dmaengine: Driver support for FSL RaidEngine device.

The RaidEngine is a new FSL hardware used for Raid5/6 acceration.
This patch enables the RaidEngine functionality and provides
hardware offloading capability for memcpy, xor and pq computation.
It works with async_tx.

Signed-off-by: Harninder Rai <harninder.rai@freescale.com>
Signed-off-by: Xuelin Shi <xuelin.shi@freescale.com>
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
This commit is contained in:
Xuelin Shi 2015-03-03 14:26:22 +08:00 committed by Vinod Koul
parent a3f92e8ebe
commit ad80da658b
4 changed files with 1222 additions and 0 deletions

View file

@ -125,6 +125,17 @@ config FSL_DMA
EloPlus is on mpc85xx and mpc86xx and Pxxx parts, and the Elo3 is on
some Txxx and Bxxx parts.
config FSL_RAID
tristate "Freescale RAID engine Support"
depends on FSL_SOC && !ASYNC_TX_ENABLE_CHANNEL_SWITCH
select DMA_ENGINE
select DMA_ENGINE_RAID
---help---
Enable support for Freescale RAID Engine. RAID Engine is
available on some QorIQ SoCs (like P5020/P5040). It has
the capability to offload memcpy, xor and pq computation
for raid5/6.
config MPC512X_DMA
tristate "Freescale MPC512x built-in DMA engine support"
depends on PPC_MPC512x || PPC_MPC831x

View file

@ -45,6 +45,7 @@ obj-$(CONFIG_DMA_JZ4780) += dma-jz4780.o
obj-$(CONFIG_TI_CPPI41) += cppi41.o
obj-$(CONFIG_K3_DMA) += k3dma.o
obj-$(CONFIG_MOXART_DMA) += moxart-dma.o
obj-$(CONFIG_FSL_RAID) += fsl_raid.o
obj-$(CONFIG_FSL_EDMA) += fsl-edma.o
obj-$(CONFIG_QCOM_BAM_DMA) += qcom_bam_dma.o
obj-y += xilinx/

904
drivers/dma/fsl_raid.c Normal file
View file

@ -0,0 +1,904 @@
/*
* drivers/dma/fsl_raid.c
*
* Freescale RAID Engine device driver
*
* Author:
* Harninder Rai <harninder.rai@freescale.com>
* Naveen Burmi <naveenburmi@freescale.com>
*
* Rewrite:
* Xuelin Shi <xuelin.shi@freescale.com>
*
* Copyright (c) 2010-2014 Freescale Semiconductor, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Freescale Semiconductor nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* ALTERNATIVELY, this software may be distributed under the terms of the
* GNU General Public License ("GPL") as published by the Free Software
* Foundation, either version 2 of that License or (at your option) any
* later version.
*
* THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Theory of operation:
*
* General capabilities:
* RAID Engine (RE) block is capable of offloading XOR, memcpy and P/Q
* calculations required in RAID5 and RAID6 operations. RE driver
* registers with Linux's ASYNC layer as dma driver. RE hardware
* maintains strict ordering of the requests through chained
* command queueing.
*
* Data flow:
* Software RAID layer of Linux (MD layer) maintains RAID partitions,
* strips, stripes etc. It sends requests to the underlying ASYNC layer
* which further passes it to RE driver. ASYNC layer decides which request
* goes to which job ring of RE hardware. For every request processed by
* RAID Engine, driver gets an interrupt unless coalescing is set. The
* per job ring interrupt handler checks the status register for errors,
* clears the interrupt and leave the post interrupt processing to the irq
* thread.
*/
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/of_irq.h>
#include <linux/of_address.h>
#include <linux/of_platform.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/dmaengine.h>
#include <linux/io.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include "dmaengine.h"
#include "fsl_raid.h"
#define FSL_RE_MAX_XOR_SRCS 16
#define FSL_RE_MAX_PQ_SRCS 16
#define FSL_RE_MIN_DESCS 256
#define FSL_RE_MAX_DESCS (4 * FSL_RE_MIN_DESCS)
#define FSL_RE_FRAME_FORMAT 0x1
#define FSL_RE_MAX_DATA_LEN (1024*1024)
#define to_fsl_re_dma_desc(tx) container_of(tx, struct fsl_re_desc, async_tx)
/* Add descriptors into per chan software queue - submit_q */
static dma_cookie_t fsl_re_tx_submit(struct dma_async_tx_descriptor *tx)
{
struct fsl_re_desc *desc;
struct fsl_re_chan *re_chan;
dma_cookie_t cookie;
unsigned long flags;
desc = to_fsl_re_dma_desc(tx);
re_chan = container_of(tx->chan, struct fsl_re_chan, chan);
spin_lock_irqsave(&re_chan->desc_lock, flags);
cookie = dma_cookie_assign(tx);
list_add_tail(&desc->node, &re_chan->submit_q);
spin_unlock_irqrestore(&re_chan->desc_lock, flags);
return cookie;
}
/* Copy descriptor from per chan software queue into hardware job ring */
