Merge branch 'xfs-sparse-inode' into for-next

This commit is contained in:
Dave Chinner 2015-06-01 10:51:38 +10:00
commit b9a350a118
16 changed files with 829 additions and 86 deletions

View file

@ -149,13 +149,27 @@ xfs_alloc_compute_aligned(
{
xfs_agblock_t bno;
xfs_extlen_t len;
xfs_extlen_t diff;
/* Trim busy sections out of found extent */
xfs_extent_busy_trim(args, foundbno, foundlen, &bno, &len);
/*
* If we have a largish extent that happens to start before min_agbno,
* see if we can shift it into range...
*/
if (bno < args->min_agbno && bno + len > args->min_agbno) {
diff = args->min_agbno - bno;
if (len > diff) {
bno += diff;
len -= diff;
}
}
if (args->alignment > 1 && len >= args->minlen) {
xfs_agblock_t aligned_bno = roundup(bno, args->alignment);
xfs_extlen_t diff = aligned_bno - bno;
diff = aligned_bno - bno;
*resbno = aligned_bno;
*reslen = diff >= len ? 0 : len - diff;
@ -795,9 +809,13 @@ xfs_alloc_find_best_extent(
* The good extent is closer than this one.
*/
if (!dir) {
if (*sbnoa > args->max_agbno)
goto out_use_good;
if (*sbnoa >= args->agbno + gdiff)
goto out_use_good;
} else {
if (*sbnoa < args->min_agbno)
goto out_use_good;
if (*sbnoa <= args->agbno - gdiff)
goto out_use_good;
}
@ -884,6 +902,17 @@ xfs_alloc_ag_vextent_near(
dofirst = prandom_u32() & 1;
#endif
/* handle unitialized agbno range so caller doesn't have to */
if (!args->min_agbno && !args->max_agbno)
args->max_agbno = args->mp->m_sb.sb_agblocks - 1;
ASSERT(args->min_agbno <= args->max_agbno);
/* clamp agbno to the range if it's outside */
if (args->agbno < args->min_agbno)
args->agbno = args->min_agbno;
if (args->agbno > args->max_agbno)
args->agbno = args->max_agbno;
restart:
bno_cur_lt = NULL;
bno_cur_gt = NULL;
@ -976,6 +1005,8 @@ xfs_alloc_ag_vextent_near(
&ltbnoa, &ltlena);
if (ltlena < args->minlen)
continue;
if (ltbnoa < args->min_agbno || ltbnoa > args->max_agbno)
continue;
args->len = XFS_EXTLEN_MIN(ltlena, args->maxlen);
xfs_alloc_fix_len(args);
ASSERT(args->len >= args->minlen);
@ -1096,11 +1127,11 @@ xfs_alloc_ag_vextent_near(
XFS_WANT_CORRUPTED_GOTO(args->mp, i == 1, error0);
xfs_alloc_compute_aligned(args, ltbno, ltlen,
&ltbnoa, &ltlena);
if (ltlena >= args->minlen)
if (ltlena >= args->minlen && ltbnoa >= args->min_agbno)
break;
if ((error = xfs_btree_decrement(bno_cur_lt, 0, &i)))
goto error0;
if (!i) {
if (!i || ltbnoa < args->min_agbno) {
xfs_btree_del_cursor(bno_cur_lt,
XFS_BTREE_NOERROR);
bno_cur_lt = NULL;
@ -1112,11 +1143,11 @@ xfs_alloc_ag_vextent_near(
XFS_WANT_CORRUPTED_GOTO(args->mp, i == 1, error0);
xfs_alloc_compute_aligned(args, gtbno, gtlen,
&gtbnoa, &gtlena);
if (gtlena >= args->minlen)
if (gtlena >= args->minlen && gtbnoa <= args->max_agbno)
break;
if ((error = xfs_btree_increment(bno_cur_gt, 0, &i)))
goto error0;
if (!i) {
if (!i || gtbnoa > args->max_agbno) {
xfs_btree_del_cursor(bno_cur_gt,
XFS_BTREE_NOERROR);
bno_cur_gt = NULL;
@ -1216,6 +1247,7 @@ xfs_alloc_ag_vextent_near(
ASSERT(ltnew >= ltbno);
ASSERT(ltnew + rlen <= ltbnoa + ltlena);
ASSERT(ltnew + rlen <= be32_to_cpu(XFS_BUF_TO_AGF(args->agbp)->agf_length));
ASSERT(ltnew >= args->min_agbno && ltnew <= args->max_agbno);
args->agbno = ltnew;
if ((error = xfs_alloc_fixup_trees(cnt_cur, bno_cur_lt, ltbno, ltlen,

View file

@ -112,6 +112,8 @@ typedef struct xfs_alloc_arg {
xfs_extlen_t total; /* total blocks needed in xaction */
xfs_extlen_t alignment; /* align answer to multiple of this */
xfs_extlen_t minalignslop; /* slop for minlen+alignment calcs */
xfs_agblock_t min_agbno; /* set an agbno range for NEAR allocs */
xfs_agblock_t max_agbno; /* ... */
xfs_extlen_t len; /* output: actual size of extent */
xfs_alloctype_t type; /* allocation type XFS_ALLOCTYPE_... */
xfs_alloctype_t otype; /* original allocation type */

