hardware/software synchronization to ensure that the device
|
||||
generates MSI when the driver wants it to do so.
|
||||
|
||||
4. Why use MSI?
|
||||
4. How to use MSIs
|
||||
|
||||
As a benefit to the simplification of board design, MSI allows board
|
||||
designers to remove out-of-band interrupt routing. MSI is another
|
||||
step towards a legacy-free environment.
|
||||
PCI devices are initialised to use pin-based interrupts. The device
|
||||
driver has to set up the device to use MSI or MSI-X. Not all machines
|
||||
support MSIs correctly, and for those machines, the APIs described below
|
||||
will simply fail and the device will continue to use pin-based interrupts.
|
||||
|
||||
Due to increasing pressure on chipset and processor packages to
|
||||
reduce pin count, the need for interrupt pins is expected to
|
||||
diminish over time. Devices, due to pin constraints, may implement
|
||||
messages to increase performance.
|
||||
4.1 Include kernel support for MSIs
|
||||
|
||||
PCI Express endpoints uses INTx emulation (in-band messages) instead
|
||||
of IRQ pin assertion. Using INTx emulation requires interrupt
|
||||
sharing among devices connected to the same node (PCI bridge) while
|
||||
MSI is unique (non-shared) and does not require BIOS configuration
|
||||
support. As a result, the PCI Express technology requires MSI
|
||||
support for better interrupt performance.
|
||||
To support MSI or MSI-X, the kernel must be built with the CONFIG_PCI_MSI
|
||||
option enabled. This option is only available on some architectures,
|
||||
and it may depend on some other options also being set. For example,
|
||||
on x86, you must also enable X86_UP_APIC or SMP in order to see the
|
||||
CONFIG_PCI_MSI option.
|
||||
|
||||
Using MSI enables the device functions to support two or more
|
||||
vectors, which can be configured to target different CPUs to
|
||||
increase scalability.
|
||||
4.2 Using MSI
|
||||
|
||||
5. Configuring a driver to use MSI/MSI-X
|
||||
Most of the hard work is done for the driver in the PCI layer. It simply
|
||||
has to request that the PCI layer set up the MSI capability for this
|
||||
device.
|
||||
|
||||
By default, the kernel will not enable MSI/MSI-X on all devices that
|
||||
support this capability. The CONFIG_PCI_MSI kernel option
|
||||
must be selected to enable MSI/MSI-X support.
|
||||
|
||||
5.1 Including MSI/MSI-X support into the kernel
|
||||
|
||||
To allow MSI/MSI-X capable device drivers to selectively enable
|
||||
MSI/MSI-X (using pci_enable_msi()/pci_enable_msix() as described
|
||||
below), the VECTOR based scheme needs to be enabled by setting
|
||||
CONFIG_PCI_MSI during kernel config.
|
||||
|
||||
Since the target of the inbound message is the local APIC, providing
|
||||
CONFIG_X86_LOCAL_APIC must be enabled as well as CONFIG_PCI_MSI.
|
||||
|
||||
5.2 Configuring for MSI support
|
||||
|
||||
Due to the non-contiguous fashion in vector assignment of the
|
||||
existing Linux kernel, this version does not support multiple
|
||||
messages regardless of a device function is capable of supporting
|
||||
more than one vector. To enable MSI on a device function's MSI
|
||||
capability structure requires a device driver to call the function
|
||||
pci_enable_msi() explicitly.
|
||||
|
||||
5.2.1 API pci_enable_msi
|
||||
4.2.1 pci_enable_msi
|
||||
|
||||
int pci_enable_msi(struct pci_dev *dev)
|
||||
|
||||
With this new API, a device driver that wants to have MSI
|
||||
enabled on its device function must call this API to enable MSI.
|
||||
A successful call will initialize the MSI capability structure
|
||||
with ONE vector, regardless of whether a device function is
|
||||
capable of supporting multiple messages. This vector replaces the
|
||||
pre-assigned dev->irq with a new MSI vector. To avoid a conflict
|
||||
of the new assigned vector with existing pre-assigned vector requires
|
||||
a device driver to call this API before calling request_irq().
|
||||
A successful call will allocate ONE interrupt to the device, regardless
|
||||
of how many MSIs the device supports. The device will be switched from
|
||||
pin-based interrupt mode to MSI mode. The dev->irq number is changed
|
||||
to a new number which represents the message signaled interrupt.
