xen: sync some headers with xen tree
To be able to use an initially unmapped initrd with xen the following header files must be synced to a newer version from the xen tree: include/xen/interface/elfnote.h include/xen/interface/xen.h As the KEXEC and DUMPCORE related ELFNOTES are not relevant for the kernel they are omitted from elfnote.h. Signed-off-by: Juergen Gross <jgross@suse.com> Signed-off-by: David Vrabel <david.vrabel@citrix.com>
This commit is contained in:
parent
8ab85eba49
commit
bca9b68558
2 changed files with 294 additions and 26 deletions
|
@ -3,6 +3,24 @@
|
|||
*
|
||||
* Definitions used for the Xen ELF notes.
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to
|
||||
* deal in the Software without restriction, including without limitation the
|
||||
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
||||
* sell copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in
|
||||
* all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||
* DEALINGS IN THE SOFTWARE.
|
||||
*
|
||||
* Copyright (c) 2006, Ian Campbell, XenSource Ltd.
|
||||
*/
|
||||
|
||||
|
@ -18,12 +36,13 @@
|
|||
*
|
||||
* LEGACY indicated the fields in the legacy __xen_guest string which
|
||||
* this a note type replaces.
|
||||
*
|
||||
* String values (for non-legacy) are NULL terminated ASCII, also known
|
||||
* as ASCIZ type.
|
||||
*/
|
||||
|
||||
/*
|
||||
* NAME=VALUE pair (string).
|
||||
*
|
||||
* LEGACY: FEATURES and PAE
|
||||
*/
|
||||
#define XEN_ELFNOTE_INFO 0
|
||||
|
||||
|
@ -137,9 +156,29 @@
|
|||
|
||||
/*
|
||||
* Whether or not the guest supports cooperative suspend cancellation.
|
||||
* This is a numeric value.
|
||||
*
|
||||
* Default is 0
|
||||
*/
|
||||
#define XEN_ELFNOTE_SUSPEND_CANCEL 14
|
||||
|
||||
/*
|
||||
* The (non-default) location the initial phys-to-machine map should be
|
||||
* placed at by the hypervisor (Dom0) or the tools (DomU).
|
||||
* The kernel must be prepared for this mapping to be established using
|
||||
* large pages, despite such otherwise not being available to guests.
|
||||
* The kernel must also be able to handle the page table pages used for
|
||||
* this mapping not being accessible through the initial mapping.
|
||||
* (Only x86-64 supports this at present.)
|
||||
*/
|
||||
#define XEN_ELFNOTE_INIT_P2M 15
|
||||
|
||||
/*
|
||||
* Whether or not the guest can deal with being passed an initrd not
|
||||
* mapped through its initial page tables.
|
||||
*/
|
||||
#define XEN_ELFNOTE_MOD_START_PFN 16
|
||||
|
||||
/*
|
||||
* The features supported by this kernel (numeric).
|
||||
*
|
||||
|
@ -153,6 +192,11 @@
|
|||
*/
|
||||
#define XEN_ELFNOTE_SUPPORTED_FEATURES 17
|
||||
|
||||
/*
|
||||
* The number of the highest elfnote defined.
|
||||
*/
|
||||
#define XEN_ELFNOTE_MAX XEN_ELFNOTE_SUPPORTED_FEATURES
|
||||
|
||||
#endif /* __XEN_PUBLIC_ELFNOTE_H__ */
|
||||
|
||||
/*
|
||||
|
|
|
@ -3,6 +3,24 @@
|
|||
*
|
||||
* Guest OS interface to Xen.
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to
|
||||
* deal in the Software without restriction, including without limitation the
|
||||
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
||||
* sell copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in
|
||||
* all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||
* DEALINGS IN THE SOFTWARE.
|
||||
*
|
||||
* Copyright (c) 2004, K A Fraser
|
||||
*/
|
||||
|
||||
|
@ -73,13 +91,23 @@
|
|||
* VIRTUAL INTERRUPTS
|
||||
*
|
||||
* Virtual interrupts that a guest OS may receive from Xen.
|
||||
* In the side comments, 'V.' denotes a per-VCPU VIRQ while 'G.' denotes a
|
||||
* global VIRQ. The former can be bound once per VCPU and cannot be re-bound.
|
||||
* The latter can be allocated only once per guest: they must initially be
|
||||
* allocated to VCPU0 but can subsequently be re-bound.
