Bluetooth: let the crypto subsystem generate the ecc privkey
That Bluetooth SMP knows about the private key is pointless, since the detection of debug key usage is actually via the public key portion. With this patch, the Bluetooth SMP will stop keeping a copy of the ecdh private key and will let the crypto subsystem to generate and handle the ecdh private key, potentially benefiting of hardware ecc private key generation and retention. The loop that tries to generate a correct private key is now removed and we trust the crypto subsystem to generate a correct private key. This backup logic should be done in crypto, if really needed. Signed-off-by: Tudor Ambarus <tudor.ambarus@microchip.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
This commit is contained in:
parent
168ed65483
commit
c0153b0b90
4 changed files with 148 additions and 129 deletions
|
@ -49,15 +49,21 @@ static inline void swap_digits(u64 *in, u64 *out, unsigned int ndigits)
|
|||
out[i] = __swab64(in[ndigits - 1 - i]);
|
||||
}
|
||||
|
||||
/* compute_ecdh_secret() - function assumes that the private key was
|
||||
* already set.
|
||||
* @tfm: KPP tfm handle allocated with crypto_alloc_kpp().
|
||||
* @public_key: pair's ecc public key.
|
||||
* secret: memory where the ecdh computed shared secret will be saved.
|
||||
*
|
||||
* Return: zero on success; error code in case of error.
|
||||
*/
|
||||
int compute_ecdh_secret(struct crypto_kpp *tfm, const u8 public_key[64],
|
||||
const u8 private_key[32], u8 secret[32])
|
||||
u8 secret[32])
|
||||
{
|
||||
struct kpp_request *req;
|
||||
struct ecdh p;
|
||||
u8 *tmp;
|
||||
struct ecdh_completion result;
|
||||
struct scatterlist src, dst;
|
||||
u8 *tmp, *buf;
|
||||
unsigned int buf_len;
|
||||
int err;
|
||||
|
||||
tmp = kmalloc(64, GFP_KERNEL);
|
||||
|
@ -72,28 +78,6 @@ int compute_ecdh_secret(struct crypto_kpp *tfm, const u8 public_key[64],
|
|||
|
||||
init_completion(&result.completion);
|
||||
|
||||
/* Security Manager Protocol holds digits in litte-endian order
|
||||
* while ECC API expect big-endian data
|
||||
*/
|
||||
swap_digits((u64 *)private_key, (u64 *)tmp, 4);
|
||||
p.key = (char *)tmp;
|
||||
p.key_size = 32;
|
||||
/* Set curve_id */
|
||||
p.curve_id = ECC_CURVE_NIST_P256;
|
||||
buf_len = crypto_ecdh_key_len(&p);
|
||||
buf = kmalloc(buf_len, GFP_KERNEL);
|
||||
if (!buf) {
|
||||
err = -ENOMEM;
|
||||
goto free_req;
|
||||
}
|
||||
|
||||
crypto_ecdh_encode_key(buf, buf_len, &p);
|
||||
|
||||
/* Set A private Key */
|
||||
err = crypto_kpp_set_secret(tfm, (void *)buf, buf_len);
|
||||
if (err)
|
||||
goto free_all;
|
||||
|
||||
swap_digits((u64 *)public_key, (u64 *)tmp, 4); /* x */
|
||||
swap_digits((u64 *)&public_key[32], (u64 *)&tmp[32], 4); /* y */
|
||||
|
||||
|
@ -118,26 +102,76 @@ int compute_ecdh_secret(struct crypto_kpp *tfm, const u8 public_key[64],
|
|||
memcpy(secret, tmp, 32);
|
||||
|
||||
free_all:
|
||||
kzfree(buf);
|
||||
free_req:
|
||||
kpp_request_free(req);
|
||||
free_tmp:
|
||||
kzfree(tmp);
|
||||
return err;
|
||||
}
|
||||
|
||||
int generate_ecdh_keys(struct crypto_kpp *tfm, u8 public_key[64],
|
||||
u8 private_key[32])
|
||||
/* set_ecdh_privkey() - set or generate ecc private key.
|
||||
*
|
||||
* Function generates an ecc private key in the crypto subsystem when receiving
|
||||
* a NULL private key or sets the received key when not NULL.
|
||||
*
|
||||
* @tfm: KPP tfm handle allocated with crypto_alloc_kpp().