static void fsl_re_issue_pending(struct dma_chan *chan)
{
struct fsl_re_chan *re_chan;
int avail;
struct fsl_re_desc *desc, *_desc;
unsigned long flags;
re_chan = container_of(chan, struct fsl_re_chan, chan);
spin_lock_irqsave(&re_chan->desc_lock, flags);
avail = FSL_RE_SLOT_AVAIL(
in_be32(&re_chan->jrregs->inbring_slot_avail));
list_for_each_entry_safe(desc, _desc, &re_chan->submit_q, node) {
if (!avail)
break;
list_move_tail(&desc->node, &re_chan->active_q);
memcpy(&re_chan->inb_ring_virt_addr[re_chan->inb_count],
&desc->hwdesc, sizeof(struct fsl_re_hw_desc));
re_chan->inb_count = (re_chan->inb_count + 1) &
FSL_RE_RING_SIZE_MASK;
out_be32(&re_chan->jrregs->inbring_add_job, FSL_RE_ADD_JOB(1));
avail--;
}
spin_unlock_irqrestore(&re_chan->desc_lock, flags);
}
static void fsl_re_desc_done(struct fsl_re_desc *desc)
{
dma_async_tx_callback callback;
void *callback_param;
dma_cookie_complete(&desc->async_tx);
callback = desc->async_tx.callback;
callback_param = desc->async_tx.callback_param;
if (callback)
callback(callback_param);
dma_descriptor_unmap(&desc->async_tx);
}
static void fsl_re_cleanup_descs(struct fsl_re_chan *re_chan)
{
struct fsl_re_desc *desc, *_desc;
unsigned long flags;
spin_lock_irqsave(&re_chan->desc_lock, flags);
list_for_each_entry_safe(desc, _desc, &re_chan->ack_q, node) {
if (async_tx_test_ack(&desc->async_tx))
list_move_tail(&desc->node, &re_chan->free_q);
}
spin_unlock_irqrestore(&re_chan->desc_lock, flags);
fsl_re_issue_pending(&re_chan->chan);
}
static void fsl_re_dequeue(unsigned long data)
{
struct fsl_re_chan *re_chan;
struct fsl_re_desc *desc, *_desc;
struct fsl_re_hw_desc *hwdesc;
unsigned long flags;
unsigned int count, oub_count;
int found;
re_chan = dev_get_drvdata((struct device *)data);
fsl_re_cleanup_descs(re_chan);
spin_lock_irqsave(&re_chan->desc_lock, flags);
count = FSL_RE_SLOT_FULL(in_be32(&re_chan->jrregs->oubring_slot_full));
while (count--) {
found = 0;
hwdesc = &re_chan->oub_ring_virt_addr[re_chan->oub_count];
list_for_each_entry_safe(desc, _desc, &re_chan->active_q,
node) {
/* compare the hw dma addr to find the completed */
if (desc->hwdesc.lbea32 == hwdesc->lbea32 &&
desc->hwdesc.addr_low == hwdesc->addr_low) {
found = 1;
break;
}
}
if (found) {
fsl_re_desc_done(desc);
list_move_tail(&desc->node, &re_chan->ack_q);
} else {
dev_err(re_chan->dev,
"found hwdesc not in sw queue, discard it\n");
}
oub_count = (re_chan->oub_count + 1) & FSL_RE_RING_SIZE_MASK;
re_chan->oub_count = oub_count;
out_be32(&re_chan->jrregs->oubring_job_rmvd,
FSL_RE_RMVD_JOB(1));
}
spin_unlock_irqrestore(&re_chan->desc_lock, flags);
}
/* Per Job Ring interrupt handler */
static irqreturn_t fsl_re_isr(int irq, void *data)
{
struct fsl_re_chan *re_chan;
u32 irqstate, status;
re_chan = dev_get_drvdata((struct device *)data);
irqstate = in_be32(&re_chan->jrregs->jr_interrupt_status);
if (!irqstate)
return IRQ_NONE;
/*
* There's no way in upper layer (read MD layer) to recover from
* error conditions except restart everything. In long term we
* need to do something more than just crashing
*/
if (irqstate & FSL_RE_ERROR) {
status = in_be32(&re_chan->jrregs->jr_status);
dev_err(re_chan->dev, "chan error irqstate: %x, status: %x\n",
irqstate, status);
}
/* Clear interrupt */
out_be32(&re_chan->jrregs->jr_interrupt_status, FSL_RE_CLR_INTR);
tasklet_schedule(&re_chan->irqtask);
return IRQ_HANDLED;
}
static enum dma_status fsl_re_tx_status(struct dma_chan *chan,
dma_cookie_t cookie,
struct dma_tx_state *txstate)
{
return dma_cookie_status(chan, cookie, txstate);
}
static void fill_cfd_frame(struct fsl_re_cmpnd_frame *cf, u8 index,
size_t length, dma_addr_t addr, bool final)
{
u32 efrl = length & FSL_RE_CF_LENGTH_MASK;
efrl |= final << FSL_RE_CF_FINAL_SHIFT;
cf[index].efrl32 = efrl;
cf[index].addr_high = upper_32_bits(addr);
cf[index].addr_low = lower_32_bits(addr);
}
static struct fsl_re_desc *fsl_re_init_desc(struct fsl_re_chan *re_chan,
struct fsl_re_desc *desc,
void *cf, dma_addr_t paddr)
{
desc->re_chan = re_chan;
desc->async_tx.tx_submit = fsl_re_tx_submit;
dma_async_tx_descriptor_init(&desc->async_tx, &re_chan->chan);
INIT_LIST_HEAD(&desc->node);
desc->hwdesc.fmt32 = FSL_RE_FRAME_FORMAT << FSL_RE_HWDESC_FMT_SHIFT;
desc->hwdesc.lbea32 = upper_32_bits(paddr);
desc->hwdesc.addr_low = lower_32_bits(paddr);