View file

@ -170,7 +170,7 @@ typedef struct xfs_sb {
__uint32_t sb_features_log_incompat;
__uint32_t sb_crc; /* superblock crc */
__uint32_t sb_pad;
xfs_extlen_t sb_spino_align; /* sparse inode chunk alignment */
xfs_ino_t sb_pquotino; /* project quota inode */
xfs_lsn_t sb_lsn; /* last write sequence */
@ -256,7 +256,7 @@ typedef struct xfs_dsb {
__be32 sb_features_log_incompat;
__le32 sb_crc; /* superblock crc */
__be32 sb_pad;
__be32 sb_spino_align; /* sparse inode chunk alignment */
__be64 sb_pquotino; /* project quota inode */
__be64 sb_lsn; /* last write sequence */
@ -457,8 +457,10 @@ xfs_sb_has_ro_compat_feature(
}
#define XFS_SB_FEAT_INCOMPAT_FTYPE (1 << 0) /* filetype in dirent */
#define XFS_SB_FEAT_INCOMPAT_SPINODES (1 << 1) /* sparse inode chunks */
#define XFS_SB_FEAT_INCOMPAT_ALL \
(XFS_SB_FEAT_INCOMPAT_FTYPE)
(XFS_SB_FEAT_INCOMPAT_FTYPE| \
XFS_SB_FEAT_INCOMPAT_SPINODES)
#define XFS_SB_FEAT_INCOMPAT_UNKNOWN ~XFS_SB_FEAT_INCOMPAT_ALL
static inline bool
@ -506,6 +508,12 @@ static inline int xfs_sb_version_hasfinobt(xfs_sb_t *sbp)
(sbp->sb_features_ro_compat & XFS_SB_FEAT_RO_COMPAT_FINOBT);
}
static inline bool xfs_sb_version_hassparseinodes(struct xfs_sb *sbp)
{
return XFS_SB_VERSION_NUM(sbp) == XFS_SB_VERSION_5 &&
xfs_sb_has_incompat_feature(sbp, XFS_SB_FEAT_INCOMPAT_SPINODES);
}
/*
* end of superblock version macros
*/
@ -1216,26 +1224,54 @@ typedef __uint64_t xfs_inofree_t;
#define XFS_INOBT_ALL_FREE ((xfs_inofree_t)-1)
#define XFS_INOBT_MASK(i) ((xfs_inofree_t)1 << (i))
#define XFS_INOBT_HOLEMASK_FULL 0 /* holemask for full chunk */
#define XFS_INOBT_HOLEMASK_BITS (NBBY * sizeof(__uint16_t))
#define XFS_INODES_PER_HOLEMASK_BIT \
(XFS_INODES_PER_CHUNK / (NBBY * sizeof(__uint16_t)))
static inline xfs_inofree_t xfs_inobt_maskn(int i, int n)
{
return ((n >= XFS_INODES_PER_CHUNK ? 0 : XFS_INOBT_MASK(n)) - 1) << i;
}
/*
* Data record structure
* The on-disk inode record structure has two formats. The original "full"
* format uses a 4-byte freecount. The "sparse" format uses a 1-byte freecount
* and replaces the 3 high-order freecount bytes wth the holemask and inode
* count.
*
* The holemask of the sparse record format allows an inode chunk to have holes
* that refer to blocks not owned by the inode record. This facilitates inode
* allocation in the event of severe free space fragmentation.
*/
typedef struct xfs_inobt_rec {
__be32 ir_startino; /* starting inode number */
__be32 ir_freecount; /* count of free inodes (set bits) */
union {
struct {
__be32 ir_freecount; /* count of free inodes */
} f;
struct {
__be16 ir_holemask;/* hole mask for sparse chunks */
__u8 ir_count; /* total inode count */
__u8 ir_freecount; /* count of free inodes */
} sp;
} ir_u;
__be64 ir_free; /* free inode mask */
} xfs_inobt_rec_t;
typedef struct xfs_inobt_rec_incore {
xfs_agino_t ir_startino; /* starting inode number */
__int32_t ir_freecount; /* count of free inodes (set bits) */
__uint16_t ir_holemask; /* hole mask for sparse chunks */
__uint8_t ir_count; /* total inode count */
__uint8_t ir_freecount; /* count of free inodes (set bits) */
xfs_inofree_t ir_free; /* free inode mask */
} xfs_inobt_rec_incore_t;
static inline bool xfs_inobt_issparse(uint16_t holemask)
{
/* non-zero holemask represents a sparse rec. */
return holemask;
}
/*
* Key structure

View file

@ -239,6 +239,7 @@ typedef struct xfs_fsop_resblks {
#define XFS_FSOP_GEOM_FLAGS_V5SB 0x8000 /* version 5 superblock */
#define XFS_FSOP_GEOM_FLAGS_FTYPE 0x10000 /* inode directory types */
#define XFS_FSOP_GEOM_FLAGS_FINOBT 0x20000 /* free inode btree */
#define XFS_FSOP_GEOM_FLAGS_SPINODES 0x40000 /* sparse inode chunks */
/*
* Minimum and maximum sizes need for growth checks.

