Merge "psi: pressure stall information for CPU, memory, and IO"
This commit is contained in:
commit
b0a81d00d3
17 changed files with 1170 additions and 160 deletions
64
Documentation/accounting/psi.txt
Normal file
64
Documentation/accounting/psi.txt
Normal file
|
@ -0,0 +1,64 @@
|
|||
================================
|
||||
PSI - Pressure Stall Information
|
||||
================================
|
||||
|
||||
:Date: April, 2018
|
||||
:Author: Johannes Weiner <hannes@cmpxchg.org>
|
||||
|
||||
When CPU, memory or IO devices are contended, workloads experience
|
||||
latency spikes, throughput losses, and run the risk of OOM kills.
|
||||
|
||||
Without an accurate measure of such contention, users are forced to
|
||||
either play it safe and under-utilize their hardware resources, or
|
||||
roll the dice and frequently suffer the disruptions resulting from
|
||||
excessive overcommit.
|
||||
|
||||
The psi feature identifies and quantifies the disruptions caused by
|
||||
such resource crunches and the time impact it has on complex workloads
|
||||
or even entire systems.
|
||||
|
||||
Having an accurate measure of productivity losses caused by resource
|
||||
scarcity aids users in sizing workloads to hardware--or provisioning
|
||||
hardware according to workload demand.
|
||||
|
||||
As psi aggregates this information in realtime, systems can be managed
|
||||
dynamically using techniques such as load shedding, migrating jobs to
|
||||
other systems or data centers, or strategically pausing or killing low
|
||||
priority or restartable batch jobs.
|
||||
|
||||
This allows maximizing hardware utilization without sacrificing
|
||||
workload health or risking major disruptions such as OOM kills.
|
||||
|
||||
Pressure interface
|
||||
==================
|
||||
|
||||
Pressure information for each resource is exported through the
|
||||
respective file in /proc/pressure/ -- cpu, memory, and io.
|
||||
|
||||
The format for CPU is as such:
|
||||
|
||||
some avg10=0.00 avg60=0.00 avg300=0.00 total=0
|
||||
|
||||
and for memory and IO:
|
||||
|
||||
some avg10=0.00 avg60=0.00 avg300=0.00 total=0
|
||||
full avg10=0.00 avg60=0.00 avg300=0.00 total=0
|
||||
|
||||
The "some" line indicates the share of time in which at least some
|
||||
tasks are stalled on a given resource.
|
||||
|
||||
The "full" line indicates the share of time in which all non-idle
|
||||
tasks are stalled on a given resource simultaneously. In this state
|
||||
actual CPU cycles are going to waste, and a workload that spends
|
||||
extended time in this state is considered to be thrashing. This has
|
||||
severe impact on performance, and it's useful to distinguish this
|
||||
situation from a state where some tasks are stalled but the CPU is
|
||||
still doing productive work. As such, time spent in this subset of the
|
||||
stall state is tracked separately and exported in the "full" averages.
|
||||
|
||||
The ratios are tracked as recent trends over ten, sixty, and three
|
||||
hundred second windows, which gives insight into short term events as
|
||||
well as medium and long term trends. The total absolute stall time is
|
||||
tracked and exported as well, to allow detection of latency spikes
|
||||
which wouldn't necessarily make a dent in the time averages, or to
|
||||
average trends over custom time frames.
|
28
include/linux/psi.h
Normal file
28
include/linux/psi.h
Normal file
|
@ -0,0 +1,28 @@
|
|||
#ifndef _LINUX_PSI_H
|
||||
#define _LINUX_PSI_H
|
||||
|
||||
#include <linux/psi_types.h>
|
||||
#include <linux/sched.h>
|
||||
|
||||
#ifdef CONFIG_PSI
|
||||
|
||||
extern bool psi_disabled;
|
||||
|
||||
void psi_init(void);
|
||||
|
||||
void psi_task_change(struct task_struct *task, int clear, int set);
|
||||
|
||||
void psi_memstall_tick(struct task_struct *task, int cpu);
|
||||
void psi_memstall_enter(unsigned long *flags);
|
||||
void psi_memstall_leave(unsigned long *flags);
|
||||
|
||||
#else /* CONFIG_PSI */
|
||||
|
||||
static inline void psi_init(void) {}
|
||||
|
||||
static inline void psi_memstall_enter(unsigned long *flags) {}
|
||||
static inline void psi_memstall_leave(unsigned long *flags) {}
|
||||
|
||||
#endif /* CONFIG_PSI */
|
||||
|
||||
#endif /* _LINUX_PSI_H */
|
92
include/linux/psi_types.h
Normal file
92
include/linux/psi_types.h
Normal file
|
@ -0,0 +1,92 @@
|
|||
#ifndef _LINUX_PSI_TYPES_H
|
||||
#define _LINUX_PSI_TYPES_H
|
||||
|
||||
#include <linux/seqlock.h>
|
||||
#include <linux/types.h>
|
||||
|
||||
#ifdef CONFIG_PSI
|
||||
|
||||
/* Tracked task states */
|
||||
enum psi_task_count {
|
||||
NR_IOWAIT,
|
||||
NR_MEMSTALL,
|
||||
NR_RUNNING,
|
||||
NR_PSI_TASK_COUNTS,
|
||||
};
|
||||
|
||||
/* Task state bitmasks */
|
||||
#define TSK_IOWAIT (1 << NR_IOWAIT)
|
||||
#define TSK_MEMSTALL (1 << NR_MEMSTALL)
|
||||
#define TSK_RUNNING (1 << NR_RUNNING)
|
||||
|
||||
/* Resources that workloads could be stalled on */
|
||||
enum psi_res {
|
||||
PSI_IO,
|
||||
PSI_MEM,
|
||||
PSI_CPU,
|
||||
NR_PSI_RESOURCES,
|
||||
};
|
||||
|
||||
/*
|
||||
* Pressure states for each resource:
|
||||
*
|
||||
* SOME: Stalled tasks & working tasks
|
||||
* FULL: Stalled tasks & no working tasks
|
||||
*/
|
||||
enum psi_states {
|
||||
PSI_IO_SOME,
|
||||
PSI_IO_FULL,
|
||||
PSI_MEM_SOME,
|
||||
PSI_MEM_FULL,
|
||||
PSI_CPU_SOME,
|
||||
/* Only per-CPU, to weigh the CPU in the global average: */
|
||||
PSI_NONIDLE,
|
||||
NR_PSI_STATES,
|
||||
};
|
||||
|
||||
struct psi_group_cpu {
|
||||
/* 1st cacheline updated by the scheduler */
|
||||
|
||||
/* Aggregator needs to know of concurrent changes */
|
||||
seqcount_t seq ____cacheline_aligned_in_smp;
|
||||
|
||||
/* States of the tasks belonging to this group */
|
||||
unsigned int tasks[NR_PSI_TASK_COUNTS];
|
||||
|
||||
/* Period time sampling buckets for each state of interest (ns) */
|
||||
u32 times[NR_PSI_STATES];
|
||||
|
||||
/* Time of last task change in this group (rq_clock) */
|
||||
u64 state_start;
|
||||
|
||||
/* 2nd cacheline updated by the aggregator */
|
||||
|
||||
/* Delta detection against the sampling buckets */
|
||||
u32 times_prev[NR_PSI_STATES] ____cacheline_aligned_in_smp;
|
||||
};
|
||||
|
||||
struct psi_group {
|
||||
/* Protects data updated during an aggregation */
|
||||
struct mutex stat_lock;
|
||||
|
||||
/* Per-cpu task state & time tracking */
|
||||
struct psi_group_cpu __percpu *pcpu;
|
||||
|
||||
/* Periodic aggregation state */
|
||||
u64 total_prev[NR_PSI_STATES - 1];
|
||||
u64 last_update;
|
||||
u64 next_update;
|
||||
struct delayed_work clock_work;
|
||||
|
||||
/* Total stall times and sampled pressure averages */
|
||||
u64 total[NR_PSI_STATES - 1];
|
||||
unsigned long avg[NR_PSI_STATES - 1][3];
|
||||
};
|
||||
|
||||
#else /* CONFIG_PSI */
|
||||
|
||||
struct psi_group { };
|
||||
|
||||
#endif /* CONFIG_PSI */
|
||||
|
||||
#endif /* _LINUX_PSI_TYPES_H */
|
|
@ -25,6 +25,7 @@
|
|||
#include <linux/latencytop.h>
|
||||
#include <linux/sched/prio.h>
|
||||
#include <linux/signal_types.h>
|
||||
#include <linux/psi_types.h>
|
||||
#include <linux/mm_types_task.h>
|
||||
#include <linux/task_io_accounting.h>
|
||||
#include <linux/rseq.h>
|
||||
|
@ -872,6 +873,10 @@ struct task_struct {
|
|||
unsigned sched_contributes_to_load:1;
|
||||
unsigned sched_migrated:1;
|
||||
unsigned sched_remote_wakeup:1;
|
||||
#ifdef CONFIG_PSI
|
||||
unsigned sched_psi_wake_requeue:1;
|
||||
#endif
|
||||
|
||||
/* Force alignment to the next boundary: */
|
||||
unsigned :0;
|
||||
|
||||
|
@ -1129,6 +1134,10 @@ struct task_struct {
|
|||
siginfo_t *last_siginfo;
|
||||
|
||||
struct task_io_accounting ioac;
|
||||
#ifdef CONFIG_PSI
|
||||
/* Pressure stall state */
|
||||
unsigned int psi_flags;
|
||||
#endif
|
||||
#ifdef CONFIG_TASK_XACCT
|
||||
/* Accumulated RSS usage: */
|
||||
u64 acct_rss_mem1;
|
||||
|
@ -1559,6 +1568,7 @@ extern struct pid *cad_pid;
|
|||
#define PF_WAKE_UP_IDLE 0x01000000 /* TTWU on an idle CPU */
|
||||
#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
|
||||
#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
|
||||
#define PF_MEMSTALL 0x10000000 /* Stalled due to lack of memory */
|
||||
#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
|
||||
#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
|
||||
#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
|
||||
|
|
|
@ -37,6 +37,9 @@ calc_load(unsigned long load, unsigned long exp, unsigned long active)
|
|||
return newload / FIXED_1;
|
||||
}
|
||||
|
||||
extern unsigned long calc_load_n(unsigned long load, unsigned long exp,
|
||||
unsigned long active, unsigned int n);
|
||||
|
||||
#define LOAD_INT(x) ((x) >> FSHIFT)
|
||||
#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
|
||||
|
||||
|
|
15
init/Kconfig
15
init/Kconfig
|
@ -504,6 +504,21 @@ config TASK_IO_ACCOUNTING
|
|||
|
||||
Say N if unsure.
