hugetlbfs: avoid taking i_mutex from hugetlbfs_read()

Taking i_mutex in hugetlbfs_read() can result in deadlock with mmap as
explained below

 Thread A:
  read() on hugetlbfs
   hugetlbfs_read() called
    i_mutex grabbed
     hugetlbfs_read_actor() called
      __copy_to_user() called
       page fault is triggered
 Thread B, sharing address space with A:
  mmap() the same file
   ->mmap_sem is grabbed on task_B->mm->mmap_sem
    hugetlbfs_file_mmap() is called
     attempt to grab ->i_mutex and block waiting for A to give it up
 Thread A:
  pagefault handled blocked on attempt to grab task_A->mm->mmap_sem,
 which happens to be the same thing as task_B->mm->mmap_sem.  Block waiting
 for B to give it up.

AFAIU the i_mutex locking was added to hugetlbfs_read() as per
http://lkml.indiana.edu/hypermail/linux/kernel/0707.2/3066.html to take
care of the race between truncate and read.  This patch fixes this by
looking at page->mapping under lock_page() (find_lock_page()) to ensure
that the inode didn't get truncated in the range during a parallel read.

Ideally we can extend the patch to make sure we don't increase i_size in
mmap.  But that will break userspace, because applications will now have
to use truncate(2) to increase i_size in hugetlbfs.

Based on the original patch from Hillf Danton.

Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@kernel.org>		[everything after 2007 :)]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit is contained in:
Aneesh Kumar K.V 2012-03-21 16:34:08 -07:00 committed by Linus Torvalds
parent f5bf18fa22
commit a05b0855fd

View file

@ -245,17 +245,10 @@ static ssize_t hugetlbfs_read(struct file *filp, char __user *buf,
loff_t isize;
ssize_t retval = 0;
mutex_lock(&inode->i_mutex);
/* validate length */
if (len == 0)
goto out;
isize = i_size_read(inode);
if (!isize)
goto out;
end_index = (isize - 1) >> huge_page_shift(h);
for (;;) {
struct page *page;
unsigned long nr, ret;
@ -263,18 +256,21 @@ static ssize_t hugetlbfs_read(struct file *filp, char __user *buf,
/* nr is the maximum number of bytes to copy from this page */
nr = huge_page_size(h);
isize = i_size_read(inode);
if (!isize)
goto out;
end_index = (isize - 1) >> huge_page_shift(h);
if (index >= end_index) {
if (index > end_index)
goto out;
nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
if (nr <= offset) {
if (nr <= offset)
goto out;
}
}
nr = nr - offset;
/* Find the page */
page = find_get_page(mapping, index);
page = find_lock_page(mapping, index);
if (unlikely(page == NULL)) {
/*
* We have a HOLE, zero out the user-buffer for the
@ -286,17 +282,18 @@ static ssize_t hugetlbfs_read(struct file *filp, char __user *buf,
else
ra = 0;
} else {
unlock_page(page);
/*
* We have the page, copy it to user space buffer.
*/
ra = hugetlbfs_read_actor(page, offset, buf, len, nr);
ret = ra;
page_cache_release(page);
}
if (ra < 0) {
if (retval == 0)
retval = ra;
if (page)
page_cache_release(page);
goto out;
}
@ -306,16 +303,12 @@ static ssize_t hugetlbfs_read(struct file *filp, char __user *buf,
index += offset >> huge_page_shift(h);
offset &= ~huge_page_mask(h);
if (page)
page_cache_release(page);
/* short read or no more work */
if ((ret != nr) || (len == 0))
break;
}
out:
*ppos = ((loff_t)index << huge_page_shift(h)) + offset;
mutex_unlock(&inode->i_mutex);
return retval;
}