Merge branches 'oprofile-v2' and 'timers/hpet' into x86/core-v4

This commit is contained in:
Ingo Molnar 2008-10-13 14:18:42 +02:00
commit c00193f9f0
20 changed files with 1004 additions and 374 deletions

View file

@ -159,8 +159,6 @@ hayes-esp.txt
- info on using the Hayes ESP serial driver.
highuid.txt
- notes on the change from 16 bit to 32 bit user/group IDs.
hpet.txt
- High Precision Event Timer Driver for Linux.
timers/
- info on the timer related topics
hw_random.txt

View file

@ -0,0 +1,10 @@
00-INDEX
- this file
highres.txt
- High resolution timers and dynamic ticks design notes
hpet.txt
- High Precision Event Timer Driver for Linux
hrtimers.txt
- subsystem for high-resolution kernel timers
timer_stats.txt
- timer usage statistics

View file

@ -1,21 +1,32 @@
High Precision Event Timer Driver for Linux
The High Precision Event Timer (HPET) hardware is the future replacement
for the 8254 and Real Time Clock (RTC) periodic timer functionality.
Each HPET can have up to 32 timers. It is possible to configure the
first two timers as legacy replacements for 8254 and RTC periodic timers.
A specification done by Intel and Microsoft can be found at
<http://www.intel.com/technology/architecture/hpetspec.htm>.
The High Precision Event Timer (HPET) hardware follows a specification
by Intel and Microsoft which can be found at
http://www.intel.com/technology/architecture/hpetspec.htm
Each HPET has one fixed-rate counter (at 10+ MHz, hence "High Precision")
and up to 32 comparators. Normally three or more comparators are provided,
each of which can generate oneshot interupts and at least one of which has
additional hardware to support periodic interrupts. The comparators are
also called "timers", which can be misleading since usually timers are
independent of each other ... these share a counter, complicating resets.
HPET devices can support two interrupt routing modes. In one mode, the
comparators are additional interrupt sources with no particular system
role. Many x86 BIOS writers don't route HPET interrupts at all, which
prevents use of that mode. They support the other "legacy replacement"
mode where the first two comparators block interrupts from 8254 timers
and from the RTC.
The driver supports detection of HPET driver allocation and initialization
of the HPET before the driver module_init routine is called. This enables
platform code which uses timer 0 or 1 as the main timer to intercept HPET
initialization. An example of this initialization can be found in
arch/i386/kernel/time_hpet.c.
arch/x86/kernel/hpet.c.
The driver provides two APIs which are very similar to the API found in
the rtc.c driver. There is a user space API and a kernel space API.
An example user space program is provided below.
The driver provides a userspace API which resembles the API found in the
RTC driver framework. An example user space program is provided below.
#include <stdio.h>
#include <stdlib.h>
@ -286,15 +297,3 @@ out:
return;
}
The kernel API has three interfaces exported from the driver:
hpet_register(struct hpet_task *tp, int periodic)
hpet_unregister(struct hpet_task *tp)
hpet_control(struct hpet_task *tp, unsigned int cmd, unsigned long arg)
The kernel module using this interface fills in the ht_func and ht_data
members of the hpet_task structure before calling hpet_register.
hpet_control simply vectors to the hpet_ioctl routine and has the same
commands and respective arguments as the user API. hpet_unregister
is used to terminate usage of the HPET timer reserved by hpet_register.

View file

@ -13,6 +13,20 @@ config OPROFILE
If unsure, say N.
config OPROFILE_IBS
bool "OProfile AMD IBS support (EXPERIMENTAL)"
default n
depends on OPROFILE && SMP && X86
help
Instruction-Based Sampling (IBS) is a new profiling
technique that provides rich, precise program performance
information. IBS is introduced by AMD Family10h processors
(AMD Opteron Quad-Core processor “Barcelona”) to overcome
the limitations of conventional performance counter
sampling.
If unsure, say N.
config HAVE_OPROFILE
def_bool n

View file

@ -295,6 +295,9 @@ static void __setup_APIC_LVTT(unsigned int clocks, int oneshot, int irqen)
*
* Vector mappings are hard coded. On K8 only offset 0 (APIC500) and
* MCE interrupts are supported. Thus MCE offset must be set to 0.
*
* If mask=1, the LVT entry does not generate interrupts while mask=0
* enables the vector. See also the BKDGs.
*/
#define APIC_EILVT_LVTOFF_MCE 0
@ -319,6 +322,7 @@ u8 setup_APIC_eilvt_ibs(u8 vector, u8 msg_type, u8 mask)
setup_APIC_eilvt(APIC_EILVT_LVTOFF_IBS, vector, msg_type, mask);
return APIC_EILVT_LVTOFF_IBS;
}
EXPORT_SYMBOL_GPL(setup_APIC_eilvt_ibs);
/*
* Program the next event, relative to now

View file

@ -307,6 +307,9 @@ static void __setup_APIC_LVTT(unsigned int clocks, int oneshot, int irqen)
*
* Vector mappings are hard coded. On K8 only offset 0 (APIC500) and
* MCE interrupts are supported. Thus MCE offset must be set to 0.
*
* If mask=1, the LVT entry does not generate interrupts while mask=0
* enables the vector. See also the BKDGs.
*/
#define APIC_EILVT_LVTOFF_MCE 0
@ -331,6 +334,7 @@ u8 setup_APIC_eilvt_ibs(u8 vector, u8 msg_type, u8 mask)
setup_APIC_eilvt(APIC_EILVT_LVTOFF_IBS, vector, msg_type, mask);
return APIC_EILVT_LVTOFF_IBS;
}
EXPORT_SYMBOL_GPL(setup_APIC_eilvt_ibs);
/*
* Program the next event, relative to now

View file

@ -115,13 +115,17 @@ static void hpet_reserve_platform_timers(unsigned long id)
hd.hd_phys_address = hpet_address;
hd.hd_address = hpet;
hd.hd_nirqs = nrtimers;
hd.hd_flags = HPET_DATA_PLATFORM;
hpet_reserve_timer(&hd, 0);
#ifdef CONFIG_HPET_EMULATE_RTC
hpet_reserve_timer(&hd, 1);
#endif
/*
* NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
* is wrong for i8259!) not the output IRQ. Many BIOS writers
* don't bother configuring *any* comparator interrupts.
*/
hd.hd_irq[0] = HPET_LEGACY_8254;
hd.hd_irq[1] = HPET_LEGACY_RTC;

View file

@ -354,9 +354,27 @@ static void ati_force_hpet_resume(void)
printk(KERN_DEBUG "Force enabled HPET at resume\n");
}
static u32 ati_ixp4x0_rev(struct pci_dev *dev)
{
u32 d;
u8 b;
pci_read_config_byte(dev, 0xac, &b);
b &= ~(1<<5);
pci_write_config_byte(dev, 0xac, b);
pci_read_config_dword(dev, 0x70, &d);
d |= 1<<8;
pci_write_config_dword(dev, 0x70, d);
pci_read_config_dword(dev, 0x8, &d);
d &= 0xff;
dev_printk(KERN_DEBUG, &dev->dev, "SB4X0 revision 0x%x\n", d);
return d;
}
static void ati_force_enable_hpet(struct pci_dev *dev)
{
u32 uninitialized_var(val);
u32 d, val;
u8 b;
if (hpet_address || force_hpet_address)
return;
@ -366,14 +384,33 @@ static void ati_force_enable_hpet(struct pci_dev *dev)
return;
}
d = ati_ixp4x0_rev(dev);
if (d < 0x82)
return;
/* base address */
pci_write_config_dword(dev, 0x14, 0xfed00000);
pci_read_config_dword(dev, 0x14, &val);
/* enable interrupt */
outb(0x72, 0xcd6); b = inb(0xcd7);
b |= 0x1;
outb(0x72, 0xcd6); outb(b, 0xcd7);
outb(0x72, 0xcd6); b = inb(0xcd7);
if (!(b & 0x1))
return;
pci_read_config_dword(dev, 0x64, &d);
d |= (1<<10);
pci_write_config_dword(dev, 0x64, d);
pci_read_config_dword(dev, 0x64, &d);
if (!(d & (1<<10)))
return;
force_hpet_address = val;
force_hpet_resume_type = ATI_FORCE_HPET_RESUME;
dev_printk(KERN_DEBUG, &dev->dev, "Force enabled HPET at 0x%lx\n",
force_hpet_address);
cached_dev = dev;
return;
}
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_IXP400_SMBUS,
ati_force_enable_hpet);