|
||||
This function should be called before the driver calls request_irq()
|
||||
since enabling MSIs disables the pin-based IRQ and the driver will not
|
||||
receive interrupts on the old interrupt.
|
||||
|
||||
5.2.2 API pci_disable_msi
|
||||
4.2.2 pci_disable_msi
|
||||
|
||||
void pci_disable_msi(struct pci_dev *dev)
|
||||
|
||||
This API should always be used to undo the effect of pci_enable_msi()
|
||||
when a device driver is unloading. This API restores dev->irq with
|
||||
the pre-assigned IOAPIC vector and switches a device's interrupt
|
||||
mode to PCI pin-irq assertion/INTx emulation mode.
|
||||
This function should be used to undo the effect of pci_enable_msi().
|
||||
Calling it restores dev->irq to the pin-based interrupt number and frees
|
||||
the previously allocated message signaled interrupt(s). The interrupt
|
||||
may subsequently be assigned to another device, so drivers should not
|
||||
cache the value of dev->irq.
|
||||
|
||||
Note that a device driver should always call free_irq() on the MSI vector
|
||||
that it has done request_irq() on before calling this API. Failure to do
|
||||
so results in a BUG_ON() and a device will be left with MSI enabled and
|
||||
leaks its vector.
|
||||
A device driver must always call free_irq() on the interrupt(s)
|
||||
for which it has called request_irq() before calling this function.
|
||||
Failure to do so will result in a BUG_ON(), the device will be left with
|
||||
MSI enabled and will leak its vector.
|
||||
|
||||
5.2.3 MSI mode vs. legacy mode diagram
|
||||
4.3 Using MSI-X
|
||||
|
||||
The below diagram shows the events which switch the interrupt
|
||||
mode on the MSI-capable device function between MSI mode and
|
||||
PIN-IRQ assertion mode.
|
||||
|
||||
------------ pci_enable_msi ------------------------
|
||||
| | <=============== | |
|
||||
| MSI MODE | | PIN-IRQ ASSERTION MODE |
|
||||
| | ===============> | |
|
||||
------------ pci_disable_msi ------------------------
|
||||
|
||||
|
||||
Figure 1. MSI Mode vs. Legacy Mode
|
||||
|
||||
In Figure 1, a device operates by default in legacy mode. Legacy
|
||||
in this context means PCI pin-irq assertion or PCI-Express INTx
|
||||
emulation. A successful MSI request (using pci_enable_msi()) switches
|
||||
a device's interrupt mode to MSI mode. A pre-assigned IOAPIC vector
|
||||
stored in dev->irq will be saved by the PCI subsystem and a new
|
||||
assigned MSI vector will replace dev->irq.
|
||||
|
||||
To return back to its default mode, a device driver should always call
|
||||
pci_disable_msi() to undo the effect of pci_enable_msi(). Note that a
|
||||
device driver should always call free_irq() on the MSI vector it has
|
||||
done request_irq() on before calling pci_disable_msi(). Failure to do
|
||||
so results in a BUG_ON() and a device will be left with MSI enabled and
|
||||
leaks its vector. Otherwise, the PCI subsystem restores a device's
|
||||
dev->irq with a pre-assigned IOAPIC vector and marks the released
|
||||
MSI vector as unused.
|
||||
|
||||
Once being marked as unused, there is no guarantee that the PCI
|
||||
subsystem will reserve this MSI vector for a device. Depending on
|
||||
the availability of current PCI vector resources and the number of
|
||||
MSI/MSI-X requests from other drivers, this MSI may be re-assigned.
|
||||
|
||||
For the case where the PCI subsystem re-assigns this MSI vector to
|
||||
another driver, a request to switch back to MSI mode may result
|
||||
in being assigned a different MSI vector or a failure if no more
|
||||
vectors are available.
|
||||
|
||||
5.3 Configuring for MSI-X support
|
||||
|
||||
Due to the ability of the system software to configure each vector of
|
||||
the MSI-X capability structure with an independent message address
|
||||
and message data, the non-contiguous fashion in vector assignment of
|
||||
the existing Linux kernel has no impact on supporting multiple
|
||||
messages on an MSI-X capable device functions. To enable MSI-X on
|
||||
a device function's MSI-X capability structure requires its device
|
||||
driver to call the function pci_enable_msix() explicitly.
