diff --git a/arch/parisc/Makefile b/arch/parisc/Makefile
index ae4a9b3d4fd6..e574de4efb36 100644
--- a/arch/parisc/Makefile
+++ b/arch/parisc/Makefile
@@ -70,7 +70,7 @@ kernel-y			:= mm/ kernel/ math-emu/ kernel/init_task.o
 kernel-$(CONFIG_HPUX)		+= hpux/
 
 core-y	+= $(addprefix arch/parisc/, $(kernel-y))
-libs-y	+= arch/parisc/lib/
+libs-y	+= arch/parisc/lib/ `$(CC) -print-libgcc-file-name`
 
 drivers-$(CONFIG_OPROFILE)		+= arch/parisc/oprofile/
 
diff --git a/arch/parisc/kernel/parisc_ksyms.c b/arch/parisc/kernel/parisc_ksyms.c
index 671ee5b9950c..7aca704e96f0 100644
--- a/arch/parisc/kernel/parisc_ksyms.c
+++ b/arch/parisc/kernel/parisc_ksyms.c
@@ -122,9 +122,31 @@ EXPORT_SYMBOL($$divI_12);
 EXPORT_SYMBOL($$divI_14);
 EXPORT_SYMBOL($$divI_15);
 
+extern void __ashrdi3(void);
+extern void __ashldi3(void);
+extern void __lshrdi3(void);
+extern void __muldi3(void);
+
+EXPORT_SYMBOL(__ashrdi3);
+EXPORT_SYMBOL(__ashldi3);
+EXPORT_SYMBOL(__lshrdi3);
+EXPORT_SYMBOL(__muldi3);
+
 asmlinkage void * __canonicalize_funcptr_for_compare(void *);
 EXPORT_SYMBOL(__canonicalize_funcptr_for_compare);
 
+#ifdef CONFIG_64BIT
+extern void __divdi3(void);
+extern void __udivdi3(void);
+extern void __umoddi3(void);
+extern void __moddi3(void);
+
+EXPORT_SYMBOL(__divdi3);
+EXPORT_SYMBOL(__udivdi3);
+EXPORT_SYMBOL(__umoddi3);
+EXPORT_SYMBOL(__moddi3);
+#endif
+
 #ifndef CONFIG_64BIT
 extern void $$dyncall(void);
 EXPORT_SYMBOL($$dyncall);
diff --git a/arch/parisc/lib/Makefile b/arch/parisc/lib/Makefile
index 7ce406c7daf5..5f2e6904d14a 100644
--- a/arch/parisc/lib/Makefile
+++ b/arch/parisc/lib/Makefile
@@ -4,4 +4,4 @@
 
 lib-y	:= lusercopy.o bitops.o checksum.o io.o memset.o fixup.o memcpy.o
 
-obj-y	:= libgcc/ milli/ iomap.o
+obj-y	:= iomap.o
diff --git a/arch/parisc/lib/libgcc/Makefile b/arch/parisc/lib/libgcc/Makefile
deleted file mode 100644
index b67a85ad9c87..000000000000
--- a/arch/parisc/lib/libgcc/Makefile
+++ /dev/null
@@ -1,4 +0,0 @@
-obj-y	:= __ashldi3.o __ashrdi3.o __clzsi2.o __divdi3.o __divsi3.o	\
-		__lshrdi3.o __moddi3.o __modsi3.o __udivdi3.o		\
-		__udivmoddi4.o __udivmodsi4.o __udivsi3.o 		\
-		__umoddi3.o __umodsi3.o __muldi3.o __umulsidi3.o
diff --git a/arch/parisc/lib/libgcc/__ashldi3.c b/arch/parisc/lib/libgcc/__ashldi3.c
deleted file mode 100644
index a14a257abb2b..000000000000
--- a/arch/parisc/lib/libgcc/__ashldi3.c
+++ /dev/null
@@ -1,19 +0,0 @@
-#include "libgcc.h"
-
-u64 __ashldi3(u64 v, int cnt)
-{
-	int c = cnt & 31;
-	u32 vl = (u32) v;
-	u32 vh = (u32) (v >> 32);
-
-	if (cnt & 32) {
-		vh = (vl << c);
-		vl = 0;
-	} else {
-		vh = (vh << c) + (vl >> (32 - c));
-		vl = (vl << c);
-	}
-
-	return ((u64) vh << 32) + vl;
-}
-EXPORT_SYMBOL(__ashldi3);
diff --git a/arch/parisc/lib/libgcc/__ashrdi3.c b/arch/parisc/lib/libgcc/__ashrdi3.c
deleted file mode 100644
index 8636a5aa4f77..000000000000
--- a/arch/parisc/lib/libgcc/__ashrdi3.c
+++ /dev/null
@@ -1,19 +0,0 @@
-#include "libgcc.h"
-
-u64 __ashrdi3(u64 v, int cnt)
-{
-	int c = cnt & 31;
-	u32 vl = (u32) v;
-	u32 vh = (u32) (v >> 32);
-
-	if (cnt & 32) {
-		vl = ((s32) vh >> c);
-		vh = (s32) vh >> 31;
-	} else {
-		vl = (vl >> c) + (vh << (32 - c));
-		vh = ((s32) vh >> c);
-	}
-
-	return ((u64) vh << 32) + vl;
-}
-EXPORT_SYMBOL(__ashrdi3);
diff --git a/arch/parisc/lib/libgcc/__clzsi2.c b/arch/parisc/lib/libgcc/__clzsi2.c
deleted file mode 100644
index a7aa2f55a9c6..000000000000
--- a/arch/parisc/lib/libgcc/__clzsi2.c
+++ /dev/null
@@ -1,30 +0,0 @@
-#include "libgcc.h"
-
-u32 __clzsi2(u32 v)
-{
-	int p = 31;
-
-	if (v & 0xffff0000) {
-		p -= 16;
-		v >>= 16;
-	}
-	if (v & 0xff00) {
-		p -= 8;
-		v >>= 8;
-	}
-	if (v & 0xf0) {
-		p -= 4;
-		v >>= 4;
-	}
-	if (v & 0xc) {
-		p -= 2;
-		v >>= 2;
-	}
-	if (v & 0x2) {
-		p -= 1;
-		v >>= 1;
-	}
-
-	return p;
-}
-EXPORT_SYMBOL(__clzsi2);
diff --git a/arch/parisc/lib/libgcc/__divdi3.c b/arch/parisc/lib/libgcc/__divdi3.c
deleted file mode 100644
index f23c6fe2838b..000000000000
--- a/arch/parisc/lib/libgcc/__divdi3.c
+++ /dev/null
@@ -1,23 +0,0 @@
-#include "libgcc.h"
-
-s64 __divdi3(s64 num, s64 den)
-{
-	int minus = 0;
-	s64 v;
-
-	if (num < 0) {
-		num = -num;
-		minus = 1;
-	}
-	if (den < 0) {
-		den = -den;
-		minus ^= 1;
-	}
-
-	v = __udivmoddi4(num, den, NULL);
-	if (minus)
-		v = -v;
-
-	return v;
-}
-EXPORT_SYMBOL(__divdi3);
diff --git a/arch/parisc/lib/libgcc/__divsi3.c b/arch/parisc/lib/libgcc/__divsi3.c
deleted file mode 100644
index 730fb530680d..000000000000
--- a/arch/parisc/lib/libgcc/__divsi3.c
+++ /dev/null
@@ -1,23 +0,0 @@
-#include "libgcc.h"
-
-s32 __divsi3(s32 num, s32 den)
-{
-	int minus = 0;
-	s32 v;
-
-	if (num < 0) {
-		num = -num;
-		minus = 1;
-	}
-	if (den < 0) {
-		den = -den;
-		minus ^= 1;
-	}
-
-	v = __udivmodsi4(num, den, NULL);
-	if (minus)
-		v = -v;
-
-	return v;
-}
-EXPORT_SYMBOL(__divsi3);
diff --git a/arch/parisc/lib/libgcc/__lshrdi3.c b/arch/parisc/lib/libgcc/__lshrdi3.c
deleted file mode 100644
index 4a820708ec57..000000000000
--- a/arch/parisc/lib/libgcc/__lshrdi3.c
+++ /dev/null
@@ -1,19 +0,0 @@
-#include "libgcc.h"
-
-u64 __lshrdi3(u64 v, int cnt)
-{
-	int c = cnt & 31;
-	u32 vl = (u32) v;
-	u32 vh = (u32) (v >> 32);
-
-	if (cnt & 32) {
-		vl = (vh >> c);
-		vh = 0;
-	} else {
-		vl = (vl >> c) + (vh << (32 - c));
-		vh = (vh >> c);
-	}
-
-	return ((u64) vh << 32) + vl;
-}
-EXPORT_SYMBOL(__lshrdi3);
diff --git a/arch/parisc/lib/libgcc/__moddi3.c b/arch/parisc/lib/libgcc/__moddi3.c
deleted file mode 100644
index ed64bbafc989..000000000000
--- a/arch/parisc/lib/libgcc/__moddi3.c
+++ /dev/null
@@ -1,23 +0,0 @@
-#include "libgcc.h"
-
-s64 __moddi3(s64 num, s64 den)
-{
-	int minus = 0;
-	s64 v;
-
-	if (num < 0) {
-		num = -num;
-		minus = 1;
-	}
-	if (den < 0) {
-		den = -den;
-		minus ^= 1;
-	}
-
-	(void)__udivmoddi4(num, den, (u64 *) & v);
-	if (minus)
-		v = -v;
-
-	return v;
-}
-EXPORT_SYMBOL(__moddi3);
diff --git a/arch/parisc/lib/libgcc/__modsi3.c b/arch/parisc/lib/libgcc/__modsi3.c
deleted file mode 100644
index 62f773efaeea..000000000000
--- a/arch/parisc/lib/libgcc/__modsi3.c
+++ /dev/null
@@ -1,23 +0,0 @@
-#include "libgcc.h"
-
-s32 __modsi3(s32 num, s32 den)
-{
-	int minus = 0;
-	s32 v;
-
-	if (num < 0) {
-		num = -num;
-		minus = 1;
-	}
-	if (den < 0) {
-		den = -den;
-		minus ^= 1;
-	}
-
-	(void)__udivmodsi4(num, den, (u32 *) & v);
-	if (minus)
-		v = -v;
-
-	return v;
-}
-EXPORT_SYMBOL(__modsi3);
diff --git a/arch/parisc/lib/libgcc/__muldi3.c b/arch/parisc/lib/libgcc/__muldi3.c
deleted file mode 100644
index 3308abdd5580..000000000000
--- a/arch/parisc/lib/libgcc/__muldi3.c
+++ /dev/null
@@ -1,22 +0,0 @@
-#include "libgcc.h"
-
-union DWunion {
-	struct {
-		s32 high;
-		s32 low;
-	} s;
-	s64 ll;
-};
-
-s64 __muldi3(s64 u, s64 v)
-{
-	const union DWunion uu = { .ll = u };
-	const union DWunion vv = { .ll = v };
-	union DWunion w = { .ll = __umulsidi3(uu.s.low, vv.s.low) };
-
-	w.s.high += ((u32)uu.s.low * (u32)vv.s.high
-		+ (u32)uu.s.high * (u32)vv.s.low);
-
-	return w.ll;
-}
-EXPORT_SYMBOL(__muldi3);
diff --git a/arch/parisc/lib/libgcc/__udivdi3.c b/arch/parisc/lib/libgcc/__udivdi3.c
deleted file mode 100644
index 740023d690f5..000000000000
--- a/arch/parisc/lib/libgcc/__udivdi3.c
+++ /dev/null
@@ -1,7 +0,0 @@
-#include "libgcc.h"
-
-u64 __udivdi3(u64 num, u64 den)
-{
-	return __udivmoddi4(num, den, NULL);
-}
-EXPORT_SYMBOL(__udivdi3);
diff --git a/arch/parisc/lib/libgcc/__udivmoddi4.c b/arch/parisc/lib/libgcc/__udivmoddi4.c
deleted file mode 100644
index 2df0caa5a7d8..000000000000
--- a/arch/parisc/lib/libgcc/__udivmoddi4.c
+++ /dev/null
@@ -1,31 +0,0 @@
-#include "libgcc.h"
-
-u64 __udivmoddi4(u64 num, u64 den, u64 * rem_p)
-{
-	u64 quot = 0, qbit = 1;
-
-	if (den == 0) {
-		BUG();
-	}
-
-	/* Left-justify denominator and count shift */
-	while ((s64) den >= 0) {
-		den <<= 1;
-		qbit <<= 1;
-	}
-
-	while (qbit) {
-		if (den <= num) {
-			num -= den;
-			quot += qbit;
-		}
-		den >>= 1;
-		qbit >>= 1;
-	}
-
-	if (rem_p)
-		*rem_p = num;
-
-	return quot;
-}
-EXPORT_SYMBOL(__udivmoddi4);
diff --git a/arch/parisc/lib/libgcc/__udivmodsi4.c b/arch/parisc/lib/libgcc/__udivmodsi4.c
deleted file mode 100644
index 2a2fc28b2026..000000000000
--- a/arch/parisc/lib/libgcc/__udivmodsi4.c
+++ /dev/null
@@ -1,31 +0,0 @@
-#include "libgcc.h"
-
-u32 __udivmodsi4(u32 num, u32 den, u32 * rem_p)
-{
-	u32 quot = 0, qbit = 1;
-
-	if (den == 0) {
-		BUG();
-	}
-
-	/* Left-justify denominator and count shift */
-	while ((s32) den >= 0) {
-		den <<= 1;
-		qbit <<= 1;
-	}
-
-	while (qbit) {
-		if (den <= num) {
-			num -= den;
-			quot += qbit;
-		}
-		den >>= 1;
-		qbit >>= 1;
-	}
-
-	if (rem_p)
-		*rem_p = num;
-
-	return quot;
-}
-EXPORT_SYMBOL(__udivmodsi4);
diff --git a/arch/parisc/lib/libgcc/__udivsi3.c b/arch/parisc/lib/libgcc/__udivsi3.c
deleted file mode 100644
index 756a44164e90..000000000000
--- a/arch/parisc/lib/libgcc/__udivsi3.c
+++ /dev/null
@@ -1,7 +0,0 @@
-#include "libgcc.h"
-
-u32 __udivsi3(u32 num, u32 den)
-{
-	return __udivmodsi4(num, den, NULL);
-}
-EXPORT_SYMBOL(__udivsi3);
diff --git a/arch/parisc/lib/libgcc/__umoddi3.c b/arch/parisc/lib/libgcc/__umoddi3.c
deleted file mode 100644
index ac744e948bc1..000000000000
--- a/arch/parisc/lib/libgcc/__umoddi3.c
+++ /dev/null
@@ -1,10 +0,0 @@
-#include "libgcc.h"
-
-u64 __umoddi3(u64 num, u64 den)
-{
-	u64 v;
-
-	(void)__udivmoddi4(num, den, &v);
-	return v;
-}
-EXPORT_SYMBOL(__umoddi3);
diff --git a/arch/parisc/lib/libgcc/__umodsi3.c b/arch/parisc/lib/libgcc/__umodsi3.c
deleted file mode 100644
index 51f55aa89f9a..000000000000
--- a/arch/parisc/lib/libgcc/__umodsi3.c
+++ /dev/null
@@ -1,10 +0,0 @@
-#include "libgcc.h"
-
-u32 __umodsi3(u32 num, u32 den)
-{
-	u32 v;
-
-	(void)__udivmodsi4(num, den, &v);
-	return v;
-}
-EXPORT_SYMBOL(__umodsi3);
diff --git a/arch/parisc/lib/libgcc/__umulsidi3.c b/arch/parisc/lib/libgcc/__umulsidi3.c
deleted file mode 100644
index 396f669164d4..000000000000
--- a/arch/parisc/lib/libgcc/__umulsidi3.c
+++ /dev/null
@@ -1,46 +0,0 @@
-#include "libgcc.h"
-
-#define __ll_B ((u32) 1 << (32 / 2))
-#define __ll_lowpart(t) ((u32) (t) & (__ll_B - 1))
-#define __ll_highpart(t) ((u32) (t) >> 16)
-
-#define umul_ppmm(w1, w0, u, v)						\
-  do {									\
-    u32 __x0, __x1, __x2, __x3;						\
-    u16 __ul, __vl, __uh, __vh;						\
-									\
-    __ul = __ll_lowpart (u);						\
-    __uh = __ll_highpart (u);						\
-    __vl = __ll_lowpart (v);						\
-    __vh = __ll_highpart (v);						\
-									\
-    __x0 = (u32) __ul * __vl;						\
-    __x1 = (u32) __ul * __vh;						\
-    __x2 = (u32) __uh * __vl;						\
-    __x3 = (u32) __uh * __vh;						\
-									\
-    __x1 += __ll_highpart (__x0);/* this can't give carry */		\
-    __x1 += __x2;		 /* but this indeed can */		\
-    if (__x1 < __x2)		 /* did we get it? */			\
-      __x3 += __ll_B;		 /* yes, add it in the proper pos.  */	\
-									\
-    (w1) = __x3 + __ll_highpart (__x1);					\
-    (w0) = __ll_lowpart (__x1) * __ll_B + __ll_lowpart (__x0);		\
-  } while (0)
-
-union DWunion {
-	struct {
-		s32 high;
-		s32 low;
-	} s;
-	s64 ll;
-};
-
-u64 __umulsidi3(u32 u, u32 v)
-{
-	union DWunion __w;
-
-	umul_ppmm(__w.s.high, __w.s.low, u, v);
-
-	return __w.ll;
-}
diff --git a/arch/parisc/lib/libgcc/libgcc.h b/arch/parisc/lib/libgcc/libgcc.h
deleted file mode 100644
index 5a6f7a510fbd..000000000000
--- a/arch/parisc/lib/libgcc/libgcc.h
+++ /dev/null
@@ -1,32 +0,0 @@
-#ifndef _PA_LIBGCC_H_
-#define _PA_LIBGCC_H_
-
-#include <linux/types.h>
-#include <linux/module.h>
-
-/* Cribbed from klibc/libgcc/ */
-u64 __ashldi3(u64 v, int cnt);
-u64 __ashrdi3(u64 v, int cnt);
-
-u32 __clzsi2(u32 v);
-
-s64 __divdi3(s64 num, s64 den);
-s32 __divsi3(s32 num, s32 den);
-
-u64 __lshrdi3(u64 v, int cnt);
-
-s64 __moddi3(s64 num, s64 den);
-s32 __modsi3(s32 num, s32 den);
-
-u64 __udivdi3(u64 num, u64 den);
-u32 __udivsi3(u32 num, u32 den);
-
-u64 __udivmoddi4(u64 num, u64 den, u64 * rem_p);
-u32 __udivmodsi4(u32 num, u32 den, u32 * rem_p);
-
-u64 __umulsidi3(u32 u, u32 v);
-
-u64 __umoddi3(u64 num, u64 den);
-u32 __umodsi3(u32 num, u32 den);
-
-#endif /*_PA_LIBGCC_H_*/
diff --git a/arch/parisc/lib/milli/Makefile b/arch/parisc/lib/milli/Makefile
deleted file mode 100644
index 9b24e9b1f3cb..000000000000
--- a/arch/parisc/lib/milli/Makefile
+++ /dev/null
@@ -1 +0,0 @@
-obj-y	:= dyncall.o divI.o divU.o remI.o remU.o div_const.o mulI.o
diff --git a/arch/parisc/lib/milli/divI.S b/arch/parisc/lib/milli/divI.S
deleted file mode 100644
index ac106b7b6f24..000000000000
--- a/arch/parisc/lib/milli/divI.S
+++ /dev/null
@@ -1,254 +0,0 @@
-/* 32 and 64-bit millicode, original author Hewlett-Packard
-   adapted for gcc by Paul Bame <bame@debian.org>
-   and Alan Modra <alan@linuxcare.com.au>.