|
||||
|
||||
config PSI
|
||||
bool "Pressure stall information tracking"
|
||||
help
|
||||
Collect metrics that indicate how overcommitted the CPU, memory,
|
||||
and IO capacity are in the system.
|
||||
|
||||
If you say Y here, the kernel will create /proc/pressure/ with the
|
||||
pressure statistics files cpu, memory, and io. These will indicate
|
||||
the share of walltime in which some or all tasks in the system are
|
||||
delayed due to contention of the respective resource.
|
||||
|
||||
For more details see Documentation/accounting/psi.txt.
|
||||
|
||||
Say N if unsure.
|
||||
|
||||
endmenu # "CPU/Task time and stats accounting"
|
||||
|
||||
config CPU_ISOLATION
|
||||
|
|
|
@ -1784,6 +1784,10 @@ static __latent_entropy struct task_struct *copy_process(
|
|||
|
||||
p->default_timer_slack_ns = current->timer_slack_ns;
|
||||
|
||||
#ifdef CONFIG_PSI
|
||||
p->psi_flags = 0;
|
||||
#endif
|
||||
|
||||
task_io_accounting_init(&p->ioac);
|
||||
acct_clear_integrals(p);
|
||||
|
||||
|
|
|
@ -31,3 +31,4 @@ obj-$(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) += cpufreq_schedutil.o
|
|||
obj-$(CONFIG_MEMBARRIER) += membarrier.o
|
||||
obj-$(CONFIG_CPU_ISOLATION) += isolation.o
|
||||
obj-$(CONFIG_SCHED_CORE_CTL) += core_ctl.o
|
||||
obj-$(CONFIG_PSI) += psi.o
|
||||
|
|
|
@ -729,8 +729,10 @@ static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
|
|||
if (!(flags & ENQUEUE_NOCLOCK))
|
||||
update_rq_clock(rq);
|
||||
|
||||
if (!(flags & ENQUEUE_RESTORE))
|
||||
if (!(flags & ENQUEUE_RESTORE)) {
|
||||
sched_info_queued(rq, p);
|
||||
psi_enqueue(p, flags & ENQUEUE_WAKEUP);
|
||||
}
|
||||
|
||||
p->sched_class->enqueue_task(rq, p, flags);
|
||||
walt_update_last_enqueue(p);
|
||||
|
@ -742,8 +744,10 @@ static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
|
|||
if (!(flags & DEQUEUE_NOCLOCK))
|
||||
update_rq_clock(rq);
|
||||
|
||||
if (!(flags & DEQUEUE_SAVE))
|
||||
if (!(flags & DEQUEUE_SAVE)) {
|
||||
sched_info_dequeued(rq, p);
|
||||
psi_dequeue(p, flags & DEQUEUE_SLEEP);
|
||||
}
|
||||
|
||||
p->sched_class->dequeue_task(rq, p, flags);
|
||||
#ifdef CONFIG_SCHED_WALT
|
||||
|
@ -2124,6 +2128,7 @@ try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags,
|
|||
sibling_count_hint);
|
||||
if (task_cpu(p) != cpu) {
|
||||
wake_flags |= WF_MIGRATED;
|
||||
psi_ttwu_dequeue(p);
|
||||
set_task_cpu(p, cpu);
|
||||
}
|
||||
|
||||
|
@ -3169,6 +3174,7 @@ void scheduler_tick(void)
|
|||
curr->sched_class->task_tick(rq, curr, 0);
|
||||
cpu_load_update_active(rq);
|
||||
calc_global_load_tick(rq);
|
||||
psi_task_tick(rq);
|
||||
|
||||
early_notif = early_detection_notify(rq, wallclock);
|
||||
if (early_notif)
|
||||
|
@ -5195,9 +5201,7 @@ static void do_sched_yield(void)
|
|||
struct rq_flags rf;
|
||||
struct rq *rq;
|
||||
|
||||
local_irq_disable();
|
||||
rq = this_rq();
|
||||
rq_lock(rq, &rf);
|
||||
rq = this_rq_lock_irq(&rf);
|
||||
|
||||
schedstat_inc(rq->yld_count);
|
||||
current->sched_class->yield_task(rq);
|
||||
|
@ -6632,6 +6636,8 @@ void __init sched_init(void)
|
|||
|
||||
init_schedstats();
|
||||
|
||||
psi_init();
|
||||
|
||||
scheduler_running = 1;
|
||||
}
|
||||
|
||||
|
|
|
@ -91,6 +91,75 @@ long calc_load_fold_active(struct rq *this_rq, long adjust)
|
|||
return delta;
|
||||
}
|
||||
|
||||
/**
|
||||
* fixed_power_int - compute: x^n, in O(log n) time
|
||||
*
|
||||
* @x: base of the power
|
||||
* @frac_bits: fractional bits of @x
|
||||
* @n: power to raise @x to.
|
||||
*
|
||||
* By exploiting the relation between the definition of the natural power
|
||||
* function: x^n := x*x*...*x (x multiplied by itself for n times), and
|
||||
* the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
|
||||
* (where: n_i \elem {0, 1}, the binary vector representing n),
|
||||
* we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
|
||||
* of course trivially computable in O(log_2 n), the length of our binary
|
||||
* vector.
|
||||
*/
|
||||
static unsigned long
|
||||
fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
|
||||
{
|
||||
unsigned long result = 1UL << frac_bits;
|
||||
|
||||
if (n) {
|
||||
for (;;) {
|
||||
if (n & 1) {
|
||||
result *= x;
|
||||
result += 1UL << (frac_bits - 1);
|
||||
result >>= frac_bits;
|
||||
}
|
||||
n >>= 1;
|
||||
if (!n)
|
||||
break;
|
||||
x *= x;
|
||||
x += 1UL << (frac_bits - 1);
|
||||
x >>= frac_bits;
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
/*
|
||||
* a1 = a0 * e + a * (1 - e)
|
||||
*
|
||||
* a2 = a1 * e + a * (1 - e)
|
||||
* = (a0 * e + a * (1 - e)) * e + a * (1 - e)
|
||||
* = a0 * e^2 + a * (1 - e) * (1 + e)
|
||||
*
|
||||
* a3 = a2 * e + a * (1 - e)
|
||||
* = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
|
||||
* = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
|
||||
*
|
||||
* ...