View file

@ -7,6 +7,6 @@ DRIVER_OBJS = $(addprefix ../../../drivers/oprofile/, \
timer_int.o )
oprofile-y := $(DRIVER_OBJS) init.o backtrace.o
oprofile-$(CONFIG_X86_LOCAL_APIC) += nmi_int.o op_model_athlon.o \
oprofile-$(CONFIG_X86_LOCAL_APIC) += nmi_int.o op_model_amd.o \
op_model_ppro.o op_model_p4.o
oprofile-$(CONFIG_X86_IO_APIC) += nmi_timer_int.o

View file

@ -1,10 +1,11 @@
/**
* @file nmi_int.c
*
* @remark Copyright 2002 OProfile authors
* @remark Copyright 2002-2008 OProfile authors
* @remark Read the file COPYING
*
* @author John Levon <levon@movementarian.org>
* @author Robert Richter <robert.richter@amd.com>
*/
#include <linux/init.h>
@ -439,6 +440,7 @@ int __init op_nmi_init(struct oprofile_operations *ops)
__u8 vendor = boot_cpu_data.x86_vendor;
__u8 family = boot_cpu_data.x86;
char *cpu_type;
int ret = 0;
if (!cpu_has_apic)
return -ENODEV;
@ -451,19 +453,23 @@ int __init op_nmi_init(struct oprofile_operations *ops)
default:
return -ENODEV;
case 6:
model = &op_athlon_spec;
model = &op_amd_spec;
cpu_type = "i386/athlon";
break;
case 0xf:
model = &op_athlon_spec;
model = &op_amd_spec;
/* Actually it could be i386/hammer too, but give
user space an consistent name. */
cpu_type = "x86-64/hammer";
break;
case 0x10:
model = &op_athlon_spec;
model = &op_amd_spec;
cpu_type = "x86-64/family10";
break;
case 0x11:
model = &op_amd_spec;
cpu_type = "x86-64/family11h";
break;
}
break;
@ -490,17 +496,24 @@ int __init op_nmi_init(struct oprofile_operations *ops)
return -ENODEV;
}
init_sysfs();
#ifdef CONFIG_SMP
register_cpu_notifier(&oprofile_cpu_nb);
#endif
using_nmi = 1;
/* default values, can be overwritten by model */
ops->create_files = nmi_create_files;
ops->setup = nmi_setup;
ops->shutdown = nmi_shutdown;
ops->start = nmi_start;
ops->stop = nmi_stop;
ops->cpu_type = cpu_type;
if (model->init)
ret = model->init(ops);
if (ret)
return ret;
init_sysfs();
using_nmi = 1;
printk(KERN_INFO "oprofile: using NMI interrupt.\n");
return 0;
}
@ -513,4 +526,6 @@ void op_nmi_exit(void)
unregister_cpu_notifier(&oprofile_cpu_nb);
#endif
}
if (model->exit)
model->exit();
}