-
-   Copyright 2001, 2002, 2003 Free Software Foundation, Inc.
-
-   This file is part of GCC and is released under the terms of
-   of the GNU General Public License as published by the Free Software
-   Foundation; either version 2, or (at your option) any later version.
-   See the file COPYING in the top-level GCC source directory for a copy
-   of the license.  */
-
-#include "milli.h"
-
-#ifdef L_divI
-/* ROUTINES:	$$divI, $$divoI
-
-   Single precision divide for signed binary integers.
-
-   The quotient is truncated towards zero.
-   The sign of the quotient is the XOR of the signs of the dividend and
-   divisor.
-   Divide by zero is trapped.
-   Divide of -2**31 by -1 is trapped for $$divoI but not for $$divI.
-
-   INPUT REGISTERS:
-   .	arg0 ==	dividend
-   .	arg1 ==	divisor
-   .	mrp  == return pc
-   .	sr0  == return space when called externally
-
-   OUTPUT REGISTERS:
-   .	arg0 =	undefined
-   .	arg1 =	undefined
-   .	ret1 =	quotient
-
-   OTHER REGISTERS AFFECTED:
-   .	r1   =	undefined
-
-   SIDE EFFECTS:
-   .	Causes a trap under the following conditions:
-   .		divisor is zero  (traps with ADDIT,=  0,25,0)
-   .		dividend==-2**31  and divisor==-1 and routine is $$divoI
-   .				 (traps with ADDO  26,25,0)
-   .	Changes memory at the following places:
-   .		NONE
-
-   PERMISSIBLE CONTEXT:
-   .	Unwindable.
-   .	Suitable for internal or external millicode.
-   .	Assumes the special millicode register conventions.
-
-   DISCUSSION:
-   .	Branchs to other millicode routines using BE
-   .		$$div_# for # being 2,3,4,5,6,7,8,9,10,12,14,15
-   .
-   .	For selected divisors, calls a divide by constant routine written by
-   .	Karl Pettis.  Eligible divisors are 1..15 excluding 11 and 13.
-   .
-   .	The only overflow case is -2**31 divided by -1.
-   .	Both routines return -2**31 but only $$divoI traps.  */
-
-RDEFINE(temp,r1)
-RDEFINE(retreg,ret1)	/*  r29 */
-RDEFINE(temp1,arg0)
-	SUBSPA_MILLI_DIV
-	ATTR_MILLI
-	.import $$divI_2,millicode
-	.import $$divI_3,millicode
-	.import $$divI_4,millicode
-	.import $$divI_5,millicode
-	.import $$divI_6,millicode
-	.import $$divI_7,millicode
-	.import $$divI_8,millicode
-	.import $$divI_9,millicode
-	.import $$divI_10,millicode
-	.import $$divI_12,millicode
-	.import $$divI_14,millicode
-	.import $$divI_15,millicode
-	.export $$divI,millicode
-	.export	$$divoI,millicode
-	.proc
-	.callinfo	millicode
-	.entry
-GSYM($$divoI)
-	comib,=,n  -1,arg1,LREF(negative1)	/*  when divisor == -1 */
-GSYM($$divI)
-	ldo	-1(arg1),temp		/*  is there at most one bit set ? */
-	and,<>	arg1,temp,r0		/*  if not, don't use power of 2 divide */
-	addi,>	0,arg1,r0		/*  if divisor > 0, use power of 2 divide */
-	b,n	LREF(neg_denom)
-LSYM(pow2)
-	addi,>=	0,arg0,retreg		/*  if numerator is negative, add the */
-	add	arg0,temp,retreg	/*  (denominaotr -1) to correct for shifts */
-	extru,=	arg1,15,16,temp		/*  test denominator with 0xffff0000 */
-	extrs	retreg,15,16,retreg	/*  retreg = retreg >> 16 */
-	or	arg1,temp,arg1		/*  arg1 = arg1 | (arg1 >> 16) */
-	ldi	0xcc,temp1		/*  setup 0xcc in temp1 */
-	extru,= arg1,23,8,temp		/*  test denominator with 0xff00 */
-	extrs	retreg,23,24,retreg	/*  retreg = retreg >> 8 */
-	or	arg1,temp,arg1		/*  arg1 = arg1 | (arg1 >> 8) */
-	ldi	0xaa,temp		/*  setup 0xaa in temp */
-	extru,= arg1,27,4,r0		/*  test denominator with 0xf0 */
-	extrs	retreg,27,28,retreg	/*  retreg = retreg >> 4 */
-	and,=	arg1,temp1,r0		/*  test denominator with 0xcc */
-	extrs	retreg,29,30,retreg	/*  retreg = retreg >> 2 */
-	and,=	arg1,temp,r0		/*  test denominator with 0xaa */
-	extrs	retreg,30,31,retreg	/*  retreg = retreg >> 1 */
-	MILLIRETN
-LSYM(neg_denom)
-	addi,<	0,arg1,r0		/*  if arg1 >= 0, it's not power of 2 */
-	b,n	LREF(regular_seq)
-	sub	r0,arg1,temp		/*  make denominator positive */
-	comb,=,n  arg1,temp,LREF(regular_seq)	/*  test against 0x80000000 and 0 */
-	ldo	-1(temp),retreg		/*  is there at most one bit set ? */
-	and,=	temp,retreg,r0		/*  if so, the denominator is power of 2 */
-	b,n	LREF(regular_seq)
-	sub	r0,arg0,retreg		/*  negate numerator */
-	comb,=,n arg0,retreg,LREF(regular_seq) /*  test against 0x80000000 */
-	copy	retreg,arg0		/*  set up arg0, arg1 and temp	*/
-	copy	temp,arg1		/*  before branching to pow2 */
-	b	LREF(pow2)
-	ldo	-1(arg1),temp
-LSYM(regular_seq)
-	comib,>>=,n 15,arg1,LREF(small_divisor)
-	add,>=	0,arg0,retreg		/*  move dividend, if retreg < 0, */
-LSYM(normal)
-	subi	0,retreg,retreg		/*    make it positive */
-	sub	0,arg1,temp		/*  clear carry,  */
-					/*    negate the divisor */
-	ds	0,temp,0		/*  set V-bit to the comple- */
-					/*    ment of the divisor sign */
-	add	retreg,retreg,retreg	/*  shift msb bit into carry */
-	ds	r0,arg1,temp		/*  1st divide step, if no carry */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  2nd divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  3rd divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  4th divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  5th divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  6th divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  7th divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  8th divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  9th divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  10th divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  11th divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  12th divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  13th divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  14th divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  15th divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  16th divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  17th divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  18th divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  19th divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  20th divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  21st divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  22nd divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  23rd divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  24th divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  25th divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  26th divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  27th divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  28th divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  29th divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  30th divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  31st divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  32nd divide step, */
-	addc	retreg,retreg,retreg	/*  shift last retreg bit into retreg */
-	xor,>=	arg0,arg1,0		/*  get correct sign of quotient */
-	  sub	0,retreg,retreg		/*    based on operand signs */
-	MILLIRETN
-	nop
-
-LSYM(small_divisor)
-
-#if defined(CONFIG_64BIT)
-/*  Clear the upper 32 bits of the arg1 register.  We are working with	*/
-/*  small divisors (and 32-bit integers)   We must not be mislead  */
-/*  by "1" bits left in the upper 32 bits.  */
-	depd %r0,31,32,%r25
-#endif
-	blr,n	arg1,r0
-	nop
-/*  table for divisor == 0,1, ... ,15 */
-	addit,=	0,arg1,r0	/*  trap if divisor == 0 */
-	nop
-	MILLIRET		/*  divisor == 1 */
-	copy	arg0,retreg
-	MILLI_BEN($$divI_2)	/*  divisor == 2 */
-	nop
-	MILLI_BEN($$divI_3)	/*  divisor == 3 */
-	nop
-	MILLI_BEN($$divI_4)	/*  divisor == 4 */
-	nop
-	MILLI_BEN($$divI_5)	/*  divisor == 5 */
-	nop
-	MILLI_BEN($$divI_6)	/*  divisor == 6 */
-	nop
-	MILLI_BEN($$divI_7)	/*  divisor == 7 */
-	nop
-	MILLI_BEN($$divI_8)	/*  divisor == 8 */
-	nop
-	MILLI_BEN($$divI_9)	/*  divisor == 9 */
-	nop
-	MILLI_BEN($$divI_10)	/*  divisor == 10 */
-	nop
-	b	LREF(normal)		/*  divisor == 11 */
-	add,>=	0,arg0,retreg
-	MILLI_BEN($$divI_12)	/*  divisor == 12 */
-	nop
-	b	LREF(normal)		/*  divisor == 13 */
-	add,>=	0,arg0,retreg
-	MILLI_BEN($$divI_14)	/*  divisor == 14 */
-	nop
-	MILLI_BEN($$divI_15)	/*  divisor == 15 */
-	nop
-
-LSYM(negative1)
-	sub	0,arg0,retreg	/*  result is negation of dividend */
-	MILLIRET
-	addo	arg0,arg1,r0	/*  trap iff dividend==0x80000000 && divisor==-1 */
-	.exit
-	.procend
-	.end
-#endif
diff --git a/arch/parisc/lib/milli/divU.S b/arch/parisc/lib/milli/divU.S
deleted file mode 100644
index 9287fe2546fa..000000000000
--- a/arch/parisc/lib/milli/divU.S
+++ /dev/null
@@ -1,235 +0,0 @@
-/* 32 and 64-bit millicode, original author Hewlett-Packard
-   adapted for gcc by Paul Bame <bame@debian.org>
-   and Alan Modra <alan@linuxcare.com.au>.
-
-   Copyright 2001, 2002, 2003 Free Software Foundation, Inc.
-
-   This file is part of GCC and is released under the terms of
-   of the GNU General Public License as published by the Free Software
-   Foundation; either version 2, or (at your option) any later version.
-   See the file COPYING in the top-level GCC source directory for a copy
-   of the license.  */
-
-#include "milli.h"
-
-#ifdef L_divU
-/* ROUTINE:	$$divU
-   .
-   .	Single precision divide for unsigned integers.
-   .
-   .	Quotient is truncated towards zero.
-   .	Traps on divide by zero.
-
-   INPUT REGISTERS:
-   .	arg0 ==	dividend
-   .	arg1 ==	divisor
-   .	mrp  == return pc
-   .	sr0  == return space when called externally
-
-   OUTPUT REGISTERS:
-   .	arg0 =	undefined
-   .	arg1 =	undefined
-   .	ret1 =	quotient
-
-   OTHER REGISTERS AFFECTED:
-   .	r1   =	undefined
-
-   SIDE EFFECTS:
-   .	Causes a trap under the following conditions:
-   .		divisor is zero
-   .	Changes memory at the following places:
-   .		NONE
-
-   PERMISSIBLE CONTEXT:
-   .	Unwindable.
-   .	Does not create a stack frame.
-   .	Suitable for internal or external millicode.
-   .	Assumes the special millicode register conventions.
-
-   DISCUSSION:
-   .	Branchs to other millicode routines using BE:
-   .		$$divU_# for 3,5,6,7,9,10,12,14,15
-   .