desc->cf_addr = cf;
desc->cf_paddr = paddr;
desc->cdb_addr = (void *)(cf + FSL_RE_CF_DESC_SIZE);
desc->cdb_paddr = paddr + FSL_RE_CF_DESC_SIZE;
return desc;
}
static struct fsl_re_desc *fsl_re_chan_alloc_desc(struct fsl_re_chan *re_chan,
unsigned long flags)
{
struct fsl_re_desc *desc = NULL;
void *cf;
dma_addr_t paddr;
unsigned long lock_flag;
fsl_re_cleanup_descs(re_chan);
spin_lock_irqsave(&re_chan->desc_lock, lock_flag);
if (!list_empty(&re_chan->free_q)) {
/* take one desc from free_q */
desc = list_first_entry(&re_chan->free_q,
struct fsl_re_desc, node);
list_del(&desc->node);
desc->async_tx.flags = flags;
}
spin_unlock_irqrestore(&re_chan->desc_lock, lock_flag);
if (!desc) {
desc = kzalloc(sizeof(*desc), GFP_NOWAIT);
if (!desc)
return NULL;
cf = dma_pool_alloc(re_chan->re_dev->cf_desc_pool, GFP_NOWAIT,
&paddr);
if (!cf) {
kfree(desc);
return NULL;
}
desc = fsl_re_init_desc(re_chan, desc, cf, paddr);
desc->async_tx.flags = flags;
spin_lock_irqsave(&re_chan->desc_lock, lock_flag);
re_chan->alloc_count++;
spin_unlock_irqrestore(&re_chan->desc_lock, lock_flag);
}
return desc;
}
static struct dma_async_tx_descriptor *fsl_re_prep_dma_genq(
struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
unsigned int src_cnt, const unsigned char *scf, size_t len,
unsigned long flags)
{
struct fsl_re_chan *re_chan;
struct fsl_re_desc *desc;
struct fsl_re_xor_cdb *xor;
struct fsl_re_cmpnd_frame *cf;
u32 cdb;
unsigned int i, j;
unsigned int save_src_cnt = src_cnt;
int cont_q = 0;
re_chan = container_of(chan, struct fsl_re_chan, chan);
if (len > FSL_RE_MAX_DATA_LEN) {
dev_err(re_chan->dev, "genq tx length %lu, max length %d\n",
len, FSL_RE_MAX_DATA_LEN);
return NULL;
}
desc = fsl_re_chan_alloc_desc(re_chan, flags);
if (desc <= 0)
return NULL;
if (scf && (flags & DMA_PREP_CONTINUE)) {
cont_q = 1;
src_cnt += 1;
}
/* Filling xor CDB */
cdb = FSL_RE_XOR_OPCODE << FSL_RE_CDB_OPCODE_SHIFT;
cdb |= (src_cnt - 1) << FSL_RE_CDB_NRCS_SHIFT;
cdb |= FSL_RE_BLOCK_SIZE << FSL_RE_CDB_BLKSIZE_SHIFT;
cdb |= FSL_RE_INTR_ON_ERROR << FSL_RE_CDB_ERROR_SHIFT;
cdb |= FSL_RE_DATA_DEP << FSL_RE_CDB_DEPEND_SHIFT;
xor = desc->cdb_addr;
xor->cdb32 = cdb;
if (scf) {
/* compute q = src0*coef0^src1*coef1^..., * is GF(8) mult */
for (i = 0; i < save_src_cnt; i++)
xor->gfm[i] = scf[i];
if (cont_q)
xor->gfm[i++] = 1;
} else {
/* compute P, that is XOR all srcs */
for (i = 0; i < src_cnt; i++)
xor->gfm[i] = 1;
}
/* Filling frame 0 of compound frame descriptor with CDB */
cf = desc->cf_addr;
fill_cfd_frame(cf, 0, sizeof(*xor), desc->cdb_paddr, 0);
/* Fill CFD's 1st frame with dest buffer */
fill_cfd_frame(cf, 1, len, dest, 0);
/* Fill CFD's rest of the frames with source buffers */
for (i = 2, j = 0; j < save_src_cnt; i++, j++)
fill_cfd_frame(cf, i, len, src[j], 0);
if (cont_q)
fill_cfd_frame(cf, i++, len, dest, 0);
/* Setting the final bit in the last source buffer frame in CFD */
cf[i - 1].efrl32 |= 1 << FSL_RE_CF_FINAL_SHIFT;
return &desc->async_tx;
}
/*
* Prep function for P parity calculation.In RAID Engine terminology,
* XOR calculation is called GenQ calculation done through GenQ command
*/
static struct dma_async_tx_descriptor *fsl_re_prep_dma_xor(
struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
unsigned int src_cnt, size_t len, unsigned long flags)
{
/* NULL let genq take all coef as 1 */
return fsl_re_prep_dma_genq(chan, dest, src, src_cnt, NULL, len, flags);
}
/*
* Prep function for P/Q parity calculation.In RAID Engine terminology,
* P/Q calculation is called GenQQ done through GenQQ command
*/
static struct dma_async_tx_descriptor *fsl_re_prep_dma_pq(
struct dma_chan *chan, dma_addr_t *dest, dma_addr_t *src,
unsigned int src_cnt, const unsigned char *scf, size_t len,
unsigned long flags)
{
struct fsl_re_chan *re_chan;
struct fsl_re_desc *desc;
struct fsl_re_pq_cdb *pq;
struct fsl_re_cmpnd_frame *cf;
u32 cdb;
u8 *p;
int gfmq_len, i, j;
unsigned int save_src_cnt = src_cnt;
re_chan = container_of(chan, struct fsl_re_chan, chan);
if (len > FSL_RE_MAX_DATA_LEN) {
dev_err(re_chan->dev, "pq tx length is %lu, max length is %d\n",
len, FSL_RE_MAX_DATA_LEN);
return NULL;
}
/*
* RE requires at least 2 sources, if given only one source, we pass the
* second source same as the first one.
* With only one source, generating P is meaningless, only generate Q.