|
||||
* @private_key: user's ecc private key. When not NULL, the key is expected
|
||||
* in little endian format.
|
||||
*
|
||||
* Return: zero on success; error code in case of error.
|
||||
*/
|
||||
int set_ecdh_privkey(struct crypto_kpp *tfm, const u8 private_key[32])
|
||||
{
|
||||
struct kpp_request *req;
|
||||
struct ecdh p;
|
||||
struct ecdh_completion result;
|
||||
struct scatterlist dst;
|
||||
u8 *tmp, *buf;
|
||||
u8 *buf, *tmp = NULL;
|
||||
unsigned int buf_len;
|
||||
int err;
|
||||
const unsigned short max_tries = 16;
|
||||
unsigned short tries = 0;
|
||||
struct ecdh p = {0};
|
||||
|
||||
p.curve_id = ECC_CURVE_NIST_P256;
|
||||
|
||||
if (private_key) {
|
||||
tmp = kmalloc(32, GFP_KERNEL);
|
||||
if (!tmp)
|
||||
return -ENOMEM;
|
||||
swap_digits((u64 *)private_key, (u64 *)tmp, 4);
|
||||
p.key = tmp;
|
||||
p.key_size = 32;
|
||||
}
|
||||
|
||||
buf_len = crypto_ecdh_key_len(&p);
|
||||
buf = kmalloc(buf_len, GFP_KERNEL);
|
||||
if (!buf) {
|
||||
err = -ENOMEM;
|
||||
goto free_tmp;
|
||||
}
|
||||
|
||||
err = crypto_ecdh_encode_key(buf, buf_len, &p);
|
||||
if (err)
|
||||
goto free_all;
|
||||
|
||||
err = crypto_kpp_set_secret(tfm, buf, buf_len);
|
||||
/* fall through */
|
||||
free_all:
|
||||
kzfree(buf);
|
||||
free_tmp:
|
||||
kzfree(tmp);
|
||||
return err;
|
||||
}
|
||||
|
||||
/* generate_ecdh_public_key() - function assumes that the private key was
|
||||
* already set.
|
||||
*
|
||||
* @tfm: KPP tfm handle allocated with crypto_alloc_kpp().
|
||||
* @public_key: memory where the computed ecc public key will be saved.
|
||||
*
|
||||
* Return: zero on success; error code in case of error.
|
||||
*/
|
||||
int generate_ecdh_public_key(struct crypto_kpp *tfm, u8 public_key[64])
|
||||
{
|
||||
struct kpp_request *req;
|
||||
u8 *tmp;
|
||||
struct ecdh_completion result;
|
||||
struct scatterlist dst;
|
||||
int err;
|
||||
|
||||
tmp = kmalloc(64, GFP_KERNEL);
|
||||
if (!tmp)
|
||||
|
@ -150,63 +184,47 @@ int generate_ecdh_keys(struct crypto_kpp *tfm, u8 public_key[64],
|
|||
}
|
||||
|
||||
init_completion(&result.completion);
|
||||
sg_init_one(&dst, tmp, 64);
|
||||
kpp_request_set_input(req, NULL, 0);
|
||||
kpp_request_set_output(req, &dst, 64);
|
||||
kpp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
|
||||
ecdh_complete, &result);
|
||||
|
||||
/* Set curve_id */
|
||||
p.curve_id = ECC_CURVE_NIST_P256;
|
||||
p.key_size = 32;
|
||||
buf_len = crypto_ecdh_key_len(&p);
|
||||
buf = kmalloc(buf_len, GFP_KERNEL);
|
||||
if (!buf)
|
||||
goto free_req;
|
||||
err = crypto_kpp_generate_public_key(req);
|
||||
if (err == -EINPROGRESS) {
|
||||
wait_for_completion(&result.completion);
|
||||
err = result.err;
|
||||
}
|
||||
if (err < 0)
|
||||
goto free_all;
|
||||
|
||||
do {
|
||||
if (tries++ >= max_tries)
|
||||
goto free_all;
|
||||
|
||||
/* Set private Key */
|
||||
p.key = (char *)private_key;
|
||||
crypto_ecdh_encode_key(buf, buf_len, &p);
|
||||
err = crypto_kpp_set_secret(tfm, buf, buf_len);
|
||||
if (err)
|
||||
goto free_all;
|
||||
|
||||
sg_init_one(&dst, tmp, 64);
|
||||
kpp_request_set_input(req, NULL, 0);
|
||||
kpp_request_set_output(req, &dst, 64);
|
||||
kpp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
|
||||
ecdh_complete, &result);
|
||||
|
||||
err = crypto_kpp_generate_public_key(req);
|
||||
|
||||
if (err == -EINPROGRESS) {
|
||||
wait_for_completion(&result.completion);
|
||||
err = result.err;
|
||||
}
|
||||
|
||||
/* Private key is not valid. Regenerate */
|
||||
if (err == -EINVAL)
|
||||
continue;
|
||||
|
||||
if (err < 0)
|
||||
goto free_all;
|
||||
else
|
||||
break;
|
||||
|
||||
} while (true);
|
||||
|
||||
/* Keys are handed back in little endian as expected by Security
|
||||
* Manager Protocol
|
||||
/* The public key is handed back in little endian as expected by
|
||||
* the Security Manager Protocol.