-   .	For selected small divisors calls the special divide by constant
-   .	routines written by Karl Pettis.  These are: 3,5,6,7,9,10,12,14,15.  */
-
-RDEFINE(temp,r1)
-RDEFINE(retreg,ret1)	/* r29 */
-RDEFINE(temp1,arg0)
-	SUBSPA_MILLI_DIV
-	ATTR_MILLI
-	.export $$divU,millicode
-	.import $$divU_3,millicode
-	.import $$divU_5,millicode
-	.import $$divU_6,millicode
-	.import $$divU_7,millicode
-	.import $$divU_9,millicode
-	.import $$divU_10,millicode
-	.import $$divU_12,millicode
-	.import $$divU_14,millicode
-	.import $$divU_15,millicode
-	.proc
-	.callinfo	millicode
-	.entry
-GSYM($$divU)
-/* The subtract is not nullified since it does no harm and can be used
-   by the two cases that branch back to "normal".  */
-	ldo	-1(arg1),temp		/* is there at most one bit set ? */
-	and,=	arg1,temp,r0		/* if so, denominator is power of 2 */
-	b	LREF(regular_seq)
-	addit,=	0,arg1,0		/* trap for zero dvr */
-	copy	arg0,retreg
-	extru,= arg1,15,16,temp		/* test denominator with 0xffff0000 */
-	extru	retreg,15,16,retreg	/* retreg = retreg >> 16 */
-	or	arg1,temp,arg1		/* arg1 = arg1 | (arg1 >> 16) */
-	ldi	0xcc,temp1		/* setup 0xcc in temp1 */
-	extru,= arg1,23,8,temp		/* test denominator with 0xff00 */
-	extru	retreg,23,24,retreg	/* retreg = retreg >> 8 */
-	or	arg1,temp,arg1		/* arg1 = arg1 | (arg1 >> 8) */
-	ldi	0xaa,temp		/* setup 0xaa in temp */
-	extru,= arg1,27,4,r0		/* test denominator with 0xf0 */
-	extru	retreg,27,28,retreg	/* retreg = retreg >> 4 */
-	and,=	arg1,temp1,r0		/* test denominator with 0xcc */
-	extru	retreg,29,30,retreg	/* retreg = retreg >> 2 */
-	and,=	arg1,temp,r0		/* test denominator with 0xaa */
-	extru	retreg,30,31,retreg	/* retreg = retreg >> 1 */
-	MILLIRETN
-	nop	
-LSYM(regular_seq)
-	comib,>=  15,arg1,LREF(special_divisor)
-	subi	0,arg1,temp		/* clear carry, negate the divisor */
-	ds	r0,temp,r0		/* set V-bit to 1 */
-LSYM(normal)
-	add	arg0,arg0,retreg	/* shift msb bit into carry */
-	ds	r0,arg1,temp		/* 1st divide step, if no carry */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 2nd divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 3rd divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 4th divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 5th divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 6th divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 7th divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 8th divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 9th divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 10th divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 11th divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 12th divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 13th divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 14th divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 15th divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 16th divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 17th divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 18th divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 19th divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 20th divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 21st divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 22nd divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 23rd divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 24th divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 25th divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 26th divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 27th divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 28th divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 29th divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 30th divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 31st divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 32nd divide step, */
-	MILLIRET
-	addc	retreg,retreg,retreg	/* shift last retreg bit into retreg */
-
-/* Handle the cases where divisor is a small constant or has high bit on.  */
-LSYM(special_divisor)
-/*	blr	arg1,r0 */
-/*	comib,>,n  0,arg1,LREF(big_divisor) ; nullify previous instruction */
-
-/* Pratap 8/13/90. The 815 Stirling chip set has a bug that prevents us from
-   generating such a blr, comib sequence. A problem in nullification. So I
-   rewrote this code.  */
-
-#if defined(CONFIG_64BIT)
-/* Clear the upper 32 bits of the arg1 register.  We are working with
-   small divisors (and 32-bit unsigned integers)   We must not be mislead
-   by "1" bits left in the upper 32 bits.  */
-	depd %r0,31,32,%r25
-#endif
-	comib,>	0,arg1,LREF(big_divisor)
-	nop
-	blr	arg1,r0
-	nop
-
-LSYM(zero_divisor)	/* this label is here to provide external visibility */
-	addit,=	0,arg1,0		/* trap for zero dvr */
-	nop
-	MILLIRET			/* divisor == 1 */
-	copy	arg0,retreg
-	MILLIRET			/* divisor == 2 */
-	extru	arg0,30,31,retreg
-	MILLI_BEN($$divU_3)		/* divisor == 3 */
-	nop
-	MILLIRET			/* divisor == 4 */
-	extru	arg0,29,30,retreg
-	MILLI_BEN($$divU_5)		/* divisor == 5 */
-	nop
-	MILLI_BEN($$divU_6)		/* divisor == 6 */
-	nop
-	MILLI_BEN($$divU_7)		/* divisor == 7 */
-	nop
-	MILLIRET			/* divisor == 8 */
-	extru	arg0,28,29,retreg
-	MILLI_BEN($$divU_9)		/* divisor == 9 */
-	nop
-	MILLI_BEN($$divU_10)		/* divisor == 10 */
-	nop
-	b	LREF(normal)		/* divisor == 11 */
-	ds	r0,temp,r0		/* set V-bit to 1 */
-	MILLI_BEN($$divU_12)		/* divisor == 12 */
-	nop
-	b	LREF(normal)		/* divisor == 13 */
-	ds	r0,temp,r0		/* set V-bit to 1 */
-	MILLI_BEN($$divU_14)		/* divisor == 14 */
-	nop
-	MILLI_BEN($$divU_15)		/* divisor == 15 */
-	nop
-
-/* Handle the case where the high bit is on in the divisor.
-   Compute:	if( dividend>=divisor) quotient=1; else quotient=0;
-   Note:	dividend>==divisor iff dividend-divisor does not borrow
-   and		not borrow iff carry.  */
-LSYM(big_divisor)
-	sub	arg0,arg1,r0
-	MILLIRET
-	addc	r0,r0,retreg
-	.exit
-	.procend
-	.end
-#endif
diff --git a/arch/parisc/lib/milli/div_const.S b/arch/parisc/lib/milli/div_const.S
deleted file mode 100644
index dd660076e944..000000000000
--- a/arch/parisc/lib/milli/div_const.S
+++ /dev/null
@@ -1,682 +0,0 @@
-/* 32 and 64-bit millicode, original author Hewlett-Packard
-   adapted for gcc by Paul Bame <bame@debian.org>
-   and Alan Modra <alan@linuxcare.com.au>.
-
-   Copyright 2001, 2002, 2003 Free Software Foundation, Inc.
-
-   This file is part of GCC and is released under the terms of
-   of the GNU General Public License as published by the Free Software
-   Foundation; either version 2, or (at your option) any later version.
-   See the file COPYING in the top-level GCC source directory for a copy
-   of the license.  */
-
-#include "milli.h"
-
-#ifdef L_div_const
-/* ROUTINE:	$$divI_2
-   .		$$divI_3	$$divU_3
-   .		$$divI_4
-   .		$$divI_5	$$divU_5
-   .		$$divI_6	$$divU_6
-   .		$$divI_7	$$divU_7
-   .		$$divI_8
-   .		$$divI_9	$$divU_9
-   .		$$divI_10	$$divU_10
-   .
-   .		$$divI_12	$$divU_12
-   .
-   .		$$divI_14	$$divU_14
-   .		$$divI_15	$$divU_15
-   .		$$divI_16
-   .		$$divI_17	$$divU_17
-   .
-   .	Divide by selected constants for single precision binary integers.
-
-   INPUT REGISTERS:
-   .	arg0 ==	dividend
-   .	mrp  == return pc
-   .	sr0  == return space when called externally
-
-   OUTPUT REGISTERS:
-   .	arg0 =	undefined
-   .	arg1 =	undefined
-   .	ret1 =	quotient
-
-   OTHER REGISTERS AFFECTED:
-   .	r1   =	undefined
-
-   SIDE EFFECTS:
-   .	Causes a trap under the following conditions: NONE
-   .	Changes memory at the following places:  NONE
-
-   PERMISSIBLE CONTEXT:
-   .	Unwindable.
-   .	Does not create a stack frame.
-   .	Suitable for internal or external millicode.
-   .	Assumes the special millicode register conventions.
-
-   DISCUSSION:
-   .	Calls other millicode routines using mrp:  NONE
-   .	Calls other millicode routines:  NONE  */
-
-
-/* TRUNCATED DIVISION BY SMALL INTEGERS
-
-   We are interested in q(x) = floor(x/y), where x >= 0 and y > 0
-   (with y fixed).
-
-   Let a = floor(z/y), for some choice of z.  Note that z will be
-   chosen so that division by z is cheap.
-
-   Let r be the remainder(z/y).  In other words, r = z - ay.
-
-   Now, our method is to choose a value for b such that
-
-   q'(x) = floor((ax+b)/z)
-
-   is equal to q(x) over as large a range of x as possible.  If the
-   two are equal over a sufficiently large range, and if it is easy to
-   form the product (ax), and it is easy to divide by z, then we can
-   perform the division much faster than the general division algorithm.
-
-   So, we want the following to be true:
-
-   .	For x in the following range:
-   .
-   .	    ky <= x < (k+1)y
-   .
-   .	implies that
-   .
-   .	    k <= (ax+b)/z < (k+1)
-
-   We want to determine b such that this is true for all k in the
-   range {0..K} for some maximum K.
-
-   Since (ax+b) is an increasing function of x, we can take each
-   bound separately to determine the "best" value for b.
-
-   (ax+b)/z < (k+1)	       implies
-
-   (a((k+1)y-1)+b < (k+1)z     implies
-
-   b < a + (k+1)(z-ay)	       implies
-
-   b < a + (k+1)r
-
-   This needs to be true for all k in the range {0..K}.  In
-   particular, it is true for k = 0 and this leads to a maximum
-   acceptable value for b.
-
-   b < a+r   or   b <= a+r-1
-
-   Taking the other bound, we have
-
-   k <= (ax+b)/z	       implies
-
-   k <= (aky+b)/z	       implies
-
-   k(z-ay) <= b		       implies
-
-   kr <= b
-
-   Clearly, the largest range for k will be achieved by maximizing b,
-   when r is not zero.	When r is zero, then the simplest choice for b
-   is 0.  When r is not 0, set
-
-   .	b = a+r-1
-
-   Now, by construction, q'(x) = floor((ax+b)/z) = q(x) = floor(x/y)
-   for all x in the range:
-
-   .	0 <= x < (K+1)y
-
-   We need to determine what K is.  Of our two bounds,
-
-   .	b < a+(k+1)r	is satisfied for all k >= 0, by construction.
-
-   The other bound is
-
-   .	kr <= b
-
-   This is always true if r = 0.  If r is not 0 (the usual case), then
-   K = floor((a+r-1)/r), is the maximum value for k.
-
-   Therefore, the formula q'(x) = floor((ax+b)/z) yields the correct
-   answer for q(x) = floor(x/y) when x is in the range
-
-   (0,(K+1)y-1)	       K = floor((a+r-1)/r)
-
-   To be most useful, we want (K+1)y-1 = (max x) >= 2**32-1 so that
-   the formula for q'(x) yields the correct value of q(x) for all x
-   representable by a single word in HPPA.
-
-   We are also constrained in that computing the product (ax), adding
-   b, and dividing by z must all be done quickly, otherwise we will be
-   better off going through the general algorithm using the DS
-   instruction, which uses approximately 70 cycles.
-
-   For each y, there is a choice of z which satisfies the constraints
-   for (K+1)y >= 2**32.  We may not, however, be able to satisfy the
-   timing constraints for arbitrary y.	It seems that z being equal to
-   a power of 2 or a power of 2 minus 1 is as good as we can do, since
-   it minimizes the time to do division by z.  We want the choice of z
-   to also result in a value for (a) that minimizes the computation of
-   the product (ax).  This is best achieved if (a) has a regular bit
-   pattern (so the multiplication can be done with shifts and adds).
-   The value of (a) also needs to be less than 2**32 so the product is
-   always guaranteed to fit in 2 words.
-
-   In actual practice, the following should be done:
-
-   1) For negative x, you should take the absolute value and remember
-   .  the fact so that the result can be negated.  This obviously does
-   .  not apply in the unsigned case.
-   2) For even y, you should factor out the power of 2 that divides y
-   .  and divide x by it.  You can then proceed by dividing by the
-   .  odd factor of y.
-
-   Here is a table of some odd values of y, and corresponding choices
-   for z which are "good".
-
-    y	  z	  r	 a (hex)     max x (hex)
-
-    3	2**32	  1	55555555      100000001
-    5	2**32	  1	33333333      100000003
-    7  2**24-1	  0	  249249     (infinite)
-    9  2**24-1	  0	  1c71c7     (infinite)
-   11  2**20-1	  0	   1745d     (infinite)
-   13  2**24-1	  0	  13b13b     (infinite)
-   15	2**32	  1	11111111      10000000d
-   17	2**32	  1	 f0f0f0f      10000000f
-
-   If r is 1, then b = a+r-1 = a.  This simplifies the computation
-   of (ax+b), since you can compute (x+1)(a) instead.  If r is 0,
-   then b = 0 is ok to use which simplifies (ax+b).
-
-   The bit patterns for 55555555, 33333333, and 11111111 are obviously
-   very regular.  The bit patterns for the other values of a above are:
-
-    y	   (hex)	  (binary)
-
-    7	  249249  001001001001001001001001  << regular >>
-    9	  1c71c7  000111000111000111000111  << regular >>
-   11	   1745d  000000010111010001011101  << irregular >>
-   13	  13b13b  000100111011000100111011  << irregular >>
-
-   The bit patterns for (a) corresponding to (y) of 11 and 13 may be
-   too irregular to warrant using this method.
-
-   When z is a power of 2 minus 1, then the division by z is slightly
-   more complicated, involving an iterative solution.
-
-   The code presented here solves division by 1 through 17, except for
-   11 and 13. There are algorithms for both signed and unsigned
-   quantities given.
-
-   TIMINGS (cycles)
-
-   divisor  positive  negative	unsigned
-
-   .   1	2	   2	     2
-   .   2	4	   4	     2
-   .   3       19	  21	    19
-   .   4	4	   4	     2
-   .   5       18	  22	    19
-   .   6       19	  22	    19
-   .   8	4	   4	     2
-   .  10       18	  19	    17
-   .  12       18	  20	    18
-   .  15       16	  18	    16
-   .  16	4	   4	     2
-   .  17       16	  18	    16
-
-   Now, the algorithm for 7, 9, and 14 is an iterative one.  That is,
-   a loop body is executed until the tentative quotient is 0.  The
-   number of times the loop body is executed varies depending on the
-   dividend, but is never more than two times.	If the dividend is
-   less than the divisor, then the loop body is not executed at all.
-   Each iteration adds 4 cycles to the timings.
-
-   divisor  positive  negative	unsigned
-
-   .   7       19+4n	 20+4n	   20+4n    n = number of iterations
-   .   9       21+4n	 22+4n	   21+4n
-   .  14       21+4n	 22+4n	   20+4n
-
-   To give an idea of how the number of iterations varies, here is a
-   table of dividend versus number of iterations when dividing by 7.