*/
if (src_cnt == 1) {
struct dma_async_tx_descriptor *tx;
dma_addr_t dma_src[2];
unsigned char coef[2];
dma_src[0] = *src;
coef[0] = *scf;
dma_src[1] = *src;
coef[1] = 0;
tx = fsl_re_prep_dma_genq(chan, dest[1], dma_src, 2, coef, len,
flags);
if (tx)
desc = to_fsl_re_dma_desc(tx);
return tx;
}
/*
* During RAID6 array creation, Linux's MD layer gets P and Q
* calculated separately in two steps. But our RAID Engine has
* the capability to calculate both P and Q with a single command
* Hence to merge well with MD layer, we need to provide a hook
* here and call re_jq_prep_dma_genq() function
*/
if (flags & DMA_PREP_PQ_DISABLE_P)
return fsl_re_prep_dma_genq(chan, dest[1], src, src_cnt,
scf, len, flags);
if (flags & DMA_PREP_CONTINUE)
src_cnt += 3;
desc = fsl_re_chan_alloc_desc(re_chan, flags);
if (desc <= 0)
return NULL;
/* Filling GenQQ CDB */
cdb = FSL_RE_PQ_OPCODE << FSL_RE_CDB_OPCODE_SHIFT;
cdb |= (src_cnt - 1) << FSL_RE_CDB_NRCS_SHIFT;
cdb |= FSL_RE_BLOCK_SIZE << FSL_RE_CDB_BLKSIZE_SHIFT;
cdb |= FSL_RE_BUFFER_OUTPUT << FSL_RE_CDB_BUFFER_SHIFT;
cdb |= FSL_RE_DATA_DEP << FSL_RE_CDB_DEPEND_SHIFT;
pq = desc->cdb_addr;
pq->cdb32 = cdb;
p = pq->gfm_q1;
/* Init gfm_q1[] */
for (i = 0; i < src_cnt; i++)
p[i] = 1;
/* Align gfm[] to 32bit */
gfmq_len = ALIGN(src_cnt, 4);
/* Init gfm_q2[] */
p += gfmq_len;
for (i = 0; i < src_cnt; i++)
p[i] = scf[i];
/* Filling frame 0 of compound frame descriptor with CDB */
cf = desc->cf_addr;
fill_cfd_frame(cf, 0, sizeof(struct fsl_re_pq_cdb), desc->cdb_paddr, 0);
/* Fill CFD's 1st & 2nd frame with dest buffers */
for (i = 1, j = 0; i < 3; i++, j++)
fill_cfd_frame(cf, i, len, dest[j], 0);
/* Fill CFD's rest of the frames with source buffers */
for (i = 3, j = 0; j < save_src_cnt; i++, j++)
fill_cfd_frame(cf, i, len, src[j], 0);
/* PQ computation continuation */
if (flags & DMA_PREP_CONTINUE) {
if (src_cnt - save_src_cnt == 3) {
p[save_src_cnt] = 0;
p[save_src_cnt + 1] = 0;
p[save_src_cnt + 2] = 1;
fill_cfd_frame(cf, i++, len, dest[0], 0);
fill_cfd_frame(cf, i++, len, dest[1], 0);
fill_cfd_frame(cf, i++, len, dest[1], 0);
} else {
dev_err(re_chan->dev, "PQ tx continuation error!\n");
return NULL;
}
}
/* Setting the final bit in the last source buffer frame in CFD */
cf[i - 1].efrl32 |= 1 << FSL_RE_CF_FINAL_SHIFT;
return &desc->async_tx;
}
/*
* Prep function for memcpy. In RAID Engine, memcpy is done through MOVE
* command. Logic of this function will need to be modified once multipage
* support is added in Linux's MD/ASYNC Layer
*/
static struct dma_async_tx_descriptor *fsl_re_prep_dma_memcpy(
struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
size_t len, unsigned long flags)
{
struct fsl_re_chan *re_chan;
struct fsl_re_desc *desc;
size_t length;
struct fsl_re_cmpnd_frame *cf;
struct fsl_re_move_cdb *move;
u32 cdb;
re_chan = container_of(chan, struct fsl_re_chan, chan);
if (len > FSL_RE_MAX_DATA_LEN) {
dev_err(re_chan->dev, "cp tx length is %lu, max length is %d\n",
len, FSL_RE_MAX_DATA_LEN);
return NULL;
}
desc = fsl_re_chan_alloc_desc(re_chan, flags);
if (desc <= 0)
return NULL;
/* Filling move CDB */
cdb = FSL_RE_MOVE_OPCODE << FSL_RE_CDB_OPCODE_SHIFT;
cdb |= FSL_RE_BLOCK_SIZE << FSL_RE_CDB_BLKSIZE_SHIFT;
cdb |= FSL_RE_INTR_ON_ERROR << FSL_RE_CDB_ERROR_SHIFT;
cdb |= FSL_RE_DATA_DEP << FSL_RE_CDB_DEPEND_SHIFT;
move = desc->cdb_addr;
move->cdb32 = cdb;
/* Filling frame 0 of CFD with move CDB */
cf = desc->cf_addr;
fill_cfd_frame(cf, 0, sizeof(*move), desc->cdb_paddr, 0);
length = min_t(size_t, len, FSL_RE_MAX_DATA_LEN);
/* Fill CFD's 1st frame with dest buffer */
fill_cfd_frame(cf, 1, length, dest, 0);
/* Fill CFD's 2nd frame with src buffer */
fill_cfd_frame(cf, 2, length, src, 1);
return &desc->async_tx;
}
static int fsl_re_alloc_chan_resources(struct dma_chan *chan)
{
struct fsl_re_chan *re_chan;
struct fsl_re_desc *desc;
void *cf;
dma_addr_t paddr;
int i;
re_chan = container_of(chan, struct fsl_re_chan, chan);
for (i = 0; i < FSL_RE_MIN_DESCS; i++) {
desc = kzalloc(sizeof(*desc), GFP_KERNEL);
if (!desc)
break;
cf = dma_pool_alloc(re_chan->re_dev->cf_desc_pool, GFP_KERNEL,
&paddr);
if (!cf) {
kfree(desc);
break;
}
INIT_LIST_HEAD(&desc->node);
fsl_re_init_desc(re_chan, desc, cf, paddr);