View file

@ -0,0 +1,543 @@
/*
* @file op_model_amd.c
* athlon / K7 / K8 / Family 10h model-specific MSR operations
*
* @remark Copyright 2002-2008 OProfile authors
* @remark Read the file COPYING
*
* @author John Levon
* @author Philippe Elie
* @author Graydon Hoare
* @author Robert Richter <robert.richter@amd.com>
* @author Barry Kasindorf
*/
#include <linux/oprofile.h>
#include <linux/device.h>
#include <linux/pci.h>
#include <asm/ptrace.h>
#include <asm/msr.h>
#include <asm/nmi.h>
#include "op_x86_model.h"
#include "op_counter.h"
#define NUM_COUNTERS 4
#define NUM_CONTROLS 4
#define CTR_IS_RESERVED(msrs, c) (msrs->counters[(c)].addr ? 1 : 0)
#define CTR_READ(l, h, msrs, c) do {rdmsr(msrs->counters[(c)].addr, (l), (h)); } while (0)
#define CTR_WRITE(l, msrs, c) do {wrmsr(msrs->counters[(c)].addr, -(unsigned int)(l), -1); } while (0)
#define CTR_OVERFLOWED(n) (!((n) & (1U<<31)))
#define CTRL_IS_RESERVED(msrs, c) (msrs->controls[(c)].addr ? 1 : 0)
#define CTRL_READ(l, h, msrs, c) do {rdmsr(msrs->controls[(c)].addr, (l), (h)); } while (0)
#define CTRL_WRITE(l, h, msrs, c) do {wrmsr(msrs->controls[(c)].addr, (l), (h)); } while (0)
#define CTRL_SET_ACTIVE(n) (n |= (1<<22))
#define CTRL_SET_INACTIVE(n) (n &= ~(1<<22))
#define CTRL_CLEAR_LO(x) (x &= (1<<21))
#define CTRL_CLEAR_HI(x) (x &= 0xfffffcf0)
#define CTRL_SET_ENABLE(val) (val |= 1<<20)
#define CTRL_SET_USR(val, u) (val |= ((u & 1) << 16))
#define CTRL_SET_KERN(val, k) (val |= ((k & 1) << 17))
#define CTRL_SET_UM(val, m) (val |= (m << 8))
#define CTRL_SET_EVENT_LOW(val, e) (val |= (e & 0xff))
#define CTRL_SET_EVENT_HIGH(val, e) (val |= ((e >> 8) & 0xf))
#define CTRL_SET_HOST_ONLY(val, h) (val |= ((h & 1) << 9))
#define CTRL_SET_GUEST_ONLY(val, h) (val |= ((h & 1) << 8))
static unsigned long reset_value[NUM_COUNTERS];
#ifdef CONFIG_OPROFILE_IBS
/* IbsFetchCtl bits/masks */
#define IBS_FETCH_HIGH_VALID_BIT (1UL << 17) /* bit 49 */
#define IBS_FETCH_HIGH_ENABLE (1UL << 16) /* bit 48 */
#define IBS_FETCH_LOW_MAX_CNT_MASK 0x0000FFFFUL /* MaxCnt mask */
/*IbsOpCtl bits */
#define IBS_OP_LOW_VALID_BIT (1ULL<<18) /* bit 18 */
#define IBS_OP_LOW_ENABLE (1ULL<<17) /* bit 17 */
/* Codes used in cpu_buffer.c */
/* This produces duplicate code, need to be fixed */
#define IBS_FETCH_BEGIN 3
#define IBS_OP_BEGIN 4
/* The function interface needs to be fixed, something like add
data. Should then be added to linux/oprofile.h. */
extern void oprofile_add_ibs_sample(struct pt_regs *const regs,
unsigned int * const ibs_sample, u8 code);
struct ibs_fetch_sample {
/* MSRC001_1031 IBS Fetch Linear Address Register */
unsigned int ibs_fetch_lin_addr_low;
unsigned int ibs_fetch_lin_addr_high;
/* MSRC001_1030 IBS Fetch Control Register */
unsigned int ibs_fetch_ctl_low;
unsigned int ibs_fetch_ctl_high;
/* MSRC001_1032 IBS Fetch Physical Address Register */
unsigned int ibs_fetch_phys_addr_low;
unsigned int ibs_fetch_phys_addr_high;
};
struct ibs_op_sample {
/* MSRC001_1034 IBS Op Logical Address Register (IbsRIP) */
unsigned int ibs_op_rip_low;
unsigned int ibs_op_rip_high;
/* MSRC001_1035 IBS Op Data Register */
unsigned int ibs_op_data1_low;
unsigned int ibs_op_data1_high;
/* MSRC001_1036 IBS Op Data 2 Register */
unsigned int ibs_op_data2_low;
unsigned int ibs_op_data2_high;
/* MSRC001_1037 IBS Op Data 3 Register */
unsigned int ibs_op_data3_low;
unsigned int ibs_op_data3_high;
/* MSRC001_1038 IBS DC Linear Address Register (IbsDcLinAd) */
unsigned int ibs_dc_linear_low;
unsigned int ibs_dc_linear_high;
/* MSRC001_1039 IBS DC Physical Address Register (IbsDcPhysAd) */
unsigned int ibs_dc_phys_low;
unsigned int ibs_dc_phys_high;
};
/*
* unitialize the APIC for the IBS interrupts if needed on AMD Family10h+
*/
static void clear_ibs_nmi(void);
static int ibs_allowed; /* AMD Family10h and later */
struct op_ibs_config {
unsigned long op_enabled;
unsigned long fetch_enabled;
unsigned long max_cnt_fetch;
unsigned long max_cnt_op;
unsigned long rand_en;
unsigned long dispatched_ops;
};
static struct op_ibs_config ibs_config;
#endif
/* functions for op_amd_spec */
static void op_amd_fill_in_addresses(struct op_msrs * const msrs)
{
int i;
for (i = 0; i < NUM_COUNTERS; i++) {
if (reserve_perfctr_nmi(MSR_K7_PERFCTR0 + i))
msrs->counters[i].addr = MSR_K7_PERFCTR0 + i;
else
msrs->counters[i].addr = 0;
}
for (i = 0; i < NUM_CONTROLS; i++) {
if (reserve_evntsel_nmi(MSR_K7_EVNTSEL0 + i))
msrs->controls[i].addr = MSR_K7_EVNTSEL0 + i;
else
msrs->controls[i].addr = 0;
}
}
static void op_amd_setup_ctrs(struct op_msrs const * const msrs)
{
unsigned int low, high;
int i;
/* clear all counters */
for (i = 0 ; i < NUM_CONTROLS; ++i) {
if (unlikely(!CTRL_IS_RESERVED(msrs, i)))
continue;
CTRL_READ(low, high, msrs, i);
CTRL_CLEAR_LO(low);
CTRL_CLEAR_HI(high);
CTRL_WRITE(low, high, msrs, i);
}
/* avoid a false detection of ctr overflows in NMI handler */
for (i = 0; i < NUM_COUNTERS; ++i) {
if (unlikely(!CTR_IS_RESERVED(msrs, i)))
continue;
CTR_WRITE(1, msrs, i);
}
/* enable active counters */
for (i = 0; i < NUM_COUNTERS; ++i) {
if ((counter_config[i].enabled) && (CTR_IS_RESERVED(msrs, i))) {
reset_value[i] = counter_config[i].count;
CTR_WRITE(counter_config[i].count, msrs, i);
CTRL_READ(low, high, msrs, i);
CTRL_CLEAR_LO(low);
CTRL_CLEAR_HI(high);
CTRL_SET_ENABLE(low);
CTRL_SET_USR(low, counter_config[i].user);
CTRL_SET_KERN(low, counter_config[i].kernel);
CTRL_SET_UM(low, counter_config[i].unit_mask);
CTRL_SET_EVENT_LOW(low, counter_config[i].event);
CTRL_SET_EVENT_HIGH(high, counter_config[i].event);
CTRL_SET_HOST_ONLY(high, 0);
CTRL_SET_GUEST_ONLY(high, 0);
CTRL_WRITE(low, high, msrs, i);
} else {
reset_value[i] = 0;
}
}
}
#ifdef CONFIG_OPROFILE_IBS
static inline int
op_amd_handle_ibs(struct pt_regs * const regs,
struct op_msrs const * const msrs)
{
unsigned int low, high;
struct ibs_fetch_sample ibs_fetch;
struct ibs_op_sample ibs_op;
if (!ibs_allowed)
return 1;
if (ibs_config.fetch_enabled) {
rdmsr(MSR_AMD64_IBSFETCHCTL, low, high);
if (high & IBS_FETCH_HIGH_VALID_BIT) {
ibs_fetch.ibs_fetch_ctl_high = high;
ibs_fetch.ibs_fetch_ctl_low = low;
rdmsr(MSR_AMD64_IBSFETCHLINAD, low, high);
ibs_fetch.ibs_fetch_lin_addr_high = high;
ibs_fetch.ibs_fetch_lin_addr_low = low;
rdmsr(MSR_AMD64_IBSFETCHPHYSAD, low, high);
ibs_fetch.ibs_fetch_phys_addr_high = high;
ibs_fetch.ibs_fetch_phys_addr_low = low;
oprofile_add_ibs_sample(regs,
(unsigned int *)&ibs_fetch,
IBS_FETCH_BEGIN);
/*reenable the IRQ */
rdmsr(MSR_AMD64_IBSFETCHCTL, low, high);
high &= ~IBS_FETCH_HIGH_VALID_BIT;
high |= IBS_FETCH_HIGH_ENABLE;
low &= IBS_FETCH_LOW_MAX_CNT_MASK;
wrmsr(MSR_AMD64_IBSFETCHCTL, low, high);
}
}