-
-   smallest	 largest       required
-   dividend	dividend      iterations
-
-   .	0	     6		    0
-   .	7	 0x6ffffff	    1
-   0x1000006	0xffffffff	    2
-
-   There is some overlap in the range of numbers requiring 1 and 2
-   iterations.	*/
-
-RDEFINE(t2,r1)
-RDEFINE(x2,arg0)	/*  r26 */
-RDEFINE(t1,arg1)	/*  r25 */
-RDEFINE(x1,ret1)	/*  r29 */
-
-	SUBSPA_MILLI_DIV
-	ATTR_MILLI
-
-	.proc
-	.callinfo	millicode
-	.entry
-/* NONE of these routines require a stack frame
-   ALL of these routines are unwindable from millicode	*/
-
-GSYM($$divide_by_constant)
-	.export $$divide_by_constant,millicode
-/*  Provides a "nice" label for the code covered by the unwind descriptor
-    for things like gprof.  */
-
-/* DIVISION BY 2 (shift by 1) */
-GSYM($$divI_2)
-	.export		$$divI_2,millicode
-	comclr,>=	arg0,0,0
-	addi		1,arg0,arg0
-	MILLIRET
-	extrs		arg0,30,31,ret1
-
-
-/* DIVISION BY 4 (shift by 2) */
-GSYM($$divI_4)
-	.export		$$divI_4,millicode
-	comclr,>=	arg0,0,0
-	addi		3,arg0,arg0
-	MILLIRET
-	extrs		arg0,29,30,ret1
-
-
-/* DIVISION BY 8 (shift by 3) */
-GSYM($$divI_8)
-	.export		$$divI_8,millicode
-	comclr,>=	arg0,0,0
-	addi		7,arg0,arg0
-	MILLIRET
-	extrs		arg0,28,29,ret1
-
-/* DIVISION BY 16 (shift by 4) */
-GSYM($$divI_16)
-	.export		$$divI_16,millicode
-	comclr,>=	arg0,0,0
-	addi		15,arg0,arg0
-	MILLIRET
-	extrs		arg0,27,28,ret1
-
-/****************************************************************************
-*
-*	DIVISION BY DIVISORS OF FFFFFFFF, and powers of 2 times these
-*
-*	includes 3,5,15,17 and also 6,10,12
-*
-****************************************************************************/
-
-/* DIVISION BY 3 (use z = 2**32; a = 55555555) */
-
-GSYM($$divI_3)
-	.export		$$divI_3,millicode
-	comb,<,N	x2,0,LREF(neg3)
-
-	addi		1,x2,x2		/* this cannot overflow	*/
-	extru		x2,1,2,x1	/* multiply by 5 to get started */
-	sh2add		x2,x2,x2
-	b		LREF(pos)
-	addc		x1,0,x1
-
-LSYM(neg3)
-	subi		1,x2,x2		/* this cannot overflow	*/
-	extru		x2,1,2,x1	/* multiply by 5 to get started */
-	sh2add		x2,x2,x2
-	b		LREF(neg)
-	addc		x1,0,x1
-
-GSYM($$divU_3)
-	.export		$$divU_3,millicode
-	addi		1,x2,x2		/* this CAN overflow */
-	addc		0,0,x1
-	shd		x1,x2,30,t1	/* multiply by 5 to get started */
-	sh2add		x2,x2,x2
-	b		LREF(pos)
-	addc		x1,t1,x1
-
-/* DIVISION BY 5 (use z = 2**32; a = 33333333) */
-
-GSYM($$divI_5)
-	.export		$$divI_5,millicode
-	comb,<,N	x2,0,LREF(neg5)
-
-	addi		3,x2,t1		/* this cannot overflow	*/
-	sh1add		x2,t1,x2	/* multiply by 3 to get started */
-	b		LREF(pos)
-	addc		0,0,x1
-
-LSYM(neg5)
-	sub		0,x2,x2		/* negate x2			*/
-	addi		1,x2,x2		/* this cannot overflow	*/
-	shd		0,x2,31,x1	/* get top bit (can be 1)	*/
-	sh1add		x2,x2,x2	/* multiply by 3 to get started */
-	b		LREF(neg)
-	addc		x1,0,x1
-
-GSYM($$divU_5)
-	.export		$$divU_5,millicode
-	addi		1,x2,x2		/* this CAN overflow */
-	addc		0,0,x1
-	shd		x1,x2,31,t1	/* multiply by 3 to get started */
-	sh1add		x2,x2,x2
-	b		LREF(pos)
-	addc		t1,x1,x1
-
-/* DIVISION BY	6 (shift to divide by 2 then divide by 3) */
-GSYM($$divI_6)
-	.export		$$divI_6,millicode
-	comb,<,N	x2,0,LREF(neg6)
-	extru		x2,30,31,x2	/* divide by 2			*/
-	addi		5,x2,t1		/* compute 5*(x2+1) = 5*x2+5	*/
-	sh2add		x2,t1,x2	/* multiply by 5 to get started */
-	b		LREF(pos)
-	addc		0,0,x1
-
-LSYM(neg6)
-	subi		2,x2,x2		/* negate, divide by 2, and add 1 */
-					/* negation and adding 1 are done */
-					/* at the same time by the SUBI   */
-	extru		x2,30,31,x2
-	shd		0,x2,30,x1
-	sh2add		x2,x2,x2	/* multiply by 5 to get started */
-	b		LREF(neg)
-	addc		x1,0,x1
-
-GSYM($$divU_6)
-	.export		$$divU_6,millicode
-	extru		x2,30,31,x2	/* divide by 2 */
-	addi		1,x2,x2		/* cannot carry */
-	shd		0,x2,30,x1	/* multiply by 5 to get started */
-	sh2add		x2,x2,x2
-	b		LREF(pos)
-	addc		x1,0,x1
-
-/* DIVISION BY 10 (shift to divide by 2 then divide by 5) */
-GSYM($$divU_10)
-	.export		$$divU_10,millicode
-	extru		x2,30,31,x2	/* divide by 2 */
-	addi		3,x2,t1		/* compute 3*(x2+1) = (3*x2)+3	*/
-	sh1add		x2,t1,x2	/* multiply by 3 to get started */
-	addc		0,0,x1
-LSYM(pos)
-	shd		x1,x2,28,t1	/* multiply by 0x11 */
-	shd		x2,0,28,t2
-	add		x2,t2,x2
-	addc		x1,t1,x1
-LSYM(pos_for_17)
-	shd		x1,x2,24,t1	/* multiply by 0x101 */
-	shd		x2,0,24,t2
-	add		x2,t2,x2
-	addc		x1,t1,x1
-
-	shd		x1,x2,16,t1	/* multiply by 0x10001 */
-	shd		x2,0,16,t2
-	add		x2,t2,x2
-	MILLIRET
-	addc		x1,t1,x1
-
-GSYM($$divI_10)
-	.export		$$divI_10,millicode
-	comb,<		x2,0,LREF(neg10)
-	copy		0,x1
-	extru		x2,30,31,x2	/* divide by 2 */
-	addib,TR	1,x2,LREF(pos)	/* add 1 (cannot overflow)     */
-	sh1add		x2,x2,x2	/* multiply by 3 to get started */
-
-LSYM(neg10)
-	subi		2,x2,x2		/* negate, divide by 2, and add 1 */
-					/* negation and adding 1 are done */
-					/* at the same time by the SUBI   */
-	extru		x2,30,31,x2
-	sh1add		x2,x2,x2	/* multiply by 3 to get started */
-LSYM(neg)
-	shd		x1,x2,28,t1	/* multiply by 0x11 */
-	shd		x2,0,28,t2
-	add		x2,t2,x2
-	addc		x1,t1,x1
-LSYM(neg_for_17)
-	shd		x1,x2,24,t1	/* multiply by 0x101 */
-	shd		x2,0,24,t2
-	add		x2,t2,x2
-	addc		x1,t1,x1
-
-	shd		x1,x2,16,t1	/* multiply by 0x10001 */
-	shd		x2,0,16,t2
-	add		x2,t2,x2
-	addc		x1,t1,x1
-	MILLIRET
-	sub		0,x1,x1
-
-/* DIVISION BY 12 (shift to divide by 4 then divide by 3) */
-GSYM($$divI_12)
-	.export		$$divI_12,millicode
-	comb,<		x2,0,LREF(neg12)
-	copy		0,x1
-	extru		x2,29,30,x2	/* divide by 4			*/
-	addib,tr	1,x2,LREF(pos)	/* compute 5*(x2+1) = 5*x2+5    */
-	sh2add		x2,x2,x2	/* multiply by 5 to get started */
-
-LSYM(neg12)
-	subi		4,x2,x2		/* negate, divide by 4, and add 1 */
-					/* negation and adding 1 are done */
-					/* at the same time by the SUBI   */
-	extru		x2,29,30,x2
-	b		LREF(neg)
-	sh2add		x2,x2,x2	/* multiply by 5 to get started */
-
-GSYM($$divU_12)
-	.export		$$divU_12,millicode
-	extru		x2,29,30,x2	/* divide by 4   */
-	addi		5,x2,t1		/* cannot carry */
-	sh2add		x2,t1,x2	/* multiply by 5 to get started */
-	b		LREF(pos)
-	addc		0,0,x1
-
-/* DIVISION BY 15 (use z = 2**32; a = 11111111) */
-GSYM($$divI_15)
-	.export		$$divI_15,millicode
-	comb,<		x2,0,LREF(neg15)
-	copy		0,x1
-	addib,tr	1,x2,LREF(pos)+4
-	shd		x1,x2,28,t1
-
-LSYM(neg15)
-	b		LREF(neg)
-	subi		1,x2,x2
-
-GSYM($$divU_15)
-	.export		$$divU_15,millicode
-	addi		1,x2,x2		/* this CAN overflow */
-	b		LREF(pos)
-	addc		0,0,x1
-
-/* DIVISION BY 17 (use z = 2**32; a =  f0f0f0f) */
-GSYM($$divI_17)
-	.export		$$divI_17,millicode
-	comb,<,n	x2,0,LREF(neg17)
-	addi		1,x2,x2		/* this cannot overflow */
-	shd		0,x2,28,t1	/* multiply by 0xf to get started */
-	shd		x2,0,28,t2
-	sub		t2,x2,x2
-	b		LREF(pos_for_17)
-	subb		t1,0,x1
-
-LSYM(neg17)
-	subi		1,x2,x2		/* this cannot overflow */
-	shd		0,x2,28,t1	/* multiply by 0xf to get started */
-	shd		x2,0,28,t2
-	sub		t2,x2,x2
-	b		LREF(neg_for_17)
-	subb		t1,0,x1
-
-GSYM($$divU_17)
-	.export		$$divU_17,millicode
-	addi		1,x2,x2		/* this CAN overflow */
-	addc		0,0,x1
-	shd		x1,x2,28,t1	/* multiply by 0xf to get started */
-LSYM(u17)
-	shd		x2,0,28,t2
-	sub		t2,x2,x2
-	b		LREF(pos_for_17)
-	subb		t1,x1,x1
-
-
-/* DIVISION BY DIVISORS OF FFFFFF, and powers of 2 times these
-   includes 7,9 and also 14
-
-
-   z = 2**24-1
-   r = z mod x = 0
-
-   so choose b = 0
-
-   Also, in order to divide by z = 2**24-1, we approximate by dividing
-   by (z+1) = 2**24 (which is easy), and then correcting.
-
-   (ax) = (z+1)q' + r
-   .	= zq' + (q'+r)
-
-   So to compute (ax)/z, compute q' = (ax)/(z+1) and r = (ax) mod (z+1)
-   Then the true remainder of (ax)/z is (q'+r).  Repeat the process
-   with this new remainder, adding the tentative quotients together,
-   until a tentative quotient is 0 (and then we are done).  There is
-   one last correction to be done.  It is possible that (q'+r) = z.
-   If so, then (q'+r)/(z+1) = 0 and it looks like we are done.	But,
-   in fact, we need to add 1 more to the quotient.  Now, it turns
-   out that this happens if and only if the original value x is
-   an exact multiple of y.  So, to avoid a three instruction test at
-   the end, instead use 1 instruction to add 1 to x at the beginning.  */
-
-/* DIVISION BY 7 (use z = 2**24-1; a = 249249) */
-GSYM($$divI_7)
-	.export		$$divI_7,millicode
-	comb,<,n	x2,0,LREF(neg7)
-LSYM(7)
-	addi		1,x2,x2		/* cannot overflow */
-	shd		0,x2,29,x1
-	sh3add		x2,x2,x2
-	addc		x1,0,x1
-LSYM(pos7)
-	shd		x1,x2,26,t1
-	shd		x2,0,26,t2
-	add		x2,t2,x2
-	addc		x1,t1,x1
-
-	shd		x1,x2,20,t1
-	shd		x2,0,20,t2
-	add		x2,t2,x2
-	addc		x1,t1,t1
-
-	/* computed <t1,x2>.  Now divide it by (2**24 - 1)	*/
-
-	copy		0,x1
-	shd,=		t1,x2,24,t1	/* tentative quotient  */
-LSYM(1)
-	addb,tr		t1,x1,LREF(2)	/* add to previous quotient   */
-	extru		x2,31,24,x2	/* new remainder (unadjusted) */
-
-	MILLIRETN
-
-LSYM(2)
-	addb,tr		t1,x2,LREF(1)	/* adjust remainder */
-	extru,=		x2,7,8,t1	/* new quotient     */
-
-LSYM(neg7)
-	subi		1,x2,x2		/* negate x2 and add 1 */
-LSYM(8)
-	shd		0,x2,29,x1
-	sh3add		x2,x2,x2
-	addc		x1,0,x1
-
-LSYM(neg7_shift)
-	shd		x1,x2,26,t1
-	shd		x2,0,26,t2
-	add		x2,t2,x2
-	addc		x1,t1,x1
-
-	shd		x1,x2,20,t1
-	shd		x2,0,20,t2
-	add		x2,t2,x2
-	addc		x1,t1,t1
-
-	/* computed <t1,x2>.  Now divide it by (2**24 - 1)	*/
-
-	copy		0,x1
-	shd,=		t1,x2,24,t1	/* tentative quotient  */
-LSYM(3)
-	addb,tr		t1,x1,LREF(4)	/* add to previous quotient   */
-	extru		x2,31,24,x2	/* new remainder (unadjusted) */
-
-	MILLIRET
-	sub		0,x1,x1		/* negate result    */
-
-LSYM(4)
-	addb,tr		t1,x2,LREF(3)	/* adjust remainder */
-	extru,=		x2,7,8,t1	/* new quotient     */
-
-GSYM($$divU_7)
-	.export		$$divU_7,millicode
-	addi		1,x2,x2		/* can carry */
-	addc		0,0,x1
-	shd		x1,x2,29,t1
-	sh3add		x2,x2,x2
-	b		LREF(pos7)
-	addc		t1,x1,x1
-
-/* DIVISION BY 9 (use z = 2**24-1; a = 1c71c7) */
-GSYM($$divI_9)
-	.export		$$divI_9,millicode
-	comb,<,n	x2,0,LREF(neg9)
-	addi		1,x2,x2		/* cannot overflow */
-	shd		0,x2,29,t1
-	shd		x2,0,29,t2
-	sub		t2,x2,x2
-	b		LREF(pos7)
-	subb		t1,0,x1
-
-LSYM(neg9)
-	subi		1,x2,x2		/* negate and add 1 */
-	shd		0,x2,29,t1
-	shd		x2,0,29,t2
-	sub		t2,x2,x2
-	b		LREF(neg7_shift)
-	subb		t1,0,x1
-
-GSYM($$divU_9)
-	.export		$$divU_9,millicode
-	addi		1,x2,x2		/* can carry */
-	addc		0,0,x1
-	shd		x1,x2,29,t1
-	shd		x2,0,29,t2
-	sub		t2,x2,x2
-	b		LREF(pos7)
-	subb		t1,x1,x1
-
-/* DIVISION BY 14 (shift to divide by 2 then divide by 7) */
-GSYM($$divI_14)
-	.export		$$divI_14,millicode
-	comb,<,n	x2,0,LREF(neg14)
-GSYM($$divU_14)
-	.export		$$divU_14,millicode
-	b		LREF(7)		/* go to 7 case */
-	extru		x2,30,31,x2	/* divide by 2  */
-
-LSYM(neg14)
-	subi		2,x2,x2		/* negate (and add 2) */
-	b		LREF(8)
-	extru		x2,30,31,x2	/* divide by 2	      */
-	.exit
-	.procend
-	.end
-#endif
diff --git a/arch/parisc/lib/milli/dyncall.S b/arch/parisc/lib/milli/dyncall.S
deleted file mode 100644
index 27f9ca558d0a..000000000000
--- a/arch/parisc/lib/milli/dyncall.S
+++ /dev/null
@@ -1,32 +0,0 @@
-/* 32 and 64-bit millicode, original author Hewlett-Packard
-   adapted for gcc by Paul Bame <bame@debian.org>
-   and Alan Modra <alan@linuxcare.com.au>.