|
||||
|
||||
The function pci_enable_msix(), once invoked, enables either
|
||||
all or nothing, depending on the current availability of PCI vector
|
||||
resources. If the PCI vector resources are available for the number
|
||||
of vectors requested by a device driver, this function will configure
|
||||
the MSI-X table of the MSI-X capability structure of a device with
|
||||
requested messages. To emphasize this reason, for example, a device
|
||||
may be capable for supporting the maximum of 32 vectors while its
|
||||
software driver usually may request 4 vectors. It is recommended
|
||||
that the device driver should call this function once during the
|
||||
initialization phase of the device driver.
|
||||
|
||||
Unlike the function pci_enable_msi(), the function pci_enable_msix()
|
||||
does not replace the pre-assigned IOAPIC dev->irq with a new MSI
|
||||
vector because the PCI subsystem writes the 1:1 vector-to-entry mapping
|
||||
into the field vector of each element contained in a second argument.
|
||||
Note that the pre-assigned IOAPIC dev->irq is valid only if the device
|
||||
operates in PIN-IRQ assertion mode. In MSI-X mode, any attempt at
|
||||
using dev->irq by the device driver to request for interrupt service
|
||||
may result in unpredictable behavior.
|
||||
|
||||
For each MSI-X vector granted, a device driver is responsible for calling
|
||||
other functions like request_irq(), enable_irq(), etc. to enable
|
||||
this vector with its corresponding interrupt service handler. It is
|
||||
a device driver's choice to assign all vectors with the same
|
||||
interrupt service handler or each vector with a unique interrupt
|
||||
service handler.
|
||||
|
||||
5.3.1 Handling MMIO address space of MSI-X Table
|
||||
|
||||
The PCI 3.0 specification has implementation notes that MMIO address
|
||||
space for a device's MSI-X structure should be isolated so that the
|
||||
software system can set different pages for controlling accesses to the
|
||||
MSI-X structure. The implementation of MSI support requires the PCI
|
||||
subsystem, not a device driver, to maintain full control of the MSI-X
|
||||
table/MSI-X PBA (Pending Bit Array) and MMIO address space of the MSI-X
|
||||
table/MSI-X PBA. A device driver should not access the MMIO address
|
||||
space of the MSI-X table/MSI-X PBA.
|
||||
|
||||
5.3.2 API pci_enable_msix
|
||||
|
||||
int pci_enable_msix(struct pci_dev *dev, struct msix_entry *entries, int nvec)
|
||||
|
||||
This API enables a device driver to request the PCI subsystem
|
||||
to enable MSI-X messages on its hardware device. Depending on
|
||||
the availability of PCI vectors resources, the PCI subsystem enables
|
||||
either all or none of the requested vectors.
|
||||
|
||||
Argument 'dev' points to the device (pci_dev) structure.
|
||||
|
||||
Argument 'entries' is a pointer to an array of msix_entry structs.
|
||||
The number of entries is indicated in argument 'nvec'.
|
||||
struct msix_entry is defined in /driver/pci/msi.h:
|
||||
The MSI-X capability is much more flexible than the MSI capability.
|
||||
It supports up to 2048 interrupts, each of which can be controlled
|
||||
independently. To support this flexibility, drivers must use an array of
|
||||
`struct msix_entry':
|
||||
|
||||
struct msix_entry {
|
||||
u16 vector; /* kernel uses to write alloc vector */
|
||||
u16 entry; /* driver uses to specify entry */
|
||||
};
|
||||
|
||||
A device driver is responsible for initializing the field 'entry' of
|
||||
each element with a unique entry supported by MSI-X table. Otherwise,
|
||||
-EINVAL will be returned as a result. A successful return of zero
|
||||
indicates the PCI subsystem completed initializing each of the requested
|
||||
entries of the MSI-X table with message address and message data.
|
||||
Last but not least, the PCI subsystem will write the 1:1
|
||||
vector-to-entry mapping into the field 'vector' of each element. A
|
||||
device driver is responsible for keeping track of allocated MSI-X
|
||||
vectors in its internal data structure.
|
||||
This allows for the device to use these interrupts in a sparse fashion;
|
||||
for example it could use interrupts 3 and 1027 and allocate only a
|
||||
two-element array. The driver is expected to fill in the 'entry' value
|
||||
in each element of the array to indicate which entries it wants the kernel
|
||||
to assign interrupts for. It is invalid to fill in two entries with the
|
||||
same number.