list_add_tail(&desc->node, &re_chan->free_q);
re_chan->alloc_count++;
}
return re_chan->alloc_count;
}
static void fsl_re_free_chan_resources(struct dma_chan *chan)
{
struct fsl_re_chan *re_chan;
struct fsl_re_desc *desc;
re_chan = container_of(chan, struct fsl_re_chan, chan);
while (re_chan->alloc_count--) {
desc = list_first_entry(&re_chan->free_q,
struct fsl_re_desc,
node);
list_del(&desc->node);
dma_pool_free(re_chan->re_dev->cf_desc_pool, desc->cf_addr,
desc->cf_paddr);
kfree(desc);
}
if (!list_empty(&re_chan->free_q))
dev_err(re_chan->dev, "chan resource cannot be cleaned!\n");
}
int fsl_re_chan_probe(struct platform_device *ofdev,
struct device_node *np, u8 q, u32 off)
{
struct device *dev, *chandev;
struct fsl_re_drv_private *re_priv;
struct fsl_re_chan *chan;
struct dma_device *dma_dev;
u32 ptr;
u32 status;
int ret = 0, rc;
struct platform_device *chan_ofdev;
dev = &ofdev->dev;
re_priv = dev_get_drvdata(dev);
dma_dev = &re_priv->dma_dev;
chan = devm_kzalloc(dev, sizeof(*chan), GFP_KERNEL);
if (!chan)
return -ENOMEM;
/* create platform device for chan node */
chan_ofdev = of_platform_device_create(np, NULL, dev);
if (!chan_ofdev) {
dev_err(dev, "Not able to create ofdev for jr %d\n", q);
ret = -EINVAL;
goto err_free;
}
/* read reg property from dts */
rc = of_property_read_u32(np, "reg", &ptr);
if (rc) {
dev_err(dev, "Reg property not found in jr %d\n", q);
ret = -ENODEV;
goto err_free;
}
chan->jrregs = (struct fsl_re_chan_cfg *)((u8 *)re_priv->re_regs +
off + ptr);
/* read irq property from dts */
chan->irq = irq_of_parse_and_map(np, 0);
if (chan->irq == NO_IRQ) {
dev_err(dev, "No IRQ defined for JR %d\n", q);
ret = -ENODEV;
goto err_free;
}
snprintf(chan->name, sizeof(chan->name), "re_jr%02d", q);
chandev = &chan_ofdev->dev;
tasklet_init(&chan->irqtask, fsl_re_dequeue, (unsigned long)chandev);
ret = request_irq(chan->irq, fsl_re_isr, 0, chan->name, chandev);
if (ret) {
dev_err(dev, "Unable to register interrupt for JR %d\n", q);
ret = -EINVAL;
goto err_free;
}
re_priv->re_jrs[q] = chan;
chan->chan.device = dma_dev;
chan->chan.private = chan;
chan->dev = chandev;
chan->re_dev = re_priv;
spin_lock_init(&chan->desc_lock);
INIT_LIST_HEAD(&chan->ack_q);
INIT_LIST_HEAD(&chan->active_q);
INIT_LIST_HEAD(&chan->submit_q);
INIT_LIST_HEAD(&chan->free_q);
chan->inb_ring_virt_addr = dma_pool_alloc(chan->re_dev->hw_desc_pool,
GFP_KERNEL, &chan->inb_phys_addr);
if (!chan->inb_ring_virt_addr) {
dev_err(dev, "No dma memory for inb_ring_virt_addr\n");
ret = -ENOMEM;
goto err_free;
}
chan->oub_ring_virt_addr = dma_pool_alloc(chan->re_dev->hw_desc_pool,
GFP_KERNEL, &chan->oub_phys_addr);
if (!chan->oub_ring_virt_addr) {
dev_err(dev, "No dma memory for oub_ring_virt_addr\n");
ret = -ENOMEM;
goto err_free_1;
}
/* Program the Inbound/Outbound ring base addresses and size */
out_be32(&chan->jrregs->inbring_base_h,
chan->inb_phys_addr & FSL_RE_ADDR_BIT_MASK);
out_be32(&chan->jrregs->oubring_base_h,
chan->oub_phys_addr & FSL_RE_ADDR_BIT_MASK);
out_be32(&chan->jrregs->inbring_base_l,
chan->inb_phys_addr >> FSL_RE_ADDR_BIT_SHIFT);
out_be32(&chan->jrregs->oubring_base_l,
chan->oub_phys_addr >> FSL_RE_ADDR_BIT_SHIFT);
out_be32(&chan->jrregs->inbring_size,
FSL_RE_RING_SIZE << FSL_RE_RING_SIZE_SHIFT);
out_be32(&chan->jrregs->oubring_size,
FSL_RE_RING_SIZE << FSL_RE_RING_SIZE_SHIFT);
/* Read LIODN value from u-boot */
status = in_be32(&chan->jrregs->jr_config_1) & FSL_RE_REG_LIODN_MASK;
/* Program the CFG reg */
out_be32(&chan->jrregs->jr_config_1,
FSL_RE_CFG1_CBSI | FSL_RE_CFG1_CBS0 | status);
dev_set_drvdata(chandev, chan);
/* Enable RE/CHAN */
out_be32(&chan->jrregs->jr_command, FSL_RE_ENABLE);
return 0;
err_free_1:
dma_pool_free(chan->re_dev->hw_desc_pool, chan->inb_ring_virt_addr,
chan->inb_phys_addr);
err_free:
return ret;
}
/* Probe function for RAID Engine */
static int fsl_re_probe(struct platform_device *ofdev)
{
struct fsl_re_drv_private *re_priv;
struct device_node *np;
struct device_node *child;
u32 off;
u8 ridx = 0;
struct dma_device *dma_dev;
struct resource *res;
int rc;
struct device *dev = &ofdev->dev;
re_priv = devm_kzalloc(dev, sizeof(*re_priv), GFP_KERNEL);
if (!re_priv)
return -ENOMEM;