View file

@ -65,6 +65,8 @@ xfs_inobt_lookup(
int *stat) /* success/failure */
{
cur->bc_rec.i.ir_startino = ino;
cur->bc_rec.i.ir_holemask = 0;
cur->bc_rec.i.ir_count = 0;
cur->bc_rec.i.ir_freecount = 0;
cur->bc_rec.i.ir_free = 0;
return xfs_btree_lookup(cur, dir, stat);
@ -82,7 +84,14 @@ xfs_inobt_update(
union xfs_btree_rec rec;
rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
rec.inobt.ir_freecount = cpu_to_be32(irec->ir_freecount);
if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
rec.inobt.ir_u.sp.ir_count = irec->ir_count;
rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
} else {
/* ir_holemask/ir_count not supported on-disk */
rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
}
rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
return xfs_btree_update(cur, &rec);
}
@ -100,12 +109,27 @@ xfs_inobt_get_rec(
int error;
error = xfs_btree_get_rec(cur, &rec, stat);
if (!error && *stat == 1) {
irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
irec->ir_freecount = be32_to_cpu(rec->inobt.ir_freecount);
irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
if (error || *stat == 0)
return error;
irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
irec->ir_count = rec->inobt.ir_u.sp.ir_count;
irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
} else {
/*
* ir_holemask/ir_count not supported on-disk. Fill in hardcoded
* values for full inode chunks.
*/
irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
irec->ir_count = XFS_INODES_PER_CHUNK;
irec->ir_freecount =
be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
}
return error;
irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
return 0;
}
/*
@ -114,10 +138,14 @@ xfs_inobt_get_rec(
STATIC int
xfs_inobt_insert_rec(
struct xfs_btree_cur *cur,
__uint16_t holemask,
__uint8_t count,
__int32_t freecount,
xfs_inofree_t free,
int *stat)
{
cur->bc_rec.i.ir_holemask = holemask;
cur->bc_rec.i.ir_count = count;
cur->bc_rec.i.ir_freecount = freecount;
cur->bc_rec.i.ir_free = free;
return xfs_btree_insert(cur, stat);
@ -154,7 +182,9 @@ xfs_inobt_insert(
}
ASSERT(i == 0);
error = xfs_inobt_insert_rec(cur, XFS_INODES_PER_CHUNK,
error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
XFS_INODES_PER_CHUNK,
XFS_INODES_PER_CHUNK,
XFS_INOBT_ALL_FREE, &i);
if (error) {
xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
@ -220,6 +250,7 @@ xfs_ialloc_inode_init(
struct xfs_mount *mp,
struct xfs_trans *tp,
struct list_head *buffer_list,
int icount,
xfs_agnumber_t agno,
xfs_agblock_t agbno,
xfs_agblock_t length,
@ -275,7 +306,7 @@ xfs_ialloc_inode_init(
* they track in the AIL as if they were physically logged.
*/
if (tp)
xfs_icreate_log(tp, agno, agbno, mp->m_ialloc_inos,
xfs_icreate_log(tp, agno, agbno, icount,
mp->m_sb.sb_inodesize, length, gen);
} else
version = 2;
@ -346,6 +377,214 @@ xfs_ialloc_inode_init(
return 0;
}
/*
* Align startino and allocmask for a recently allocated sparse chunk such that
* they are fit for insertion (or merge) into the on-disk inode btrees.
*
* Background:
*
* When enabled, sparse inode support increases the inode alignment from cluster
* size to inode chunk size. This means that the minimum range between two
* non-adjacent inode records in the inobt is large enough for a full inode
* record. This allows for cluster sized, cluster aligned block allocation
* without need to worry about whether the resulting inode record overlaps with
* another record in the tree. Without this basic rule, we would have to deal
* with the consequences of overlap by potentially undoing recent allocations in
* the inode allocation codepath.
*
* Because of this alignment rule (which is enforced on mount), there are two
* inobt possibilities for newly allocated sparse chunks. One is that the
* aligned inode record for the chunk covers a range of inodes not already
* covered in the inobt (i.e., it is safe to insert a new sparse record). The
* other is that a record already exists at the aligned startino that considers
* the newly allocated range as sparse. In the latter case, record content is
* merged in hope that sparse inode chunks fill to full chunks over time.
*/
STATIC void
xfs_align_sparse_ino(
struct xfs_mount *mp,
xfs_agino_t *startino,
uint16_t *allocmask)
{
xfs_agblock_t agbno;
xfs_agblock_t mod;
int offset;
agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
mod = agbno % mp->m_sb.sb_inoalignmt;
if (!mod)
return;
/* calculate the inode offset and align startino */
offset = mod << mp->m_sb.sb_inopblog;
*startino -= offset;
/*
* Since startino has been aligned down, left shift allocmask such that
* it continues to represent the same physical inodes relative to the
* new startino.
*/
*allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
}
/*
* Determine whether the source inode record can merge into the target. Both
* records must be sparse, the inode ranges must match and there must be no
* allocation overlap between the records.
*/
STATIC bool
__xfs_inobt_can_merge(
struct xfs_inobt_rec_incore *trec, /* tgt record */
struct xfs_inobt_rec_incore *srec) /* src record */
{
uint64_t talloc;
uint64_t salloc;
/* records must cover the same inode range */
if (trec->ir_startino != srec->ir_startino)
return false;
/* both records must be sparse */
if (!xfs_inobt_issparse(trec->ir_holemask) ||
!xfs_inobt_issparse(srec->ir_holemask))
return false;
/* both records must track some inodes */
if (!trec->ir_count || !srec->ir_count)
return false;
/* can't exceed capacity of a full record */
if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
return false;
/* verify there is no allocation overlap */
talloc = xfs_inobt_irec_to_allocmask(trec);
salloc = xfs_inobt_irec_to_allocmask(srec);
if (talloc & salloc)
return false;
return true;
}
/*
* Merge the source inode record into the target. The caller must call
* __xfs_inobt_can_merge() to ensure the merge is valid.
*/
STATIC void
__xfs_inobt_rec_merge(
struct xfs_inobt_rec_incore *trec, /* target */
struct xfs_inobt_rec_incore *srec) /* src */
{
ASSERT(trec->ir_startino == srec->ir_startino);
/* combine the counts */
trec->ir_count += srec->ir_count;
trec->ir_freecount += srec->ir_freecount;
/*
* Merge the holemask and free mask. For both fields, 0 bits refer to
* allocated inodes. We combine the allocated ranges with bitwise AND.
*/
trec->ir_holemask &= srec->ir_holemask;
trec->ir_free &= srec->ir_free;
}
/*
* Insert a new sparse inode chunk into the associated inode btree. The inode
* record for the sparse chunk is pre-aligned to a startino that should match
* any pre-existing sparse inode record in the tree. This allows sparse chunks
* to fill over time.
*
* This function supports two modes of handling preexisting records depending on
* the merge flag. If merge is true, the provided record is merged with the
* existing record and updated in place. The merged record is returned in nrec.
* If merge is false, an existing record is replaced with the provided record.
* If no preexisting record exists, the provided record is always inserted.
*
* It is considered corruption if a merge is requested and not possible. Given