|
||||
|
||||
A return of zero indicates that the number of MSI-X vectors was
|
||||
successfully allocated. A return of greater than zero indicates
|
||||
MSI-X vector shortage. Or a return of less than zero indicates
|
||||
a failure. This failure may be a result of duplicate entries
|
||||
specified in second argument, or a result of no available vector,
|
||||
or a result of failing to initialize MSI-X table entries.
|
||||
4.3.1 pci_enable_msix
|
||||
|
||||
5.3.3 API pci_disable_msix
|
||||
int pci_enable_msix(struct pci_dev *dev, struct msix_entry *entries, int nvec)
|
||||
|
||||
Calling this function asks the PCI subsystem to allocate 'nvec' MSIs.
|
||||
The 'entries' argument is a pointer to an array of msix_entry structs
|
||||
which should be at least 'nvec' entries in size. On success, the
|
||||
function will return 0 and the device will have been switched into
|
||||
MSI-X interrupt mode. The 'vector' elements in each entry will have
|
||||
been filled in with the interrupt number. The driver should then call
|
||||
request_irq() for each 'vector' that it decides to use.
|
||||
|
||||
If this function returns a negative number, it indicates an error and
|
||||
the driver should not attempt to allocate any more MSI-X interrupts for
|
||||
this device. If it returns a positive number, it indicates the maximum
|
||||
number of interrupt vectors that could have been allocated.
|
||||
|
||||
This function, in contrast with pci_enable_msi(), does not adjust
|
||||
dev->irq. The device will not generate interrupts for this interrupt
|
||||
number once MSI-X is enabled. The device driver is responsible for
|
||||
keeping track of the interrupts assigned to the MSI-X vectors so it can
|
||||
free them again later.
|
||||
|
||||
Device drivers should normally call this function once per device
|
||||
during the initialization phase.
|
||||
|
||||
4.3.2 pci_disable_msix
|
||||
|
||||
void pci_disable_msix(struct pci_dev *dev)
|
||||
|
||||
This API should always be used to undo the effect of pci_enable_msix()
|
||||
when a device driver is unloading. Note that a device driver should
|
||||
always call free_irq() on all MSI-X vectors it has done request_irq()
|
||||
on before calling this API. Failure to do so results in a BUG_ON() and
|
||||
a device will be left with MSI-X enabled and leaks its vectors.
|
||||
This API should be used to undo the effect of pci_enable_msix(). It frees
|
||||
the previously allocated message signaled interrupts. The interrupts may
|
||||
subsequently be assigned to another device, so drivers should not cache
|
||||
the value of the 'vector' elements over a call to pci_disable_msix().
|
||||
|
||||
5.3.4 MSI-X mode vs. legacy mode diagram
|
||||
A device driver must always call free_irq() on the interrupt(s)
|
||||
for which it has called request_irq() before calling this function.
|
||||
Failure to do so will result in a BUG_ON(), the device will be left with
|
||||
MSI enabled and will leak its vector.
|
||||
|
||||
The below diagram shows the events which switch the interrupt
|
||||
mode on the MSI-X capable device function between MSI-X mode and
|
||||
PIN-IRQ assertion mode (legacy).
|
||||
4.3.3 The MSI-X Table
|
||||
|
||||
------------ pci_enable_msix(,,n) ------------------------
|
||||
| | <=============== | |
|
||||
| MSI-X MODE | | PIN-IRQ ASSERTION MODE |
|
||||
| | ===============> | |
|
||||
------------ pci_disable_msix ------------------------
|
||||
The MSI-X capability specifies a BAR and offset within that BAR for the
|
||||
MSI-X Table. This address is mapped by the PCI subsystem, and should not
|
||||
be accessed directly by the device driver. If the driver wishes to
|
||||
mask or unmask an interrupt, it should call disable_irq() / enable_irq().
|
||||
|
||||
Figure 2. MSI-X Mode vs. Legacy Mode
|
||||
4.4 Handling devices implementing both MSI and MSI-X capabilities
|
||||
|
||||
In Figure 2, a device operates by default in legacy mode. A
|
||||
successful MSI-X request (using pci_enable_msix()) switches a
|
||||
device's interrupt mode to MSI-X mode. A pre-assigned IOAPIC vector
|
||||
stored in dev->irq will be saved by the PCI subsystem; however,
|
||||
unlike MSI mode, the PCI subsystem will not replace dev->irq with
|
||||
assigned MSI-X vector because the PCI subsystem already writes the 1:1
|
||||
vector-to-entry mapping into the field 'vector' of each element
|
||||
specified in second argument.
