ip: process in-order fragments efficiently
This patch changes the runtime behavior of IP defrag queue: incoming in-order fragments are added to the end of the current list/"run" of in-order fragments at the tail. On some workloads, UDP stream performance is substantially improved: RX: ./udp_stream -F 10 -T 2 -l 60 TX: ./udp_stream -c -H <host> -F 10 -T 5 -l 60 with this patchset applied on a 10Gbps receiver: throughput=9524.18 throughput_units=Mbit/s upstream (net-next): throughput=4608.93 throughput_units=Mbit/s Reported-by: Willem de Bruijn <willemb@google.com> Signed-off-by: Peter Oskolkov <posk@google.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Florian Westphal <fw@strlen.de> Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
parent
353c9cb360
commit
a4fd284a1f
2 changed files with 70 additions and 42 deletions
|
@ -146,7 +146,7 @@ void inet_frag_destroy(struct inet_frag_queue *q)
|
|||
fp = xp;
|
||||
} while (fp);
|
||||
} else {
|
||||
sum_truesize = skb_rbtree_purge(&q->rb_fragments);
|
||||
sum_truesize = inet_frag_rbtree_purge(&q->rb_fragments);
|
||||
}
|
||||
sum = sum_truesize + f->qsize;
|
||||
|
||||
|
|
|
@ -126,8 +126,8 @@ static u8 ip4_frag_ecn(u8 tos)
|
|||
|
||||
static struct inet_frags ip4_frags;
|
||||
|
||||
static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
|
||||
struct net_device *dev);
|
||||
static int ip_frag_reasm(struct ipq *qp, struct sk_buff *skb,
|
||||
struct sk_buff *prev_tail, struct net_device *dev);
|
||||
|
||||
|
||||
static void ip4_frag_init(struct inet_frag_queue *q, const void *a)
|
||||
|
@ -219,7 +219,12 @@ static void ip_expire(struct timer_list *t)
|
|||
head = skb_rb_first(&qp->q.rb_fragments);
|
||||
if (!head)
|
||||
goto out;
|
||||
rb_erase(&head->rbnode, &qp->q.rb_fragments);
|
||||
if (FRAG_CB(head)->next_frag)
|
||||
rb_replace_node(&head->rbnode,
|
||||
&FRAG_CB(head)->next_frag->rbnode,
|
||||
&qp->q.rb_fragments);
|
||||
else
|
||||
rb_erase(&head->rbnode, &qp->q.rb_fragments);
|
||||
memset(&head->rbnode, 0, sizeof(head->rbnode));
|
||||
barrier();
|
||||
}
|
||||
|
@ -320,7 +325,7 @@ static int ip_frag_reinit(struct ipq *qp)
|
|||
return -ETIMEDOUT;
|
||||
}
|
||||
|
||||
sum_truesize = skb_rbtree_purge(&qp->q.rb_fragments);
|
||||
sum_truesize = inet_frag_rbtree_purge(&qp->q.rb_fragments);
|
||||
sub_frag_mem_limit(qp->q.net, sum_truesize);
|
||||
|
||||
qp->q.flags = 0;
|
||||
|
@ -329,6 +334,7 @@ static int ip_frag_reinit(struct ipq *qp)
|
|||
qp->q.fragments = NULL;
|
||||
qp->q.rb_fragments = RB_ROOT;
|
||||
qp->q.fragments_tail = NULL;
|
||||
qp->q.last_run_head = NULL;
|
||||
qp->iif = 0;
|
||||
qp->ecn = 0;
|
||||
|
||||
|
@ -340,7 +346,7 @@ static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb)
|
|||
{
|
||||
struct net *net = container_of(qp->q.net, struct net, ipv4.frags);
|
||||
struct rb_node **rbn, *parent;
|
||||
struct sk_buff *skb1;
|
||||
struct sk_buff *skb1, *prev_tail;
|
||||
struct net_device *dev;
|
||||
unsigned int fragsize;
|
||||
int flags, offset;
|
||||
|
@ -418,38 +424,41 @@ static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb)
|
|||
*/
|
||||
|
||||
/* Find out where to put this fragment. */
|
||||