* the sparse inode alignment constraints, this should never happen.
*/
STATIC int
xfs_inobt_insert_sprec(
struct xfs_mount *mp,
struct xfs_trans *tp,
struct xfs_buf *agbp,
int btnum,
struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */
bool merge) /* merge or replace */
{
struct xfs_btree_cur *cur;
struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
int error;
int i;
struct xfs_inobt_rec_incore rec;
cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
/* the new record is pre-aligned so we know where to look */
error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
if (error)
goto error;
/* if nothing there, insert a new record and return */
if (i == 0) {
error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
nrec->ir_count, nrec->ir_freecount,
nrec->ir_free, &i);
if (error)
goto error;
XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
goto out;
}
/*
* A record exists at this startino. Merge or replace the record
* depending on what we've been asked to do.
*/
if (merge) {
error = xfs_inobt_get_rec(cur, &rec, &i);
if (error)
goto error;
XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
XFS_WANT_CORRUPTED_GOTO(mp,
rec.ir_startino == nrec->ir_startino,
error);
/*
* This should never fail. If we have coexisting records that
* cannot merge, something is seriously wrong.
*/
XFS_WANT_CORRUPTED_GOTO(mp, __xfs_inobt_can_merge(nrec, &rec),
error);
trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino,
rec.ir_holemask, nrec->ir_startino,
nrec->ir_holemask);
/* merge to nrec to output the updated record */
__xfs_inobt_rec_merge(nrec, &rec);
trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino,
nrec->ir_holemask);
error = xfs_inobt_rec_check_count(mp, nrec);
if (error)
goto error;
}
error = xfs_inobt_update(cur, nrec);
if (error)
goto error;
out:
xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
return 0;
error:
xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
return error;
}
/*
* Allocate new inodes in the allocation group specified by agbp.
* Return 0 for success, else error code.
@ -364,11 +603,22 @@ xfs_ialloc_ag_alloc(
xfs_agino_t newlen; /* new number of inodes */
int isaligned = 0; /* inode allocation at stripe unit */
/* boundary */
uint16_t allocmask = (uint16_t) -1; /* init. to full chunk */
struct xfs_inobt_rec_incore rec;
struct xfs_perag *pag;
int do_sparse = 0;
#ifdef DEBUG
/* randomly do sparse inode allocations */
if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb))
do_sparse = prandom_u32() & 1;
#endif
memset(&args, 0, sizeof(args));
args.tp = tp;
args.mp = tp->t_mountp;
args.fsbno = NULLFSBLOCK;
/*
* Locking will ensure that we don't have two callers in here
@ -390,6 +640,8 @@ xfs_ialloc_ag_alloc(
agno = be32_to_cpu(agi->agi_seqno);
args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
args.mp->m_ialloc_blks;
if (do_sparse)
goto sparse_alloc;
if (likely(newino != NULLAGINO &&
(args.agbno < be32_to_cpu(agi->agi_length)))) {
args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
@ -428,8 +680,7 @@ xfs_ialloc_ag_alloc(
* subsequent requests.
*/
args.minalignslop = 0;
} else
args.fsbno = NULLFSBLOCK;
}
if (unlikely(args.fsbno == NULLFSBLOCK)) {
/*
@ -480,6 +731,46 @@ xfs_ialloc_ag_alloc(
return error;
}
/*
* Finally, try a sparse allocation if the filesystem supports it and
* the sparse allocation length is smaller than a full chunk.
*/
if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) &&
args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks &&
args.fsbno == NULLFSBLOCK) {
sparse_alloc:
args.type = XFS_ALLOCTYPE_NEAR_BNO;
args.agbno = be32_to_cpu(agi->agi_root);
args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
args.alignment = args.mp->m_sb.sb_spino_align;
args.prod = 1;
args.minlen = args.mp->m_ialloc_min_blks;
args.maxlen = args.minlen;
/*
* The inode record will be aligned to full chunk size. We must
* prevent sparse allocation from AG boundaries that result in
* invalid inode records, such as records that start at agbno 0
* or extend beyond the AG.
*
* Set min agbno to the first aligned, non-zero agbno and max to
* the last aligned agbno that is at least one full chunk from
* the end of the AG.
*/
args.min_agbno = args.mp->m_sb.sb_inoalignmt;
args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
args.mp->m_sb.sb_inoalignmt) -
args.mp->m_ialloc_blks;
error = xfs_alloc_vextent(&args);
if (error)
return error;
newlen = args.len << args.mp->m_sb.sb_inopblog;
allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
}
if (args.fsbno == NULLFSBLOCK) {
*alloc = 0;
return 0;
@ -495,8 +786,8 @@ xfs_ialloc_ag_alloc(
* rather than a linear progression to prevent the next generation
* number from being easily guessable.
*/
error = xfs_ialloc_inode_init(args.mp, tp, NULL, agno, args.agbno,
args.len, prandom_u32());
error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno,
args.agbno, args.len, prandom_u32());
if (error)
return error;
@ -504,6 +795,73 @@ xfs_ialloc_ag_alloc(
* Convert the results.
*/
newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0);
if (xfs_inobt_issparse(~allocmask)) {
/*
* We've allocated a sparse chunk. Align the startino and mask.
*/
xfs_align_sparse_ino(args.mp, &newino, &allocmask);
rec.ir_startino = newino;
rec.ir_holemask = ~allocmask;
rec.ir_count = newlen;
rec.ir_freecount = newlen;
rec.ir_free = XFS_INOBT_ALL_FREE;
/*
* Insert the sparse record into the inobt and allow for a merge
* if necessary. If a merge does occur, rec is updated to the
* merged record.
*/
error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO,
&rec, true);
if (error == -EFSCORRUPTED) {
xfs_alert(args.mp,
"invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
XFS_AGINO_TO_INO(args.mp, agno,
rec.ir_startino),
rec.ir_holemask, rec.ir_count);
xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
}
if (error)
return error;
/*
* We can't merge the part we've just allocated as for the inobt
* due to finobt semantics. The original record may or may not
* exist independent of whether physical inodes exist in this
* sparse chunk.
*
* We must update the finobt record based on the inobt record.
* rec contains the fully merged and up to date inobt record
* from the previous call. Set merge false to replace any
* existing record with this one.
*/
if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
error = xfs_inobt_insert_sprec(args.mp, tp, agbp,
XFS_BTNUM_FINO, &rec,
false);
if (error)
return error;
}
} else {
/* full chunk - insert new records to both btrees */
error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
XFS_BTNUM_INO);
if (error)
return error;
if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
error = xfs_inobt_insert(args.mp, tp, agbp, newino,
newlen, XFS_BTNUM_FINO);
if (error)
return error;
}
}
/*
* Update AGI counts and newino.
*/
be32_add_cpu(&agi->agi_count, newlen);
be32_add_cpu(&agi->agi_freecount, newlen);
pag = xfs_perag_get(args.mp, agno);
@ -511,20 +869,6 @@ xfs_ialloc_ag_alloc(
xfs_perag_put(pag);
agi->agi_newino = cpu_to_be32(newino);
/*