res = platform_get_resource(ofdev, IORESOURCE_MEM, 0);
if (!res)
return -ENODEV;
/* IOMAP the entire RAID Engine region */
re_priv->re_regs = devm_ioremap(dev, res->start, resource_size(res));
if (!re_priv->re_regs)
return -EBUSY;
/* Program the RE mode */
out_be32(&re_priv->re_regs->global_config, FSL_RE_NON_DPAA_MODE);
/* Program Galois Field polynomial */
out_be32(&re_priv->re_regs->galois_field_config, FSL_RE_GFM_POLY);
dev_info(dev, "version %x, mode %x, gfp %x\n",
in_be32(&re_priv->re_regs->re_version_id),
in_be32(&re_priv->re_regs->global_config),
in_be32(&re_priv->re_regs->galois_field_config));
dma_dev = &re_priv->dma_dev;
dma_dev->dev = dev;
INIT_LIST_HEAD(&dma_dev->channels);
dma_set_mask(dev, DMA_BIT_MASK(40));
dma_dev->device_alloc_chan_resources = fsl_re_alloc_chan_resources;
dma_dev->device_tx_status = fsl_re_tx_status;
dma_dev->device_issue_pending = fsl_re_issue_pending;
dma_dev->max_xor = FSL_RE_MAX_XOR_SRCS;
dma_dev->device_prep_dma_xor = fsl_re_prep_dma_xor;
dma_cap_set(DMA_XOR, dma_dev->cap_mask);
dma_dev->max_pq = FSL_RE_MAX_PQ_SRCS;
dma_dev->device_prep_dma_pq = fsl_re_prep_dma_pq;
dma_cap_set(DMA_PQ, dma_dev->cap_mask);
dma_dev->device_prep_dma_memcpy = fsl_re_prep_dma_memcpy;
dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
dma_dev->device_free_chan_resources = fsl_re_free_chan_resources;
re_priv->total_chans = 0;
re_priv->cf_desc_pool = dmam_pool_create("fsl_re_cf_desc_pool", dev,
FSL_RE_CF_CDB_SIZE,
FSL_RE_CF_CDB_ALIGN, 0);
if (!re_priv->cf_desc_pool) {
dev_err(dev, "No memory for fsl re_cf desc pool\n");
return -ENOMEM;
}
re_priv->hw_desc_pool = dmam_pool_create("fsl_re_hw_desc_pool", dev,
sizeof(struct fsl_re_hw_desc) * FSL_RE_RING_SIZE,
FSL_RE_FRAME_ALIGN, 0);
if (!re_priv->hw_desc_pool) {
dev_err(dev, "No memory for fsl re_hw desc pool\n");
return -ENOMEM;
}
dev_set_drvdata(dev, re_priv);
/* Parse Device tree to find out the total number of JQs present */
for_each_compatible_node(np, NULL, "fsl,raideng-v1.0-job-queue") {
rc = of_property_read_u32(np, "reg", &off);
if (rc) {
dev_err(dev, "Reg property not found in JQ node\n");
return -ENODEV;
}
/* Find out the Job Rings present under each JQ */
for_each_child_of_node(np, child) {
rc = of_device_is_compatible(child,
"fsl,raideng-v1.0-job-ring");
if (rc) {
fsl_re_chan_probe(ofdev, child, ridx++, off);
re_priv->total_chans++;
}
}
}
dma_async_device_register(dma_dev);
return 0;
}
static void fsl_re_remove_chan(struct fsl_re_chan *chan)
{
dma_pool_free(chan->re_dev->hw_desc_pool, chan->inb_ring_virt_addr,
chan->inb_phys_addr);
dma_pool_free(chan->re_dev->hw_desc_pool, chan->oub_ring_virt_addr,
chan->oub_phys_addr);
}
static int fsl_re_remove(struct platform_device *ofdev)
{
struct fsl_re_drv_private *re_priv;
struct device *dev;
int i;
dev = &ofdev->dev;
re_priv = dev_get_drvdata(dev);
/* Cleanup chan related memory areas */
for (i = 0; i < re_priv->total_chans; i++)
fsl_re_remove_chan(re_priv->re_jrs[i]);
/* Unregister the driver */
dma_async_device_unregister(&re_priv->dma_dev);
return 0;
}
static struct of_device_id fsl_re_ids[] = {
{ .compatible = "fsl,raideng-v1.0", },
{}
};
static struct platform_driver fsl_re_driver = {
.driver = {
.name = "fsl-raideng",
.owner = THIS_MODULE,
.of_match_table = fsl_re_ids,
},
.probe = fsl_re_probe,
.remove = fsl_re_remove,
};
module_platform_driver(fsl_re_driver);
MODULE_AUTHOR("Harninder Rai <harninder.rai@freescale.com>");
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Freescale RAID Engine Device Driver");

306
drivers/dma/fsl_raid.h Normal file
View file

@ -0,0 +1,306 @@
/*
* drivers/dma/fsl_raid.h
*
* Freescale RAID Engine device driver
*
* Author:
* Harninder Rai <harninder.rai@freescale.com>
* Naveen Burmi <naveenburmi@freescale.com>
*
* Rewrite:
* Xuelin Shi <xuelin.shi@freescale.com>
* Copyright (c) 2010-2012 Freescale Semiconductor, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Freescale Semiconductor nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* ALTERNATIVELY, this software may be distributed under the terms of the
* GNU General Public License ("GPL") as published by the Free Software
* Foundation, either version 2 of that License or (at your option) any
* later version.