|
||||
*/
|
||||
swap_digits((u64 *)tmp, (u64 *)public_key, 4); /* x */
|
||||
swap_digits((u64 *)&tmp[32], (u64 *)&public_key[32], 4); /* y */
|
||||
swap_digits((u64 *)private_key, (u64 *)tmp, 4);
|
||||
memcpy(private_key, tmp, 32);
|
||||
|
||||
free_all:
|
||||
kzfree(buf);
|
||||
free_req:
|
||||
kpp_request_free(req);
|
||||
free_tmp:
|
||||
kfree(tmp);
|
||||
return err;
|
||||
}
|
||||
|
||||
/* generate_ecdh_keys() - generate ecc key pair.
|
||||
*
|
||||
* @tfm: KPP tfm handle allocated with crypto_alloc_kpp().
|
||||
* @public_key: memory where the computed ecc public key will be saved.
|
||||
*
|
||||
* Return: zero on success; error code in case of error.
|
||||
*/
|
||||
int generate_ecdh_keys(struct crypto_kpp *tfm, u8 public_key[64])
|
||||
{
|
||||
int err;
|
||||
|
||||
err = set_ecdh_privkey(tfm, NULL);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
return generate_ecdh_public_key(tfm, public_key);
|
||||
}
|
||||
|
|
|
@ -23,7 +23,8 @@
|
|||
#include <crypto/kpp.h>
|
||||
#include <linux/types.h>
|
||||
|
||||
int compute_ecdh_secret(struct crypto_kpp *tfm, const u8 pub_a[64],
|
||||
const u8 priv_b[32], u8 secret[32]);
|
||||
int generate_ecdh_keys(struct crypto_kpp *tfm, u8 public_key[64],
|
||||
u8 private_key[32]);
|
||||
int compute_ecdh_secret(struct crypto_kpp *tfm, const u8 pair_public_key[64],
|
||||
u8 secret[32]);
|
||||
int set_ecdh_privkey(struct crypto_kpp *tfm, const u8 *private_key);
|
||||
int generate_ecdh_public_key(struct crypto_kpp *tfm, u8 public_key[64]);
|
||||
int generate_ecdh_keys(struct crypto_kpp *tfm, u8 public_key[64]);
|
||||
|
|
|
@ -152,11 +152,11 @@ static int __init test_ecdh_sample(struct crypto_kpp *tfm, const u8 priv_a[32],
|
|||
dhkey_a = &tmp[0];
|
||||
dhkey_b = &tmp[32];
|
||||
|
||||
ret = compute_ecdh_secret(tfm, pub_b, priv_a, dhkey_a);
|
||||
ret = set_ecdh_privkey(tfm, priv_a);
|
||||
if (ret)
|
||||
goto out;
|
||||
|
||||
ret = compute_ecdh_secret(tfm, pub_a, priv_b, dhkey_b);
|
||||
ret = compute_ecdh_secret(tfm, pub_b, dhkey_a);
|
||||
if (ret)
|
||||
goto out;
|
||||
|
||||
|
@ -165,9 +165,17 @@ static int __init test_ecdh_sample(struct crypto_kpp *tfm, const u8 priv_a[32],
|
|||
goto out;
|
||||
}
|
||||
|
||||
ret = set_ecdh_privkey(tfm, priv_b);
|
||||
if (ret)
|
||||
goto out;
|
||||
|
||||
ret = compute_ecdh_secret(tfm, pub_a, dhkey_b);
|
||||
if (ret)
|
||||
goto out;
|
||||
|
||||
if (memcmp(dhkey_b, dhkey, 32))
|
||||
ret = -EINVAL;
|
||||
|
||||
/* fall through*/
|
||||
out:
|
||||
kfree(tmp);
|
||||
return ret;
|
||||
|
|
|
@ -84,7 +84,6 @@ enum {
|
|||
struct smp_dev {
|
||||
/* Secure Connections OOB data */
|
||||
u8 local_pk[64];
|
||||
u8 local_sk[32];
|
||||
u8 local_rand[16];
|
||||
bool debug_key;
|
||||
|
||||
|
@ -126,7 +125,6 @@ struct smp_chan {
|
|||
|
||||
/* Secure Connections variables */
|