|
||||
*/
|
||||
#define VIRQ_TIMER 0 /* Timebase update, and/or requested timeout. */
|
||||
#define VIRQ_DEBUG 1 /* Request guest to dump debug info. */
|
||||
#define VIRQ_CONSOLE 2 /* (DOM0) Bytes received on emergency console. */
|
||||
#define VIRQ_DOM_EXC 3 /* (DOM0) Exceptional event for some domain. */
|
||||
#define VIRQ_DEBUGGER 6 /* (DOM0) A domain has paused for debugging. */
|
||||
#define VIRQ_PCPU_STATE 9 /* (DOM0) PCPU state changed */
|
||||
#define VIRQ_TIMER 0 /* V. Timebase update, and/or requested timeout. */
|
||||
#define VIRQ_DEBUG 1 /* V. Request guest to dump debug info. */
|
||||
#define VIRQ_CONSOLE 2 /* G. (DOM0) Bytes received on emergency console. */
|
||||
#define VIRQ_DOM_EXC 3 /* G. (DOM0) Exceptional event for some domain. */
|
||||
#define VIRQ_TBUF 4 /* G. (DOM0) Trace buffer has records available. */
|
||||
#define VIRQ_DEBUGGER 6 /* G. (DOM0) A domain has paused for debugging. */
|
||||
#define VIRQ_XENOPROF 7 /* V. XenOprofile interrupt: new sample available */
|
||||
#define VIRQ_CON_RING 8 /* G. (DOM0) Bytes received on console */
|
||||
#define VIRQ_PCPU_STATE 9 /* G. (DOM0) PCPU state changed */
|
||||
#define VIRQ_MEM_EVENT 10 /* G. (DOM0) A memory event has occured */
|
||||
#define VIRQ_XC_RESERVED 11 /* G. Reserved for XenClient */
|
||||
#define VIRQ_ENOMEM 12 /* G. (DOM0) Low on heap memory */
|
||||
|
||||
/* Architecture-specific VIRQ definitions. */
|
||||
#define VIRQ_ARCH_0 16
|
||||
|
@ -92,24 +120,68 @@
|
|||
#define VIRQ_ARCH_7 23
|
||||
|
||||
#define NR_VIRQS 24
|
||||
|
||||
/*
|
||||
* MMU-UPDATE REQUESTS
|
||||
*
|
||||
* HYPERVISOR_mmu_update() accepts a list of (ptr, val) pairs.
|
||||
* A foreigndom (FD) can be specified (or DOMID_SELF for none).
|
||||
* Where the FD has some effect, it is described below.
|
||||
* ptr[1:0] specifies the appropriate MMU_* command.
|
||||
* enum neg_errnoval HYPERVISOR_mmu_update(const struct mmu_update reqs[],
|
||||
* unsigned count, unsigned *done_out,
|
||||
* unsigned foreigndom)
|
||||
* @reqs is an array of mmu_update_t structures ((ptr, val) pairs).
|
||||
* @count is the length of the above array.
|
||||
* @pdone is an output parameter indicating number of completed operations
|
||||
* @foreigndom[15:0]: FD, the expected owner of data pages referenced in this
|
||||
* hypercall invocation. Can be DOMID_SELF.
|
||||
* @foreigndom[31:16]: PFD, the expected owner of pagetable pages referenced
|
||||
* in this hypercall invocation. The value of this field
|
||||
* (x) encodes the PFD as follows:
|
||||
* x == 0 => PFD == DOMID_SELF
|
||||
* x != 0 => PFD == x - 1
|
||||
*
|
||||
* Sub-commands: ptr[1:0] specifies the appropriate MMU_* command.
|
||||
* -------------
|
||||
* ptr[1:0] == MMU_NORMAL_PT_UPDATE:
|
||||
* Updates an entry in a page table. If updating an L1 table, and the new
|
||||
* table entry is valid/present, the mapped frame must belong to the FD, if
|
||||
* an FD has been specified. If attempting to map an I/O page then the
|
||||
* caller assumes the privilege of the FD.
|
||||
* Updates an entry in a page table belonging to PFD. If updating an L1 table,
|
||||
* and the new table entry is valid/present, the mapped frame must belong to
|
||||
* FD. If attempting to map an I/O page then the caller assumes the privilege
|
||||
* of the FD.