* Insert records describing the new inode chunk into the btrees.
*/
error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
XFS_BTNUM_INO);
if (error)
return error;
if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
XFS_BTNUM_FINO);
if (error)
return error;
}
/*
* Log allocation group header fields
*/
@ -645,7 +989,7 @@ xfs_ialloc_ag_select(
* if we fail allocation due to alignment issues then it is most
* likely a real ENOSPC condition.
*/
ineed = mp->m_ialloc_blks;
ineed = mp->m_ialloc_min_blks;
if (flags && ineed > 1)
ineed += xfs_ialloc_cluster_alignment(mp);
longest = pag->pagf_longest;
@ -731,6 +1075,27 @@ xfs_ialloc_get_rec(
return 0;
}
/*
* Return the offset of the first free inode in the record. If the inode chunk
* is sparsely allocated, we convert the record holemask to inode granularity
* and mask off the unallocated regions from the inode free mask.
*/
STATIC int
xfs_inobt_first_free_inode(
struct xfs_inobt_rec_incore *rec)
{
xfs_inofree_t realfree;
/* if there are no holes, return the first available offset */
if (!xfs_inobt_issparse(rec->ir_holemask))
return xfs_lowbit64(rec->ir_free);
realfree = xfs_inobt_irec_to_allocmask(rec);
realfree &= rec->ir_free;
return xfs_lowbit64(realfree);
}
/*
* Allocate an inode using the inobt-only algorithm.
*/
@ -961,7 +1326,7 @@ xfs_dialloc_ag_inobt(
}
alloc_inode:
offset = xfs_lowbit64(rec.ir_free);
offset = xfs_inobt_first_free_inode(&rec);
ASSERT(offset >= 0);
ASSERT(offset < XFS_INODES_PER_CHUNK);
ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
@ -1210,7 +1575,7 @@ xfs_dialloc_ag(
if (error)
goto error_cur;
offset = xfs_lowbit64(rec.ir_free);
offset = xfs_inobt_first_free_inode(&rec);
ASSERT(offset >= 0);
ASSERT(offset < XFS_INODES_PER_CHUNK);
ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
@ -1439,6 +1804,83 @@ xfs_dialloc(
return error;
}
/*
* Free the blocks of an inode chunk. We must consider that the inode chunk
* might be sparse and only free the regions that are allocated as part of the
* chunk.
*/
STATIC void
xfs_difree_inode_chunk(
struct xfs_mount *mp,
xfs_agnumber_t agno,
struct xfs_inobt_rec_incore *rec,
struct xfs_bmap_free *flist)
{
xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp, rec->ir_startino);
int startidx, endidx;
int nextbit;
xfs_agblock_t agbno;
int contigblk;
DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
if (!xfs_inobt_issparse(rec->ir_holemask)) {
/* not sparse, calculate extent info directly */
xfs_bmap_add_free(XFS_AGB_TO_FSB(mp, agno,
XFS_AGINO_TO_AGBNO(mp, rec->ir_startino)),
mp->m_ialloc_blks, flist, mp);
return;
}
/* holemask is only 16-bits (fits in an unsigned long) */
ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
holemask[0] = rec->ir_holemask;
/*
* Find contiguous ranges of zeroes (i.e., allocated regions) in the
* holemask and convert the start/end index of each range to an extent.
* We start with the start and end index both pointing at the first 0 in
* the mask.
*/
startidx = endidx = find_first_zero_bit(holemask,
XFS_INOBT_HOLEMASK_BITS);
nextbit = startidx + 1;
while (startidx < XFS_INOBT_HOLEMASK_BITS) {
nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
nextbit);
/*
* If the next zero bit is contiguous, update the end index of
* the current range and continue.
*/
if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
nextbit == endidx + 1) {
endidx = nextbit;
goto next;
}
/*
* nextbit is not contiguous with the current end index. Convert
* the current start/end to an extent and add it to the free
* list.
*/
agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
mp->m_sb.sb_inopblock;
contigblk = ((endidx - startidx + 1) *
XFS_INODES_PER_HOLEMASK_BIT) /
mp->m_sb.sb_inopblock;
ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
xfs_bmap_add_free(XFS_AGB_TO_FSB(mp, agno, agbno), contigblk,
flist, mp);
/* reset range to current bit and carry on... */
startidx = endidx = nextbit;
next:
nextbit++;
}
}
STATIC int
xfs_difree_inobt(
struct xfs_mount *mp,
@ -1446,8 +1888,7 @@ xfs_difree_inobt(
struct xfs_buf *agbp,
xfs_agino_t agino,
struct xfs_bmap_free *flist,
int *deleted,
xfs_ino_t *first_ino,
struct xfs_icluster *xic,
struct xfs_inobt_rec_incore *orec)
{
struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
@ -1501,20 +1942,23 @@ xfs_difree_inobt(
rec.ir_freecount++;
/*
* When an inode cluster is free, it becomes eligible for removal
* When an inode chunk is free, it becomes eligible for removal. Don't
* remove the chunk if the block size is large enough for multiple inode
* chunks (that might not be free).
*/
if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
(rec.ir_freecount == mp->m_ialloc_inos)) {
*deleted = 1;
*first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
rec.ir_free == XFS_INOBT_ALL_FREE &&
mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
xic->deleted = 1;
xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
/*
* Remove the inode cluster from the AGI B+Tree, adjust the
* AGI and Superblock inode counts, and mark the disk space
* to be freed when the transaction is committed.
*/
ilen = mp->m_ialloc_inos;
ilen = rec.ir_freecount;
be32_add_cpu(&agi->agi_count, -ilen);
be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
@ -1530,11 +1974,9 @@ xfs_difree_inobt(
goto error0;
}
xfs_bmap_add_free(XFS_AGB_TO_FSB(mp, agno,
XFS_AGINO_TO_AGBNO(mp, rec.ir_startino)),
mp->m_ialloc_blks, flist, mp);
xfs_difree_inode_chunk(mp, agno, &rec, flist);
} else {
*deleted = 0;
xic->deleted = 0;
error = xfs_inobt_update(cur, &rec);
if (error) {
@ -1599,7 +2041,9 @@ xfs_difree_finobt(
*/
XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error);
error = xfs_inobt_insert_rec(cur, ibtrec->ir_freecount,
error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
ibtrec->ir_count,
ibtrec->ir_freecount,
ibtrec->ir_free, &i);
if (error)
goto error;
@ -1634,8 +2078,13 @@ xfs_difree_finobt(
* free inode. Hence, if all of the inodes are free and we aren't
* keeping inode chunks permanently on disk, remove the record.
* Otherwise, update the record with the new information.
*
* Note that we currently can't free chunks when the block size is large
* enough for multiple chunks. Leave the finobt record to remain in sync
* with the inobt.
*/
if (rec.ir_freecount == mp->m_ialloc_inos &&
if (rec.ir_free == XFS_INOBT_ALL_FREE &&
mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK &&
!(mp->m_flags & XFS_MOUNT_IKEEP)) {
error = xfs_btree_delete(cur, &i);
if (error)
@ -1671,8 +2120,7 @@ xfs_difree(
struct xfs_trans *tp, /* transaction pointer */
xfs_ino_t inode, /* inode to be freed */
struct xfs_bmap_free *flist, /* extents to free */
int *deleted,/* set if inode cluster was deleted */
xfs_ino_t *first_ino)/* first inode in deleted cluster */
struct xfs_icluster *xic) /* cluster info if deleted */
{
/* REFERENCED */
xfs_agblock_t agbno; /* block number containing inode */
@ -1723,8 +2171,7 @@ xfs_difree(
/*
* Fix up the inode allocation btree.
*/
error = xfs_difree_inobt(mp, tp, agbp, agino, flist, deleted, first_ino,
&rec);
error = xfs_difree_inobt(mp, tp, agbp, agino, flist, xic, &rec);
if (error)
goto error0;