if (ibs_config.op_enabled) {
rdmsr(MSR_AMD64_IBSOPCTL, low, high);
if (low & IBS_OP_LOW_VALID_BIT) {
rdmsr(MSR_AMD64_IBSOPRIP, low, high);
ibs_op.ibs_op_rip_low = low;
ibs_op.ibs_op_rip_high = high;
rdmsr(MSR_AMD64_IBSOPDATA, low, high);
ibs_op.ibs_op_data1_low = low;
ibs_op.ibs_op_data1_high = high;
rdmsr(MSR_AMD64_IBSOPDATA2, low, high);
ibs_op.ibs_op_data2_low = low;
ibs_op.ibs_op_data2_high = high;
rdmsr(MSR_AMD64_IBSOPDATA3, low, high);
ibs_op.ibs_op_data3_low = low;
ibs_op.ibs_op_data3_high = high;
rdmsr(MSR_AMD64_IBSDCLINAD, low, high);
ibs_op.ibs_dc_linear_low = low;
ibs_op.ibs_dc_linear_high = high;
rdmsr(MSR_AMD64_IBSDCPHYSAD, low, high);
ibs_op.ibs_dc_phys_low = low;
ibs_op.ibs_dc_phys_high = high;
/* reenable the IRQ */
oprofile_add_ibs_sample(regs,
(unsigned int *)&ibs_op,
IBS_OP_BEGIN);
rdmsr(MSR_AMD64_IBSOPCTL, low, high);
high = 0;
low &= ~IBS_OP_LOW_VALID_BIT;
low |= IBS_OP_LOW_ENABLE;
wrmsr(MSR_AMD64_IBSOPCTL, low, high);
}
}
return 1;
}
#endif
static int op_amd_check_ctrs(struct pt_regs * const regs,
struct op_msrs const * const msrs)
{
unsigned int low, high;
int i;
for (i = 0 ; i < NUM_COUNTERS; ++i) {
if (!reset_value[i])
continue;
CTR_READ(low, high, msrs, i);
if (CTR_OVERFLOWED(low)) {
oprofile_add_sample(regs, i);
CTR_WRITE(reset_value[i], msrs, i);
}
}
#ifdef CONFIG_OPROFILE_IBS
op_amd_handle_ibs(regs, msrs);
#endif
/* See op_model_ppro.c */
return 1;
}
static void op_amd_start(struct op_msrs const * const msrs)
{
unsigned int low, high;
int i;
for (i = 0 ; i < NUM_COUNTERS ; ++i) {
if (reset_value[i]) {
CTRL_READ(low, high, msrs, i);
CTRL_SET_ACTIVE(low);
CTRL_WRITE(low, high, msrs, i);
}
}
#ifdef CONFIG_OPROFILE_IBS
if (ibs_allowed && ibs_config.fetch_enabled) {
low = (ibs_config.max_cnt_fetch >> 4) & 0xFFFF;
high = IBS_FETCH_HIGH_ENABLE;
wrmsr(MSR_AMD64_IBSFETCHCTL, low, high);
}
if (ibs_allowed && ibs_config.op_enabled) {
low = ((ibs_config.max_cnt_op >> 4) & 0xFFFF) + IBS_OP_LOW_ENABLE;
high = 0;
wrmsr(MSR_AMD64_IBSOPCTL, low, high);
}
#endif
}
static void op_amd_stop(struct op_msrs const * const msrs)
{
unsigned int low, high;
int i;
/* Subtle: stop on all counters to avoid race with
* setting our pm callback */
for (i = 0 ; i < NUM_COUNTERS ; ++i) {
if (!reset_value[i])
continue;
CTRL_READ(low, high, msrs, i);
CTRL_SET_INACTIVE(low);
CTRL_WRITE(low, high, msrs, i);
}
#ifdef CONFIG_OPROFILE_IBS
if (ibs_allowed && ibs_config.fetch_enabled) {
low = 0; /* clear max count and enable */
high = 0;
wrmsr(MSR_AMD64_IBSFETCHCTL, low, high);
}
if (ibs_allowed && ibs_config.op_enabled) {
low = 0; /* clear max count and enable */
high = 0;
wrmsr(MSR_AMD64_IBSOPCTL, low, high);
}
#endif
}
static void op_amd_shutdown(struct op_msrs const * const msrs)
{
int i;
for (i = 0 ; i < NUM_COUNTERS ; ++i) {
if (CTR_IS_RESERVED(msrs, i))
release_perfctr_nmi(MSR_K7_PERFCTR0 + i);
}
for (i = 0 ; i < NUM_CONTROLS ; ++i) {
if (CTRL_IS_RESERVED(msrs, i))
release_evntsel_nmi(MSR_K7_EVNTSEL0 + i);
}
}
#ifndef CONFIG_OPROFILE_IBS
/* no IBS support */
static int op_amd_init(struct oprofile_operations *ops)
{
return 0;
}
static void op_amd_exit(void) {}
#else
static u8 ibs_eilvt_off;
static inline void apic_init_ibs_nmi_per_cpu(void *arg)
{
ibs_eilvt_off = setup_APIC_eilvt_ibs(0, APIC_EILVT_MSG_NMI, 0);
}
static inline void apic_clear_ibs_nmi_per_cpu(void *arg)
{
setup_APIC_eilvt_ibs(0, APIC_EILVT_MSG_FIX, 1);
}
static int pfm_amd64_setup_eilvt(void)
{
#define IBSCTL_LVTOFFSETVAL (1 << 8)
#define IBSCTL 0x1cc
struct pci_dev *cpu_cfg;
int nodes;
u32 value = 0;
/* per CPU setup */
on_each_cpu(apic_init_ibs_nmi_per_cpu, NULL, 1);
nodes = 0;
cpu_cfg = NULL;
do {
cpu_cfg = pci_get_device(PCI_VENDOR_ID_AMD,
PCI_DEVICE_ID_AMD_10H_NB_MISC,
cpu_cfg);
if (!cpu_cfg)
break;
++nodes;
pci_write_config_dword(cpu_cfg, IBSCTL, ibs_eilvt_off
| IBSCTL_LVTOFFSETVAL);
pci_read_config_dword(cpu_cfg, IBSCTL, &value);
if (value != (ibs_eilvt_off | IBSCTL_LVTOFFSETVAL)) {
printk(KERN_DEBUG "Failed to setup IBS LVT offset, "
"IBSCTL = 0x%08x", value);
return 1;
}
} while (1);
if (!nodes) {
printk(KERN_DEBUG "No CPU node configured for IBS");
return 1;
}
#ifdef CONFIG_NUMA
/* Sanity check */
/* Works only for 64bit with proper numa implementation. */
if (nodes != num_possible_nodes()) {
printk(KERN_DEBUG "Failed to setup CPU node(s) for IBS, "
"found: %d, expected %d",
nodes, num_possible_nodes());
return 1;
}
#endif
return 0;
}
/*
* initialize the APIC for the IBS interrupts
* if available (AMD Family10h rev B0 and later)
*/
static void setup_ibs(void)
{
ibs_allowed = boot_cpu_has(X86_FEATURE_IBS);
if (!ibs_allowed)
return;
if (pfm_amd64_setup_eilvt()) {
ibs_allowed = 0;
return;
}
printk(KERN_INFO "oprofile: AMD IBS detected\n");
}
/*
* unitialize the APIC for the IBS interrupts if needed on AMD Family10h
* rev B0 and later */
static void clear_ibs_nmi(void)
{
if (ibs_allowed)
on_each_cpu(apic_clear_ibs_nmi_per_cpu, NULL, 1);
}
static int (*create_arch_files)(struct super_block * sb, struct dentry * root);
static int setup_ibs_files(struct super_block * sb, struct dentry * root)
{
char buf[12];
struct dentry *dir;
int ret = 0;
/* architecture specific files */
if (create_arch_files)
ret = create_arch_files(sb, root);
if (ret)
return ret;
if (!ibs_allowed)
return ret;
/* model specific files */
/* setup some reasonable defaults */
ibs_config.max_cnt_fetch = 250000;
ibs_config.fetch_enabled = 0;
ibs_config.max_cnt_op = 250000;
ibs_config.op_enabled = 0;
ibs_config.dispatched_ops = 1;
snprintf(buf, sizeof(buf), "ibs_fetch");
dir = oprofilefs_mkdir(sb, root, buf);
oprofilefs_create_ulong(sb, dir, "rand_enable",
&ibs_config.rand_en);
oprofilefs_create_ulong(sb, dir, "enable",
&ibs_config.fetch_enabled);
oprofilefs_create_ulong(sb, dir, "max_count",
&ibs_config.max_cnt_fetch);
snprintf(buf, sizeof(buf), "ibs_uops");
dir = oprofilefs_mkdir(sb, root, buf);
oprofilefs_create_ulong(sb, dir, "enable",
&ibs_config.op_enabled);
oprofilefs_create_ulong(sb, dir, "max_count",
&ibs_config.max_cnt_op);
oprofilefs_create_ulong(sb, dir, "dispatched_ops",
&ibs_config.dispatched_ops);
return 0;
}
static int op_amd_init(struct oprofile_operations *ops)
{
setup_ibs();
create_arch_files = ops->create_files;
ops->create_files = setup_ibs_files;
return 0;
}
static void op_amd_exit(void)
{
clear_ibs_nmi();
}
#endif
struct op_x86_model_spec const op_amd_spec = {
.init = op_amd_init,
.exit = op_amd_exit,
.num_counters = NUM_COUNTERS,
.num_controls = NUM_CONTROLS,
.fill_in_addresses = &op_amd_fill_in_addresses,
.setup_ctrs = &op_amd_setup_ctrs,
.check_ctrs = &op_amd_check_ctrs,
.start = &op_amd_start,
.stop = &op_amd_stop,
.shutdown = &op_amd_shutdown
};