|
||||
* FD == DOMID_IO: Permit /only/ I/O mappings, at the priv level of the caller.
|
||||
* FD == DOMID_XEN: Map restricted areas of Xen's heap space.
|
||||
* ptr[:2] -- Machine address of the page-table entry to modify.
|
||||
* val -- Value to write.
|
||||
*
|
||||
* There also certain implicit requirements when using this hypercall. The
|
||||
* pages that make up a pagetable must be mapped read-only in the guest.
|
||||
* This prevents uncontrolled guest updates to the pagetable. Xen strictly
|
||||
* enforces this, and will disallow any pagetable update which will end up
|
||||
* mapping pagetable page RW, and will disallow using any writable page as a
|
||||
* pagetable. In practice it means that when constructing a page table for a
|
||||
* process, thread, etc, we MUST be very dilligient in following these rules:
|
||||
* 1). Start with top-level page (PGD or in Xen language: L4). Fill out
|
||||
* the entries.
|
||||
* 2). Keep on going, filling out the upper (PUD or L3), and middle (PMD
|
||||
* or L2).
|
||||
* 3). Start filling out the PTE table (L1) with the PTE entries. Once
|
||||
* done, make sure to set each of those entries to RO (so writeable bit
|
||||
* is unset). Once that has been completed, set the PMD (L2) for this
|
||||
* PTE table as RO.
|
||||
* 4). When completed with all of the PMD (L2) entries, and all of them have
|
||||
* been set to RO, make sure to set RO the PUD (L3). Do the same
|
||||
* operation on PGD (L4) pagetable entries that have a PUD (L3) entry.
|
||||
* 5). Now before you can use those pages (so setting the cr3), you MUST also
|
||||
* pin them so that the hypervisor can verify the entries. This is done
|
||||
* via the HYPERVISOR_mmuext_op(MMUEXT_PIN_L4_TABLE, guest physical frame
|
||||
* number of the PGD (L4)). And this point the HYPERVISOR_mmuext_op(
|
||||
* MMUEXT_NEW_BASEPTR, guest physical frame number of the PGD (L4)) can be
|
||||
* issued.
|
||||
* For 32-bit guests, the L4 is not used (as there is less pagetables), so
|
||||
* instead use L3.
|
||||
* At this point the pagetables can be modified using the MMU_NORMAL_PT_UPDATE
|
||||
* hypercall. Also if so desired the OS can also try to write to the PTE
|
||||
* and be trapped by the hypervisor (as the PTE entry is RO).
|
||||
*
|
||||
* To deallocate the pages, the operations are the reverse of the steps
|
||||
* mentioned above. The argument is MMUEXT_UNPIN_TABLE for all levels and the
|
||||
* pagetable MUST not be in use (meaning that the cr3 is not set to it).
|
||||
*
|
||||
* ptr[1:0] == MMU_MACHPHYS_UPDATE:
|
||||
* Updates an entry in the machine->pseudo-physical mapping table.
|
||||
* ptr[:2] -- Machine address within the frame whose mapping to modify.
|
||||
|
@ -119,6 +191,72 @@
|
|||
* ptr[1:0] == MMU_PT_UPDATE_PRESERVE_AD:
|
||||
* As MMU_NORMAL_PT_UPDATE above, but A/D bits currently in the PTE are ORed
|
||||
* with those in @val.
|
||||
*
|
||||
* @val is usually the machine frame number along with some attributes.
|
||||
* The attributes by default follow the architecture defined bits. Meaning that
|
||||
* if this is a X86_64 machine and four page table layout is used, the layout
|
||||
* of val is:
|
||||
* - 63 if set means No execute (NX)
|
||||
* - 46-13 the machine frame number
|
||||
* - 12 available for guest
|
||||
* - 11 available for guest
|
||||
* - 10 available for guest
|
||||
* - 9 available for guest
|
||||
* - 8 global
|
||||
* - 7 PAT (PSE is disabled, must use hypercall to make 4MB or 2MB pages)
|
||||
* - 6 dirty
|
||||
* - 5 accessed
|
||||
* - 4 page cached disabled
|
||||
* - 3 page write through
|
||||
* - 2 userspace accessible
|
||||
* - 1 writeable
|
||||
* - 0 present
|
||||
*
|
||||
* The one bits that does not fit with the default layout is the PAGE_PSE
|
||||
* also called PAGE_PAT). The MMUEXT_[UN]MARK_SUPER arguments to the
|
||||
* HYPERVISOR_mmuext_op serve as mechanism to set a pagetable to be 4MB
|
||||
* (or 2MB) instead of using the PAGE_PSE bit.