View file

@ -28,6 +28,13 @@ struct xfs_btree_cur;
/* Move inodes in clusters of this size */
#define XFS_INODE_BIG_CLUSTER_SIZE 8192
struct xfs_icluster {
bool deleted; /* record is deleted */
xfs_ino_t first_ino; /* first inode number */
uint64_t alloc; /* inode phys. allocation bitmap for
* sparse chunks */
};
/* Calculate and return the number of filesystem blocks per inode cluster */
static inline int
xfs_icluster_size_fsb(
@ -90,8 +97,7 @@ xfs_difree(
struct xfs_trans *tp, /* transaction pointer */
xfs_ino_t inode, /* inode to be freed */
struct xfs_bmap_free *flist, /* extents to free */
int *deleted, /* set if inode cluster was deleted */
xfs_ino_t *first_ino); /* first inode in deleted cluster */
struct xfs_icluster *ifree); /* cluster info if deleted */
/*
* Return the location of the inode in imap, for mapping it into a buffer.
@ -156,7 +162,7 @@ int xfs_inobt_get_rec(struct xfs_btree_cur *cur,
* Inode chunk initialisation routine
*/
int xfs_ialloc_inode_init(struct xfs_mount *mp, struct xfs_trans *tp,
struct list_head *buffer_list,
struct list_head *buffer_list, int icount,
xfs_agnumber_t agno, xfs_agblock_t agbno,
xfs_agblock_t length, unsigned int gen);

View file

@ -167,7 +167,16 @@ xfs_inobt_init_rec_from_cur(
union xfs_btree_rec *rec)
{
rec->inobt.ir_startino = cpu_to_be32(cur->bc_rec.i.ir_startino);
rec->inobt.ir_freecount = cpu_to_be32(cur->bc_rec.i.ir_freecount);
if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
rec->inobt.ir_u.sp.ir_holemask =
cpu_to_be16(cur->bc_rec.i.ir_holemask);
rec->inobt.ir_u.sp.ir_count = cur->bc_rec.i.ir_count;
rec->inobt.ir_u.sp.ir_freecount = cur->bc_rec.i.ir_freecount;
} else {
/* ir_holemask/ir_count not supported on-disk */
rec->inobt.ir_u.f.ir_freecount =
cpu_to_be32(cur->bc_rec.i.ir_freecount);
}
rec->inobt.ir_free = cpu_to_be64(cur->bc_rec.i.ir_free);
}
@ -418,3 +427,85 @@ xfs_inobt_maxrecs(
return blocklen / sizeof(xfs_inobt_rec_t);
return blocklen / (sizeof(xfs_inobt_key_t) + sizeof(xfs_inobt_ptr_t));
}
/*
* Convert the inode record holemask to an inode allocation bitmap. The inode
* allocation bitmap is inode granularity and specifies whether an inode is
* physically allocated on disk (not whether the inode is considered allocated
* or free by the fs).
*
* A bit value of 1 means the inode is allocated, a value of 0 means it is free.
*/
uint64_t
xfs_inobt_irec_to_allocmask(
struct xfs_inobt_rec_incore *rec)
{
uint64_t bitmap = 0;
uint64_t inodespbit;
int nextbit;
uint allocbitmap;
/*
* The holemask has 16-bits for a 64 inode record. Therefore each
* holemask bit represents multiple inodes. Create a mask of bits to set
* in the allocmask for each holemask bit.
*/
inodespbit = (1 << XFS_INODES_PER_HOLEMASK_BIT) - 1;
/*
* Allocated inodes are represented by 0 bits in holemask. Invert the 0
* bits to 1 and convert to a uint so we can use xfs_next_bit(). Mask
* anything beyond the 16 holemask bits since this casts to a larger
* type.
*/
allocbitmap = ~rec->ir_holemask & ((1 << XFS_INOBT_HOLEMASK_BITS) - 1);
/*
* allocbitmap is the inverted holemask so every set bit represents
* allocated inodes. To expand from 16-bit holemask granularity to
* 64-bit (e.g., bit-per-inode), set inodespbit bits in the target
* bitmap for every holemask bit.
*/
nextbit = xfs_next_bit(&allocbitmap, 1, 0);
while (nextbit != -1) {
ASSERT(nextbit < (sizeof(rec->ir_holemask) * NBBY));
bitmap |= (inodespbit <<
(nextbit * XFS_INODES_PER_HOLEMASK_BIT));
nextbit = xfs_next_bit(&allocbitmap, 1, nextbit + 1);
}
return bitmap;
}
#if defined(DEBUG) || defined(XFS_WARN)
/*
* Verify that an in-core inode record has a valid inode count.
*/
int
xfs_inobt_rec_check_count(
struct xfs_mount *mp,
struct xfs_inobt_rec_incore *rec)
{
int inocount = 0;
int nextbit = 0;
uint64_t allocbmap;
int wordsz;
wordsz = sizeof(allocbmap) / sizeof(unsigned int);
allocbmap = xfs_inobt_irec_to_allocmask(rec);
nextbit = xfs_next_bit((uint *) &allocbmap, wordsz, nextbit);
while (nextbit != -1) {
inocount++;
nextbit = xfs_next_bit((uint *) &allocbmap, wordsz,
nextbit + 1);
}
if (inocount != rec->ir_count)
return -EFSCORRUPTED;
return 0;
}
#endif /* DEBUG */