||||
u8 local_pk[64];
|
||||
u8 local_sk[32];
|
||||
u8 remote_pk[64];
|
||||
u8 dhkey[32];
|
||||
u8 mackey[16];
|
||||
|
@ -568,24 +566,22 @@ int smp_generate_oob(struct hci_dev *hdev, u8 hash[16], u8 rand[16])
|
|||
|
||||
if (hci_dev_test_flag(hdev, HCI_USE_DEBUG_KEYS)) {
|
||||
BT_DBG("Using debug keys");
|
||||
err = set_ecdh_privkey(smp->tfm_ecdh, debug_sk);
|
||||
if (err)
|
||||
return err;
|
||||
memcpy(smp->local_pk, debug_pk, 64);
|
||||
memcpy(smp->local_sk, debug_sk, 32);
|
||||
smp->debug_key = true;
|
||||
} else {
|
||||
while (true) {
|
||||
/* Seed private key with random number */
|
||||
get_random_bytes(smp->local_sk, 32);
|
||||
|
||||
/* Generate local key pair for Secure Connections */
|
||||
err = generate_ecdh_keys(smp->tfm_ecdh, smp->local_pk,
|
||||
smp->local_sk);
|
||||
/* Generate key pair for Secure Connections */
|
||||
err = generate_ecdh_keys(smp->tfm_ecdh, smp->local_pk);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
/* This is unlikely, but we need to check that
|
||||
* we didn't accidentially generate a debug key.
|
||||
*/
|
||||
if (crypto_memneq(smp->local_sk, debug_sk, 32))
|
||||
if (crypto_memneq(smp->local_pk, debug_pk, 64))
|
||||
break;
|
||||
}
|
||||
smp->debug_key = false;
|
||||
|
@ -593,7 +589,6 @@ int smp_generate_oob(struct hci_dev *hdev, u8 hash[16], u8 rand[16])
|
|||
|
||||
SMP_DBG("OOB Public Key X: %32phN", smp->local_pk);
|
||||
SMP_DBG("OOB Public Key Y: %32phN", smp->local_pk + 32);
|
||||
SMP_DBG("OOB Private Key: %32phN", smp->local_sk);
|
||||
|
||||
get_random_bytes(smp->local_rand, 16);
|
||||
|
||||
|
@ -1900,7 +1895,6 @@ static u8 sc_send_public_key(struct smp_chan *smp)
|
|||
smp_dev = chan->data;
|
||||
|
||||
memcpy(smp->local_pk, smp_dev->local_pk, 64);
|
||||
memcpy(smp->local_sk, smp_dev->local_sk, 32);
|
||||
memcpy(smp->lr, smp_dev->local_rand, 16);
|
||||
|
||||
if (smp_dev->debug_key)
|
||||
|
@ -1911,23 +1905,20 @@ static u8 sc_send_public_key(struct smp_chan *smp)
|
|||
|
||||
if (hci_dev_test_flag(hdev, HCI_USE_DEBUG_KEYS)) {
|
||||
BT_DBG("Using debug keys");
|
||||
if (set_ecdh_privkey(smp->tfm_ecdh, debug_sk))
|
||||
return SMP_UNSPECIFIED;
|
||||
memcpy(smp->local_pk, debug_pk, 64);
|
||||
memcpy(smp->local_sk, debug_sk, 32);
|
||||
set_bit(SMP_FLAG_DEBUG_KEY, &smp->flags);
|
||||
} else {
|
||||
while (true) {
|
||||
/* Seed private key with random number */
|
||||
get_random_bytes(smp->local_sk, 32);
|
||||
|
||||
/* Generate local key pair for Secure Connections */
|
||||
if (generate_ecdh_keys(smp->tfm_ecdh, smp->local_pk,
|
||||
smp->local_sk))
|
||||
/* Generate key pair for Secure Connections */
|
||||
if (generate_ecdh_keys(smp->tfm_ecdh, smp->local_pk))
|
||||
return SMP_UNSPECIFIED;
|
||||
|
||||
/* This is unlikely, but we need to check that
|
||||
* we didn't accidentially generate a debug key.