-
-   Copyright 2001, 2002, 2003 Free Software Foundation, Inc.
-
-   This file is part of GCC and is released under the terms of
-   of the GNU General Public License as published by the Free Software
-   Foundation; either version 2, or (at your option) any later version.
-   See the file COPYING in the top-level GCC source directory for a copy
-   of the license.  */
-
-#include "milli.h"
-
-#ifdef L_dyncall
-	SUBSPA_MILLI
-	ATTR_DATA
-GSYM($$dyncall)
-	.export $$dyncall,millicode
-	.proc
-	.callinfo	millicode
-	.entry
-	bb,>=,n %r22,30,LREF(1)		; branch if not plabel address
-	depi	0,31,2,%r22		; clear the two least significant bits
-	ldw	4(%r22),%r19		; load new LTP value
-	ldw	0(%r22),%r22		; load address of target
-LSYM(1)
-	bv	%r0(%r22)		; branch to the real target
-	stw	%r2,-24(%r30)		; save return address into frame marker
-	.exit
-	.procend
-#endif
diff --git a/arch/parisc/lib/milli/milli.S b/arch/parisc/lib/milli/milli.S
deleted file mode 100644
index 47c6cde712e3..000000000000
--- a/arch/parisc/lib/milli/milli.S
+++ /dev/null
@@ -1,2071 +0,0 @@
-/* 32 and 64-bit millicode, original author Hewlett-Packard
-   adapted for gcc by Paul Bame <bame@debian.org>
-   and Alan Modra <alan@linuxcare.com.au>.
-
-   Copyright 2001, 2002, 2003 Free Software Foundation, Inc.
-
-   This file is part of GCC and is released under the terms of
-   of the GNU General Public License as published by the Free Software
-   Foundation; either version 2, or (at your option) any later version.
-   See the file COPYING in the top-level GCC source directory for a copy
-   of the license.  */
-
-#ifdef CONFIG_64BIT
-        .level  2.0w
-#endif
-
-/* Hardware General Registers.  */
-r0:	.reg	%r0
-r1:	.reg	%r1
-r2:	.reg	%r2
-r3:	.reg	%r3
-r4:	.reg	%r4
-r5:	.reg	%r5
-r6:	.reg	%r6
-r7:	.reg	%r7
-r8:	.reg	%r8
-r9:	.reg	%r9
-r10:	.reg	%r10
-r11:	.reg	%r11
-r12:	.reg	%r12
-r13:	.reg	%r13
-r14:	.reg	%r14
-r15:	.reg	%r15
-r16:	.reg	%r16
-r17:	.reg	%r17
-r18:	.reg	%r18
-r19:	.reg	%r19
-r20:	.reg	%r20
-r21:	.reg	%r21
-r22:	.reg	%r22
-r23:	.reg	%r23
-r24:	.reg	%r24
-r25:	.reg	%r25
-r26:	.reg	%r26
-r27:	.reg	%r27
-r28:	.reg	%r28
-r29:	.reg	%r29
-r30:	.reg	%r30
-r31:	.reg	%r31
-
-/* Hardware Space Registers.  */
-sr0:	.reg	%sr0
-sr1:	.reg	%sr1
-sr2:	.reg	%sr2
-sr3:	.reg	%sr3
-sr4:	.reg	%sr4
-sr5:	.reg	%sr5
-sr6:	.reg	%sr6
-sr7:	.reg	%sr7
-
-/* Hardware Floating Point Registers.  */
-fr0:	.reg	%fr0
-fr1:	.reg	%fr1
-fr2:	.reg	%fr2
-fr3:	.reg	%fr3
-fr4:	.reg	%fr4
-fr5:	.reg	%fr5
-fr6:	.reg	%fr6
-fr7:	.reg	%fr7
-fr8:	.reg	%fr8
-fr9:	.reg	%fr9
-fr10:	.reg	%fr10
-fr11:	.reg	%fr11
-fr12:	.reg	%fr12
-fr13:	.reg	%fr13
-fr14:	.reg	%fr14
-fr15:	.reg	%fr15
-
-/* Hardware Control Registers.  */
-cr11:	.reg	%cr11
-sar:	.reg	%cr11	/* Shift Amount Register */
-
-/* Software Architecture General Registers.  */
-rp:	.reg    r2	/* return pointer */
-#ifdef CONFIG_64BIT
-mrp:	.reg	r2 	/* millicode return pointer */
-#else
-mrp:	.reg	r31	/* millicode return pointer */
-#endif
-ret0:	.reg    r28	/* return value */
-ret1:	.reg    r29	/* return value (high part of double) */
-sp:	.reg 	r30	/* stack pointer */
-dp:	.reg	r27	/* data pointer */
-arg0:	.reg	r26	/* argument */
-arg1:	.reg	r25	/* argument or high part of double argument */
-arg2:	.reg	r24	/* argument */
-arg3:	.reg	r23	/* argument or high part of double argument */
-
-/* Software Architecture Space Registers.  */
-/* 		sr0	; return link from BLE */
-sret:	.reg	sr1	/* return value */
-sarg:	.reg	sr1	/* argument */
-/* 		sr4	; PC SPACE tracker */
-/* 		sr5	; process private data */
-
-/* Frame Offsets (millicode convention!)  Used when calling other
-   millicode routines.  Stack unwinding is dependent upon these
-   definitions.  */
-r31_slot:	.equ	-20	/* "current RP" slot */
-sr0_slot:	.equ	-16     /* "static link" slot */
-#if defined(CONFIG_64BIT)
-mrp_slot:       .equ    -16	/* "current RP" slot */
-psp_slot:       .equ    -8	/* "previous SP" slot */
-#else
-mrp_slot:	.equ	-20     /* "current RP" slot (replacing "r31_slot") */
-#endif
-
-
-#define DEFINE(name,value)name:	.EQU	value
-#define RDEFINE(name,value)name:	.REG	value
-#ifdef milliext
-#define MILLI_BE(lbl)   BE    lbl(sr7,r0)
-#define MILLI_BEN(lbl)  BE,n  lbl(sr7,r0)
-#define MILLI_BLE(lbl)	BLE   lbl(sr7,r0)
-#define MILLI_BLEN(lbl)	BLE,n lbl(sr7,r0)
-#define MILLIRETN	BE,n  0(sr0,mrp)
-#define MILLIRET	BE    0(sr0,mrp)
-#define MILLI_RETN	BE,n  0(sr0,mrp)
-#define MILLI_RET	BE    0(sr0,mrp)
-#else
-#define MILLI_BE(lbl)	B     lbl
-#define MILLI_BEN(lbl)  B,n   lbl
-#define MILLI_BLE(lbl)	BL    lbl,mrp
-#define MILLI_BLEN(lbl)	BL,n  lbl,mrp
-#define MILLIRETN	BV,n  0(mrp)
-#define MILLIRET	BV    0(mrp)
-#define MILLI_RETN	BV,n  0(mrp)
-#define MILLI_RET	BV    0(mrp)
-#endif
-
-#define CAT(a,b)	a##b
-
-#define SUBSPA_MILLI	 .section .text
-#define SUBSPA_MILLI_DIV .section .text.div,"ax",@progbits! .align 16
-#define SUBSPA_MILLI_MUL .section .text.mul,"ax",@progbits! .align 16
-#define ATTR_MILLI
-#define SUBSPA_DATA	 .section .data
-#define ATTR_DATA
-#define GLOBAL		 $global$
-#define GSYM(sym) 	 !sym:
-#define LSYM(sym)	 !CAT(.L,sym:)
-#define LREF(sym)	 CAT(.L,sym)
-
-#ifdef L_dyncall
-	SUBSPA_MILLI
-	ATTR_DATA
-GSYM($$dyncall)
-	.export $$dyncall,millicode
-	.proc
-	.callinfo	millicode
-	.entry
-	bb,>=,n %r22,30,LREF(1)		; branch if not plabel address
-	depi	0,31,2,%r22		; clear the two least significant bits
-	ldw	4(%r22),%r19		; load new LTP value
-	ldw	0(%r22),%r22		; load address of target
-LSYM(1)
-	bv	%r0(%r22)		; branch to the real target
-	stw	%r2,-24(%r30)		; save return address into frame marker
-	.exit
-	.procend
-#endif
-
-#ifdef L_divI
-/* ROUTINES:	$$divI, $$divoI
-
-   Single precision divide for signed binary integers.
-
-   The quotient is truncated towards zero.
-   The sign of the quotient is the XOR of the signs of the dividend and
-   divisor.
-   Divide by zero is trapped.
-   Divide of -2**31 by -1 is trapped for $$divoI but not for $$divI.
-
-   INPUT REGISTERS:
-   .	arg0 ==	dividend
-   .	arg1 ==	divisor
-   .	mrp  == return pc
-   .	sr0  == return space when called externally
-
-   OUTPUT REGISTERS:
-   .	arg0 =	undefined
-   .	arg1 =	undefined
-   .	ret1 =	quotient
-
-   OTHER REGISTERS AFFECTED:
-   .	r1   =	undefined
-
-   SIDE EFFECTS:
-   .	Causes a trap under the following conditions:
-   .		divisor is zero  (traps with ADDIT,=  0,25,0)
-   .		dividend==-2**31  and divisor==-1 and routine is $$divoI
-   .				 (traps with ADDO  26,25,0)
-   .	Changes memory at the following places:
-   .		NONE
-
-   PERMISSIBLE CONTEXT:
-   .	Unwindable.
-   .	Suitable for internal or external millicode.
-   .	Assumes the special millicode register conventions.
-
-   DISCUSSION:
-   .	Branchs to other millicode routines using BE
-   .		$$div_# for # being 2,3,4,5,6,7,8,9,10,12,14,15
-   .
-   .	For selected divisors, calls a divide by constant routine written by
-   .	Karl Pettis.  Eligible divisors are 1..15 excluding 11 and 13.
-   .
-   .	The only overflow case is -2**31 divided by -1.
-   .	Both routines return -2**31 but only $$divoI traps.  */
-
-RDEFINE(temp,r1)
-RDEFINE(retreg,ret1)	/*  r29 */
-RDEFINE(temp1,arg0)
-	SUBSPA_MILLI_DIV
-	ATTR_MILLI
-	.import $$divI_2,millicode
-	.import $$divI_3,millicode
-	.import $$divI_4,millicode
-	.import $$divI_5,millicode
-	.import $$divI_6,millicode
-	.import $$divI_7,millicode
-	.import $$divI_8,millicode
-	.import $$divI_9,millicode
-	.import $$divI_10,millicode
-	.import $$divI_12,millicode
-	.import $$divI_14,millicode
-	.import $$divI_15,millicode
-	.export $$divI,millicode
-	.export	$$divoI,millicode
-	.proc
-	.callinfo	millicode
-	.entry
-GSYM($$divoI)
-	comib,=,n  -1,arg1,LREF(negative1)	/*  when divisor == -1 */
-GSYM($$divI)
-	ldo	-1(arg1),temp		/*  is there at most one bit set ? */
-	and,<>	arg1,temp,r0		/*  if not, don't use power of 2 divide */
-	addi,>	0,arg1,r0		/*  if divisor > 0, use power of 2 divide */
-	b,n	LREF(neg_denom)
-LSYM(pow2)
-	addi,>=	0,arg0,retreg		/*  if numerator is negative, add the */
-	add	arg0,temp,retreg	/*  (denominaotr -1) to correct for shifts */
-	extru,=	arg1,15,16,temp		/*  test denominator with 0xffff0000 */
-	extrs	retreg,15,16,retreg	/*  retreg = retreg >> 16 */
-	or	arg1,temp,arg1		/*  arg1 = arg1 | (arg1 >> 16) */
-	ldi	0xcc,temp1		/*  setup 0xcc in temp1 */
-	extru,= arg1,23,8,temp		/*  test denominator with 0xff00 */
-	extrs	retreg,23,24,retreg	/*  retreg = retreg >> 8 */
-	or	arg1,temp,arg1		/*  arg1 = arg1 | (arg1 >> 8) */
-	ldi	0xaa,temp		/*  setup 0xaa in temp */
-	extru,= arg1,27,4,r0		/*  test denominator with 0xf0 */
-	extrs	retreg,27,28,retreg	/*  retreg = retreg >> 4 */
-	and,=	arg1,temp1,r0		/*  test denominator with 0xcc */
-	extrs	retreg,29,30,retreg	/*  retreg = retreg >> 2 */
-	and,=	arg1,temp,r0		/*  test denominator with 0xaa */
-	extrs	retreg,30,31,retreg	/*  retreg = retreg >> 1 */
-	MILLIRETN
-LSYM(neg_denom)
-	addi,<	0,arg1,r0		/*  if arg1 >= 0, it's not power of 2 */
-	b,n	LREF(regular_seq)
-	sub	r0,arg1,temp		/*  make denominator positive */
-	comb,=,n  arg1,temp,LREF(regular_seq)	/*  test against 0x80000000 and 0 */
-	ldo	-1(temp),retreg		/*  is there at most one bit set ? */
-	and,=	temp,retreg,r0		/*  if so, the denominator is power of 2 */
-	b,n	LREF(regular_seq)
-	sub	r0,arg0,retreg		/*  negate numerator */
-	comb,=,n arg0,retreg,LREF(regular_seq) /*  test against 0x80000000 */
-	copy	retreg,arg0		/*  set up arg0, arg1 and temp	*/
-	copy	temp,arg1		/*  before branching to pow2 */
-	b	LREF(pow2)
-	ldo	-1(arg1),temp
-LSYM(regular_seq)
-	comib,>>=,n 15,arg1,LREF(small_divisor)
-	add,>=	0,arg0,retreg		/*  move dividend, if retreg < 0, */
-LSYM(normal)
-	subi	0,retreg,retreg		/*    make it positive */
-	sub	0,arg1,temp		/*  clear carry,  */
-					/*    negate the divisor */
-	ds	0,temp,0		/*  set V-bit to the comple- */
-					/*    ment of the divisor sign */
-	add	retreg,retreg,retreg	/*  shift msb bit into carry */
-	ds	r0,arg1,temp		/*  1st divide step, if no carry */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  2nd divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  3rd divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  4th divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  5th divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  6th divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  7th divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  8th divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  9th divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  10th divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  11th divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  12th divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  13th divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  14th divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  15th divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  16th divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  17th divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  18th divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  19th divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  20th divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  21st divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  22nd divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  23rd divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  24th divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  25th divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  26th divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  27th divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  28th divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  29th divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  30th divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  31st divide step */
-	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds	temp,arg1,temp		/*  32nd divide step, */
-	addc	retreg,retreg,retreg	/*  shift last retreg bit into retreg */
-	xor,>=	arg0,arg1,0		/*  get correct sign of quotient */
-	  sub	0,retreg,retreg		/*    based on operand signs */
-	MILLIRETN
-	nop
-
-LSYM(small_divisor)
-
-#if defined(CONFIG_64BIT)
-/*  Clear the upper 32 bits of the arg1 register.  We are working with	*/
-/*  small divisors (and 32-bit integers)   We must not be mislead  */
-/*  by "1" bits left in the upper 32 bits.  */
-	depd %r0,31,32,%r25
-#endif
-	blr,n	arg1,r0
-	nop
-/*  table for divisor == 0,1, ... ,15 */
-	addit,=	0,arg1,r0	/*  trap if divisor == 0 */
-	nop
-	MILLIRET		/*  divisor == 1 */
-	copy	arg0,retreg
-	MILLI_BEN($$divI_2)	/*  divisor == 2 */
-	nop
-	MILLI_BEN($$divI_3)	/*  divisor == 3 */
-	nop
-	MILLI_BEN($$divI_4)	/*  divisor == 4 */
-	nop
-	MILLI_BEN($$divI_5)	/*  divisor == 5 */
-	nop
-	MILLI_BEN($$divI_6)	/*  divisor == 6 */
-	nop
-	MILLI_BEN($$divI_7)	/*  divisor == 7 */
-	nop
-	MILLI_BEN($$divI_8)	/*  divisor == 8 */
-	nop
-	MILLI_BEN($$divI_9)	/*  divisor == 9 */
-	nop
-	MILLI_BEN($$divI_10)	/*  divisor == 10 */
-	nop
-	b	LREF(normal)		/*  divisor == 11 */
-	add,>=	0,arg0,retreg
-	MILLI_BEN($$divI_12)	/*  divisor == 12 */
-	nop
-	b	LREF(normal)		/*  divisor == 13 */
-	add,>=	0,arg0,retreg
-	MILLI_BEN($$divI_14)	/*  divisor == 14 */
-	nop
-	MILLI_BEN($$divI_15)	/*  divisor == 15 */
-	nop
-
-LSYM(negative1)
-	sub	0,arg0,retreg	/*  result is negation of dividend */
-	MILLIRET
-	addo	arg0,arg1,r0	/*  trap iff dividend==0x80000000 && divisor==-1 */
-	.exit
-	.procend
-	.end
-#endif
-
-#ifdef L_divU
-/* ROUTINE:	$$divU
-   .