|
||||
*
|
||||
* an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
|
||||
* = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
|
||||
* = a0 * e^n + a * (1 - e^n)
|
||||
*
|
||||
* [1] application of the geometric series:
|
||||
*
|
||||
* n 1 - x^(n+1)
|
||||
* S_n := \Sum x^i = -------------
|
||||
* i=0 1 - x
|
||||
*/
|
||||
unsigned long
|
||||
calc_load_n(unsigned long load, unsigned long exp,
|
||||
unsigned long active, unsigned int n)
|
||||
{
|
||||
return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_NO_HZ_COMMON
|
||||
/*
|
||||
* Handle NO_HZ for the global load-average.
|
||||
|
@ -210,75 +279,6 @@ static long calc_load_nohz_fold(void)
|
|||
return delta;
|
||||
}
|
||||
|
||||
/**
|
||||
* fixed_power_int - compute: x^n, in O(log n) time
|
||||
*
|
||||
* @x: base of the power
|
||||
* @frac_bits: fractional bits of @x
|
||||
* @n: power to raise @x to.
|
||||
*
|
||||
* By exploiting the relation between the definition of the natural power
|
||||
* function: x^n := x*x*...*x (x multiplied by itself for n times), and
|
||||
* the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
|
||||
* (where: n_i \elem {0, 1}, the binary vector representing n),
|
||||
* we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
|
||||
* of course trivially computable in O(log_2 n), the length of our binary
|
||||
* vector.
|
||||
*/
|
||||
static unsigned long
|
||||
fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
|
||||
{
|
||||
unsigned long result = 1UL << frac_bits;
|
||||
|
||||
if (n) {
|
||||
for (;;) {
|
||||
if (n & 1) {
|
||||
result *= x;
|
||||
result += 1UL << (frac_bits - 1);
|
||||
result >>= frac_bits;
|
||||
}
|
||||
n >>= 1;
|
||||
if (!n)
|
||||
break;
|
||||
x *= x;
|
||||
x += 1UL << (frac_bits - 1);
|
||||
x >>= frac_bits;
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
/*
|
||||
* a1 = a0 * e + a * (1 - e)
|
||||
*
|
||||
* a2 = a1 * e + a * (1 - e)
|
||||
* = (a0 * e + a * (1 - e)) * e + a * (1 - e)
|
||||
* = a0 * e^2 + a * (1 - e) * (1 + e)
|
||||
*
|
||||
* a3 = a2 * e + a * (1 - e)
|
||||
* = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
|
||||
* = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
|
||||
*
|
||||
* ...
|
||||
*
|
||||
* an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
|
||||
* = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
|
||||
* = a0 * e^n + a * (1 - e^n)
|
||||
*
|
||||
* [1] application of the geometric series:
|
||||
*
|
||||
* n 1 - x^(n+1)
|
||||
* S_n := \Sum x^i = -------------
|
||||
* i=0 1 - x
|
||||
*/
|
||||
static unsigned long
|
||||
calc_load_n(unsigned long load, unsigned long exp,
|
||||
unsigned long active, unsigned int n)
|
||||
{
|
||||
return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
|
||||
}
|
||||
|
||||
/*
|
||||
* NO_HZ can leave us missing all per-CPU ticks calling
|
||||
* calc_load_fold_active(), but since a NO_HZ CPU folds its delta into
|
||||
|
|
657
kernel/sched/psi.c
Normal file
657
kernel/sched/psi.c
Normal file
|
@ -0,0 +1,657 @@
|
|||
/*
|
||||
* Pressure stall information for CPU, memory and IO
|
||||
*
|
||||
* Copyright (c) 2018 Facebook, Inc.
|
||||
* Author: Johannes Weiner <hannes@cmpxchg.org>
|
||||
*
|
||||
* When CPU, memory and IO are contended, tasks experience delays that
|
||||
* reduce throughput and introduce latencies into the workload. Memory
|
||||
* and IO contention, in addition, can cause a full loss of forward
|
||||
* progress in which the CPU goes idle.
|
||||
*
|
||||
* This code aggregates individual task delays into resource pressure
|
||||
* metrics that indicate problems with both workload health and
|
||||
* resource utilization.
|
||||
*
|
||||
* Model
|
||||
*
|
||||
* The time in which a task can execute on a CPU is our baseline for
|
||||
* productivity. Pressure expresses the amount of time in which this
|
||||
* potential cannot be realized due to resource contention.
|
||||
*
|
||||
* This concept of productivity has two components: the workload and
|
||||
* the CPU. To measure the impact of pressure on both, we define two
|
||||
* contention states for a resource: SOME and FULL.
|
||||
*
|
||||
* In the SOME state of a given resource, one or more tasks are
|
||||
* delayed on that resource. This affects the workload's ability to
|
||||
* perform work, but the CPU may still be executing other tasks.
|
||||
*
|
||||
* In the FULL state of a given resource, all non-idle tasks are
|
||||
* delayed on that resource such that nobody is advancing and the CPU
|
||||
* goes idle. This leaves both workload and CPU unproductive.
|
||||
*
|
||||
* (Naturally, the FULL state doesn't exist for the CPU resource.)
|
||||
*
|
||||
* SOME = nr_delayed_tasks != 0
|
||||
* FULL = nr_delayed_tasks != 0 && nr_running_tasks == 0
|
||||
*
|
||||
* The percentage of wallclock time spent in those compound stall
|
||||
* states gives pressure numbers between 0 and 100 for each resource,
|
||||
* where the SOME percentage indicates workload slowdowns and the FULL
|
||||
* percentage indicates reduced CPU utilization:
|
||||
*
|
||||
* %SOME = time(SOME) / period
|
||||
* %FULL = time(FULL) / period
|
||||
*
|
||||
* Multiple CPUs
|
||||
*
|
||||
* The more tasks and available CPUs there are, the more work can be
|
||||
* performed concurrently. This means that the potential that can go
|
||||
* unrealized due to resource contention *also* scales with non-idle
|
||||
* tasks and CPUs.
|
||||
*
|
||||
* Consider a scenario where 257 number crunching tasks are trying to
|
||||
* run concurrently on 256 CPUs. If we simply aggregated the task
|
||||
* states, we would have to conclude a CPU SOME pressure number of
|
||||
* 100%, since *somebody* is waiting on a runqueue at all
|
||||
* times. However, that is clearly not the amount of contention the
|
||||
* workload is experiencing: only one out of 256 possible exceution
|
||||
* threads will be contended at any given time, or about 0.4%.
|
||||
*
|
||||
* Conversely, consider a scenario of 4 tasks and 4 CPUs where at any
|
||||
* given time *one* of the tasks is delayed due to a lack of memory.
|
||||
* Again, looking purely at the task state would yield a memory FULL
|
||||
* pressure number of 0%, since *somebody* is always making forward
|
||||
* progress. But again this wouldn't capture the amount of execution
|
||||
* potential lost, which is 1 out of 4 CPUs, or 25%.
|
||||
*
|
||||
* To calculate wasted potential (pressure) with multiple processors,
|
||||
* we have to base our calculation on the number of non-idle tasks in
|
||||
* conjunction with the number of available CPUs, which is the number
|
||||
* of potential execution threads. SOME becomes then the proportion of
|
||||
* delayed tasks to possibe threads, and FULL is the share of possible
|
||||
* threads that are unproductive due to delays:
|
||||
*
|
||||
* threads = min(nr_nonidle_tasks, nr_cpus)
|
||||
* SOME = min(nr_delayed_tasks / threads, 1)
|
||||
* FULL = (threads - min(nr_running_tasks, threads)) / threads
|
||||
*
|
||||
* For the 257 number crunchers on 256 CPUs, this yields:
|
||||
*
|
||||
* threads = min(257, 256)
|
||||
* SOME = min(1 / 256, 1) = 0.4%
|
||||
* FULL = (256 - min(257, 256)) / 256 = 0%
|
||||
*
|
||||
* For the 1 out of 4 memory-delayed tasks, this yields:
|
||||
*
|
||||
* threads = min(4, 4)
|
||||
* SOME = min(1 / 4, 1) = 25%
|
||||
* FULL = (4 - min(3, 4)) / 4 = 25%
|
||||
*
|
||||
* [ Substitute nr_cpus with 1, and you can see that it's a natural
|
||||
* extension of the single-CPU model. ]
|
||||
*
|
||||
* Implementation
|
||||
*
|
||||
* To assess the precise time spent in each such state, we would have
|
||||
* to freeze the system on task changes and start/stop the state
|
||||
* clocks accordingly. Obviously that doesn't scale in practice.