|
||||
If a device implements both MSI and MSI-X capabilities, it can
|
||||
run in either MSI mode or MSI-X mode but not both simultaneously.
|
||||
This is a requirement of the PCI spec, and it is enforced by the
|
||||
PCI layer. Calling pci_enable_msi() when MSI-X is already enabled or
|
||||
pci_enable_msix() when MSI is already enabled will result in an error.
|
||||
If a device driver wishes to switch between MSI and MSI-X at runtime,
|
||||
it must first quiesce the device, then switch it back to pin-interrupt
|
||||
mode, before calling pci_enable_msi() or pci_enable_msix() and resuming
|
||||
operation. This is not expected to be a common operation but may be
|
||||
useful for debugging or testing during development.
|
||||
|
||||
To return back to its default mode, a device driver should always call
|
||||
pci_disable_msix() to undo the effect of pci_enable_msix(). Note that
|
||||
a device driver should always call free_irq() on all MSI-X vectors it
|
||||
has done request_irq() on before calling pci_disable_msix(). Failure
|
||||
to do so results in a BUG_ON() and a device will be left with MSI-X
|
||||
enabled and leaks its vectors. Otherwise, the PCI subsystem switches a
|
||||
device function's interrupt mode from MSI-X mode to legacy mode and
|
||||
marks all allocated MSI-X vectors as unused.
|
||||
4.5 Considerations when using MSIs
|
||||
|
||||
Once being marked as unused, there is no guarantee that the PCI
|
||||
subsystem will reserve these MSI-X vectors for a device. Depending on
|
||||
the availability of current PCI vector resources and the number of
|
||||
MSI/MSI-X requests from other drivers, these MSI-X vectors may be
|
||||
re-assigned.
|
||||
4.5.1 Choosing between MSI-X and MSI
|
||||
|
||||
For the case where the PCI subsystem re-assigned these MSI-X vectors
|
||||
to other drivers, a request to switch back to MSI-X mode may result
|
||||
being assigned with another set of MSI-X vectors or a failure if no
|
||||
more vectors are available.
|
||||
If your device supports both MSI-X and MSI capabilities, you should use
|
||||
the MSI-X facilities in preference to the MSI facilities. As mentioned
|
||||
above, MSI-X supports any number of interrupts between 1 and 2048.
|
||||
In constrast, MSI is restricted to a maximum of 32 interrupts (and
|
||||
must be a power of two). In addition, the MSI interrupt vectors must
|
||||
be allocated consecutively, so the system may not be able to allocate
|
||||
as many vectors for MSI as it could for MSI-X. On some platforms, MSI
|
||||
interrupts must all be targetted at the same set of CPUs whereas MSI-X
|
||||
interrupts can all be targetted at different CPUs.
|
||||
|
||||
5.4 Handling function implementing both MSI and MSI-X capabilities
|
||||
4.5.2 Spinlocks
|
||||
|
||||
For the case where a function implements both MSI and MSI-X
|
||||
capabilities, the PCI subsystem enables a device to run either in MSI
|
||||
mode or MSI-X mode but not both. A device driver determines whether it
|
||||
wants MSI or MSI-X enabled on its hardware device. Once a device
|
||||
driver requests for MSI, for example, it is prohibited from requesting
|
||||
MSI-X; in other words, a device driver is not permitted to ping-pong
|
||||
between MSI mod MSI-X mode during a run-time.
|
||||
Most device drivers have a per-device spinlock which is taken in the
|
||||
interrupt handler. With pin-based interrupts or a single MSI, it is not
|
||||
necessary to disable interrupts (Linux guarantees the same interrupt will
|
||||
not be re-entered). If a device uses multiple interrupts, the driver
|
||||
must disable interrupts while the lock is held. If the device sends
|
||||
a different interrupt, the driver will deadlock trying to recursively
|
||||
acquire the spinlock.
|
||||
|
||||
5.5 Hardware requirements for MSI/MSI-X support
|
||||
There are two solutions. The first is to take the lock with
|
||||
spin_lock_irqsave() or spin_lock_irq() (see
|
||||
Documentation/DocBook/kernel-locking). The second is to specify
|
||||
IRQF_DISABLED to request_irq() so that the kernel runs the entire
|
||||
interrupt routine with interrupts disabled.