-   .	Single precision divide for unsigned integers.
-   .
-   .	Quotient is truncated towards zero.
-   .	Traps on divide by zero.
-
-   INPUT REGISTERS:
-   .	arg0 ==	dividend
-   .	arg1 ==	divisor
-   .	mrp  == return pc
-   .	sr0  == return space when called externally
-
-   OUTPUT REGISTERS:
-   .	arg0 =	undefined
-   .	arg1 =	undefined
-   .	ret1 =	quotient
-
-   OTHER REGISTERS AFFECTED:
-   .	r1   =	undefined
-
-   SIDE EFFECTS:
-   .	Causes a trap under the following conditions:
-   .		divisor is zero
-   .	Changes memory at the following places:
-   .		NONE
-
-   PERMISSIBLE CONTEXT:
-   .	Unwindable.
-   .	Does not create a stack frame.
-   .	Suitable for internal or external millicode.
-   .	Assumes the special millicode register conventions.
-
-   DISCUSSION:
-   .	Branchs to other millicode routines using BE:
-   .		$$divU_# for 3,5,6,7,9,10,12,14,15
-   .
-   .	For selected small divisors calls the special divide by constant
-   .	routines written by Karl Pettis.  These are: 3,5,6,7,9,10,12,14,15.  */
-
-RDEFINE(temp,r1)
-RDEFINE(retreg,ret1)	/* r29 */
-RDEFINE(temp1,arg0)
-	SUBSPA_MILLI_DIV
-	ATTR_MILLI
-	.export $$divU,millicode
-	.import $$divU_3,millicode
-	.import $$divU_5,millicode
-	.import $$divU_6,millicode
-	.import $$divU_7,millicode
-	.import $$divU_9,millicode
-	.import $$divU_10,millicode
-	.import $$divU_12,millicode
-	.import $$divU_14,millicode
-	.import $$divU_15,millicode
-	.proc
-	.callinfo	millicode
-	.entry
-GSYM($$divU)
-/* The subtract is not nullified since it does no harm and can be used
-   by the two cases that branch back to "normal".  */
-	ldo	-1(arg1),temp		/* is there at most one bit set ? */
-	and,=	arg1,temp,r0		/* if so, denominator is power of 2 */
-	b	LREF(regular_seq)
-	addit,=	0,arg1,0		/* trap for zero dvr */
-	copy	arg0,retreg
-	extru,= arg1,15,16,temp		/* test denominator with 0xffff0000 */
-	extru	retreg,15,16,retreg	/* retreg = retreg >> 16 */
-	or	arg1,temp,arg1		/* arg1 = arg1 | (arg1 >> 16) */
-	ldi	0xcc,temp1		/* setup 0xcc in temp1 */
-	extru,= arg1,23,8,temp		/* test denominator with 0xff00 */
-	extru	retreg,23,24,retreg	/* retreg = retreg >> 8 */
-	or	arg1,temp,arg1		/* arg1 = arg1 | (arg1 >> 8) */
-	ldi	0xaa,temp		/* setup 0xaa in temp */
-	extru,= arg1,27,4,r0		/* test denominator with 0xf0 */
-	extru	retreg,27,28,retreg	/* retreg = retreg >> 4 */
-	and,=	arg1,temp1,r0		/* test denominator with 0xcc */
-	extru	retreg,29,30,retreg	/* retreg = retreg >> 2 */
-	and,=	arg1,temp,r0		/* test denominator with 0xaa */
-	extru	retreg,30,31,retreg	/* retreg = retreg >> 1 */
-	MILLIRETN
-	nop	
-LSYM(regular_seq)
-	comib,>=  15,arg1,LREF(special_divisor)
-	subi	0,arg1,temp		/* clear carry, negate the divisor */
-	ds	r0,temp,r0		/* set V-bit to 1 */
-LSYM(normal)
-	add	arg0,arg0,retreg	/* shift msb bit into carry */
-	ds	r0,arg1,temp		/* 1st divide step, if no carry */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 2nd divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 3rd divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 4th divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 5th divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 6th divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 7th divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 8th divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 9th divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 10th divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 11th divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 12th divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 13th divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 14th divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 15th divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 16th divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 17th divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 18th divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 19th divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 20th divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 21st divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 22nd divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 23rd divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 24th divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 25th divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 26th divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 27th divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 28th divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 29th divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 30th divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 31st divide step */
-	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
-	ds	temp,arg1,temp		/* 32nd divide step, */
-	MILLIRET
-	addc	retreg,retreg,retreg	/* shift last retreg bit into retreg */
-
-/* Handle the cases where divisor is a small constant or has high bit on.  */
-LSYM(special_divisor)
-/*	blr	arg1,r0 */
-/*	comib,>,n  0,arg1,LREF(big_divisor) ; nullify previous instruction */
-
-/* Pratap 8/13/90. The 815 Stirling chip set has a bug that prevents us from
-   generating such a blr, comib sequence. A problem in nullification. So I
-   rewrote this code.  */
-
-#if defined(CONFIG_64BIT)
-/* Clear the upper 32 bits of the arg1 register.  We are working with
-   small divisors (and 32-bit unsigned integers)   We must not be mislead
-   by "1" bits left in the upper 32 bits.  */
-	depd %r0,31,32,%r25
-#endif
-	comib,>	0,arg1,LREF(big_divisor)
-	nop
-	blr	arg1,r0
-	nop
-
-LSYM(zero_divisor)	/* this label is here to provide external visibility */
-	addit,=	0,arg1,0		/* trap for zero dvr */
-	nop
-	MILLIRET			/* divisor == 1 */
-	copy	arg0,retreg
-	MILLIRET			/* divisor == 2 */
-	extru	arg0,30,31,retreg
-	MILLI_BEN($$divU_3)		/* divisor == 3 */
-	nop
-	MILLIRET			/* divisor == 4 */
-	extru	arg0,29,30,retreg
-	MILLI_BEN($$divU_5)		/* divisor == 5 */
-	nop
-	MILLI_BEN($$divU_6)		/* divisor == 6 */
-	nop
-	MILLI_BEN($$divU_7)		/* divisor == 7 */
-	nop
-	MILLIRET			/* divisor == 8 */
-	extru	arg0,28,29,retreg
-	MILLI_BEN($$divU_9)		/* divisor == 9 */
-	nop
-	MILLI_BEN($$divU_10)		/* divisor == 10 */
-	nop
-	b	LREF(normal)		/* divisor == 11 */
-	ds	r0,temp,r0		/* set V-bit to 1 */
-	MILLI_BEN($$divU_12)		/* divisor == 12 */
-	nop
-	b	LREF(normal)		/* divisor == 13 */
-	ds	r0,temp,r0		/* set V-bit to 1 */
-	MILLI_BEN($$divU_14)		/* divisor == 14 */
-	nop
-	MILLI_BEN($$divU_15)		/* divisor == 15 */
-	nop
-
-/* Handle the case where the high bit is on in the divisor.
-   Compute:	if( dividend>=divisor) quotient=1; else quotient=0;
-   Note:	dividend>==divisor iff dividend-divisor does not borrow
-   and		not borrow iff carry.  */
-LSYM(big_divisor)
-	sub	arg0,arg1,r0
-	MILLIRET
-	addc	r0,r0,retreg
-	.exit
-	.procend
-	.end
-#endif
-
-#ifdef L_remI
-/* ROUTINE:	$$remI
-
-   DESCRIPTION:
-   .	$$remI returns the remainder of the division of two signed 32-bit
-   .	integers.  The sign of the remainder is the same as the sign of
-   .	the dividend.
-
-
-   INPUT REGISTERS:
-   .	arg0 == dividend
-   .	arg1 == divisor
-   .	mrp  == return pc
-   .	sr0  == return space when called externally
-
-   OUTPUT REGISTERS:
-   .	arg0 = destroyed
-   .	arg1 = destroyed
-   .	ret1 = remainder
-
-   OTHER REGISTERS AFFECTED:
-   .	r1   = undefined
-
-   SIDE EFFECTS:
-   .	Causes a trap under the following conditions:  DIVIDE BY ZERO
-   .	Changes memory at the following places:  NONE
-
-   PERMISSIBLE CONTEXT:
-   .	Unwindable
-   .	Does not create a stack frame
-   .	Is usable for internal or external microcode
-
-   DISCUSSION:
-   .	Calls other millicode routines via mrp:  NONE
-   .	Calls other millicode routines:  NONE  */
-
-RDEFINE(tmp,r1)
-RDEFINE(retreg,ret1)
-
-	SUBSPA_MILLI
-	ATTR_MILLI
-	.proc
-	.callinfo millicode
-	.entry
-GSYM($$remI)
-GSYM($$remoI)
-	.export $$remI,MILLICODE
-	.export $$remoI,MILLICODE
-	ldo		-1(arg1),tmp		/*  is there at most one bit set ? */
-	and,<>		arg1,tmp,r0		/*  if not, don't use power of 2 */
-	addi,>		0,arg1,r0		/*  if denominator > 0, use power */
-						/*  of 2 */
-	b,n		LREF(neg_denom)
-LSYM(pow2)
-	comb,>,n	0,arg0,LREF(neg_num)	/*  is numerator < 0 ? */
-	and		arg0,tmp,retreg		/*  get the result */
-	MILLIRETN
-LSYM(neg_num)
-	subi		0,arg0,arg0		/*  negate numerator */
-	and		arg0,tmp,retreg		/*  get the result */
-	subi		0,retreg,retreg		/*  negate result */
-	MILLIRETN
-LSYM(neg_denom)
-	addi,<		0,arg1,r0		/*  if arg1 >= 0, it's not power */
-						/*  of 2 */
-	b,n		LREF(regular_seq)
-	sub		r0,arg1,tmp		/*  make denominator positive */
-	comb,=,n	arg1,tmp,LREF(regular_seq) /*  test against 0x80000000 and 0 */
-	ldo		-1(tmp),retreg		/*  is there at most one bit set ? */
-	and,=		tmp,retreg,r0		/*  if not, go to regular_seq */
-	b,n		LREF(regular_seq)
-	comb,>,n	0,arg0,LREF(neg_num_2)	/*  if arg0 < 0, negate it  */
-	and		arg0,retreg,retreg
-	MILLIRETN
-LSYM(neg_num_2)
-	subi		0,arg0,tmp		/*  test against 0x80000000 */
-	and		tmp,retreg,retreg
-	subi		0,retreg,retreg
-	MILLIRETN
-LSYM(regular_seq)
-	addit,=		0,arg1,0		/*  trap if div by zero */
-	add,>=		0,arg0,retreg		/*  move dividend, if retreg < 0, */
-	sub		0,retreg,retreg		/*    make it positive */
-	sub		0,arg1, tmp		/*  clear carry,  */
-						/*    negate the divisor */
-	ds		0, tmp,0		/*  set V-bit to the comple- */
-						/*    ment of the divisor sign */
-	or		0,0, tmp		/*  clear  tmp */
-	add		retreg,retreg,retreg	/*  shift msb bit into carry */
-	ds		 tmp,arg1, tmp		/*  1st divide step, if no carry */
-						/*    out, msb of quotient = 0 */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-LSYM(t1)
-	ds		 tmp,arg1, tmp		/*  2nd divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  3rd divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  4th divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  5th divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  6th divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  7th divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  8th divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  9th divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  10th divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  11th divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  12th divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  13th divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  14th divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  15th divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  16th divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  17th divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  18th divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  19th divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  20th divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  21st divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  22nd divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  23rd divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  24th divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  25th divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  26th divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  27th divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  28th divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  29th divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  30th divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  31st divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  32nd divide step, */
-	addc		retreg,retreg,retreg	/*  shift last bit into retreg */
-	movb,>=,n	 tmp,retreg,LREF(finish) /*  branch if pos.  tmp */
-	add,<		arg1,0,0		/*  if arg1 > 0, add arg1 */
-	add,tr		 tmp,arg1,retreg	/*    for correcting remainder tmp */
-	sub		 tmp,arg1,retreg	/*  else add absolute value arg1 */
-LSYM(finish)
-	add,>=		arg0,0,0		/*  set sign of remainder */
-	sub		0,retreg,retreg		/*    to sign of dividend */
-	MILLIRET
-	nop
-	.exit
-	.procend
-#ifdef milliext
-	.origin 0x00000200
-#endif
-	.end
-#endif
-
-#ifdef L_remU
-/* ROUTINE:	$$remU
-   .	Single precision divide for remainder with unsigned binary integers.
-   .
-   .	The remainder must be dividend-(dividend/divisor)*divisor.
-   .	Divide by zero is trapped.
-
-   INPUT REGISTERS:
-   .	arg0 ==	dividend
-   .	arg1 == divisor
-   .	mrp  == return pc
-   .	sr0  == return space when called externally
-
-   OUTPUT REGISTERS:
-   .	arg0 =	undefined
-   .	arg1 =	undefined
-   .	ret1 =	remainder
-
-   OTHER REGISTERS AFFECTED:
-   .	r1   =	undefined
-
-   SIDE EFFECTS:
-   .	Causes a trap under the following conditions:  DIVIDE BY ZERO
-   .	Changes memory at the following places:  NONE
-
-   PERMISSIBLE CONTEXT:
-   .	Unwindable.
-   .	Does not create a stack frame.
-   .	Suitable for internal or external millicode.
-   .	Assumes the special millicode register conventions.