|
||||
*
|
||||
* The reason that the PAGE_PSE (bit 7) is not being utilized is due to Xen
|
||||
* using it as the Page Attribute Table (PAT) bit - for details on it please
|
||||
* refer to Intel SDM 10.12. The PAT allows to set the caching attributes of
|
||||
* pages instead of using MTRRs.
|
||||
*
|
||||
* The PAT MSR is as follows (it is a 64-bit value, each entry is 8 bits):
|
||||
* PAT4 PAT0
|
||||
* +-----+-----+----+----+----+-----+----+----+
|
||||
* | UC | UC- | WC | WB | UC | UC- | WC | WB | <= Linux
|
||||
* +-----+-----+----+----+----+-----+----+----+
|
||||
* | UC | UC- | WT | WB | UC | UC- | WT | WB | <= BIOS (default when machine boots)
|
||||
* +-----+-----+----+----+----+-----+----+----+
|
||||
* | rsv | rsv | WP | WC | UC | UC- | WT | WB | <= Xen
|
||||
* +-----+-----+----+----+----+-----+----+----+
|
||||
*
|
||||
* The lookup of this index table translates to looking up
|
||||
* Bit 7, Bit 4, and Bit 3 of val entry:
|
||||
*
|
||||
* PAT/PSE (bit 7) ... PCD (bit 4) .. PWT (bit 3).
|
||||
*
|
||||
* If all bits are off, then we are using PAT0. If bit 3 turned on,
|
||||
* then we are using PAT1, if bit 3 and bit 4, then PAT2..
|
||||
*
|
||||
* As you can see, the Linux PAT1 translates to PAT4 under Xen. Which means
|
||||
* that if a guest that follows Linux's PAT setup and would like to set Write
|
||||
* Combined on pages it MUST use PAT4 entry. Meaning that Bit 7 (PAGE_PAT) is
|
||||
* set. For example, under Linux it only uses PAT0, PAT1, and PAT2 for the
|
||||
* caching as:
|
||||
*
|
||||
* WB = none (so PAT0)
|
||||
* WC = PWT (bit 3 on)
|
||||
* UC = PWT | PCD (bit 3 and 4 are on).
|
||||
*
|
||||
* To make it work with Xen, it needs to translate the WC bit as so:
|
||||
*
|
||||
* PWT (so bit 3 on) --> PAT (so bit 7 is on) and clear bit 3
|
||||
*
|
||||
* And to translate back it would:
|
||||
*
|
||||
* PAT (bit 7 on) --> PWT (bit 3 on) and clear bit 7.
|
||||
*/
|
||||
#define MMU_NORMAL_PT_UPDATE 0 /* checked '*ptr = val'. ptr is MA. */
|
||||
#define MMU_MACHPHYS_UPDATE 1 /* ptr = MA of frame to modify entry for */
|
||||
|
@ -127,7 +265,12 @@
|
|||
/*
|
||||
* MMU EXTENDED OPERATIONS
|
||||
*
|
||||
* HYPERVISOR_mmuext_op() accepts a list of mmuext_op structures.
|
||||
* enum neg_errnoval HYPERVISOR_mmuext_op(mmuext_op_t uops[],
|
||||
* unsigned int count,
|
||||
* unsigned int *pdone,
|
||||
* unsigned int foreigndom)
|
||||
*/
|
||||
/* HYPERVISOR_mmuext_op() accepts a list of mmuext_op structures.
|
||||
* A foreigndom (FD) can be specified (or DOMID_SELF for none).
|
||||
* Where the FD has some effect, it is described below.
|
||||
*
|
||||
|
@ -164,9 +307,23 @@
|
|||
* cmd: MMUEXT_FLUSH_CACHE
|
||||
* No additional arguments. Writes back and flushes cache contents.
|
||||
*
|
||||
* cmd: MMUEXT_FLUSH_CACHE_GLOBAL
|
||||
* No additional arguments. Writes back and flushes cache contents
|
||||
* on all CPUs in the system.