View file

@ -1,190 +0,0 @@
/*
* @file op_model_athlon.h
* athlon / K7 / K8 / Family 10h model-specific MSR operations
*
* @remark Copyright 2002 OProfile authors
* @remark Read the file COPYING
*
* @author John Levon
* @author Philippe Elie
* @author Graydon Hoare
*/
#include <linux/oprofile.h>
#include <asm/ptrace.h>
#include <asm/msr.h>
#include <asm/nmi.h>
#include "op_x86_model.h"
#include "op_counter.h"
#define NUM_COUNTERS 4
#define NUM_CONTROLS 4
#define CTR_IS_RESERVED(msrs, c) (msrs->counters[(c)].addr ? 1 : 0)
#define CTR_READ(l, h, msrs, c) do {rdmsr(msrs->counters[(c)].addr, (l), (h)); } while (0)
#define CTR_WRITE(l, msrs, c) do {wrmsr(msrs->counters[(c)].addr, -(unsigned int)(l), -1); } while (0)
#define CTR_OVERFLOWED(n) (!((n) & (1U<<31)))
#define CTRL_IS_RESERVED(msrs, c) (msrs->controls[(c)].addr ? 1 : 0)
#define CTRL_READ(l, h, msrs, c) do {rdmsr(msrs->controls[(c)].addr, (l), (h)); } while (0)
#define CTRL_WRITE(l, h, msrs, c) do {wrmsr(msrs->controls[(c)].addr, (l), (h)); } while (0)
#define CTRL_SET_ACTIVE(n) (n |= (1<<22))
#define CTRL_SET_INACTIVE(n) (n &= ~(1<<22))
#define CTRL_CLEAR_LO(x) (x &= (1<<21))
#define CTRL_CLEAR_HI(x) (x &= 0xfffffcf0)
#define CTRL_SET_ENABLE(val) (val |= 1<<20)
#define CTRL_SET_USR(val, u) (val |= ((u & 1) << 16))
#define CTRL_SET_KERN(val, k) (val |= ((k & 1) << 17))
#define CTRL_SET_UM(val, m) (val |= (m << 8))
#define CTRL_SET_EVENT_LOW(val, e) (val |= (e & 0xff))
#define CTRL_SET_EVENT_HIGH(val, e) (val |= ((e >> 8) & 0xf))
#define CTRL_SET_HOST_ONLY(val, h) (val |= ((h & 1) << 9))
#define CTRL_SET_GUEST_ONLY(val, h) (val |= ((h & 1) << 8))
static unsigned long reset_value[NUM_COUNTERS];
static void athlon_fill_in_addresses(struct op_msrs * const msrs)
{
int i;
for (i = 0; i < NUM_COUNTERS; i++) {
if (reserve_perfctr_nmi(MSR_K7_PERFCTR0 + i))
msrs->counters[i].addr = MSR_K7_PERFCTR0 + i;
else
msrs->counters[i].addr = 0;
}
for (i = 0; i < NUM_CONTROLS; i++) {
if (reserve_evntsel_nmi(MSR_K7_EVNTSEL0 + i))
msrs->controls[i].addr = MSR_K7_EVNTSEL0 + i;
else
msrs->controls[i].addr = 0;
}
}
static void athlon_setup_ctrs(struct op_msrs const * const msrs)
{
unsigned int low, high;
int i;
/* clear all counters */
for (i = 0 ; i < NUM_CONTROLS; ++i) {
if (unlikely(!CTRL_IS_RESERVED(msrs, i)))
continue;
CTRL_READ(low, high, msrs, i);
CTRL_CLEAR_LO(low);
CTRL_CLEAR_HI(high);
CTRL_WRITE(low, high, msrs, i);
}
/* avoid a false detection of ctr overflows in NMI handler */
for (i = 0; i < NUM_COUNTERS; ++i) {
if (unlikely(!CTR_IS_RESERVED(msrs, i)))
continue;
CTR_WRITE(1, msrs, i);
}
/* enable active counters */
for (i = 0; i < NUM_COUNTERS; ++i) {
if ((counter_config[i].enabled) && (CTR_IS_RESERVED(msrs, i))) {
reset_value[i] = counter_config[i].count;
CTR_WRITE(counter_config[i].count, msrs, i);
CTRL_READ(low, high, msrs, i);
CTRL_CLEAR_LO(low);
CTRL_CLEAR_HI(high);
CTRL_SET_ENABLE(low);
CTRL_SET_USR(low, counter_config[i].user);
CTRL_SET_KERN(low, counter_config[i].kernel);
CTRL_SET_UM(low, counter_config[i].unit_mask);
CTRL_SET_EVENT_LOW(low, counter_config[i].event);
CTRL_SET_EVENT_HIGH(high, counter_config[i].event);
CTRL_SET_HOST_ONLY(high, 0);
CTRL_SET_GUEST_ONLY(high, 0);
CTRL_WRITE(low, high, msrs, i);
} else {
reset_value[i] = 0;
}
}
}
static int athlon_check_ctrs(struct pt_regs * const regs,
struct op_msrs const * const msrs)
{
unsigned int low, high;
int i;
for (i = 0 ; i < NUM_COUNTERS; ++i) {
if (!reset_value[i])
continue;
CTR_READ(low, high, msrs, i);
if (CTR_OVERFLOWED(low)) {
oprofile_add_sample(regs, i);
CTR_WRITE(reset_value[i], msrs, i);
}
}
/* See op_model_ppro.c */
return 1;
}
static void athlon_start(struct op_msrs const * const msrs)
{
unsigned int low, high;
int i;
for (i = 0 ; i < NUM_COUNTERS ; ++i) {
if (reset_value[i]) {
CTRL_READ(low, high, msrs, i);
CTRL_SET_ACTIVE(low);
CTRL_WRITE(low, high, msrs, i);
}
}
}
static void athlon_stop(struct op_msrs const * const msrs)
{
unsigned int low, high;
int i;
/* Subtle: stop on all counters to avoid race with
* setting our pm callback */
for (i = 0 ; i < NUM_COUNTERS ; ++i) {
if (!reset_value[i])
continue;
CTRL_READ(low, high, msrs, i);
CTRL_SET_INACTIVE(low);
CTRL_WRITE(low, high, msrs, i);
}
}
static void athlon_shutdown(struct op_msrs const * const msrs)
{
int i;
for (i = 0 ; i < NUM_COUNTERS ; ++i) {
if (CTR_IS_RESERVED(msrs, i))
release_perfctr_nmi(MSR_K7_PERFCTR0 + i);
}
for (i = 0 ; i < NUM_CONTROLS ; ++i) {
if (CTRL_IS_RESERVED(msrs, i))
release_evntsel_nmi(MSR_K7_EVNTSEL0 + i);
}
}
struct op_x86_model_spec const op_athlon_spec = {
.num_counters = NUM_COUNTERS,
.num_controls = NUM_CONTROLS,
.fill_in_addresses = &athlon_fill_in_addresses,
.setup_ctrs = &athlon_setup_ctrs,
.check_ctrs = &athlon_check_ctrs,
.start = &athlon_start,
.stop = &athlon_stop,
.shutdown = &athlon_shutdown
};

View file

@ -32,6 +32,8 @@ struct pt_regs;
* various x86 CPU models' perfctr support.
*/
struct op_x86_model_spec {
int (*init)(struct oprofile_operations *ops);
void (*exit)(void);
unsigned int const num_counters;
unsigned int const num_controls;
void (*fill_in_addresses)(struct op_msrs * const msrs);
@ -46,6 +48,6 @@ struct op_x86_model_spec {
extern struct op_x86_model_spec const op_ppro_spec;
extern struct op_x86_model_spec const op_p4_spec;
extern struct op_x86_model_spec const op_p4_ht2_spec;
extern struct op_x86_model_spec const op_athlon_spec;
extern struct op_x86_model_spec const op_amd_spec;
#endif /* OP_X86_MODEL_H */