-
-   DISCUSSION:
-   .	Calls other millicode routines using mrp: NONE
-   .	Calls other millicode routines: NONE  */
-
-
-RDEFINE(temp,r1)
-RDEFINE(rmndr,ret1)	/*  r29 */
-	SUBSPA_MILLI
-	ATTR_MILLI
-	.export $$remU,millicode
-	.proc
-	.callinfo	millicode
-	.entry
-GSYM($$remU)
-	ldo	-1(arg1),temp		/*  is there at most one bit set ? */
-	and,=	arg1,temp,r0		/*  if not, don't use power of 2 */
-	b	LREF(regular_seq)
-	addit,=	0,arg1,r0		/*  trap on div by zero */
-	and	arg0,temp,rmndr		/*  get the result for power of 2 */
-	MILLIRETN
-LSYM(regular_seq)
-	comib,>=,n  0,arg1,LREF(special_case)
-	subi	0,arg1,rmndr		/*  clear carry, negate the divisor */
-	ds	r0,rmndr,r0		/*  set V-bit to 1 */
-	add	arg0,arg0,temp		/*  shift msb bit into carry */
-	ds	r0,arg1,rmndr		/*  1st divide step, if no carry */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  2nd divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  3rd divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  4th divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  5th divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  6th divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  7th divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  8th divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  9th divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  10th divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  11th divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  12th divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  13th divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  14th divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  15th divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  16th divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  17th divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  18th divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  19th divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  20th divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  21st divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  22nd divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  23rd divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  24th divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  25th divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  26th divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  27th divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  28th divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  29th divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  30th divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  31st divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  32nd divide step, */
-	comiclr,<= 0,rmndr,r0
-	  add	rmndr,arg1,rmndr	/*  correction */
-	MILLIRETN
-	nop
-
-/* Putting >= on the last DS and deleting COMICLR does not work!  */
-LSYM(special_case)
-	sub,>>=	arg0,arg1,rmndr
-	  copy	arg0,rmndr
-	MILLIRETN
-	nop
-	.exit
-	.procend
-	.end
-#endif
-
-#ifdef L_div_const
-/* ROUTINE:	$$divI_2
-   .		$$divI_3	$$divU_3
-   .		$$divI_4
-   .		$$divI_5	$$divU_5
-   .		$$divI_6	$$divU_6
-   .		$$divI_7	$$divU_7
-   .		$$divI_8
-   .		$$divI_9	$$divU_9
-   .		$$divI_10	$$divU_10
-   .
-   .		$$divI_12	$$divU_12
-   .
-   .		$$divI_14	$$divU_14
-   .		$$divI_15	$$divU_15
-   .		$$divI_16
-   .		$$divI_17	$$divU_17
-   .
-   .	Divide by selected constants for single precision binary integers.
-
-   INPUT REGISTERS:
-   .	arg0 ==	dividend
-   .	mrp  == return pc
-   .	sr0  == return space when called externally
-
-   OUTPUT REGISTERS:
-   .	arg0 =	undefined
-   .	arg1 =	undefined
-   .	ret1 =	quotient
-
-   OTHER REGISTERS AFFECTED:
-   .	r1   =	undefined
-
-   SIDE EFFECTS:
-   .	Causes a trap under the following conditions: NONE
-   .	Changes memory at the following places:  NONE
-
-   PERMISSIBLE CONTEXT:
-   .	Unwindable.
-   .	Does not create a stack frame.
-   .	Suitable for internal or external millicode.
-   .	Assumes the special millicode register conventions.
-
-   DISCUSSION:
-   .	Calls other millicode routines using mrp:  NONE
-   .	Calls other millicode routines:  NONE  */
-
-
-/* TRUNCATED DIVISION BY SMALL INTEGERS
-
-   We are interested in q(x) = floor(x/y), where x >= 0 and y > 0
-   (with y fixed).
-
-   Let a = floor(z/y), for some choice of z.  Note that z will be
-   chosen so that division by z is cheap.
-
-   Let r be the remainder(z/y).  In other words, r = z - ay.
-
-   Now, our method is to choose a value for b such that
-
-   q'(x) = floor((ax+b)/z)
-
-   is equal to q(x) over as large a range of x as possible.  If the
-   two are equal over a sufficiently large range, and if it is easy to
-   form the product (ax), and it is easy to divide by z, then we can
-   perform the division much faster than the general division algorithm.
-
-   So, we want the following to be true:
-
-   .	For x in the following range:
-   .
-   .	    ky <= x < (k+1)y
-   .
-   .	implies that
-   .
-   .	    k <= (ax+b)/z < (k+1)
-
-   We want to determine b such that this is true for all k in the
-   range {0..K} for some maximum K.
-
-   Since (ax+b) is an increasing function of x, we can take each
-   bound separately to determine the "best" value for b.
-
-   (ax+b)/z < (k+1)	       implies
-
-   (a((k+1)y-1)+b < (k+1)z     implies
-
-   b < a + (k+1)(z-ay)	       implies
-
-   b < a + (k+1)r
-
-   This needs to be true for all k in the range {0..K}.  In
-   particular, it is true for k = 0 and this leads to a maximum
-   acceptable value for b.
-
-   b < a+r   or   b <= a+r-1
-
-   Taking the other bound, we have
-
-   k <= (ax+b)/z	       implies
-
-   k <= (aky+b)/z	       implies
-
-   k(z-ay) <= b		       implies
-
-   kr <= b
-
-   Clearly, the largest range for k will be achieved by maximizing b,
-   when r is not zero.	When r is zero, then the simplest choice for b
-   is 0.  When r is not 0, set
-
-   .	b = a+r-1
-
-   Now, by construction, q'(x) = floor((ax+b)/z) = q(x) = floor(x/y)
-   for all x in the range:
-
-   .	0 <= x < (K+1)y
-
-   We need to determine what K is.  Of our two bounds,
-
-   .	b < a+(k+1)r	is satisfied for all k >= 0, by construction.
-
-   The other bound is
-
-   .	kr <= b
-
-   This is always true if r = 0.  If r is not 0 (the usual case), then
-   K = floor((a+r-1)/r), is the maximum value for k.
-
-   Therefore, the formula q'(x) = floor((ax+b)/z) yields the correct
-   answer for q(x) = floor(x/y) when x is in the range
-
-   (0,(K+1)y-1)	       K = floor((a+r-1)/r)
-
-   To be most useful, we want (K+1)y-1 = (max x) >= 2**32-1 so that
-   the formula for q'(x) yields the correct value of q(x) for all x
-   representable by a single word in HPPA.
-
-   We are also constrained in that computing the product (ax), adding
-   b, and dividing by z must all be done quickly, otherwise we will be
-   better off going through the general algorithm using the DS
-   instruction, which uses approximately 70 cycles.
-
-   For each y, there is a choice of z which satisfies the constraints
-   for (K+1)y >= 2**32.  We may not, however, be able to satisfy the
-   timing constraints for arbitrary y.	It seems that z being equal to
-   a power of 2 or a power of 2 minus 1 is as good as we can do, since
-   it minimizes the time to do division by z.  We want the choice of z
-   to also result in a value for (a) that minimizes the computation of
-   the product (ax).  This is best achieved if (a) has a regular bit
-   pattern (so the multiplication can be done with shifts and adds).
-   The value of (a) also needs to be less than 2**32 so the product is
-   always guaranteed to fit in 2 words.
-
-   In actual practice, the following should be done:
-
-   1) For negative x, you should take the absolute value and remember
-   .  the fact so that the result can be negated.  This obviously does
-   .  not apply in the unsigned case.
-   2) For even y, you should factor out the power of 2 that divides y
-   .  and divide x by it.  You can then proceed by dividing by the
-   .  odd factor of y.
-
-   Here is a table of some odd values of y, and corresponding choices
-   for z which are "good".
-
-    y	  z	  r	 a (hex)     max x (hex)
-
-    3	2**32	  1	55555555      100000001
-    5	2**32	  1	33333333      100000003
-    7  2**24-1	  0	  249249     (infinite)
-    9  2**24-1	  0	  1c71c7     (infinite)
-   11  2**20-1	  0	   1745d     (infinite)
-   13  2**24-1	  0	  13b13b     (infinite)
-   15	2**32	  1	11111111      10000000d
-   17	2**32	  1	 f0f0f0f      10000000f
-
-   If r is 1, then b = a+r-1 = a.  This simplifies the computation
-   of (ax+b), since you can compute (x+1)(a) instead.  If r is 0,
-   then b = 0 is ok to use which simplifies (ax+b).
-
-   The bit patterns for 55555555, 33333333, and 11111111 are obviously
-   very regular.  The bit patterns for the other values of a above are:
-
-    y	   (hex)	  (binary)
-
-    7	  249249  001001001001001001001001  << regular >>
-    9	  1c71c7  000111000111000111000111  << regular >>
-   11	   1745d  000000010111010001011101  << irregular >>
-   13	  13b13b  000100111011000100111011  << irregular >>
-
-   The bit patterns for (a) corresponding to (y) of 11 and 13 may be
-   too irregular to warrant using this method.
-
-   When z is a power of 2 minus 1, then the division by z is slightly
-   more complicated, involving an iterative solution.
-
-   The code presented here solves division by 1 through 17, except for
-   11 and 13. There are algorithms for both signed and unsigned
-   quantities given.
-
-   TIMINGS (cycles)
-
-   divisor  positive  negative	unsigned
-
-   .   1	2	   2	     2
-   .   2	4	   4	     2
-   .   3       19	  21	    19
-   .   4	4	   4	     2
-   .   5       18	  22	    19
-   .   6       19	  22	    19
-   .   8	4	   4	     2
-   .  10       18	  19	    17
-   .  12       18	  20	    18
-   .  15       16	  18	    16
-   .  16	4	   4	     2
-   .  17       16	  18	    16
-
-   Now, the algorithm for 7, 9, and 14 is an iterative one.  That is,
-   a loop body is executed until the tentative quotient is 0.  The
-   number of times the loop body is executed varies depending on the
-   dividend, but is never more than two times.	If the dividend is
-   less than the divisor, then the loop body is not executed at all.
-   Each iteration adds 4 cycles to the timings.
-
-   divisor  positive  negative	unsigned
-
-   .   7       19+4n	 20+4n	   20+4n    n = number of iterations
-   .   9       21+4n	 22+4n	   21+4n
-   .  14       21+4n	 22+4n	   20+4n
-
-   To give an idea of how the number of iterations varies, here is a
-   table of dividend versus number of iterations when dividing by 7.
-
-   smallest	 largest       required
-   dividend	dividend      iterations
-
-   .	0	     6		    0
-   .	7	 0x6ffffff	    1
-   0x1000006	0xffffffff	    2
-
-   There is some overlap in the range of numbers requiring 1 and 2
-   iterations.	*/
-
-RDEFINE(t2,r1)
-RDEFINE(x2,arg0)	/*  r26 */
-RDEFINE(t1,arg1)	/*  r25 */
-RDEFINE(x1,ret1)	/*  r29 */
-
-	SUBSPA_MILLI_DIV
-	ATTR_MILLI
-
-	.proc
-	.callinfo	millicode
-	.entry
-/* NONE of these routines require a stack frame
-   ALL of these routines are unwindable from millicode	*/
-
-GSYM($$divide_by_constant)
-	.export $$divide_by_constant,millicode
-/*  Provides a "nice" label for the code covered by the unwind descriptor
-    for things like gprof.  */
-
-/* DIVISION BY 2 (shift by 1) */
-GSYM($$divI_2)
-	.export		$$divI_2,millicode
-	comclr,>=	arg0,0,0
-	addi		1,arg0,arg0
-	MILLIRET
-	extrs		arg0,30,31,ret1
-
-
-/* DIVISION BY 4 (shift by 2) */
-GSYM($$divI_4)
-	.export		$$divI_4,millicode
-	comclr,>=	arg0,0,0
-	addi		3,arg0,arg0
-	MILLIRET
-	extrs		arg0,29,30,ret1
-
-
-/* DIVISION BY 8 (shift by 3) */
-GSYM($$divI_8)
-	.export		$$divI_8,millicode
-	comclr,>=	arg0,0,0
-	addi		7,arg0,arg0
-	MILLIRET
-	extrs		arg0,28,29,ret1
-
-/* DIVISION BY 16 (shift by 4) */
-GSYM($$divI_16)
-	.export		$$divI_16,millicode
-	comclr,>=	arg0,0,0
-	addi		15,arg0,arg0
-	MILLIRET
-	extrs		arg0,27,28,ret1
-
-/****************************************************************************
-*
-*	DIVISION BY DIVISORS OF FFFFFFFF, and powers of 2 times these
-*
-*	includes 3,5,15,17 and also 6,10,12
-*