|
||||
*
|
||||
* cmd: MMUEXT_SET_LDT
|
||||
* linear_addr: Linear address of LDT base (NB. must be page-aligned).
|
||||
* nr_ents: Number of entries in LDT.
|
||||
*
|
||||
* cmd: MMUEXT_CLEAR_PAGE
|
||||
* mfn: Machine frame number to be cleared.
|
||||
*
|
||||
* cmd: MMUEXT_COPY_PAGE
|
||||
* mfn: Machine frame number of the destination page.
|
||||
* src_mfn: Machine frame number of the source page.
|
||||
*
|
||||
* cmd: MMUEXT_[UN]MARK_SUPER
|
||||
* mfn: Machine frame number of head of superpage to be [un]marked.
|
||||
*/
|
||||
#define MMUEXT_PIN_L1_TABLE 0
|
||||
#define MMUEXT_PIN_L2_TABLE 1
|
||||
|
@ -183,12 +340,18 @@
|
|||
#define MMUEXT_FLUSH_CACHE 12
|
||||
#define MMUEXT_SET_LDT 13
|
||||
#define MMUEXT_NEW_USER_BASEPTR 15
|
||||
#define MMUEXT_CLEAR_PAGE 16
|
||||
#define MMUEXT_COPY_PAGE 17
|
||||
#define MMUEXT_FLUSH_CACHE_GLOBAL 18
|
||||
#define MMUEXT_MARK_SUPER 19
|
||||
#define MMUEXT_UNMARK_SUPER 20
|
||||
|
||||
#ifndef __ASSEMBLY__
|
||||
struct mmuext_op {
|
||||
unsigned int cmd;
|
||||
union {
|
||||
/* [UN]PIN_TABLE, NEW_BASEPTR, NEW_USER_BASEPTR */
|
||||
/* [UN]PIN_TABLE, NEW_BASEPTR, NEW_USER_BASEPTR
|
||||
* CLEAR_PAGE, COPY_PAGE, [UN]MARK_SUPER */
|
||||
xen_pfn_t mfn;
|
||||
/* INVLPG_LOCAL, INVLPG_ALL, SET_LDT */
|
||||
unsigned long linear_addr;
|
||||
|
@ -198,6 +361,8 @@ struct mmuext_op {
|
|||
unsigned int nr_ents;
|
||||
/* TLB_FLUSH_MULTI, INVLPG_MULTI */
|
||||
void *vcpumask;
|
||||
/* COPY_PAGE */
|
||||
xen_pfn_t src_mfn;
|
||||
} arg2;
|
||||
};
|
||||
DEFINE_GUEST_HANDLE_STRUCT(mmuext_op);
|
||||
|
@ -225,10 +390,23 @@ DEFINE_GUEST_HANDLE_STRUCT(mmuext_op);
|
|||
*/
|
||||
#define VMASST_CMD_enable 0
|
||||
#define VMASST_CMD_disable 1
|
||||
|
||||
/* x86/32 guests: simulate full 4GB segment limits. */
|
||||
#define VMASST_TYPE_4gb_segments 0
|
||||
|
||||
/* x86/32 guests: trap (vector 15) whenever above vmassist is used. */
|
||||
#define VMASST_TYPE_4gb_segments_notify 1
|
||||
|
||||
/*
|
||||
* x86 guests: support writes to bottom-level PTEs.
|
||||
* NB1. Page-directory entries cannot be written.
|
||||
* NB2. Guest must continue to remove all writable mappings of PTEs.
|
||||
*/
|
||||
#define VMASST_TYPE_writable_pagetables 2
|
||||
|
||||
/* x86/PAE guests: support PDPTs above 4GB. */
|
||||
#define VMASST_TYPE_pae_extended_cr3 3
|
||||
|
||||
#define MAX_VMASST_TYPE 3
|
||||
|
||||
#ifndef __ASSEMBLY__
|
||||
|
@ -260,6 +438,15 @@ typedef uint16_t domid_t;
|
|||
*/
|
||||
#define DOMID_XEN (0x7FF2U)
|
||||
|
||||
/* DOMID_COW is used as the owner of sharable pages */
|
||||
#define DOMID_COW (0x7FF3U)
|
||||
|
||||
/* DOMID_INVALID is used to identify pages with unknown owner. */
|
||||
#define DOMID_INVALID (0x7FF4U)
|
||||
|
||||
/* Idle domain. */
|
||||
#define DOMID_IDLE (0x7FFFU)
|
||||
|
||||
/*
|
||||
* Send an array of these to HYPERVISOR_mmu_update().