View file

@ -62,4 +62,14 @@ extern struct xfs_btree_cur *xfs_inobt_init_cursor(struct xfs_mount *,
xfs_btnum_t);
extern int xfs_inobt_maxrecs(struct xfs_mount *, int, int);
/* ir_holemask to inode allocation bitmap conversion */
uint64_t xfs_inobt_irec_to_allocmask(struct xfs_inobt_rec_incore *);
#if defined(DEBUG) || defined(XFS_WARN)
int xfs_inobt_rec_check_count(struct xfs_mount *,
struct xfs_inobt_rec_incore *);
#else
#define xfs_inobt_rec_check_count(mp, rec) 0
#endif /* DEBUG */
#endif /* __XFS_IALLOC_BTREE_H__ */

View file

@ -174,6 +174,27 @@ xfs_mount_validate_sb(
return -EFSCORRUPTED;
}
/*
* Full inode chunks must be aligned to inode chunk size when
* sparse inodes are enabled to support the sparse chunk
* allocation algorithm and prevent overlapping inode records.
*/
if (xfs_sb_version_hassparseinodes(sbp)) {
uint32_t align;
xfs_alert(mp,
"EXPERIMENTAL sparse inode feature enabled. Use at your own risk!");
align = XFS_INODES_PER_CHUNK * sbp->sb_inodesize
>> sbp->sb_blocklog;
if (sbp->sb_inoalignmt != align) {
xfs_warn(mp,
"Inode block alignment (%u) must match chunk size (%u) for sparse inodes.",
sbp->sb_inoalignmt, align);
return -EINVAL;
}
}
if (unlikely(
sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
xfs_warn(mp,
@ -374,7 +395,7 @@ __xfs_sb_from_disk(
be32_to_cpu(from->sb_features_log_incompat);
/* crc is only used on disk, not in memory; just init to 0 here. */
to->sb_crc = 0;
to->sb_pad = 0;
to->sb_spino_align = be32_to_cpu(from->sb_spino_align);
to->sb_pquotino = be64_to_cpu(from->sb_pquotino);
to->sb_lsn = be64_to_cpu(from->sb_lsn);
/* Convert on-disk flags to in-memory flags? */
@ -516,7 +537,7 @@ xfs_sb_to_disk(
cpu_to_be32(from->sb_features_incompat);
to->sb_features_log_incompat =
cpu_to_be32(from->sb_features_log_incompat);
to->sb_pad = 0;
to->sb_spino_align = cpu_to_be32(from->sb_spino_align);
to->sb_lsn = cpu_to_be64(from->sb_lsn);
}
}
@ -689,6 +710,11 @@ xfs_sb_mount_common(
mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
sbp->sb_inopblock);
mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
if (sbp->sb_spino_align)
mp->m_ialloc_min_blks = sbp->sb_spino_align;
else
mp->m_ialloc_min_blks = mp->m_ialloc_blks;
}
/*

View file

@ -101,7 +101,9 @@ xfs_fs_geometry(
(xfs_sb_version_hasftype(&mp->m_sb) ?
XFS_FSOP_GEOM_FLAGS_FTYPE : 0) |
(xfs_sb_version_hasfinobt(&mp->m_sb) ?
XFS_FSOP_GEOM_FLAGS_FINOBT : 0);
XFS_FSOP_GEOM_FLAGS_FINOBT : 0) |
(xfs_sb_version_hassparseinodes(&mp->m_sb) ?
XFS_FSOP_GEOM_FLAGS_SPINODES : 0);
geo->logsectsize = xfs_sb_version_hassector(&mp->m_sb) ?
mp->m_sb.sb_logsectsize : BBSIZE;
geo->rtsectsize = mp->m_sb.sb_blocksize;

View file

@ -2235,9 +2235,9 @@ xfs_iunlink_remove(
*/
STATIC int
xfs_ifree_cluster(
xfs_inode_t *free_ip,
xfs_trans_t *tp,
xfs_ino_t inum)
xfs_inode_t *free_ip,
xfs_trans_t *tp,
struct xfs_icluster *xic)
{
xfs_mount_t *mp = free_ip->i_mount;
int blks_per_cluster;
@ -2250,13 +2250,26 @@ xfs_ifree_cluster(
xfs_inode_log_item_t *iip;
xfs_log_item_t *lip;
struct xfs_perag *pag;
xfs_ino_t inum;
inum = xic->first_ino;
pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
blks_per_cluster = xfs_icluster_size_fsb(mp);
inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
nbufs = mp->m_ialloc_blks / blks_per_cluster;
for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
/*
* The allocation bitmap tells us which inodes of the chunk were
* physically allocated. Skip the cluster if an inode falls into
* a sparse region.
*/
if ((xic->alloc & XFS_INOBT_MASK(inum - xic->first_ino)) == 0) {
ASSERT(((inum - xic->first_ino) %
inodes_per_cluster) == 0);
continue;
}
blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
XFS_INO_TO_AGBNO(mp, inum));
@ -2414,8 +2427,7 @@ xfs_ifree(
xfs_bmap_free_t *flist)
{
int error;
int delete;
xfs_ino_t first_ino;
struct xfs_icluster xic = { 0 };
ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
ASSERT(ip->i_d.di_nlink == 0);
@ -2431,7 +2443,7 @@ xfs_ifree(
if (error)
return error;
error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
error = xfs_difree(tp, ip->i_ino, flist, &xic);
if (error)
return error;
@ -2448,8 +2460,8 @@ xfs_ifree(
ip->i_d.di_gen++;
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
if (delete)
error = xfs_ifree_cluster(ip, tp, first_ino);
if (xic.deleted)
error = xfs_ifree_cluster(ip, tp, &xic);
return error;
}

