sched: rt-group: heirarchy aware throttle
The bandwidth throttle code dequeues a group when it runs out of quota, and re-queues it once the period rolls over and the quota gets refreshed. Sadly it failed to take the hierarchy into consideration. Share more of the enqueue/dequeue code with regular task opterations. Also, some operations like sched_setscheduler() can dequeue/enqueue tasks that are in throttled runqueues, we should not inadvertly re-enqueue empty runqueues so check for that. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Tested-by: Daniel K. <dk@uw.no> Signed-off-by: Ingo Molnar <mingo@elte.hu>
This commit is contained in:
parent
7ea56616ba
commit
ad2a3f13b7
1 changed files with 33 additions and 26 deletions
|
@ -449,13 +449,19 @@ void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
|
static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
|
||||||
{
|
{
|
||||||
struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
|
struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
|
||||||
struct rt_prio_array *array = &rt_rq->active;
|
struct rt_prio_array *array = &rt_rq->active;
|
||||||
struct rt_rq *group_rq = group_rt_rq(rt_se);
|
struct rt_rq *group_rq = group_rt_rq(rt_se);
|
||||||
|
|
||||||
if (group_rq && rt_rq_throttled(group_rq))
|
/*
|
||||||
|
* Don't enqueue the group if its throttled, or when empty.
|
||||||
|
* The latter is a consequence of the former when a child group
|
||||||
|
* get throttled and the current group doesn't have any other
|
||||||
|
* active members.
|
||||||
|
*/
|
||||||
|
if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
|
||||||
return;
|
return;
|
||||||
|
|
||||||
list_add_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se));
|
list_add_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se));
|
||||||
|
@ -464,7 +470,7 @@ static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
|
||||||
inc_rt_tasks(rt_se, rt_rq);
|
inc_rt_tasks(rt_se, rt_rq);
|
||||||
}
|
}
|
||||||
|
|
||||||
static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
|
static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
|
||||||
{
|
{
|
||||||
struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
|
struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
|
||||||
struct rt_prio_array *array = &rt_rq->active;
|
struct rt_prio_array *array = &rt_rq->active;
|
||||||
|
@ -480,11 +486,10 @@ static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
|
||||||
* Because the prio of an upper entry depends on the lower
|
* Because the prio of an upper entry depends on the lower
|
||||||
* entries, we must remove entries top - down.
|
* entries, we must remove entries top - down.
|
||||||
*/
|
*/
|
||||||
static void dequeue_rt_stack(struct task_struct *p)
|
static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
|
||||||
{
|
{
|
||||||
struct sched_rt_entity *rt_se, *back = NULL;
|
struct sched_rt_entity *back = NULL;
|
||||||
|
|
||||||
rt_se = &p->rt;
|
|
||||||
for_each_sched_rt_entity(rt_se) {
|
for_each_sched_rt_entity(rt_se) {
|
||||||
rt_se->back = back;
|
rt_se->back = back;
|
||||||
back = rt_se;
|
back = rt_se;
|
||||||
|
@ -492,7 +497,26 @@ static void dequeue_rt_stack(struct task_struct *p)
|
||||||
|
|
||||||
for (rt_se = back; rt_se; rt_se = rt_se->back) {
|
for (rt_se = back; rt_se; rt_se = rt_se->back) {
|
||||||
if (on_rt_rq(rt_se))
|
if (on_rt_rq(rt_se))
|
||||||
dequeue_rt_entity(rt_se);
|
__dequeue_rt_entity(rt_se);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
|
||||||
|
{
|
||||||
|
dequeue_rt_stack(rt_se);
|
||||||
|
for_each_sched_rt_entity(rt_se)
|
||||||
|
__enqueue_rt_entity(rt_se);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
|
||||||
|
{
|
||||||
|
dequeue_rt_stack(rt_se);
|
||||||
|
|
||||||
|
for_each_sched_rt_entity(rt_se) {
|
||||||
|
struct rt_rq *rt_rq = group_rt_rq(rt_se);
|
||||||
|
|
||||||
|
if (rt_rq && rt_rq->rt_nr_running)
|
||||||
|
__enqueue_rt_entity(rt_se);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -506,32 +530,15 @@ static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
|
||||||
if (wakeup)
|
if (wakeup)
|
||||||
rt_se->timeout = 0;
|
rt_se->timeout = 0;
|
||||||
|
|
||||||
dequeue_rt_stack(p);
|
enqueue_rt_entity(rt_se);
|
||||||
|
|
||||||
/*
|
|
||||||
* enqueue everybody, bottom - up.
|
|
||||||
*/
|
|
||||||
for_each_sched_rt_entity(rt_se)
|
|
||||||
enqueue_rt_entity(rt_se);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
|
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
|
||||||
{
|
{
|
||||||
struct sched_rt_entity *rt_se = &p->rt;
|
struct sched_rt_entity *rt_se = &p->rt;
|
||||||
struct rt_rq *rt_rq;
|
|
||||||
|
|
||||||
update_curr_rt(rq);
|
update_curr_rt(rq);
|
||||||
|
dequeue_rt_entity(rt_se);
|
||||||
dequeue_rt_stack(p);
|
|
||||||
|
|
||||||
/*
|
|
||||||
* re-enqueue all non-empty rt_rq entities.
|
|
||||||
*/
|
|
||||||
for_each_sched_rt_entity(rt_se) {
|
|
||||||
rt_rq = group_rt_rq(rt_se);
|
|
||||||
if (rt_rq && rt_rq->rt_nr_running)
|
|
||||||
enqueue_rt_entity(rt_se);
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/*
|
/*
|
||||||
|
|
Loading…
Reference in a new issue