|
||||
|
||||
MSI/MSI-X support requires support from both system hardware and
|
||||
individual hardware device functions.
|
||||
If your MSI interrupt routine does not hold the lock for the whole time
|
||||
it is running, the first solution may be best. The second solution is
|
||||
normally preferred as it avoids making two transitions from interrupt
|
||||
disabled to enabled and back again.
|
||||
|
||||
5.5.1 Required x86 hardware support
|
||||
4.6 How to tell whether MSI/MSI-X is enabled on a device
|
||||
|
||||
Since the target of MSI address is the local APIC CPU, enabling
|
||||
MSI/MSI-X support in the Linux kernel is dependent on whether existing
|
||||
system hardware supports local APIC. Users should verify that their
|
||||
system supports local APIC operation by testing that it runs when
|
||||
CONFIG_X86_LOCAL_APIC=y.
|
||||
Using 'lspci -v' (as root) may show some devices with "MSI", "Message
|
||||
Signalled Interrupts" or "MSI-X" capabilities. Each of these capabilities
|
||||
has an 'Enable' flag which will be followed with either "+" (enabled)
|
||||
or "-" (disabled).
|
||||
|
||||
In SMP environment, CONFIG_X86_LOCAL_APIC is automatically set;
|
||||
however, in UP environment, users must manually set
|
||||
CONFIG_X86_LOCAL_APIC. Once CONFIG_X86_LOCAL_APIC=y, setting
|
||||
CONFIG_PCI_MSI enables the VECTOR based scheme and the option for
|
||||
MSI-capable device drivers to selectively enable MSI/MSI-X.
|
||||
|
||||
Note that CONFIG_X86_IO_APIC setting is irrelevant because MSI/MSI-X
|
||||
vector is allocated new during runtime and MSI/MSI-X support does not
|
||||
depend on BIOS support. This key independency enables MSI/MSI-X
|
||||
support on future IOxAPIC free platforms.
|
||||
5. MSI quirks
|
||||
|
||||
5.5.2 Device hardware support
|
||||
Several PCI chipsets or devices are known not to support MSIs.
|
||||
The PCI stack provides three ways to disable MSIs:
|
||||
|
||||
The hardware device function supports MSI by indicating the
|
||||
MSI/MSI-X capability structure on its PCI capability list. By
|
||||
default, this capability structure will not be initialized by
|
||||
the kernel to enable MSI during the system boot. In other words,
|
||||
the device function is running on its default pin assertion mode.
|
||||
Note that in many cases the hardware supporting MSI have bugs,
|
||||
which may result in system hangs. The software driver of specific
|
||||
MSI-capable hardware is responsible for deciding whether to call
|
||||
pci_enable_msi or not. A return of zero indicates the kernel
|
||||
successfully initialized the MSI/MSI-X capability structure of the
|
||||
device function. The device function is now running on MSI/MSI-X mode.
|
||||
1. globally
|
||||
2. on all devices behind a specific bridge
|
||||
3. on a single device
|
||||
|
||||
5.6 How to tell whether MSI/MSI-X is enabled on device function
|
||||
5.1. Disabling MSIs globally
|
||||
|
||||
At the driver level, a return of zero from the function call of
|
||||
pci_enable_msi()/pci_enable_msix() indicates to a device driver that
|
||||
its device function is initialized successfully and ready to run in
|
||||
MSI/MSI-X mode.
|
||||
Some host chipsets simply don't support MSIs properly. If we're
|
||||
lucky, the manufacturer knows this and has indicated it in the ACPI
|
||||
FADT table. In this case, Linux will automatically disable MSIs.
|
||||
Some boards don't include this information in the table and so we have
|
||||
to detect them ourselves. The complete list of these is found near the
|
||||
quirk_disable_all_msi() function in drivers/pci/quirks.c.
|
||||
|
||||
At the user level, users can use the command 'cat /proc/interrupts'
|
||||
to display the vectors allocated for devices and their interrupt
|
||||
MSI/MSI-X modes ("PCI-MSI"/"PCI-MSI-X"). Below shows MSI mode is
|
||||
enabled on a SCSI Adaptec 39320D Ultra320 controller.
|
||||
If you have a board which has problems with MSIs, you can pass pci=nomsi
|
||||
on the kernel command line to disable MSIs on all devices. It would be
|
||||
in your best interests to report the problem to linux-pci@vger.kernel.org
|
||||
including a full 'lspci -v' so we can add the quirks to the kernel.