View file

@ -252,7 +252,7 @@ xfs_bulkstat_grab_ichunk(
}
irec->ir_free |= xfs_inobt_maskn(0, idx);
*icount = XFS_INODES_PER_CHUNK - irec->ir_freecount;
*icount = irec->ir_count - irec->ir_freecount;
}
return 0;
@ -415,6 +415,8 @@ xfs_bulkstat(
goto del_cursor;
if (icount) {
irbp->ir_startino = r.ir_startino;
irbp->ir_holemask = r.ir_holemask;
irbp->ir_count = r.ir_count;
irbp->ir_freecount = r.ir_freecount;
irbp->ir_free = r.ir_free;
irbp++;
@ -447,13 +449,15 @@ xfs_bulkstat(
* If this chunk has any allocated inodes, save it.
* Also start read-ahead now for this chunk.
*/
if (r.ir_freecount < XFS_INODES_PER_CHUNK) {
if (r.ir_freecount < r.ir_count) {
xfs_bulkstat_ichunk_ra(mp, agno, &r);
irbp->ir_startino = r.ir_startino;
irbp->ir_holemask = r.ir_holemask;
irbp->ir_count = r.ir_count;
irbp->ir_freecount = r.ir_freecount;
irbp->ir_free = r.ir_free;
irbp++;
icount += XFS_INODES_PER_CHUNK - r.ir_freecount;
icount += r.ir_count - r.ir_freecount;
}
error = xfs_btree_increment(cur, 0, &stat);
if (error || stat == 0) {
@ -599,8 +603,7 @@ xfs_inumbers(
agino = r.ir_startino + XFS_INODES_PER_CHUNK - 1;
buffer[bufidx].xi_startino =
XFS_AGINO_TO_INO(mp, agno, r.ir_startino);
buffer[bufidx].xi_alloccount =
XFS_INODES_PER_CHUNK - r.ir_freecount;
buffer[bufidx].xi_alloccount = r.ir_count - r.ir_freecount;
buffer[bufidx].xi_allocmask = ~r.ir_free;
if (++bufidx == bcount) {
long written;

View file

@ -3068,12 +3068,22 @@ xlog_recover_do_icreate_pass2(
return -EINVAL;
}
/* existing allocation is fixed value */
ASSERT(count == mp->m_ialloc_inos);
ASSERT(length == mp->m_ialloc_blks);
if (count != mp->m_ialloc_inos ||
length != mp->m_ialloc_blks) {
xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count 2");
/*
* The inode chunk is either full or sparse and we only support
* m_ialloc_min_blks sized sparse allocations at this time.
*/
if (length != mp->m_ialloc_blks &&
length != mp->m_ialloc_min_blks) {
xfs_warn(log->l_mp,
"%s: unsupported chunk length", __FUNCTION__);
return -EINVAL;
}
/* verify inode count is consistent with extent length */
if ((count >> mp->m_sb.sb_inopblog) != length) {
xfs_warn(log->l_mp,
"%s: inconsistent inode count and chunk length",
__FUNCTION__);
return -EINVAL;
}
@ -3091,8 +3101,8 @@ xlog_recover_do_icreate_pass2(
XFS_AGB_TO_DADDR(mp, agno, agbno), length, 0))
return 0;
xfs_ialloc_inode_init(mp, NULL, buffer_list, agno, agbno, length,
be32_to_cpu(icl->icl_gen));
xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno, length,
be32_to_cpu(icl->icl_gen));
return 0;
}

View file

@ -724,6 +724,22 @@ xfs_mountfs(
mp->m_inode_cluster_size = new_size;
}
/*
* If enabled, sparse inode chunk alignment is expected to match the
* cluster size. Full inode chunk alignment must match the chunk size,
* but that is checked on sb read verification...
*/
if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
mp->m_sb.sb_spino_align !=
XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) {
xfs_warn(mp,
"Sparse inode block alignment (%u) must match cluster size (%llu).",
mp->m_sb.sb_spino_align,
XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size));
error = -EINVAL;
goto out_remove_uuid;
}
/*
* Set inode alignment fields
*/

View file

@ -101,6 +101,8 @@ typedef struct xfs_mount {
__uint64_t m_flags; /* global mount flags */
int m_ialloc_inos; /* inodes in inode allocation */
int m_ialloc_blks; /* blocks in inode allocation */
int m_ialloc_min_blks;/* min blocks in sparse inode
* allocation */
int m_inoalign_mask;/* mask sb_inoalignmt if used */
uint m_qflags; /* quota status flags */
struct xfs_trans_resv m_resv; /* precomputed res values */

View file

@ -738,6 +738,53 @@ TRACE_EVENT(xfs_iomap_prealloc_size,
__entry->blocks, __entry->shift, __entry->writeio_blocks)
)
TRACE_EVENT(xfs_irec_merge_pre,
TP_PROTO(struct xfs_mount *mp, xfs_agnumber_t agno, xfs_agino_t agino,
uint16_t holemask, xfs_agino_t nagino, uint16_t nholemask),
TP_ARGS(mp, agno, agino, holemask, nagino, nholemask),
TP_STRUCT__entry(
__field(dev_t, dev)
__field(xfs_agnumber_t, agno)
__field(xfs_agino_t, agino)
__field(uint16_t, holemask)
__field(xfs_agino_t, nagino)
__field(uint16_t, nholemask)
),
TP_fast_assign(
__entry->dev = mp->m_super->s_dev;
__entry->agno = agno;
__entry->agino = agino;
__entry->holemask = holemask;
__entry->nagino = nagino;
__entry->nholemask = holemask;
),
TP_printk("dev %d:%d agno %d inobt (%u:0x%x) new (%u:0x%x)",
MAJOR(__entry->dev), MINOR(__entry->dev), __entry->agno,
__entry->agino, __entry->holemask, __entry->nagino,
__entry->nholemask)
)
TRACE_EVENT(xfs_irec_merge_post,
TP_PROTO(struct xfs_mount *mp, xfs_agnumber_t agno, xfs_agino_t agino,
uint16_t holemask),
TP_ARGS(mp, agno, agino, holemask),
TP_STRUCT__entry(
__field(dev_t, dev)
__field(xfs_agnumber_t, agno)
__field(xfs_agino_t, agino)
__field(uint16_t, holemask)
),
TP_fast_assign(
__entry->dev = mp->m_super->s_dev;
__entry->agno = agno;
__entry->agino = agino;
__entry->holemask = holemask;
),
TP_printk("dev %d:%d agno %d inobt (%u:0x%x)", MAJOR(__entry->dev),
MINOR(__entry->dev), __entry->agno, __entry->agino,
__entry->holemask)
)
#define DEFINE_IREF_EVENT(name) \
DEFINE_EVENT(xfs_iref_class, name, \
TP_PROTO(struct xfs_inode *ip, unsigned long caller_ip), \