|
||||
*
|
||||
* Because the scheduler aims to distribute the compute load evenly
|
||||
* among the available CPUs, we can track task state locally to each
|
||||
* CPU and, at much lower frequency, extrapolate the global state for
|
||||
* the cumulative stall times and the running averages.
|
||||
*
|
||||
* For each runqueue, we track:
|
||||
*
|
||||
* tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0)
|
||||
* tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_running_tasks[cpu])
|
||||
* tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0)
|
||||
*
|
||||
* and then periodically aggregate:
|
||||
*
|
||||
* tNONIDLE = sum(tNONIDLE[i])
|
||||
*
|
||||
* tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE
|
||||
* tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE
|
||||
*
|
||||
* %SOME = tSOME / period
|
||||
* %FULL = tFULL / period
|
||||
*
|
||||
* This gives us an approximation of pressure that is practical
|
||||
* cost-wise, yet way more sensitive and accurate than periodic
|
||||
* sampling of the aggregate task states would be.
|
||||
*/
|
||||
|
||||
#include <linux/sched/loadavg.h>
|
||||
#include <linux/seq_file.h>
|
||||
#include <linux/proc_fs.h>
|
||||
#include <linux/seqlock.h>
|
||||
#include <linux/cgroup.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/sched.h>
|
||||
#include <linux/psi.h>
|
||||
#include "sched.h"
|
||||
|
||||
static int psi_bug __read_mostly;
|
||||
|
||||
bool psi_disabled __read_mostly;
|
||||
core_param(psi_disabled, psi_disabled, bool, 0644);
|
||||
|
||||
/* Running averages - we need to be higher-res than loadavg */
|
||||
#define PSI_FREQ (2*HZ+1) /* 2 sec intervals */
|
||||
#define EXP_10s 1677 /* 1/exp(2s/10s) as fixed-point */
|
||||
#define EXP_60s 1981 /* 1/exp(2s/60s) */
|
||||
#define EXP_300s 2034 /* 1/exp(2s/300s) */
|
||||
|
||||
/* Sampling frequency in nanoseconds */
|
||||
static u64 psi_period __read_mostly;
|
||||
|
||||
/* System-level pressure and stall tracking */
|
||||
static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu);
|
||||
static struct psi_group psi_system = {
|
||||
.pcpu = &system_group_pcpu,
|
||||
};
|
||||
|
||||
static void psi_update_work(struct work_struct *work);
|
||||
|
||||
static void group_init(struct psi_group *group)
|
||||
{
|
||||
int cpu;
|
||||
|
||||
for_each_possible_cpu(cpu)
|
||||
seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq);
|
||||
group->next_update = sched_clock() + psi_period;
|
||||
INIT_DELAYED_WORK(&group->clock_work, psi_update_work);
|
||||
mutex_init(&group->stat_lock);
|
||||
}
|
||||
|
||||
void __init psi_init(void)
|
||||
{
|
||||
if (psi_disabled)
|
||||
return;
|
||||
|
||||
psi_period = jiffies_to_nsecs(PSI_FREQ);
|
||||
group_init(&psi_system);
|
||||
}
|
||||
|
||||
static bool test_state(unsigned int *tasks, enum psi_states state)
|
||||
{
|
||||
switch (state) {
|
||||
case PSI_IO_SOME:
|
||||
return tasks[NR_IOWAIT];
|
||||
case PSI_IO_FULL:
|
||||
return tasks[NR_IOWAIT] && !tasks[NR_RUNNING];
|
||||
case PSI_MEM_SOME:
|
||||
return tasks[NR_MEMSTALL];
|
||||
case PSI_MEM_FULL:
|
||||
return tasks[NR_MEMSTALL] && !tasks[NR_RUNNING];
|
||||
case PSI_CPU_SOME:
|
||||
return tasks[NR_RUNNING] > 1;
|
||||
case PSI_NONIDLE:
|
||||
return tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] ||
|
||||
tasks[NR_RUNNING];
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
static void get_recent_times(struct psi_group *group, int cpu, u32 *times)
|
||||
{
|
||||
struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu);
|
||||
unsigned int tasks[NR_PSI_TASK_COUNTS];
|
||||
u64 now, state_start;
|
||||
unsigned int seq;
|
||||
int s;
|
||||
|
||||
/* Snapshot a coherent view of the CPU state */
|
||||
do {
|
||||
seq = read_seqcount_begin(&groupc->seq);
|
||||
now = cpu_clock(cpu);
|
||||
memcpy(times, groupc->times, sizeof(groupc->times));
|
||||
memcpy(tasks, groupc->tasks, sizeof(groupc->tasks));
|
||||
state_start = groupc->state_start;
|
||||
} while (read_seqcount_retry(&groupc->seq, seq));
|
||||
|
||||
/* Calculate state time deltas against the previous snapshot */
|
||||
for (s = 0; s < NR_PSI_STATES; s++) {
|
||||
u32 delta;
|
||||
/*
|
||||
* In addition to already concluded states, we also
|
||||
* incorporate currently active states on the CPU,
|
||||
* since states may last for many sampling periods.
|
||||
*
|
||||
* This way we keep our delta sampling buckets small
|
||||
* (u32) and our reported pressure close to what's
|
||||
* actually happening.
|
||||
*/
|
||||
if (test_state(tasks, s))
|
||||
times[s] += now - state_start;
|
||||
|
||||
delta = times[s] - groupc->times_prev[s];
|
||||
groupc->times_prev[s] = times[s];
|
||||
|
||||
times[s] = delta;
|
||||
}
|
||||
}
|
||||
|
||||
static void calc_avgs(unsigned long avg[3], int missed_periods,
|
||||
u64 time, u64 period)
|
||||
{
|
||||
unsigned long pct;
|
||||
|
||||
/* Fill in zeroes for periods of no activity */
|
||||
if (missed_periods) {
|
||||
avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods);
|
||||
avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods);
|
||||
avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods);
|
||||
}
|
||||
|
||||
/* Sample the most recent active period */
|
||||
pct = div_u64(time * 100, period);
|
||||
pct *= FIXED_1;
|
||||
avg[0] = calc_load(avg[0], EXP_10s, pct);
|
||||
avg[1] = calc_load(avg[1], EXP_60s, pct);
|
||||
avg[2] = calc_load(avg[2], EXP_300s, pct);
|
||||
}
|
||||
|
||||
static bool update_stats(struct psi_group *group)
|
||||
{
|
||||
u64 deltas[NR_PSI_STATES - 1] = { 0, };
|
||||
unsigned long missed_periods = 0;
|
||||
unsigned long nonidle_total = 0;
|
||||
u64 now, expires, period;
|
||||
int cpu;
|
||||
int s;
|
||||
|
||||
mutex_lock(&group->stat_lock);
|
||||
|
||||
/*
|
||||
* Collect the per-cpu time buckets and average them into a
|
||||
* single time sample that is normalized to wallclock time.
|
||||
*
|
||||
* For averaging, each CPU is weighted by its non-idle time in
|
||||
* the sampling period. This eliminates artifacts from uneven
|
||||
* loading, or even entirely idle CPUs.
|
||||
*/
|
||||
for_each_possible_cpu(cpu) {
|
||||
u32 times[NR_PSI_STATES];
|
||||
u32 nonidle;
|
||||
|
||||
get_recent_times(group, cpu, times);
|
||||
|
||||
nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]);
|
||||
nonidle_total += nonidle;
|
||||
|
||||
for (s = 0; s < PSI_NONIDLE; s++)
|
||||
deltas[s] += (u64)times[s] * nonidle;
|
||||
}
|
||||
|
||||
/*
|
||||
* Integrate the sample into the running statistics that are
|
||||
* reported to userspace: the cumulative stall times and the
|
||||
* decaying averages.