View file

@ -511,3 +511,31 @@ DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_AMD, 0x1201, fam10h_pci_cfg_space_size);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_AMD, 0x1202, fam10h_pci_cfg_space_size);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_AMD, 0x1203, fam10h_pci_cfg_space_size);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_AMD, 0x1204, fam10h_pci_cfg_space_size);
/*
* SB600: Disable BAR1 on device 14.0 to avoid HPET resources from
* confusing the PCI engine:
*/
static void sb600_disable_hpet_bar(struct pci_dev *dev)
{
u8 val;
/*
* The SB600 and SB700 both share the same device
* ID, but the PM register 0x55 does something different
* for the SB700, so make sure we are dealing with the
* SB600 before touching the bit:
*/
pci_read_config_byte(dev, 0x08, &val);
if (val < 0x2F) {
outb(0x55, 0xCD6);
val = inb(0xCD7);
/* Set bit 7 in PM register 0x55 */
outb(0x55, 0xCD6);
outb(val | 0x80, 0xCD7);
}
}
DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_ATI, 0x4385, sb600_disable_hpet_bar);

View file

@ -53,6 +53,11 @@
#define HPET_RANGE_SIZE 1024 /* from HPET spec */
/* WARNING -- don't get confused. These macros are never used
* to write the (single) counter, and rarely to read it.
* They're badly named; to fix, someday.
*/
#if BITS_PER_LONG == 64
#define write_counter(V, MC) writeq(V, MC)
#define read_counter(MC) readq(MC)
@ -77,7 +82,7 @@ static struct clocksource clocksource_hpet = {
.rating = 250,
.read = read_hpet,
.mask = CLOCKSOURCE_MASK(64),
.mult = 0, /*to be caluclated*/
.mult = 0, /* to be calculated */
.shift = 10,
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
@ -86,8 +91,6 @@ static struct clocksource *hpet_clocksource;
/* A lock for concurrent access by app and isr hpet activity. */
static DEFINE_SPINLOCK(hpet_lock);
/* A lock for concurrent intermodule access to hpet and isr hpet activity. */
static DEFINE_SPINLOCK(hpet_task_lock);
#define HPET_DEV_NAME (7)
@ -99,7 +102,6 @@ struct hpet_dev {
unsigned long hd_irqdata;
wait_queue_head_t hd_waitqueue;
struct fasync_struct *hd_async_queue;
struct hpet_task *hd_task;
unsigned int hd_flags;
unsigned int hd_irq;
unsigned int hd_hdwirq;
@ -173,11 +175,6 @@ static irqreturn_t hpet_interrupt(int irq, void *data)
writel(isr, &devp->hd_hpet->hpet_isr);
spin_unlock(&hpet_lock);
spin_lock(&hpet_task_lock);
if (devp->hd_task)
devp->hd_task->ht_func(devp->hd_task->ht_data);
spin_unlock(&hpet_task_lock);
wake_up_interruptible(&devp->hd_waitqueue);
kill_fasync(&devp->hd_async_queue, SIGIO, POLL_IN);
@ -185,6 +182,67 @@ static irqreturn_t hpet_interrupt(int irq, void *data)
return IRQ_HANDLED;
}
static void hpet_timer_set_irq(struct hpet_dev *devp)
{
unsigned long v;
int irq, gsi;
struct hpet_timer __iomem *timer;
spin_lock_irq(&hpet_lock);
if (devp->hd_hdwirq) {
spin_unlock_irq(&hpet_lock);
return;
}
timer = devp->hd_timer;
/* we prefer level triggered mode */
v = readl(&timer->hpet_config);
if (!(v & Tn_INT_TYPE_CNF_MASK)) {
v |= Tn_INT_TYPE_CNF_MASK;
writel(v, &timer->hpet_config);
}
spin_unlock_irq(&hpet_lock);
v = (readq(&timer->hpet_config) & Tn_INT_ROUTE_CAP_MASK) >>
Tn_INT_ROUTE_CAP_SHIFT;
/*
* In PIC mode, skip IRQ0-4, IRQ6-9, IRQ12-15 which is always used by
* legacy device. In IO APIC mode, we skip all the legacy IRQS.
*/
if (acpi_irq_model == ACPI_IRQ_MODEL_PIC)
v &= ~0xf3df;
else
v &= ~0xffff;
for (irq = find_first_bit(&v, HPET_MAX_IRQ); irq < HPET_MAX_IRQ;
irq = find_next_bit(&v, HPET_MAX_IRQ, 1 + irq)) {
if (irq >= NR_IRQS) {
irq = HPET_MAX_IRQ;
break;
}
gsi = acpi_register_gsi(irq, ACPI_LEVEL_SENSITIVE,
ACPI_ACTIVE_LOW);
if (gsi > 0)
break;
/* FIXME: Setup interrupt source table */
}
if (irq < HPET_MAX_IRQ) {
spin_lock_irq(&hpet_lock);
v = readl(&timer->hpet_config);
v |= irq << Tn_INT_ROUTE_CNF_SHIFT;
writel(v, &timer->hpet_config);
devp->hd_hdwirq = gsi;
spin_unlock_irq(&hpet_lock);
}
return;
}
static int hpet_open(struct inode *inode, struct file *file)
{
struct hpet_dev *devp;
@ -199,8 +257,7 @@ static int hpet_open(struct inode *inode, struct file *file)
for (devp = NULL, hpetp = hpets; hpetp && !devp; hpetp = hpetp->hp_next)
for (i = 0; i < hpetp->hp_ntimer; i++)
if (hpetp->hp_dev[i].hd_flags & HPET_OPEN
|| hpetp->hp_dev[i].hd_task)
if (hpetp->hp_dev[i].hd_flags & HPET_OPEN)
continue;
else {
devp = &hpetp->hp_dev[i];
@ -219,6 +276,8 @@ static int hpet_open(struct inode *inode, struct file *file)
spin_unlock_irq(&hpet_lock);
unlock_kernel();
hpet_timer_set_irq(devp);
return 0;
}
@ -441,7 +500,11 @@ static int hpet_ioctl_ieon(struct hpet_dev *devp)
devp->hd_irq = irq;
t = devp->hd_ireqfreq;
v = readq(&timer->hpet_config);
g = v | Tn_INT_ENB_CNF_MASK;
/* 64-bit comparators are not yet supported through the ioctls,
* so force this into 32-bit mode if it supports both modes
*/
g = v | Tn_32MODE_CNF_MASK | Tn_INT_ENB_CNF_MASK;
if (devp->hd_flags & HPET_PERIODIC) {
write_counter(t, &timer->hpet_compare);
@ -451,6 +514,12 @@ static int hpet_ioctl_ieon(struct hpet_dev *devp)
v |= Tn_VAL_SET_CNF_MASK;
writeq(v, &timer->hpet_config);
local_irq_save(flags);
/* NOTE: what we modify here is a hidden accumulator
* register supported by periodic-capable comparators.
* We never want to modify the (single) counter; that
* would affect all the comparators.
*/
m = read_counter(&hpet->hpet_mc);
write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
} else {
@ -604,57 +673,6 @@ static int hpet_is_known(struct hpet_data *hdp)
return 0;
}
static inline int hpet_tpcheck(struct hpet_task *tp)
{
struct hpet_dev *devp;
struct hpets *hpetp;
devp = tp->ht_opaque;
if (!devp)
return -ENXIO;
for (hpetp = hpets; hpetp; hpetp = hpetp->hp_next)
if (devp >= hpetp->hp_dev
&& devp < (hpetp->hp_dev + hpetp->hp_ntimer)
&& devp->hd_hpet == hpetp->hp_hpet)
return 0;
return -ENXIO;
}
#if 0
int hpet_unregister(struct hpet_task *tp)
{
struct hpet_dev *devp;
struct hpet_timer __iomem *timer;
int err;
if ((err = hpet_tpcheck(tp)))
return err;
spin_lock_irq(&hpet_task_lock);
spin_lock(&hpet_lock);
devp = tp->ht_opaque;
if (devp->hd_task != tp) {
spin_unlock(&hpet_lock);
spin_unlock_irq(&hpet_task_lock);
return -ENXIO;
}
timer = devp->hd_timer;
writeq((readq(&timer->hpet_config) & ~Tn_INT_ENB_CNF_MASK),
&timer->hpet_config);
devp->hd_flags &= ~(HPET_IE | HPET_PERIODIC);
devp->hd_task = NULL;
spin_unlock(&hpet_lock);
spin_unlock_irq(&hpet_task_lock);
return 0;
}
#endif /* 0 */
static ctl_table hpet_table[] = {
{
.ctl_name = CTL_UNNUMBERED,
@ -746,6 +764,7 @@ int hpet_alloc(struct hpet_data *hdp)
static struct hpets *last = NULL;
unsigned long period;
unsigned long long temp;
u32 remainder;
/*
* hpet_alloc can be called by platform dependent code.
@ -809,9 +828,13 @@ int hpet_alloc(struct hpet_data *hdp)
printk("%s %d", i > 0 ? "," : "", hdp->hd_irq[i]);
printk("\n");
printk(KERN_INFO "hpet%u: %u %d-bit timers, %Lu Hz\n",
temp = hpetp->hp_tick_freq;
remainder = do_div(temp, 1000000);
printk(KERN_INFO
"hpet%u: %u comparators, %d-bit %u.%06u MHz counter\n",
hpetp->hp_which, hpetp->hp_ntimer,
cap & HPET_COUNTER_SIZE_MASK ? 64 : 32, hpetp->hp_tick_freq);
cap & HPET_COUNTER_SIZE_MASK ? 64 : 32,
(unsigned) temp, remainder);
mcfg = readq(&hpet->hpet_config);
if ((mcfg & HPET_ENABLE_CNF_MASK) == 0) {
@ -874,8 +897,6 @@ static acpi_status hpet_resources(struct acpi_resource *res, void *data)
hdp->hd_address = ioremap(addr.minimum, addr.address_length);
if (hpet_is_known(hdp)) {
printk(KERN_DEBUG "%s: 0x%lx is busy\n",
__func__, hdp->hd_phys_address);
iounmap(hdp->hd_address);
return AE_ALREADY_EXISTS;
}
@ -891,8 +912,6 @@ static acpi_status hpet_resources(struct acpi_resource *res, void *data)
HPET_RANGE_SIZE);
if (hpet_is_known(hdp)) {
printk(KERN_DEBUG "%s: 0x%lx is busy\n",
__func__, hdp->hd_phys_address);
iounmap(hdp->hd_address);
return AE_ALREADY_EXISTS;
}