skb1 = qp->q.fragments_tail;
|
||||
if (!skb1) {
|
||||
/* This is the first fragment we've received. */
|
||||
rb_link_node(&skb->rbnode, NULL, &qp->q.rb_fragments.rb_node);
|
||||
qp->q.fragments_tail = skb;
|
||||
} else if ((skb1->ip_defrag_offset + skb1->len) < end) {
|
||||
/* This is the common/special case: skb goes to the end. */
|
||||
prev_tail = qp->q.fragments_tail;
|
||||
if (!prev_tail)
|
||||
ip4_frag_create_run(&qp->q, skb); /* First fragment. */
|
||||
else if (prev_tail->ip_defrag_offset + prev_tail->len < end) {
|
||||
/* This is the common case: skb goes to the end. */
|
||||
/* Detect and discard overlaps. */
|
||||
if (offset < (skb1->ip_defrag_offset + skb1->len))
|
||||
if (offset < prev_tail->ip_defrag_offset + prev_tail->len)
|
||||
goto discard_qp;
|
||||
/* Insert after skb1. */
|
||||
rb_link_node(&skb->rbnode, &skb1->rbnode, &skb1->rbnode.rb_right);
|
||||
qp->q.fragments_tail = skb;
|
||||
if (offset == prev_tail->ip_defrag_offset + prev_tail->len)
|
||||
ip4_frag_append_to_last_run(&qp->q, skb);
|
||||
else
|
||||
ip4_frag_create_run(&qp->q, skb);
|
||||
} else {
|
||||
/* Binary search. Note that skb can become the first fragment, but
|
||||
* not the last (covered above). */
|
||||
/* Binary search. Note that skb can become the first fragment,
|
||||
* but not the last (covered above).
|
||||
*/
|
||||
rbn = &qp->q.rb_fragments.rb_node;
|
||||
do {
|
||||
parent = *rbn;
|
||||
skb1 = rb_to_skb(parent);
|
||||
if (end <= skb1->ip_defrag_offset)
|
||||
rbn = &parent->rb_left;
|
||||
else if (offset >= skb1->ip_defrag_offset + skb1->len)
|
||||
else if (offset >= skb1->ip_defrag_offset +
|
||||
FRAG_CB(skb1)->frag_run_len)
|
||||
rbn = &parent->rb_right;
|
||||
else /* Found an overlap with skb1. */
|
||||
goto discard_qp;
|
||||
} while (*rbn);
|
||||
/* Here we have parent properly set, and rbn pointing to
|
||||
* one of its NULL left/right children. Insert skb. */
|
||||
* one of its NULL left/right children. Insert skb.
|
||||
*/
|
||||
ip4_frag_init_run(skb);
|
||||
rb_link_node(&skb->rbnode, parent, rbn);
|
||||
rb_insert_color(&skb->rbnode, &qp->q.rb_fragments);
|
||||
}
|
||||
rb_insert_color(&skb->rbnode, &qp->q.rb_fragments);
|
||||
|
||||
if (dev)
|
||||
qp->iif = dev->ifindex;
|
||||
|
@ -476,7 +485,7 @@ static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb)
|
|||
unsigned long orefdst = skb->_skb_refdst;
|
||||
|
||||
skb->_skb_refdst = 0UL;
|
||||
err = ip_frag_reasm(qp, skb, dev);
|
||||
err = ip_frag_reasm(qp, skb, prev_tail, dev);
|
||||
skb->_skb_refdst = orefdst;
|
||||
return err;
|
||||
}
|
||||
|
@ -495,7 +504,7 @@ static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb)
|
|||
|
||||
/* Build a new IP datagram from all its fragments. */
|
||||
static int ip_frag_reasm(struct ipq *qp, struct sk_buff *skb,
|
||||
struct net_device *dev)
|
||||
struct sk_buff *prev_tail, struct net_device *dev)
|
||||
{
|
||||
struct net *net = container_of(qp->q.net, struct net, ipv4.frags);
|
||||
struct iphdr *iph;
|
||||
|
@ -519,10 +528,16 @@ static int ip_frag_reasm(struct ipq *qp, struct sk_buff *skb,
|
|||
fp = skb_clone(skb, GFP_ATOMIC);
|
||||
if (!fp)
|
||||
goto out_nomem;
|
||||