*
* THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#define FSL_RE_MAX_CHANS 4
#define FSL_RE_DPAA_MODE BIT(30)
#define FSL_RE_NON_DPAA_MODE BIT(31)
#define FSL_RE_GFM_POLY 0x1d000000
#define FSL_RE_ADD_JOB(x) ((x) << 16)
#define FSL_RE_RMVD_JOB(x) ((x) << 16)
#define FSL_RE_CFG1_CBSI 0x08000000
#define FSL_RE_CFG1_CBS0 0x00080000
#define FSL_RE_SLOT_FULL_SHIFT 8
#define FSL_RE_SLOT_FULL(x) ((x) >> FSL_RE_SLOT_FULL_SHIFT)
#define FSL_RE_SLOT_AVAIL_SHIFT 8
#define FSL_RE_SLOT_AVAIL(x) ((x) >> FSL_RE_SLOT_AVAIL_SHIFT)
#define FSL_RE_PQ_OPCODE 0x1B
#define FSL_RE_XOR_OPCODE 0x1A
#define FSL_RE_MOVE_OPCODE 0x8
#define FSL_RE_FRAME_ALIGN 16
#define FSL_RE_BLOCK_SIZE 0x3 /* 4096 bytes */
#define FSL_RE_CACHEABLE_IO 0x0
#define FSL_RE_BUFFER_OUTPUT 0x0
#define FSL_RE_INTR_ON_ERROR 0x1
#define FSL_RE_DATA_DEP 0x1
#define FSL_RE_ENABLE_DPI 0x0
#define FSL_RE_RING_SIZE 0x400
#define FSL_RE_RING_SIZE_MASK (FSL_RE_RING_SIZE - 1)
#define FSL_RE_RING_SIZE_SHIFT 8
#define FSL_RE_ADDR_BIT_SHIFT 4
#define FSL_RE_ADDR_BIT_MASK (BIT(FSL_RE_ADDR_BIT_SHIFT) - 1)
#define FSL_RE_ERROR 0x40000000
#define FSL_RE_INTR 0x80000000
#define FSL_RE_CLR_INTR 0x80000000
#define FSL_RE_PAUSE 0x80000000
#define FSL_RE_ENABLE 0x80000000
#define FSL_RE_REG_LIODN_MASK 0x00000FFF
#define FSL_RE_CDB_OPCODE_MASK 0xF8000000
#define FSL_RE_CDB_OPCODE_SHIFT 27
#define FSL_RE_CDB_EXCLEN_MASK 0x03000000
#define FSL_RE_CDB_EXCLEN_SHIFT 24
#define FSL_RE_CDB_EXCLQ1_MASK 0x00F00000
#define FSL_RE_CDB_EXCLQ1_SHIFT 20
#define FSL_RE_CDB_EXCLQ2_MASK 0x000F0000
#define FSL_RE_CDB_EXCLQ2_SHIFT 16
#define FSL_RE_CDB_BLKSIZE_MASK 0x0000C000
#define FSL_RE_CDB_BLKSIZE_SHIFT 14
#define FSL_RE_CDB_CACHE_MASK 0x00003000
#define FSL_RE_CDB_CACHE_SHIFT 12
#define FSL_RE_CDB_BUFFER_MASK 0x00000800
#define FSL_RE_CDB_BUFFER_SHIFT 11
#define FSL_RE_CDB_ERROR_MASK 0x00000400
#define FSL_RE_CDB_ERROR_SHIFT 10
#define FSL_RE_CDB_NRCS_MASK 0x0000003C
#define FSL_RE_CDB_NRCS_SHIFT 6
#define FSL_RE_CDB_DEPEND_MASK 0x00000008
#define FSL_RE_CDB_DEPEND_SHIFT 3
#define FSL_RE_CDB_DPI_MASK 0x00000004
#define FSL_RE_CDB_DPI_SHIFT 2
/*
* the largest cf block is 19*sizeof(struct cmpnd_frame), which is 304 bytes.
* here 19 = 1(cdb)+2(dest)+16(src), align to 64bytes, that is 320 bytes.
* the largest cdb block: struct pq_cdb which is 180 bytes, adding to cf block
* 320+180=500, align to 64bytes, that is 512 bytes.
*/
#define FSL_RE_CF_DESC_SIZE 320
#define FSL_RE_CF_CDB_SIZE 512
#define FSL_RE_CF_CDB_ALIGN 64
struct fsl_re_ctrl {
/* General Configuration Registers */
__be32 global_config; /* Global Configuration Register */
u8 rsvd1[4];
__be32 galois_field_config; /* Galois Field Configuration Register */
u8 rsvd2[4];
__be32 jq_wrr_config; /* WRR Configuration register */
u8 rsvd3[4];
__be32 crc_config; /* CRC Configuration register */
u8 rsvd4[228];
__be32 system_reset; /* System Reset Register */
u8 rsvd5[252];
__be32 global_status; /* Global Status Register */
u8 rsvd6[832];
__be32 re_liodn_base; /* LIODN Base Register */
u8 rsvd7[1712];
__be32 re_version_id; /* Version ID register of RE */
__be32 re_version_id_2; /* Version ID 2 register of RE */
u8 rsvd8[512];
__be32 host_config; /* Host I/F Configuration Register */
};
struct fsl_re_chan_cfg {
/* Registers for JR interface */
__be32 jr_config_0; /* Job Queue Configuration 0 Register */
__be32 jr_config_1; /* Job Queue Configuration 1 Register */
__be32 jr_interrupt_status; /* Job Queue Interrupt Status Register */
u8 rsvd1[4];
__be32 jr_command; /* Job Queue Command Register */
u8 rsvd2[4];
__be32 jr_status; /* Job Queue Status Register */
u8 rsvd3[228];
/* Input Ring */
__be32 inbring_base_h; /* Inbound Ring Base Address Register - High */
__be32 inbring_base_l; /* Inbound Ring Base Address Register - Low */
__be32 inbring_size; /* Inbound Ring Size Register */
u8 rsvd4[4];
__be32 inbring_slot_avail; /* Inbound Ring Slot Available Register */
u8 rsvd5[4];
__be32 inbring_add_job; /* Inbound Ring Add Job Register */
u8 rsvd6[4];
__be32 inbring_cnsmr_indx; /* Inbound Ring Consumer Index Register */
u8 rsvd7[220];
/* Output Ring */
__be32 oubring_base_h; /* Outbound Ring Base Address Register - High */
__be32 oubring_base_l; /* Outbound Ring Base Address Register - Low */
__be32 oubring_size; /* Outbound Ring Size Register */
u8 rsvd8[4];
__be32 oubring_job_rmvd; /* Outbound Ring Job Removed Register */
u8 rsvd9[4];
__be32 oubring_slot_full; /* Outbound Ring Slot Full Register */
u8 rsvd10[4];
__be32 oubring_prdcr_indx; /* Outbound Ring Producer Index */
};
/*
* Command Descriptor Block (CDB) for unicast move command.