View file

@ -5,6 +5,7 @@
* @remark Read the file COPYING
*
* @author John Levon <levon@movementarian.org>
* @author Barry Kasindorf
*
* This is the core of the buffer management. Each
* CPU buffer is processed and entered into the
@ -48,7 +49,8 @@ static void process_task_mortuary(void);
* Can be invoked from softirq via RCU callback due to
* call_rcu() of the task struct, hence the _irqsave.
*/
static int task_free_notify(struct notifier_block * self, unsigned long val, void * data)
static int
task_free_notify(struct notifier_block *self, unsigned long val, void *data)
{
unsigned long flags;
struct task_struct *task = data;
@ -62,7 +64,8 @@ static int task_free_notify(struct notifier_block * self, unsigned long val, voi
/* The task is on its way out. A sync of the buffer means we can catch
* any remaining samples for this task.
*/
static int task_exit_notify(struct notifier_block * self, unsigned long val, void * data)
static int
task_exit_notify(struct notifier_block *self, unsigned long val, void *data)
{
/* To avoid latency problems, we only process the current CPU,
* hoping that most samples for the task are on this CPU
@ -77,7 +80,8 @@ static int task_exit_notify(struct notifier_block * self, unsigned long val, voi
* we don't lose any. This does not have to be exact, it's a QoI issue
* only.
*/
static int munmap_notify(struct notifier_block * self, unsigned long val, void * data)
static int
munmap_notify(struct notifier_block *self, unsigned long val, void *data)
{
unsigned long addr = (unsigned long)data;
struct mm_struct *mm = current->mm;
@ -103,7 +107,8 @@ static int munmap_notify(struct notifier_block * self, unsigned long val, void *
/* We need to be told about new modules so we don't attribute to a previously
* loaded module, or drop the samples on the floor.
*/
static int module_load_notify(struct notifier_block * self, unsigned long val, void * data)
static int
module_load_notify(struct notifier_block *self, unsigned long val, void *data)
{
#ifdef CONFIG_MODULES
if (val != MODULE_STATE_COMING)
@ -235,7 +240,8 @@ static unsigned long get_exec_dcookie(struct mm_struct * mm)
* sure to do this lookup before a mm->mmap modification happens so
* we don't lose track.
*/
static unsigned long lookup_dcookie(struct mm_struct * mm, unsigned long addr, off_t * offset)
static unsigned long
lookup_dcookie(struct mm_struct *mm, unsigned long addr, off_t *offset)
{
unsigned long cookie = NO_COOKIE;
struct vm_area_struct *vma;
@ -263,6 +269,17 @@ static unsigned long lookup_dcookie(struct mm_struct * mm, unsigned long addr, o
return cookie;
}
static void increment_tail(struct oprofile_cpu_buffer *b)
{
unsigned long new_tail = b->tail_pos + 1;
rmb(); /* be sure fifo pointers are synchromized */
if (new_tail < b->buffer_size)
b->tail_pos = new_tail;
else
b->tail_pos = 0;
}
static unsigned long last_cookie = INVALID_COOKIE;
@ -311,6 +328,71 @@ static void add_trace_begin(void)
add_event_entry(TRACE_BEGIN_CODE);
}
#ifdef CONFIG_OPROFILE_IBS
#define IBS_FETCH_CODE_SIZE 2
#define IBS_OP_CODE_SIZE 5
#define IBS_EIP(offset) \
(((struct op_sample *)&cpu_buf->buffer[(offset)])->eip)
#define IBS_EVENT(offset) \
(((struct op_sample *)&cpu_buf->buffer[(offset)])->event)
/*
* Add IBS fetch and op entries to event buffer
*/
static void add_ibs_begin(struct oprofile_cpu_buffer *cpu_buf, int code,
int in_kernel, struct mm_struct *mm)
{
unsigned long rip;
int i, count;
unsigned long ibs_cookie = 0;
off_t offset;
increment_tail(cpu_buf); /* move to RIP entry */
rip = IBS_EIP(cpu_buf->tail_pos);
#ifdef __LP64__
rip += IBS_EVENT(cpu_buf->tail_pos) << 32;
#endif
if (mm) {
ibs_cookie = lookup_dcookie(mm, rip, &offset);
if (ibs_cookie == NO_COOKIE)
offset = rip;
if (ibs_cookie == INVALID_COOKIE) {
atomic_inc(&oprofile_stats.sample_lost_no_mapping);
offset = rip;
}
if (ibs_cookie != last_cookie) {
add_cookie_switch(ibs_cookie);
last_cookie = ibs_cookie;
}
} else
offset = rip;
add_event_entry(ESCAPE_CODE);
add_event_entry(code);
add_event_entry(offset); /* Offset from Dcookie */
/* we send the Dcookie offset, but send the raw Linear Add also*/
add_event_entry(IBS_EIP(cpu_buf->tail_pos));
add_event_entry(IBS_EVENT(cpu_buf->tail_pos));
if (code == IBS_FETCH_CODE)
count = IBS_FETCH_CODE_SIZE; /*IBS FETCH is 2 int64s*/
else
count = IBS_OP_CODE_SIZE; /*IBS OP is 5 int64s*/
for (i = 0; i < count; i++) {
increment_tail(cpu_buf);
add_event_entry(IBS_EIP(cpu_buf->tail_pos));
add_event_entry(IBS_EVENT(cpu_buf->tail_pos));
}
}
#endif
static void add_sample_entry(unsigned long offset, unsigned long event)
{
@ -412,19 +494,6 @@ static unsigned long get_slots(struct oprofile_cpu_buffer * b)
}
static void increment_tail(struct oprofile_cpu_buffer * b)
{
unsigned long new_tail = b->tail_pos + 1;
rmb();
if (new_tail < b->buffer_size)
b->tail_pos = new_tail;
else
b->tail_pos = 0;
}
/* Move tasks along towards death. Any tasks on dead_tasks
* will definitely have no remaining references in any
* CPU buffers at this point, because we use two lists,
@ -521,6 +590,16 @@ void sync_buffer(int cpu)
} else if (s->event == CPU_TRACE_BEGIN) {
state = sb_bt_start;
add_trace_begin();
#ifdef CONFIG_OPROFILE_IBS
} else if (s->event == IBS_FETCH_BEGIN) {
state = sb_bt_start;
add_ibs_begin(cpu_buf,
IBS_FETCH_CODE, in_kernel, mm);
} else if (s->event == IBS_OP_BEGIN) {
state = sb_bt_start;
add_ibs_begin(cpu_buf,
IBS_OP_CODE, in_kernel, mm);
#endif
} else {
struct mm_struct *oldmm = mm;
@ -533,15 +612,13 @@ void sync_buffer(int cpu)
cookie = get_exec_dcookie(mm);
add_user_ctx_switch(new, cookie);
}
} else {
if (state >= sb_bt_start &&
} else if (state >= sb_bt_start &&
!add_sample(mm, s, in_kernel)) {
if (state == sb_bt_start) {
state = sb_bt_ignore;
atomic_inc(&oprofile_stats.bt_lost_no_mapping);
}
}
}
increment_tail(cpu_buf);
}