|
||||
* NB. The fields are natural pointer/address size for this architecture.
|
||||
|
@ -272,7 +459,9 @@ DEFINE_GUEST_HANDLE_STRUCT(mmu_update);
|
|||
|
||||
/*
|
||||
* Send an array of these to HYPERVISOR_multicall().
|
||||
* NB. The fields are natural register size for this architecture.
|
||||
* NB. The fields are logically the natural register size for this
|
||||
* architecture. In cases where xen_ulong_t is larger than this then
|
||||
* any unused bits in the upper portion must be zero.
|
||||
*/
|
||||
struct multicall_entry {
|
||||
xen_ulong_t op;
|
||||
|
@ -442,8 +631,48 @@ struct start_info {
|
|||
unsigned long mod_start; /* VIRTUAL address of pre-loaded module. */
|
||||
unsigned long mod_len; /* Size (bytes) of pre-loaded module. */
|
||||
int8_t cmd_line[MAX_GUEST_CMDLINE];
|
||||
/* The pfn range here covers both page table and p->m table frames. */
|
||||
unsigned long first_p2m_pfn;/* 1st pfn forming initial P->M table. */
|
||||
unsigned long nr_p2m_frames;/* # of pfns forming initial P->M table. */
|
||||
};
|
||||
|
||||
/* These flags are passed in the 'flags' field of start_info_t. */
|
||||
#define SIF_PRIVILEGED (1<<0) /* Is the domain privileged? */
|
||||
#define SIF_INITDOMAIN (1<<1) /* Is this the initial control domain? */
|
||||
#define SIF_MULTIBOOT_MOD (1<<2) /* Is mod_start a multiboot module? */
|
||||
#define SIF_MOD_START_PFN (1<<3) /* Is mod_start a PFN? */
|
||||
#define SIF_PM_MASK (0xFF<<8) /* reserve 1 byte for xen-pm options */
|
||||
|
||||
/*
|
||||
* A multiboot module is a package containing modules very similar to a
|
||||
* multiboot module array. The only differences are:
|
||||
* - the array of module descriptors is by convention simply at the beginning
|
||||
* of the multiboot module,
|
||||
* - addresses in the module descriptors are based on the beginning of the
|
||||
* multiboot module,
|
||||
* - the number of modules is determined by a termination descriptor that has
|
||||
* mod_start == 0.
|
||||
*
|
||||
* This permits to both build it statically and reference it in a configuration
|
||||
* file, and let the PV guest easily rebase the addresses to virtual addresses
|
||||
* and at the same time count the number of modules.
|
||||
*/
|
||||
struct xen_multiboot_mod_list {
|
||||
/* Address of first byte of the module */
|
||||
uint32_t mod_start;
|
||||
/* Address of last byte of the module (inclusive) */
|
||||
uint32_t mod_end;
|
||||
/* Address of zero-terminated command line */
|
||||
uint32_t cmdline;
|
||||
/* Unused, must be zero */
|
||||
uint32_t pad;
|
||||
};
|
||||
/*
|
||||
* The console structure in start_info.console.dom0
|
||||
*
|
||||
* This structure includes a variety of information required to
|
||||
* have a working VGA/VESA console.
|
||||
*/
|
||||
struct dom0_vga_console_info {
|
||||
uint8_t video_type;
|
||||
#define XEN_VGATYPE_TEXT_MODE_3 0x03
|
||||
|
@ -484,11 +713,6 @@ struct dom0_vga_console_info {
|
|||
} u;
|
||||
};
|
||||
|
||||
/* These flags are passed in the 'flags' field of start_info_t. */
|
||||
#define SIF_PRIVILEGED (1<<0) /* Is the domain privileged? */
|
||||
#define SIF_INITDOMAIN (1<<1) /* Is this the initial control domain? */
|
||||
#define SIF_PM_MASK (0xFF<<8) /* reserve 1 byte for xen-pm options */
|
||||
|
||||
typedef uint64_t cpumap_t;
|
||||
|
||||
typedef uint8_t xen_domain_handle_t[16];
|
||||
|
|
Loading…
Reference in a new issue