* In RAID Engine terms, memcpy is done through move command
*/
struct fsl_re_move_cdb {
__be32 cdb32;
};
/* Data protection/integrity related fields */
#define FSL_RE_DPI_APPS_MASK 0xC0000000
#define FSL_RE_DPI_APPS_SHIFT 30
#define FSL_RE_DPI_REF_MASK 0x30000000
#define FSL_RE_DPI_REF_SHIFT 28
#define FSL_RE_DPI_GUARD_MASK 0x0C000000
#define FSL_RE_DPI_GUARD_SHIFT 26
#define FSL_RE_DPI_ATTR_MASK 0x03000000
#define FSL_RE_DPI_ATTR_SHIFT 24
#define FSL_RE_DPI_META_MASK 0x0000FFFF
struct fsl_re_dpi {
__be32 dpi32;
__be32 ref;
};
/*
* CDB for GenQ command. In RAID Engine terminology, XOR is
* done through this command
*/
struct fsl_re_xor_cdb {
__be32 cdb32;
u8 gfm[16];
struct fsl_re_dpi dpi_dest_spec;
struct fsl_re_dpi dpi_src_spec[16];
};
/* CDB for no-op command */
struct fsl_re_noop_cdb {
__be32 cdb32;
};
/*
* CDB for GenQQ command. In RAID Engine terminology, P/Q is
* done through this command
*/
struct fsl_re_pq_cdb {
__be32 cdb32;
u8 gfm_q1[16];
u8 gfm_q2[16];
struct fsl_re_dpi dpi_dest_spec[2];
struct fsl_re_dpi dpi_src_spec[16];
};
/* Compound frame */
#define FSL_RE_CF_ADDR_HIGH_MASK 0x000000FF
#define FSL_RE_CF_EXT_MASK 0x80000000
#define FSL_RE_CF_EXT_SHIFT 31
#define FSL_RE_CF_FINAL_MASK 0x40000000
#define FSL_RE_CF_FINAL_SHIFT 30
#define FSL_RE_CF_LENGTH_MASK 0x000FFFFF
#define FSL_RE_CF_BPID_MASK 0x00FF0000
#define FSL_RE_CF_BPID_SHIFT 16
#define FSL_RE_CF_OFFSET_MASK 0x00001FFF
struct fsl_re_cmpnd_frame {
__be32 addr_high;
__be32 addr_low;
__be32 efrl32;
__be32 rbro32;
};
/* Frame descriptor */
#define FSL_RE_HWDESC_LIODN_MASK 0x3F000000
#define FSL_RE_HWDESC_LIODN_SHIFT 24
#define FSL_RE_HWDESC_BPID_MASK 0x00FF0000
#define FSL_RE_HWDESC_BPID_SHIFT 16
#define FSL_RE_HWDESC_ELIODN_MASK 0x0000F000
#define FSL_RE_HWDESC_ELIODN_SHIFT 12
#define FSL_RE_HWDESC_FMT_SHIFT 29
#define FSL_RE_HWDESC_FMT_MASK (0x3 << FSL_RE_HWDESC_FMT_SHIFT)
struct fsl_re_hw_desc {
__be32 lbea32;
__be32 addr_low;
__be32 fmt32;
__be32 status;
};
/* Raid Engine device private data */
struct fsl_re_drv_private {
u8 total_chans;
struct dma_device dma_dev;
struct fsl_re_ctrl *re_regs;
struct fsl_re_chan *re_jrs[FSL_RE_MAX_CHANS];
struct dma_pool *cf_desc_pool;
struct dma_pool *hw_desc_pool;
};
/* Per job ring data structure */
struct fsl_re_chan {
char name[16];
spinlock_t desc_lock; /* queue lock */
struct list_head ack_q; /* wait to acked queue */
struct list_head active_q; /* already issued on hw, not completed */
struct list_head submit_q;
struct list_head free_q; /* alloc available queue */
struct device *dev;
struct fsl_re_drv_private *re_dev;
struct dma_chan chan;
struct fsl_re_chan_cfg *jrregs;
int irq;
struct tasklet_struct irqtask;
u32 alloc_count;
/* hw descriptor ring for inbound queue*/
dma_addr_t inb_phys_addr;
struct fsl_re_hw_desc *inb_ring_virt_addr;
u32 inb_count;
/* hw descriptor ring for outbound queue */
dma_addr_t oub_phys_addr;
struct fsl_re_hw_desc *oub_ring_virt_addr;
u32 oub_count;
};
/* Async transaction descriptor */
struct fsl_re_desc {
struct dma_async_tx_descriptor async_tx;
struct list_head node;
struct fsl_re_hw_desc hwdesc;
struct fsl_re_chan *re_chan;
/* hwdesc will point to cf_addr */
void *cf_addr;
dma_addr_t cf_paddr;
void *cdb_addr;
dma_addr_t cdb_paddr;
int status;
};