|
||||
*
|
||||
* Pressure percentages are sampled at PSI_FREQ. We might be
|
||||
* called more often when the user polls more frequently than
|
||||
* that; we might be called less often when there is no task
|
||||
* activity, thus no data, and clock ticks are sporadic. The
|
||||
* below handles both.
|
||||
*/
|
||||
|
||||
/* total= */
|
||||
for (s = 0; s < NR_PSI_STATES - 1; s++)
|
||||
group->total[s] += div_u64(deltas[s], max(nonidle_total, 1UL));
|
||||
|
||||
/* avgX= */
|
||||
now = sched_clock();
|
||||
expires = group->next_update;
|
||||
if (now < expires)
|
||||
goto out;
|
||||
if (now - expires > psi_period)
|
||||
missed_periods = div_u64(now - expires, psi_period);
|
||||
|
||||
/*
|
||||
* The periodic clock tick can get delayed for various
|
||||
* reasons, especially on loaded systems. To avoid clock
|
||||
* drift, we schedule the clock in fixed psi_period intervals.
|
||||
* But the deltas we sample out of the per-cpu buckets above
|
||||
* are based on the actual time elapsing between clock ticks.
|
||||
*/
|
||||
group->next_update = expires + ((1 + missed_periods) * psi_period);
|
||||
period = now - (group->last_update + (missed_periods * psi_period));
|
||||
group->last_update = now;
|
||||
|
||||
for (s = 0; s < NR_PSI_STATES - 1; s++) {
|
||||
u32 sample;
|
||||
|
||||
sample = group->total[s] - group->total_prev[s];
|
||||
/*
|
||||
* Due to the lockless sampling of the time buckets,
|
||||
* recorded time deltas can slip into the next period,
|
||||
* which under full pressure can result in samples in
|
||||
* excess of the period length.
|
||||
*
|
||||
* We don't want to report non-sensical pressures in
|
||||
* excess of 100%, nor do we want to drop such events
|
||||
* on the floor. Instead we punt any overage into the
|
||||
* future until pressure subsides. By doing this we
|
||||
* don't underreport the occurring pressure curve, we
|
||||
* just report it delayed by one period length.
|
||||
*
|
||||
* The error isn't cumulative. As soon as another
|
||||
* delta slips from a period P to P+1, by definition
|
||||
* it frees up its time T in P.
|
||||
*/
|
||||
if (sample > period)
|
||||
sample = period;
|
||||
group->total_prev[s] += sample;
|
||||
calc_avgs(group->avg[s], missed_periods, sample, period);
|
||||
}
|
||||
out:
|
||||
mutex_unlock(&group->stat_lock);
|
||||
return nonidle_total;
|
||||
}
|
||||
|
||||
static void psi_update_work(struct work_struct *work)
|
||||
{
|
||||
struct delayed_work *dwork;
|
||||
struct psi_group *group;
|
||||
bool nonidle;
|
||||
|
||||
dwork = to_delayed_work(work);
|
||||
group = container_of(dwork, struct psi_group, clock_work);
|
||||
|
||||
/*
|
||||
* If there is task activity, periodically fold the per-cpu
|
||||
* times and feed samples into the running averages. If things
|
||||
* are idle and there is no data to process, stop the clock.
|
||||
* Once restarted, we'll catch up the running averages in one
|
||||
* go - see calc_avgs() and missed_periods.
|
||||
*/
|
||||
|
||||
nonidle = update_stats(group);
|
||||
|
||||
if (nonidle) {
|
||||
unsigned long delay = 0;
|
||||
u64 now;
|
||||
|
||||
now = sched_clock();
|
||||
if (group->next_update > now)
|
||||
delay = nsecs_to_jiffies(group->next_update - now) + 1;
|
||||
schedule_delayed_work(dwork, delay);
|
||||
}
|
||||
}
|
||||
|
||||
static void record_times(struct psi_group_cpu *groupc, int cpu,
|
||||
bool memstall_tick)
|
||||
{
|
||||
u32 delta;
|
||||
u64 now;
|
||||
|
||||
now = cpu_clock(cpu);
|
||||
delta = now - groupc->state_start;
|
||||
groupc->state_start = now;
|
||||
|
||||
if (test_state(groupc->tasks, PSI_IO_SOME)) {
|
||||
groupc->times[PSI_IO_SOME] += delta;
|
||||
if (test_state(groupc->tasks, PSI_IO_FULL))
|
||||
groupc->times[PSI_IO_FULL] += delta;
|
||||
}
|
||||
|
||||
if (test_state(groupc->tasks, PSI_MEM_SOME)) {
|
||||
groupc->times[PSI_MEM_SOME] += delta;
|
||||
if (test_state(groupc->tasks, PSI_MEM_FULL))
|
||||
groupc->times[PSI_MEM_FULL] += delta;
|
||||
else if (memstall_tick) {
|
||||
u32 sample;
|
||||
/*
|
||||
* Since we care about lost potential, a
|
||||
* memstall is FULL when there are no other
|
||||
* working tasks, but also when the CPU is
|
||||
* actively reclaiming and nothing productive
|
||||
* could run even if it were runnable.
|
||||
*
|
||||
* When the timer tick sees a reclaiming CPU,
|
||||
* regardless of runnable tasks, sample a FULL
|
||||
* tick (or less if it hasn't been a full tick
|
||||
* since the last state change).
|
||||
*/
|
||||
sample = min(delta, (u32)jiffies_to_nsecs(1));
|
||||
groupc->times[PSI_MEM_FULL] += sample;
|
||||
}
|
||||
}
|
||||
|
||||
if (test_state(groupc->tasks, PSI_CPU_SOME))
|
||||
groupc->times[PSI_CPU_SOME] += delta;
|
||||
|
||||
if (test_state(groupc->tasks, PSI_NONIDLE))
|
||||
groupc->times[PSI_NONIDLE] += delta;
|
||||
}
|
||||
|
||||
static void psi_group_change(struct psi_group *group, int cpu,
|
||||
unsigned int clear, unsigned int set)
|
||||
{
|
||||
struct psi_group_cpu *groupc;
|
||||
unsigned int t, m;
|
||||
|
||||
groupc = per_cpu_ptr(group->pcpu, cpu);
|
||||
|
||||
/*
|
||||
* First we assess the aggregate resource states this CPU's
|
||||
* tasks have been in since the last change, and account any
|
||||
* SOME and FULL time these may have resulted in.
|
||||
*
|
||||
* Then we update the task counts according to the state
|
||||
* change requested through the @clear and @set bits.
|
||||
*/
|
||||
write_seqcount_begin(&groupc->seq);
|
||||
|
||||
record_times(groupc, cpu, false);
|
||||
|
||||
for (t = 0, m = clear; m; m &= ~(1 << t), t++) {
|
||||
if (!(m & (1 << t)))
|
||||
continue;
|
||||
if (groupc->tasks[t] == 0 && !psi_bug) {
|
||||
printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u] clear=%x set=%x\n",
|
||||
cpu, t, groupc->tasks[0],
|
||||
groupc->tasks[1], groupc->tasks[2],
|
||||
clear, set);
|
||||
psi_bug = 1;
|
||||
}
|
||||
groupc->tasks[t]--;
|
||||
}
|
||||
|
||||
for (t = 0; set; set &= ~(1 << t), t++)
|
||||
if (set & (1 << t))
|
||||
groupc->tasks[t]++;
|
||||
|
||||
write_seqcount_end(&groupc->seq);
|
||||
|
||||
if (!delayed_work_pending(&group->clock_work))
|
||||
schedule_delayed_work(&group->clock_work, PSI_FREQ);
|
||||
}
|
||||
|
||||
void psi_task_change(struct task_struct *task, int clear, int set)
|
||||
{
|
||||
int cpu = task_cpu(task);
|
||||
|
||||
if (!task->pid)
|
||||
return;
|
||||
|
||||
if (((task->psi_flags & set) ||
|
||||
(task->psi_flags & clear) != clear) &&
|
||||
!psi_bug) {
|
||||
printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n",
|
||||
task->pid, task->comm, cpu,
|
||||
task->psi_flags, clear, set);
|
||||
psi_bug = 1;
|
||||
}
|
||||
|
||||
task->psi_flags &= ~clear;
|
||||
task->psi_flags |= set;
|
||||
|
||||
psi_group_change(&psi_system, cpu, clear, set);
|
||||
}
|
||||
|
||||
void psi_memstall_tick(struct task_struct *task, int cpu)
|
||||
{
|
||||
struct psi_group_cpu *groupc;
|
||||
|
||||
groupc = per_cpu_ptr(psi_system.pcpu, cpu);
|
||||
write_seqcount_begin(&groupc->seq);
|
||||
record_times(groupc, cpu, true);
|
||||
write_seqcount_end(&groupc->seq);
|
||||
}
|
||||
|
||||
/**
|
||||
* psi_memstall_enter - mark the beginning of a memory stall section
|
||||
* @flags: flags to handle nested sections
|
||||
*
|
||||
* Marks the calling task as being stalled due to a lack of memory,
|
||||
* such as waiting for a refault or performing reclaim.