|
||||
*/
|
||||
if (crypto_memneq(smp->local_sk, debug_sk, 32))
|
||||
if (crypto_memneq(smp->local_pk, debug_pk, 64))
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
@ -1935,7 +1926,6 @@ static u8 sc_send_public_key(struct smp_chan *smp)
|
|||
done:
|
||||
SMP_DBG("Local Public Key X: %32phN", smp->local_pk);
|
||||
SMP_DBG("Local Public Key Y: %32phN", smp->local_pk + 32);
|
||||
SMP_DBG("Local Private Key: %32phN", smp->local_sk);
|
||||
|
||||
smp_send_cmd(smp->conn, SMP_CMD_PUBLIC_KEY, 64, smp->local_pk);
|
||||
|
||||
|
@ -2663,6 +2653,7 @@ static int smp_cmd_public_key(struct l2cap_conn *conn, struct sk_buff *skb)
|
|||
struct l2cap_chan *chan = conn->smp;
|
||||
struct smp_chan *smp = chan->data;
|
||||
struct hci_dev *hdev = hcon->hdev;
|
||||
struct crypto_kpp *tfm_ecdh;
|
||||
struct smp_cmd_pairing_confirm cfm;
|
||||
int err;
|
||||
|
||||
|
@ -2695,8 +2686,18 @@ static int smp_cmd_public_key(struct l2cap_conn *conn, struct sk_buff *skb)
|
|||
SMP_DBG("Remote Public Key X: %32phN", smp->remote_pk);
|
||||
SMP_DBG("Remote Public Key Y: %32phN", smp->remote_pk + 32);
|
||||
|
||||
if (!compute_ecdh_secret(smp->tfm_ecdh, smp->remote_pk, smp->local_sk,
|
||||
smp->dhkey))
|
||||
/* Compute the shared secret on the same crypto tfm on which the private
|
||||
* key was set/generated.
|
||||
*/
|
||||
if (test_bit(SMP_FLAG_LOCAL_OOB, &smp->flags)) {
|
||||
struct smp_dev *smp_dev = chan->data;
|
||||
|
||||
tfm_ecdh = smp_dev->tfm_ecdh;
|
||||
} else {
|
||||
tfm_ecdh = smp->tfm_ecdh;
|
||||
}
|
||||
|
||||
if (compute_ecdh_secret(tfm_ecdh, smp->remote_pk, smp->dhkey))
|
||||
return SMP_UNSPECIFIED;
|
||||
|
||||
SMP_DBG("DHKey %32phN", smp->dhkey);
|
||||
|
@ -3522,27 +3523,18 @@ void smp_unregister(struct hci_dev *hdev)
|
|||
|
||||
#if IS_ENABLED(CONFIG_BT_SELFTEST_SMP)
|
||||
|
||||
static inline void swap_digits(u64 *in, u64 *out, unsigned int ndigits)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i < ndigits; i++)
|
||||
out[i] = __swab64(in[ndigits - 1 - i]);
|
||||
}
|
||||
|
||||
static int __init test_debug_key(struct crypto_kpp *tfm_ecdh)
|
||||
{
|
||||
u8 pk[64], sk[32];
|
||||
u8 pk[64];
|
||||
int err;
|
||||
|
||||
swap_digits((u64 *)debug_sk, (u64 *)sk, 4);
|
||||
|
||||
err = generate_ecdh_keys(tfm_ecdh, pk, sk);
|
||||
err = set_ecdh_privkey(tfm_ecdh, debug_sk);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
if (crypto_memneq(sk, debug_sk, 32))
|
||||
return -EINVAL;
|
||||
err = generate_ecdh_public_key(tfm_ecdh, pk);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
if (crypto_memneq(pk, debug_pk, 64))
|
||||
return -EINVAL;
|
||||
|
|
Loading…
Reference in a new issue