rb_replace_node(&skb->rbnode, &fp->rbnode, &qp->q.rb_fragments);
|
||||
FRAG_CB(fp)->next_frag = FRAG_CB(skb)->next_frag;
|
||||
if (RB_EMPTY_NODE(&skb->rbnode))
|
||||
FRAG_CB(prev_tail)->next_frag = fp;
|
||||
else
|
||||
rb_replace_node(&skb->rbnode, &fp->rbnode,
|
||||
&qp->q.rb_fragments);
|
||||
if (qp->q.fragments_tail == skb)
|
||||
qp->q.fragments_tail = fp;
|
||||
skb_morph(skb, head);
|
||||
FRAG_CB(skb)->next_frag = FRAG_CB(head)->next_frag;
|
||||
rb_replace_node(&head->rbnode, &skb->rbnode,
|
||||
&qp->q.rb_fragments);
|
||||
consume_skb(head);
|
||||
|
@ -558,7 +573,7 @@ static int ip_frag_reasm(struct ipq *qp, struct sk_buff *skb,
|
|||
for (i = 0; i < skb_shinfo(head)->nr_frags; i++)
|
||||
plen += skb_frag_size(&skb_shinfo(head)->frags[i]);
|
||||
clone->len = clone->data_len = head->data_len - plen;
|
||||
skb->truesize += clone->truesize;
|
||||
head->truesize += clone->truesize;
|
||||
clone->csum = 0;
|
||||
clone->ip_summed = head->ip_summed;
|
||||
add_frag_mem_limit(qp->q.net, clone->truesize);
|
||||
|
@ -571,24 +586,36 @@ static int ip_frag_reasm(struct ipq *qp, struct sk_buff *skb,
|
|||
skb_push(head, head->data - skb_network_header(head));
|
||||
|
||||
/* Traverse the tree in order, to build frag_list. */
|
||||
fp = FRAG_CB(head)->next_frag;
|
||||
rbn = rb_next(&head->rbnode);
|
||||
rb_erase(&head->rbnode, &qp->q.rb_fragments);
|
||||
while (rbn) {
|
||||
struct rb_node *rbnext = rb_next(rbn);
|
||||
fp = rb_to_skb(rbn);
|
||||
rb_erase(rbn, &qp->q.rb_fragments);
|
||||
rbn = rbnext;
|
||||
*nextp = fp;
|
||||
nextp = &fp->next;
|
||||
fp->prev = NULL;
|
||||
memset(&fp->rbnode, 0, sizeof(fp->rbnode));
|
||||
head->data_len += fp->len;
|
||||
head->len += fp->len;
|
||||
if (head->ip_summed != fp->ip_summed)
|
||||
head->ip_summed = CHECKSUM_NONE;
|
||||
else if (head->ip_summed == CHECKSUM_COMPLETE)
|
||||
head->csum = csum_add(head->csum, fp->csum);
|
||||
head->truesize += fp->truesize;
|
||||
while (rbn || fp) {
|
||||
/* fp points to the next sk_buff in the current run;
|
||||
* rbn points to the next run.
|
||||
*/
|
||||
/* Go through the current run. */
|
||||
while (fp) {
|
||||
*nextp = fp;
|
||||
nextp = &fp->next;
|
||||
fp->prev = NULL;
|
||||
memset(&fp->rbnode, 0, sizeof(fp->rbnode));
|
||||
head->data_len += fp->len;
|
||||
head->len += fp->len;
|
||||
if (head->ip_summed != fp->ip_summed)
|
||||
head->ip_summed = CHECKSUM_NONE;
|
||||
else if (head->ip_summed == CHECKSUM_COMPLETE)
|
||||
head->csum = csum_add(head->csum, fp->csum);
|
||||
head->truesize += fp->truesize;
|
||||
fp = FRAG_CB(fp)->next_frag;
|
||||
}
|
||||
/* Move to the next run. */
|
||||
if (rbn) {
|
||||
struct rb_node *rbnext = rb_next(rbn);
|
||||
|
||||
fp = rb_to_skb(rbn);
|
||||
rb_erase(rbn, &qp->q.rb_fragments);
|
||||
rbn = rbnext;
|
||||
}
|
||||
}
|
||||
sub_frag_mem_limit(qp->q.net, head->truesize);
|
||||
|
||||
|
@ -624,6 +651,7 @@ static int ip_frag_reasm(struct ipq *qp, struct sk_buff *skb,
|
|||
qp->q.fragments = NULL;
|
||||
qp->q.rb_fragments = RB_ROOT;
|
||||
qp->q.fragments_tail = NULL;
|
||||
qp->q.last_run_head = NULL;
|
||||
return 0;
|
||||
|
||||
out_nomem:
|
||||
|
|
Loading…
Reference in a new issue