|
||||
*/
|
||||
void psi_memstall_enter(unsigned long *flags)
|
||||
{
|
||||
struct rq_flags rf;
|
||||
struct rq *rq;
|
||||
|
||||
if (psi_disabled)
|
||||
return;
|
||||
|
||||
*flags = current->flags & PF_MEMSTALL;
|
||||
if (*flags)
|
||||
return;
|
||||
/*
|
||||
* PF_MEMSTALL setting & accounting needs to be atomic wrt
|
||||
* changes to the task's scheduling state, otherwise we can
|
||||
* race with CPU migration.
|
||||
*/
|
||||
rq = this_rq_lock_irq(&rf);
|
||||
|
||||
current->flags |= PF_MEMSTALL;
|
||||
psi_task_change(current, 0, TSK_MEMSTALL);
|
||||
|
||||
rq_unlock_irq(rq, &rf);
|
||||
}
|
||||
|
||||
/**
|
||||
* psi_memstall_leave - mark the end of an memory stall section
|
||||
* @flags: flags to handle nested memdelay sections
|
||||
*
|
||||
* Marks the calling task as no longer stalled due to lack of memory.
|
||||
*/
|
||||
void psi_memstall_leave(unsigned long *flags)
|
||||
{
|
||||
struct rq_flags rf;
|
||||
struct rq *rq;
|
||||
|
||||
if (psi_disabled)
|
||||
return;
|
||||
|
||||
if (*flags)
|
||||
return;
|
||||
/*
|
||||
* PF_MEMSTALL clearing & accounting needs to be atomic wrt
|
||||
* changes to the task's scheduling state, otherwise we could
|
||||
* race with CPU migration.
|
||||
*/
|
||||
rq = this_rq_lock_irq(&rf);
|
||||
|
||||
current->flags &= ~PF_MEMSTALL;
|
||||
psi_task_change(current, TSK_MEMSTALL, 0);
|
||||
|
||||
rq_unlock_irq(rq, &rf);
|
||||
}
|
||||
|
||||
static int psi_show(struct seq_file *m, struct psi_group *group,
|
||||
enum psi_res res)
|
||||
{
|
||||
int full;
|
||||
|
||||
if (psi_disabled)
|
||||
return -EOPNOTSUPP;
|
||||
|
||||
update_stats(group);
|
||||
|
||||
for (full = 0; full < 2 - (res == PSI_CPU); full++) {
|
||||
unsigned long avg[3];
|
||||
u64 total;
|
||||
int w;
|
||||
|
||||
for (w = 0; w < 3; w++)
|
||||
avg[w] = group->avg[res * 2 + full][w];
|
||||
total = div_u64(group->total[res * 2 + full], NSEC_PER_USEC);
|
||||
|
||||
seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n",
|
||||
full ? "full" : "some",
|
||||
LOAD_INT(avg[0]), LOAD_FRAC(avg[0]),
|
||||
LOAD_INT(avg[1]), LOAD_FRAC(avg[1]),
|
||||
LOAD_INT(avg[2]), LOAD_FRAC(avg[2]),
|
||||
total);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int psi_io_show(struct seq_file *m, void *v)
|
||||
{
|
||||
return psi_show(m, &psi_system, PSI_IO);
|
||||
}
|
||||
|
||||
static int psi_memory_show(struct seq_file *m, void *v)
|
||||
{
|
||||
return psi_show(m, &psi_system, PSI_MEM);
|
||||
}
|
||||
|
||||
static int psi_cpu_show(struct seq_file *m, void *v)
|
||||
{
|
||||
return psi_show(m, &psi_system, PSI_CPU);
|
||||
}
|
||||
|
||||
static int psi_io_open(struct inode *inode, struct file *file)
|
||||
{
|
||||
return single_open(file, psi_io_show, NULL);
|
||||
}
|
||||
|
||||
static int psi_memory_open(struct inode *inode, struct file *file)
|
||||
{
|
||||
return single_open(file, psi_memory_show, NULL);
|
||||
}
|
||||
|
||||
static int psi_cpu_open(struct inode *inode, struct file *file)
|
||||
{
|
||||
return single_open(file, psi_cpu_show, NULL);
|
||||
}
|
||||
|
||||
static const struct file_operations psi_io_fops = {
|
||||
.open = psi_io_open,
|
||||
.read = seq_read,
|
||||
.llseek = seq_lseek,
|
||||
.release = single_release,
|
||||
};
|
||||
|
||||
static const struct file_operations psi_memory_fops = {
|
||||
.open = psi_memory_open,
|
||||
.read = seq_read,
|
||||
.llseek = seq_lseek,
|
||||
.release = single_release,
|
||||
};
|
||||
|
||||
static const struct file_operations psi_cpu_fops = {
|
||||
.open = psi_cpu_open,
|
||||
.read = seq_read,
|
||||
.llseek = seq_lseek,
|
||||
.release = single_release,
|
||||
};
|
||||
|
||||
static int __init psi_proc_init(void)
|
||||
{
|
||||
proc_mkdir("pressure", NULL);
|
||||
proc_create("pressure/io", 0, NULL, &psi_io_fops);
|
||||
proc_create("pressure/memory", 0, NULL, &psi_memory_fops);
|
||||
proc_create("pressure/cpu", 0, NULL, &psi_cpu_fops);
|
||||
return 0;
|
||||
}
|
||||
module_init(psi_proc_init);
|
|
@ -56,6 +56,7 @@
|
|||
#include <linux/proc_fs.h>
|
||||
#include <linux/prefetch.h>
|
||||
#include <linux/profile.h>
|
||||
#include <linux/psi.h>
|
||||
#include <linux/rcupdate_wait.h>
|
||||
#include <linux/security.h>
|
||||
#include <linux/stackprotector.h>
|
||||
|
@ -393,6 +394,7 @@ extern bool dl_cpu_busy(unsigned int cpu);
|
|||
#ifdef CONFIG_CGROUP_SCHED
|
||||
|
||||
#include <linux/cgroup.h>
|
||||
#include <linux/psi.h>
|
||||
|
||||
struct cfs_rq;
|
||||
struct rt_rq;
|
||||
|
@ -1102,6 +1104,8 @@ DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
|
|||
#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
|
||||
#define raw_rq() raw_cpu_ptr(&runqueues)
|
||||
|
||||
extern void update_rq_clock(struct rq *rq);
|
||||
|
||||
static inline u64 __rq_clock_broken(struct rq *rq)
|
||||
{
|
||||
return READ_ONCE(rq->clock);
|
||||
|
@ -1220,6 +1224,98 @@ static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
|
|||
#endif
|
||||
}
|
||||
|
||||
struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
|
||||
__acquires(rq->lock);
|
||||
|
||||
struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
|
||||
__acquires(p->pi_lock)
|
||||
__acquires(rq->lock);
|
||||
|
||||
static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
|
||||
__releases(rq->lock)
|
||||
{
|
||||
rq_unpin_lock(rq, rf);
|
||||
raw_spin_unlock(&rq->lock);
|
||||
}
|
||||
|
||||
static inline void
|
||||
task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
|
||||
__releases(rq->lock)
|
||||
__releases(p->pi_lock)
|
||||
{
|
||||
rq_unpin_lock(rq, rf);
|
||||
raw_spin_unlock(&rq->lock);
|
||||
raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
|
||||
}
|
||||
|
||||
static inline void
|
||||
rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
|
||||
__acquires(rq->lock)
|
||||
{
|
||||
raw_spin_lock_irqsave(&rq->lock, rf->flags);
|
||||
rq_pin_lock(rq, rf);
|
||||
}
|
||||
|
||||
static inline void
|
||||
rq_lock_irq(struct rq *rq, struct rq_flags *rf)