|
||||
|
||||
CPU0 CPU1
|
||||
0: 324639 0 IO-APIC-edge timer
|
||||
1: 1186 0 IO-APIC-edge i8042
|
||||
2: 0 0 XT-PIC cascade
|
||||
12: 2797 0 IO-APIC-edge i8042
|
||||
14: 6543 0 IO-APIC-edge ide0
|
||||
15: 1 0 IO-APIC-edge ide1
|
||||
169: 0 0 IO-APIC-level uhci-hcd
|
||||
185: 0 0 IO-APIC-level uhci-hcd
|
||||
193: 138 10 PCI-MSI aic79xx
|
||||
201: 30 0 PCI-MSI aic79xx
|
||||
225: 30 0 IO-APIC-level aic7xxx
|
||||
233: 30 0 IO-APIC-level aic7xxx
|
||||
NMI: 0 0
|
||||
LOC: 324553 325068
|
||||
ERR: 0
|
||||
MIS: 0
|
||||
5.2. Disabling MSIs below a bridge
|
||||
|
||||
6. MSI quirks
|
||||
Some PCI bridges are not able to route MSIs between busses properly.
|
||||
In this case, MSIs must be disabled on all devices behind the bridge.
|
||||
|
||||
Several PCI chipsets or devices are known to not support MSI.
|
||||
The PCI stack provides 3 possible levels of MSI disabling:
|
||||
* on a single device
|
||||
* on all devices behind a specific bridge
|
||||
* globally
|
||||
Some bridges allow you to enable MSIs by changing some bits in their
|
||||
PCI configuration space (especially the Hypertransport chipsets such
|
||||
as the nVidia nForce and Serverworks HT2000). As with host chipsets,
|
||||
Linux mostly knows about them and automatically enables MSIs if it can.
|
||||
If you have a bridge which Linux doesn't yet know about, you can enable
|
||||
MSIs in configuration space using whatever method you know works, then
|
||||
enable MSIs on that bridge by doing:
|
||||
|
||||
6.1. Disabling MSI on a single device
|
||||
echo 1 > /sys/bus/pci/devices/$bridge/msi_bus
|
||||
|
||||
Under some circumstances it might be required to disable MSI on a
|
||||
single device. This may be achieved by either not calling pci_enable_msi()
|
||||
or all, or setting the pci_dev->no_msi flag before (most of the time
|
||||
in a quirk).
|
||||
where $bridge is the PCI address of the bridge you've enabled (eg
|
||||
0000:00:0e.0).
|
||||
|
||||
6.2. Disabling MSI below a bridge
|
||||
To disable MSIs, echo 0 instead of 1. Changing this value should be
|
||||
done with caution as it can break interrupt handling for all devices
|
||||
below this bridge.
|
||||
|
||||
The vast majority of MSI quirks are required by PCI bridges not
|
||||
being able to route MSI between busses. In this case, MSI have to be
|
||||
disabled on all devices behind this bridge. It is achieves by setting
|
||||
the PCI_BUS_FLAGS_NO_MSI flag in the pci_bus->bus_flags of the bridge
|
||||
subordinate bus. There is no need to set the same flag on bridges that
|
||||
are below the broken bridge. When pci_enable_msi() is called to enable
|
||||
MSI on a device, pci_msi_supported() takes care of checking the NO_MSI
|
||||
flag in all parent busses of the device.
|
||||
Again, please notify linux-pci@vger.kernel.org of any bridges that need
|
||||
special handling.
|
||||
|
||||
Some bridges actually support dynamic MSI support enabling/disabling
|
||||
by changing some bits in their PCI configuration space (especially
|
||||
the Hypertransport chipsets such as the nVidia nForce and Serverworks
|
||||
HT2000). It may then be required to update the NO_MSI flag on the
|
||||
corresponding devices in the sysfs hierarchy. To enable MSI support
|
||||
on device "0000:00:0e", do:
|
||||
5.3. Disabling MSIs on a single device
|
||||
|
||||
echo 1 > /sys/bus/pci/devices/0000:00:0e/msi_bus
|
||||
Some devices are known to have faulty MSI implementations. Usually this
|
||||
is handled in the individual device driver but occasionally it's necessary
|
||||
to handle this with a quirk. Some drivers have an option to disable use
|
||||
of MSI. While this is a convenient workaround for the driver author,
|
||||
it is not good practise, and should not be emulated.