View file

@ -5,6 +5,7 @@
* @remark Read the file COPYING
*
* @author John Levon <levon@movementarian.org>
* @author Barry Kasindorf <barry.kasindorf@amd.com>
*
* Each CPU has a local buffer that stores PC value/event
* pairs. We also log context switches when we notice them.
@ -254,6 +255,75 @@ void oprofile_add_sample(struct pt_regs * const regs, unsigned long event)
oprofile_add_ext_sample(pc, regs, event, is_kernel);
}
#ifdef CONFIG_OPROFILE_IBS
#define MAX_IBS_SAMPLE_SIZE 14
static int log_ibs_sample(struct oprofile_cpu_buffer *cpu_buf,
unsigned long pc, int is_kernel, unsigned int *ibs, int ibs_code)
{
struct task_struct *task;
cpu_buf->sample_received++;
if (nr_available_slots(cpu_buf) < MAX_IBS_SAMPLE_SIZE) {
cpu_buf->sample_lost_overflow++;
return 0;
}
is_kernel = !!is_kernel;
/* notice a switch from user->kernel or vice versa */
if (cpu_buf->last_is_kernel != is_kernel) {
cpu_buf->last_is_kernel = is_kernel;
add_code(cpu_buf, is_kernel);
}
/* notice a task switch */
if (!is_kernel) {
task = current;
if (cpu_buf->last_task != task) {
cpu_buf->last_task = task;
add_code(cpu_buf, (unsigned long)task);
}
}
add_code(cpu_buf, ibs_code);
add_sample(cpu_buf, ibs[0], ibs[1]);
add_sample(cpu_buf, ibs[2], ibs[3]);
add_sample(cpu_buf, ibs[4], ibs[5]);
if (ibs_code == IBS_OP_BEGIN) {
add_sample(cpu_buf, ibs[6], ibs[7]);
add_sample(cpu_buf, ibs[8], ibs[9]);
add_sample(cpu_buf, ibs[10], ibs[11]);
}
return 1;
}
void oprofile_add_ibs_sample(struct pt_regs *const regs,
unsigned int * const ibs_sample, u8 code)
{
int is_kernel = !user_mode(regs);
unsigned long pc = profile_pc(regs);
struct oprofile_cpu_buffer *cpu_buf =
&per_cpu(cpu_buffer, smp_processor_id());
if (!backtrace_depth) {
log_ibs_sample(cpu_buf, pc, is_kernel, ibs_sample, code);
return;
}
/* if log_sample() fails we can't backtrace since we lost the source
* of this event */
if (log_ibs_sample(cpu_buf, pc, is_kernel, ibs_sample, code))
oprofile_ops.backtrace(regs, backtrace_depth);
}
#endif
void oprofile_add_pc(unsigned long pc, int is_kernel, unsigned long event)
{
struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
@ -296,7 +366,7 @@ static void wq_sync_buffer(struct work_struct *work)
struct oprofile_cpu_buffer * b =
container_of(work, struct oprofile_cpu_buffer, work.work);
if (b->cpu != smp_processor_id()) {
printk("WQ on CPU%d, prefer CPU%d\n",
printk(KERN_DEBUG "WQ on CPU%d, prefer CPU%d\n",
smp_processor_id(), b->cpu);
}
sync_buffer(b->cpu);

View file

@ -55,5 +55,7 @@ void cpu_buffer_reset(struct oprofile_cpu_buffer * cpu_buf);
/* transient events for the CPU buffer -> event buffer */
#define CPU_IS_KERNEL 1
#define CPU_TRACE_BEGIN 2
#define IBS_FETCH_BEGIN 3
#define IBS_OP_BEGIN 4
#endif /* OPROFILE_CPU_BUFFER_H */

View file

@ -37,6 +37,7 @@ struct hpet {
#define hpet_compare _u1._hpet_compare
#define HPET_MAX_TIMERS (32)
#define HPET_MAX_IRQ (32)
/*
* HPET general capabilities register
@ -64,7 +65,7 @@ struct hpet {
*/
#define Tn_INT_ROUTE_CAP_MASK (0xffffffff00000000ULL)
#define Tn_INI_ROUTE_CAP_SHIFT (32UL)
#define Tn_INT_ROUTE_CAP_SHIFT (32UL)
#define Tn_FSB_INT_DELCAP_MASK (0x8000UL)
#define Tn_FSB_INT_DELCAP_SHIFT (15)
#define Tn_FSB_EN_CNF_MASK (0x4000UL)
@ -91,23 +92,14 @@ struct hpet {
* exported interfaces
*/
struct hpet_task {
void (*ht_func) (void *);
void *ht_data;
void *ht_opaque;
};
struct hpet_data {
unsigned long hd_phys_address;
void __iomem *hd_address;
unsigned short hd_nirqs;
unsigned short hd_flags;
unsigned int hd_state; /* timer allocated */
unsigned int hd_irq[HPET_MAX_TIMERS];
};
#define HPET_DATA_PLATFORM 0x0001 /* platform call to hpet_alloc */
static inline void hpet_reserve_timer(struct hpet_data *hd, int timer)
{
hd->hd_state |= (1 << timer);
@ -125,7 +117,7 @@ struct hpet_info {
unsigned short hi_timer;
};
#define HPET_INFO_PERIODIC 0x0001 /* timer is periodic */
#define HPET_INFO_PERIODIC 0x0010 /* periodic-capable comparator */
#define HPET_IE_ON _IO('h', 0x01) /* interrupt on */
#define HPET_IE_OFF _IO('h', 0x02) /* interrupt off */

View file

@ -36,6 +36,8 @@
#define XEN_ENTER_SWITCH_CODE 10
#define SPU_PROFILING_CODE 11
#define SPU_CTX_SWITCH_CODE 12
#define IBS_FETCH_CODE 13
#define IBS_OP_CODE 14
struct super_block;
struct dentry;