|
||||
__acquires(rq->lock)
|
||||
{
|
||||
raw_spin_lock_irq(&rq->lock);
|
||||
rq_pin_lock(rq, rf);
|
||||
}
|
||||
|
||||
static inline void
|
||||
rq_lock(struct rq *rq, struct rq_flags *rf)
|
||||
__acquires(rq->lock)
|
||||
{
|
||||
raw_spin_lock(&rq->lock);
|
||||
rq_pin_lock(rq, rf);
|
||||
}
|
||||
|
||||
static inline void
|
||||
rq_relock(struct rq *rq, struct rq_flags *rf)
|
||||
__acquires(rq->lock)
|
||||
{
|
||||
raw_spin_lock(&rq->lock);
|
||||
rq_repin_lock(rq, rf);
|
||||
}
|
||||
|
||||
static inline void
|
||||
rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
|
||||
__releases(rq->lock)
|
||||
{
|
||||
rq_unpin_lock(rq, rf);
|
||||
raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
|
||||
}
|
||||
|
||||
static inline void
|
||||
rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
|
||||
__releases(rq->lock)
|
||||
{
|
||||
rq_unpin_lock(rq, rf);
|
||||
raw_spin_unlock_irq(&rq->lock);
|
||||
}
|
||||
|
||||
static inline void
|
||||
rq_unlock(struct rq *rq, struct rq_flags *rf)
|
||||
__releases(rq->lock)
|
||||
{
|
||||
rq_unpin_lock(rq, rf);
|
||||
raw_spin_unlock(&rq->lock);
|
||||
}
|
||||
|
||||
static inline struct rq *
|
||||
this_rq_lock_irq(struct rq_flags *rf)
|
||||
__acquires(rq->lock)
|
||||
{
|
||||
struct rq *rq;
|
||||
|
||||
local_irq_disable();
|
||||
rq = this_rq();
|
||||
rq_lock(rq, rf);
|
||||
return rq;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_NUMA
|
||||
enum numa_topology_type {
|
||||
NUMA_DIRECT,
|
||||
|
@ -1901,8 +1997,6 @@ static inline void sub_nr_running(struct rq *rq, unsigned count)
|
|||
sched_update_tick_dependency(rq);
|
||||
}
|
||||
|
||||
extern void update_rq_clock(struct rq *rq);
|
||||
|
||||
extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
|
||||
extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
|
||||
|
||||
|
@ -2155,86 +2249,6 @@ add_capacity_margin(unsigned long cpu_capacity, int cpu)
|
|||
|
||||
#endif
|
||||
|
||||
struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
|
||||
__acquires(rq->lock);
|
||||
|
||||
struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
|
||||
__acquires(p->pi_lock)
|
||||
__acquires(rq->lock);
|
||||
|
||||
static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
|
||||
__releases(rq->lock)
|
||||
{
|
||||
rq_unpin_lock(rq, rf);
|
||||
raw_spin_unlock(&rq->lock);
|
||||
}
|
||||
|
||||
static inline void
|
||||
task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
|
||||
__releases(rq->lock)
|
||||
__releases(p->pi_lock)
|
||||
{
|
||||
rq_unpin_lock(rq, rf);
|
||||
raw_spin_unlock(&rq->lock);
|
||||
raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
|
||||
}
|
||||
|
||||
static inline void
|
||||
rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
|
||||
__acquires(rq->lock)
|
||||
{
|
||||
raw_spin_lock_irqsave(&rq->lock, rf->flags);
|
||||
rq_pin_lock(rq, rf);
|
||||
}
|
||||
|
||||
static inline void
|
||||
rq_lock_irq(struct rq *rq, struct rq_flags *rf)
|
||||
__acquires(rq->lock)
|
||||
{
|
||||
raw_spin_lock_irq(&rq->lock);
|
||||
rq_pin_lock(rq, rf);
|
||||
}
|
||||
|
||||
static inline void
|
||||
rq_lock(struct rq *rq, struct rq_flags *rf)
|
||||
__acquires(rq->lock)
|
||||
{
|
||||
raw_spin_lock(&rq->lock);
|
||||
rq_pin_lock(rq, rf);
|
||||
}
|
||||
|
||||
static inline void
|
||||
rq_relock(struct rq *rq, struct rq_flags *rf)
|
||||
__acquires(rq->lock)
|
||||
{
|
||||
raw_spin_lock(&rq->lock);
|
||||
rq_repin_lock(rq, rf);
|
||||
}
|
||||
|
||||
static inline void
|
||||
rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
|
||||
__releases(rq->lock)
|
||||
{
|
||||
rq_unpin_lock(rq, rf);
|
||||
raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
|
||||
}
|
||||
|
||||
static inline void
|
||||
rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
|
||||
__releases(rq->lock)
|
||||
{
|
||||
rq_unpin_lock(rq, rf);
|
||||
raw_spin_unlock_irq(&rq->lock);
|
||||
}
|
||||
|
||||
static inline void
|
||||
rq_unlock(struct rq *rq, struct rq_flags *rf)
|
||||
__releases(rq->lock)
|
||||
{
|
||||
rq_unpin_lock(rq, rf);
|
||||
raw_spin_unlock(&rq->lock);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
#ifdef CONFIG_PREEMPT
|
||||
|
||||
|
|
|
@ -55,6 +55,92 @@ static inline void rq_sched_info_depart (struct rq *rq, unsigned long long delt
|
|||
# define schedstat_val_or_zero(var) 0
|
||||
#endif /* CONFIG_SCHEDSTATS */
|
||||
|
||||
#ifdef CONFIG_PSI
|
||||
/*
|
||||
* PSI tracks state that persists across sleeps, such as iowaits and
|
||||
* memory stalls. As a result, it has to distinguish between sleeps,
|
||||
* where a task's runnable state changes, and requeues, where a task
|
||||
* and its state are being moved between CPUs and runqueues.
|
||||
*/
|
||||
static inline void psi_enqueue(struct task_struct *p, bool wakeup)
|
||||
{
|
||||
int clear = 0, set = TSK_RUNNING;
|
||||
|
||||
if (psi_disabled)
|
||||
return;
|
||||
|
||||
if (!wakeup || p->sched_psi_wake_requeue) {
|
||||
if (p->flags & PF_MEMSTALL)
|
||||
set |= TSK_MEMSTALL;
|
||||
if (p->sched_psi_wake_requeue)
|
||||
p->sched_psi_wake_requeue = 0;
|
||||
} else {
|
||||
if (p->in_iowait)
|
||||
clear |= TSK_IOWAIT;
|
||||
}
|
||||
|
||||
psi_task_change(p, clear, set);
|
||||
}
|
||||
|
||||
static inline void psi_dequeue(struct task_struct *p, bool sleep)
|
||||
{
|
||||
int clear = TSK_RUNNING, set = 0;
|
||||
|
||||
if (psi_disabled)
|
||||
return;
|
||||
|
||||
if (!sleep) {
|
||||
if (p->flags & PF_MEMSTALL)
|
||||
clear |= TSK_MEMSTALL;
|
||||
} else {
|
||||
if (p->in_iowait)
|
||||
set |= TSK_IOWAIT;
|
||||
}
|
||||
|
||||
psi_task_change(p, clear, set);
|
||||
}
|
||||
|
||||
static inline void psi_ttwu_dequeue(struct task_struct *p)
|
||||
{
|
||||
if (psi_disabled)
|
||||
return;
|
||||
/*
|
||||
* Is the task being migrated during a wakeup? Make sure to
|
||||
* deregister its sleep-persistent psi states from the old
|
||||
* queue, and let psi_enqueue() know it has to requeue.