|
||||
|
||||
To disable MSI support, echo 0 instead of 1. Note that it should be
|
||||
used with caution since changing this value might break interrupts.
|
||||
5.4. Finding why MSIs are disabled on a device
|
||||
|
||||
6.3. Disabling MSI globally
|
||||
From the above three sections, you can see that there are many reasons
|
||||
why MSIs may not be enabled for a given device. Your first step should
|
||||
be to examine your dmesg carefully to determine whether MSIs are enabled
|
||||
for your machine. You should also check your .config to be sure you
|
||||
have enabled CONFIG_PCI_MSI.
|
||||
|
||||
Some extreme cases may require to disable MSI globally on the system.
|
||||
For now, the only known case is a Serverworks PCI-X chipsets (MSI are
|
||||
not supported on several busses that are not all connected to the
|
||||
chipset in the Linux PCI hierarchy). In the vast majority of other
|
||||
cases, disabling only behind a specific bridge is enough.
|
||||
Then, 'lspci -t' gives the list of bridges above a device. Reading
|
||||
/sys/bus/pci/devices/*/msi_bus will tell you whether MSI are enabled (1)
|
||||
or disabled (0). If 0 is found in any of the msi_bus files belonging
|
||||
to bridges between the PCI root and the device, MSIs are disabled.
|
||||
|
||||
For debugging purpose, the user may also pass pci=nomsi on the kernel
|
||||
command-line to explicitly disable MSI globally. But, once the appro-
|
||||
priate quirks are added to the kernel, this option should not be
|
||||
required anymore.
|
||||
|
||||
6.4. Finding why MSI cannot be enabled on a device
|
||||
|
||||
Assuming that MSI are not enabled on a device, you should look at
|
||||
dmesg to find messages that quirks may output when disabling MSI
|
||||
on some devices, some bridges or even globally.
|
||||
Then, lspci -t gives the list of bridges above a device. Reading
|
||||
/sys/bus/pci/devices/0000:00:0e/msi_bus will tell you whether MSI
|
||||
are enabled (1) or disabled (0). In 0 is found in a single bridge
|
||||
msi_bus file above the device, MSI cannot be enabled.
|
||||
|
||||
7. FAQ
|
||||
|
||||
Q1. Are there any limitations on using the MSI?
|
||||
|
||||
A1. If the PCI device supports MSI and conforms to the
|
||||
specification and the platform supports the APIC local bus,
|
||||
then using MSI should work.
|
||||
|
||||
Q2. Will it work on all the Pentium processors (P3, P4, Xeon,
|
||||
AMD processors)? In P3 IPI's are transmitted on the APIC local
|
||||
bus and in P4 and Xeon they are transmitted on the system
|
||||
bus. Are there any implications with this?
|
||||
|
||||
A2. MSI support enables a PCI device sending an inbound
|
||||
memory write (0xfeexxxxx as target address) on its PCI bus
|
||||
directly to the FSB. Since the message address has a
|
||||
redirection hint bit cleared, it should work.
|
||||
|
||||
Q3. The target address 0xfeexxxxx will be translated by the
|
||||
Host Bridge into an interrupt message. Are there any
|
||||
limitations on the chipsets such as Intel 8xx, Intel e7xxx,
|
||||
or VIA?
|
||||
|
||||
A3. If these chipsets support an inbound memory write with
|
||||
target address set as 0xfeexxxxx, as conformed to PCI
|
||||
specification 2.3 or latest, then it should work.
|
||||
|
||||
Q4. From the driver point of view, if the MSI is lost because
|
||||
of errors occurring during inbound memory write, then it may
|
||||
wait forever. Is there a mechanism for it to recover?
|
||||
|
||||
A4. Since the target of the transaction is an inbound memory
|
||||
write, all transaction termination conditions (Retry,
|
||||
Master-Abort, Target-Abort, or normal completion) are
|
||||
supported. A device sending an MSI must abide by all the PCI
|
||||
rules and conditions regarding that inbound memory write. So,
|
||||
if a retry is signaled it must retry, etc... We believe that
|
||||
the recommendation for Abort is also a retry (refer to PCI
|
||||
specification 2.3 or latest).
|
||||
It is also worth checking the device driver to see whether it supports MSIs.
|
||||
For example, it may contain calls to pci_enable_msi(), pci_enable_msix() or
|
||||
pci_enable_msi_block().
|
||||
|
|
Loading…
Reference in a new issue