|
||||
*/
|
||||
if (unlikely(p->in_iowait || (p->flags & PF_MEMSTALL))) {
|
||||
struct rq_flags rf;
|
||||
struct rq *rq;
|
||||
int clear = 0;
|
||||
|
||||
if (p->in_iowait)
|
||||
clear |= TSK_IOWAIT;
|
||||
if (p->flags & PF_MEMSTALL)
|
||||
clear |= TSK_MEMSTALL;
|
||||
|
||||
rq = __task_rq_lock(p, &rf);
|
||||
psi_task_change(p, clear, 0);
|
||||
p->sched_psi_wake_requeue = 1;
|
||||
__task_rq_unlock(rq, &rf);
|
||||
}
|
||||
}
|
||||
|
||||
static inline void psi_task_tick(struct rq *rq)
|
||||
{
|
||||
if (psi_disabled)
|
||||
return;
|
||||
|
||||
if (unlikely(rq->curr->flags & PF_MEMSTALL))
|
||||
psi_memstall_tick(rq->curr, cpu_of(rq));
|
||||
}
|
||||
#else /* CONFIG_PSI */
|
||||
static inline void psi_enqueue(struct task_struct *p, bool wakeup) {}
|
||||
static inline void psi_dequeue(struct task_struct *p, bool sleep) {}
|
||||
static inline void psi_ttwu_dequeue(struct task_struct *p) {}
|
||||
static inline void psi_task_tick(struct rq *rq) {}
|
||||
#endif /* CONFIG_PSI */
|
||||
|
||||
#ifdef CONFIG_SCHED_INFO
|
||||
static inline void sched_info_reset_dequeued(struct task_struct *t)
|
||||
{
|
||||
|
|
|
@ -22,6 +22,7 @@
|
|||
#include <linux/kthread.h>
|
||||
#include <linux/freezer.h>
|
||||
#include <linux/page_owner.h>
|
||||
#include <linux/psi.h>
|
||||
#include "internal.h"
|
||||
|
||||
#ifdef CONFIG_COMPACTION
|
||||
|
@ -2068,11 +2069,15 @@ static int kcompactd(void *p)
|
|||
pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
|
||||
|
||||
while (!kthread_should_stop()) {
|
||||
unsigned long pflags;
|
||||
|
||||
trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
|
||||
wait_event_freezable(pgdat->kcompactd_wait,
|
||||
kcompactd_work_requested(pgdat));
|
||||
|
||||
psi_memstall_enter(&pflags);
|
||||
kcompactd_do_work(pgdat);
|
||||
psi_memstall_leave(&pflags);
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
|
15
mm/filemap.c
15
mm/filemap.c
|
@ -37,6 +37,7 @@
|
|||
#include <linux/shmem_fs.h>
|
||||
#include <linux/rmap.h>
|
||||
#include <linux/delayacct.h>
|
||||
#include <linux/psi.h>
|
||||
#include "internal.h"
|
||||
|
||||
#define CREATE_TRACE_POINTS
|
||||
|
@ -1079,11 +1080,14 @@ static inline int wait_on_page_bit_common(wait_queue_head_t *q,
|
|||
struct wait_page_queue wait_page;
|
||||
wait_queue_entry_t *wait = &wait_page.wait;
|
||||
bool thrashing = false;
|
||||
unsigned long pflags;
|
||||
int ret = 0;
|
||||
|
||||
if (bit_nr == PG_locked && !PageSwapBacked(page) &&
|
||||
if (bit_nr == PG_locked &&
|
||||
!PageUptodate(page) && PageWorkingset(page)) {
|
||||
delayacct_thrashing_start();
|
||||
if (!PageSwapBacked(page))
|
||||
delayacct_thrashing_start();
|
||||
psi_memstall_enter(&pflags);
|
||||
thrashing = true;
|
||||
}
|
||||
|
||||
|
@ -1125,8 +1129,11 @@ static inline int wait_on_page_bit_common(wait_queue_head_t *q,
|
|||
|
||||
finish_wait(q, wait);
|
||||
|
||||
if (thrashing)
|
||||
delayacct_thrashing_end();
|
||||
if (thrashing) {
|
||||
if (!PageSwapBacked(page))
|
||||
delayacct_thrashing_end();
|
||||
psi_memstall_leave(&pflags);
|
||||
}
|
||||
|
||||
/*
|
||||
* A signal could leave PageWaiters set. Clearing it here if
|
||||
|
|
|
@ -67,6 +67,7 @@
|
|||
#include <linux/ftrace.h>
|
||||
#include <linux/lockdep.h>
|
||||
#include <linux/nmi.h>
|
||||
#include <linux/psi.h>
|
||||
|
||||
#include <asm/sections.h>
|
||||
#include <asm/tlbflush.h>
|
||||
|
@ -3637,15 +3638,20 @@ __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
|
|||
enum compact_priority prio, enum compact_result *compact_result)
|
||||
{
|
||||
struct page *page;
|
||||
unsigned long pflags;
|
||||
unsigned int noreclaim_flag;
|
||||
|
||||
if (!order)
|
||||
return NULL;
|
||||
|
||||
psi_memstall_enter(&pflags);
|
||||
noreclaim_flag = memalloc_noreclaim_save();
|
||||
|
||||
*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
|
||||
prio);
|
||||
|
||||
memalloc_noreclaim_restore(noreclaim_flag);
|
||||
psi_memstall_leave(&pflags);
|
||||
|
||||
if (*compact_result <= COMPACT_INACTIVE)
|
||||
return NULL;
|
||||
|
@ -3887,11 +3893,13 @@ __perform_reclaim(gfp_t gfp_mask, unsigned int order,
|
|||
struct reclaim_state reclaim_state;
|
||||
int progress;
|
||||
unsigned int noreclaim_flag;
|
||||
unsigned long pflags;
|
||||
|
||||
cond_resched();
|
||||
|
||||
/* We now go into synchronous reclaim */
|
||||
cpuset_memory_pressure_bump();
|
||||
psi_memstall_enter(&pflags);
|
||||
fs_reclaim_acquire(gfp_mask);
|
||||
noreclaim_flag = memalloc_noreclaim_save();
|
||||
reclaim_state.reclaimed_slab = 0;
|
||||
|
@ -3903,6 +3911,7 @@ __perform_reclaim(gfp_t gfp_mask, unsigned int order,
|
|||
current->reclaim_state = NULL;
|
||||
memalloc_noreclaim_restore(noreclaim_flag);
|
||||
fs_reclaim_release(gfp_mask);
|
||||
psi_memstall_leave(&pflags);
|
||||
|
||||
cond_resched();
|
||||
|
||||
|
|
|
@ -49,6 +49,7 @@
|
|||
#include <linux/prefetch.h>
|
||||
#include <linux/printk.h>
|
||||
#include <linux/dax.h>
|
||||
#include <linux/psi.h>
|
||||
|
||||
#include <asm/tlbflush.h>
|
||||
#include <asm/div64.h>
|
||||
|
@ -3320,6 +3321,7 @@ unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
|
|||
{
|
||||
struct zonelist *zonelist;
|
||||
unsigned long nr_reclaimed;
|
||||
unsigned long pflags;
|
||||
int nid;
|
||||
unsigned int noreclaim_flag;
|
||||
struct scan_control sc = {
|
||||
|
@ -3348,9 +3350,13 @@ unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
|
|||
sc.gfp_mask,
|
||||
sc.reclaim_idx);
|
||||
|
||||
psi_memstall_enter(&pflags);
|
||||
noreclaim_flag = memalloc_noreclaim_save();
|
||||
|
||||
nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
|
||||
|
||||
memalloc_noreclaim_restore(noreclaim_flag);
|
||||
psi_memstall_leave(&pflags);
|
||||
|
||||
trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
|
||||
|
||||
|
@ -3515,6 +3521,7 @@ static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
|
|||
int i;
|
||||
unsigned long nr_soft_reclaimed;
|
||||
unsigned long nr_soft_scanned;
|
||||
unsigned long pflags;
|
||||
struct zone *zone;
|
||||
struct scan_control sc = {
|
||||
.gfp_mask = GFP_KERNEL,
|
||||
|
@ -3525,6 +3532,7 @@ static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
|
|||
.may_swap = 1,
|
||||
};
|
||||
|
||||
psi_memstall_enter(&pflags);
|
||||
__fs_reclaim_acquire();
|
||||
|
||||
count_vm_event(PAGEOUTRUN);
|
||||
|
@ -3626,6 +3634,7 @@ static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
|
|||
out:
|
||||
snapshot_refaults(NULL, pgdat);
|
||||
__fs_reclaim_release();
|
||||
psi_memstall_leave(&pflags);
|
||||
/*
|
||||
* Return the order kswapd stopped reclaiming at as
|
||||
* prepare_kswapd_sleep() takes it into account. If another caller
|
||||
|
|
Loading…
Reference in a new issue