-****************************************************************************/
-
-/* DIVISION BY 3 (use z = 2**32; a = 55555555) */
-
-GSYM($$divI_3)
-	.export		$$divI_3,millicode
-	comb,<,N	x2,0,LREF(neg3)
-
-	addi		1,x2,x2		/* this cannot overflow	*/
-	extru		x2,1,2,x1	/* multiply by 5 to get started */
-	sh2add		x2,x2,x2
-	b		LREF(pos)
-	addc		x1,0,x1
-
-LSYM(neg3)
-	subi		1,x2,x2		/* this cannot overflow	*/
-	extru		x2,1,2,x1	/* multiply by 5 to get started */
-	sh2add		x2,x2,x2
-	b		LREF(neg)
-	addc		x1,0,x1
-
-GSYM($$divU_3)
-	.export		$$divU_3,millicode
-	addi		1,x2,x2		/* this CAN overflow */
-	addc		0,0,x1
-	shd		x1,x2,30,t1	/* multiply by 5 to get started */
-	sh2add		x2,x2,x2
-	b		LREF(pos)
-	addc		x1,t1,x1
-
-/* DIVISION BY 5 (use z = 2**32; a = 33333333) */
-
-GSYM($$divI_5)
-	.export		$$divI_5,millicode
-	comb,<,N	x2,0,LREF(neg5)
-
-	addi		3,x2,t1		/* this cannot overflow	*/
-	sh1add		x2,t1,x2	/* multiply by 3 to get started */
-	b		LREF(pos)
-	addc		0,0,x1
-
-LSYM(neg5)
-	sub		0,x2,x2		/* negate x2			*/
-	addi		1,x2,x2		/* this cannot overflow	*/
-	shd		0,x2,31,x1	/* get top bit (can be 1)	*/
-	sh1add		x2,x2,x2	/* multiply by 3 to get started */
-	b		LREF(neg)
-	addc		x1,0,x1
-
-GSYM($$divU_5)
-	.export		$$divU_5,millicode
-	addi		1,x2,x2		/* this CAN overflow */
-	addc		0,0,x1
-	shd		x1,x2,31,t1	/* multiply by 3 to get started */
-	sh1add		x2,x2,x2
-	b		LREF(pos)
-	addc		t1,x1,x1
-
-/* DIVISION BY	6 (shift to divide by 2 then divide by 3) */
-GSYM($$divI_6)
-	.export		$$divI_6,millicode
-	comb,<,N	x2,0,LREF(neg6)
-	extru		x2,30,31,x2	/* divide by 2			*/
-	addi		5,x2,t1		/* compute 5*(x2+1) = 5*x2+5	*/
-	sh2add		x2,t1,x2	/* multiply by 5 to get started */
-	b		LREF(pos)
-	addc		0,0,x1
-
-LSYM(neg6)
-	subi		2,x2,x2		/* negate, divide by 2, and add 1 */
-					/* negation and adding 1 are done */
-					/* at the same time by the SUBI   */
-	extru		x2,30,31,x2
-	shd		0,x2,30,x1
-	sh2add		x2,x2,x2	/* multiply by 5 to get started */
-	b		LREF(neg)
-	addc		x1,0,x1
-
-GSYM($$divU_6)
-	.export		$$divU_6,millicode
-	extru		x2,30,31,x2	/* divide by 2 */
-	addi		1,x2,x2		/* cannot carry */
-	shd		0,x2,30,x1	/* multiply by 5 to get started */
-	sh2add		x2,x2,x2
-	b		LREF(pos)
-	addc		x1,0,x1
-
-/* DIVISION BY 10 (shift to divide by 2 then divide by 5) */
-GSYM($$divU_10)
-	.export		$$divU_10,millicode
-	extru		x2,30,31,x2	/* divide by 2 */
-	addi		3,x2,t1		/* compute 3*(x2+1) = (3*x2)+3	*/
-	sh1add		x2,t1,x2	/* multiply by 3 to get started */
-	addc		0,0,x1
-LSYM(pos)
-	shd		x1,x2,28,t1	/* multiply by 0x11 */
-	shd		x2,0,28,t2
-	add		x2,t2,x2
-	addc		x1,t1,x1
-LSYM(pos_for_17)
-	shd		x1,x2,24,t1	/* multiply by 0x101 */
-	shd		x2,0,24,t2
-	add		x2,t2,x2
-	addc		x1,t1,x1
-
-	shd		x1,x2,16,t1	/* multiply by 0x10001 */
-	shd		x2,0,16,t2
-	add		x2,t2,x2
-	MILLIRET
-	addc		x1,t1,x1
-
-GSYM($$divI_10)
-	.export		$$divI_10,millicode
-	comb,<		x2,0,LREF(neg10)
-	copy		0,x1
-	extru		x2,30,31,x2	/* divide by 2 */
-	addib,TR	1,x2,LREF(pos)	/* add 1 (cannot overflow)     */
-	sh1add		x2,x2,x2	/* multiply by 3 to get started */
-
-LSYM(neg10)
-	subi		2,x2,x2		/* negate, divide by 2, and add 1 */
-					/* negation and adding 1 are done */
-					/* at the same time by the SUBI   */
-	extru		x2,30,31,x2
-	sh1add		x2,x2,x2	/* multiply by 3 to get started */
-LSYM(neg)
-	shd		x1,x2,28,t1	/* multiply by 0x11 */
-	shd		x2,0,28,t2
-	add		x2,t2,x2
-	addc		x1,t1,x1
-LSYM(neg_for_17)
-	shd		x1,x2,24,t1	/* multiply by 0x101 */
-	shd		x2,0,24,t2
-	add		x2,t2,x2
-	addc		x1,t1,x1
-
-	shd		x1,x2,16,t1	/* multiply by 0x10001 */
-	shd		x2,0,16,t2
-	add		x2,t2,x2
-	addc		x1,t1,x1
-	MILLIRET
-	sub		0,x1,x1
-
-/* DIVISION BY 12 (shift to divide by 4 then divide by 3) */
-GSYM($$divI_12)
-	.export		$$divI_12,millicode
-	comb,<		x2,0,LREF(neg12)
-	copy		0,x1
-	extru		x2,29,30,x2	/* divide by 4			*/
-	addib,tr	1,x2,LREF(pos)	/* compute 5*(x2+1) = 5*x2+5    */
-	sh2add		x2,x2,x2	/* multiply by 5 to get started */
-
-LSYM(neg12)
-	subi		4,x2,x2		/* negate, divide by 4, and add 1 */
-					/* negation and adding 1 are done */
-					/* at the same time by the SUBI   */
-	extru		x2,29,30,x2
-	b		LREF(neg)
-	sh2add		x2,x2,x2	/* multiply by 5 to get started */
-
-GSYM($$divU_12)
-	.export		$$divU_12,millicode
-	extru		x2,29,30,x2	/* divide by 4   */
-	addi		5,x2,t1		/* cannot carry */
-	sh2add		x2,t1,x2	/* multiply by 5 to get started */
-	b		LREF(pos)
-	addc		0,0,x1
-
-/* DIVISION BY 15 (use z = 2**32; a = 11111111) */
-GSYM($$divI_15)
-	.export		$$divI_15,millicode
-	comb,<		x2,0,LREF(neg15)
-	copy		0,x1
-	addib,tr	1,x2,LREF(pos)+4
-	shd		x1,x2,28,t1
-
-LSYM(neg15)
-	b		LREF(neg)
-	subi		1,x2,x2
-
-GSYM($$divU_15)
-	.export		$$divU_15,millicode
-	addi		1,x2,x2		/* this CAN overflow */
-	b		LREF(pos)
-	addc		0,0,x1
-
-/* DIVISION BY 17 (use z = 2**32; a =  f0f0f0f) */
-GSYM($$divI_17)
-	.export		$$divI_17,millicode
-	comb,<,n	x2,0,LREF(neg17)
-	addi		1,x2,x2		/* this cannot overflow */
-	shd		0,x2,28,t1	/* multiply by 0xf to get started */
-	shd		x2,0,28,t2
-	sub		t2,x2,x2
-	b		LREF(pos_for_17)
-	subb		t1,0,x1
-
-LSYM(neg17)
-	subi		1,x2,x2		/* this cannot overflow */
-	shd		0,x2,28,t1	/* multiply by 0xf to get started */
-	shd		x2,0,28,t2
-	sub		t2,x2,x2
-	b		LREF(neg_for_17)
-	subb		t1,0,x1
-
-GSYM($$divU_17)
-	.export		$$divU_17,millicode
-	addi		1,x2,x2		/* this CAN overflow */
-	addc		0,0,x1
-	shd		x1,x2,28,t1	/* multiply by 0xf to get started */
-LSYM(u17)
-	shd		x2,0,28,t2
-	sub		t2,x2,x2
-	b		LREF(pos_for_17)
-	subb		t1,x1,x1
-
-
-/* DIVISION BY DIVISORS OF FFFFFF, and powers of 2 times these
-   includes 7,9 and also 14
-
-
-   z = 2**24-1
-   r = z mod x = 0
-
-   so choose b = 0
-
-   Also, in order to divide by z = 2**24-1, we approximate by dividing
-   by (z+1) = 2**24 (which is easy), and then correcting.
-
-   (ax) = (z+1)q' + r
-   .	= zq' + (q'+r)
-
-   So to compute (ax)/z, compute q' = (ax)/(z+1) and r = (ax) mod (z+1)
-   Then the true remainder of (ax)/z is (q'+r).  Repeat the process
-   with this new remainder, adding the tentative quotients together,
-   until a tentative quotient is 0 (and then we are done).  There is
-   one last correction to be done.  It is possible that (q'+r) = z.
-   If so, then (q'+r)/(z+1) = 0 and it looks like we are done.	But,
-   in fact, we need to add 1 more to the quotient.  Now, it turns
-   out that this happens if and only if the original value x is
-   an exact multiple of y.  So, to avoid a three instruction test at
-   the end, instead use 1 instruction to add 1 to x at the beginning.  */
-
-/* DIVISION BY 7 (use z = 2**24-1; a = 249249) */
-GSYM($$divI_7)
-	.export		$$divI_7,millicode
-	comb,<,n	x2,0,LREF(neg7)
-LSYM(7)
-	addi		1,x2,x2		/* cannot overflow */
-	shd		0,x2,29,x1
-	sh3add		x2,x2,x2
-	addc		x1,0,x1
-LSYM(pos7)
-	shd		x1,x2,26,t1
-	shd		x2,0,26,t2
-	add		x2,t2,x2
-	addc		x1,t1,x1
-
-	shd		x1,x2,20,t1
-	shd		x2,0,20,t2
-	add		x2,t2,x2
-	addc		x1,t1,t1
-
-	/* computed <t1,x2>.  Now divide it by (2**24 - 1)	*/
-
-	copy		0,x1
-	shd,=		t1,x2,24,t1	/* tentative quotient  */
-LSYM(1)
-	addb,tr		t1,x1,LREF(2)	/* add to previous quotient   */
-	extru		x2,31,24,x2	/* new remainder (unadjusted) */
-
-	MILLIRETN
-
-LSYM(2)
-	addb,tr		t1,x2,LREF(1)	/* adjust remainder */
-	extru,=		x2,7,8,t1	/* new quotient     */
-
-LSYM(neg7)
-	subi		1,x2,x2		/* negate x2 and add 1 */
-LSYM(8)
-	shd		0,x2,29,x1
-	sh3add		x2,x2,x2
-	addc		x1,0,x1
-
-LSYM(neg7_shift)
-	shd		x1,x2,26,t1
-	shd		x2,0,26,t2
-	add		x2,t2,x2
-	addc		x1,t1,x1
-
-	shd		x1,x2,20,t1
-	shd		x2,0,20,t2
-	add		x2,t2,x2
-	addc		x1,t1,t1
-
-	/* computed <t1,x2>.  Now divide it by (2**24 - 1)	*/
-
-	copy		0,x1
-	shd,=		t1,x2,24,t1	/* tentative quotient  */
-LSYM(3)
-	addb,tr		t1,x1,LREF(4)	/* add to previous quotient   */
-	extru		x2,31,24,x2	/* new remainder (unadjusted) */
-
-	MILLIRET
-	sub		0,x1,x1		/* negate result    */
-
-LSYM(4)
-	addb,tr		t1,x2,LREF(3)	/* adjust remainder */
-	extru,=		x2,7,8,t1	/* new quotient     */
-
-GSYM($$divU_7)
-	.export		$$divU_7,millicode
-	addi		1,x2,x2		/* can carry */
-	addc		0,0,x1
-	shd		x1,x2,29,t1
-	sh3add		x2,x2,x2
-	b		LREF(pos7)
-	addc		t1,x1,x1
-
-/* DIVISION BY 9 (use z = 2**24-1; a = 1c71c7) */
-GSYM($$divI_9)
-	.export		$$divI_9,millicode
-	comb,<,n	x2,0,LREF(neg9)
-	addi		1,x2,x2		/* cannot overflow */
-	shd		0,x2,29,t1
-	shd		x2,0,29,t2
-	sub		t2,x2,x2
-	b		LREF(pos7)
-	subb		t1,0,x1
-
-LSYM(neg9)
-	subi		1,x2,x2		/* negate and add 1 */
-	shd		0,x2,29,t1
-	shd		x2,0,29,t2
-	sub		t2,x2,x2
-	b		LREF(neg7_shift)
-	subb		t1,0,x1
-
-GSYM($$divU_9)
-	.export		$$divU_9,millicode
-	addi		1,x2,x2		/* can carry */
-	addc		0,0,x1
-	shd		x1,x2,29,t1
-	shd		x2,0,29,t2
-	sub		t2,x2,x2
-	b		LREF(pos7)
-	subb		t1,x1,x1
-
-/* DIVISION BY 14 (shift to divide by 2 then divide by 7) */
-GSYM($$divI_14)
-	.export		$$divI_14,millicode
-	comb,<,n	x2,0,LREF(neg14)
-GSYM($$divU_14)
-	.export		$$divU_14,millicode
-	b		LREF(7)		/* go to 7 case */
-	extru		x2,30,31,x2	/* divide by 2  */
-
-LSYM(neg14)
-	subi		2,x2,x2		/* negate (and add 2) */
-	b		LREF(8)
-	extru		x2,30,31,x2	/* divide by 2	      */
-	.exit
-	.procend
-	.end
-#endif
-
-#ifdef L_mulI
-/* VERSION "@(#)$$mulI $ Revision: 12.4 $ $ Date: 94/03/17 17:18:51 $" */
-/******************************************************************************
-This routine is used on PA2.0 processors when gcc -mno-fpregs is used
-
-ROUTINE:	$$mulI
-
-
-DESCRIPTION:	
-
-	$$mulI multiplies two single word integers, giving a single 
-	word result.  
-
-
-INPUT REGISTERS:
-
-	arg0 = Operand 1
-	arg1 = Operand 2
-	r31  == return pc
-	sr0  == return space when called externally 
-
-
-OUTPUT REGISTERS:
-
-	arg0 = undefined
-	arg1 = undefined
-	ret1 = result 
-
-OTHER REGISTERS AFFECTED:
-
-	r1   = undefined
-
-SIDE EFFECTS:
-
-	Causes a trap under the following conditions:  NONE
-	Changes memory at the following places:  NONE
-
-PERMISSIBLE CONTEXT:
-
-	Unwindable
-	Does not create a stack frame
-	Is usable for internal or external microcode
-
-DISCUSSION:
-
-	Calls other millicode routines via mrp:  NONE
-	Calls other millicode routines:  NONE
-
-***************************************************************************/
-
-
-#define	a0	%arg0
-#define	a1	%arg1
-#define	t0	%r1
-#define	r	%ret1
-
-#define	a0__128a0	zdep	a0,24,25,a0
-#define	a0__256a0	zdep	a0,23,24,a0
-#define	a1_ne_0_b_l0	comb,<>	a1,0,LREF(l0)
-#define	a1_ne_0_b_l1	comb,<>	a1,0,LREF(l1)
-#define	a1_ne_0_b_l2	comb,<>	a1,0,LREF(l2)
-#define	b_n_ret_t0	b,n	LREF(ret_t0)
-#define	b_e_shift	b	LREF(e_shift)
-#define	b_e_t0ma0	b	LREF(e_t0ma0)
-#define	b_e_t0		b	LREF(e_t0)
-#define	b_e_t0a0	b	LREF(e_t0a0)
-#define	b_e_t02a0	b	LREF(e_t02a0)
-#define	b_e_t04a0	b	LREF(e_t04a0)
-#define	b_e_2t0		b	LREF(e_2t0)
-#define	b_e_2t0a0	b	LREF(e_2t0a0)
-#define	b_e_2t04a0	b	LREF(e2t04a0)
-#define	b_e_3t0		b	LREF(e_3t0)
-#define	b_e_4t0		b	LREF(e_4t0)
-#define	b_e_4t0a0	b	LREF(e_4t0a0)
-#define	b_e_4t08a0	b	LREF(e4t08a0)
-#define	b_e_5t0		b	LREF(e_5t0)
-#define	b_e_8t0		b	LREF(e_8t0)
-#define	b_e_8t0a0	b	LREF(e_8t0a0)
-#define	r__r_a0		add	r,a0,r
-#define	r__r_2a0	sh1add	a0,r,r
-#define	r__r_4a0	sh2add	a0,r,r
-#define	r__r_8a0	sh3add	a0,r,r
-#define	r__r_t0		add	r,t0,r
-#define	r__r_2t0	sh1add	t0,r,r
-#define	r__r_4t0	sh2add	t0,r,r
-#define	r__r_8t0	sh3add	t0,r,r
-#define	t0__3a0		sh1add	a0,a0,t0
-#define	t0__4a0		sh2add	a0,0,t0
-#define	t0__5a0		sh2add	a0,a0,t0
-#define	t0__8a0		sh3add	a0,0,t0
-#define	t0__9a0		sh3add	a0,a0,t0
-#define	t0__16a0	zdep	a0,27,28,t0
-#define	t0__32a0	zdep	a0,26,27,t0
-#define	t0__64a0	zdep	a0,25,26,t0
-#define	t0__128a0	zdep	a0,24,25,t0
-#define	t0__t0ma0	sub	t0,a0,t0
-#define	t0__t0_a0	add	t0,a0,t0
-#define	t0__t0_2a0	sh1add	a0,t0,t0
-#define	t0__t0_4a0	sh2add	a0,t0,t0
-#define	t0__t0_8a0	sh3add	a0,t0,t0
-#define	t0__2t0_a0	sh1add	t0,a0,t0
-#define	t0__3t0		sh1add	t0,t0,t0
-#define	t0__4t0		sh2add	t0,0,t0
-#define	t0__4t0_a0	sh2add	t0,a0,t0
-#define	t0__5t0		sh2add	t0,t0,t0
-#define	t0__8t0		sh3add	t0,0,t0
-#define	t0__8t0_a0	sh3add	t0,a0,t0
-#define	t0__9t0		sh3add	t0,t0,t0
-#define	t0__16t0	zdep	t0,27,28,t0
-#define	t0__32t0	zdep	t0,26,27,t0
-#define	t0__256a0	zdep	a0,23,24,t0
-
-
-	SUBSPA_MILLI
-	ATTR_MILLI
-	.align 16
-	.proc
-	.callinfo millicode
-	.export $$mulI,millicode
-GSYM($$mulI)	
-	combt,<<=	a1,a0,LREF(l4)	/* swap args if unsigned a1>a0 */
-	copy		0,r		/* zero out the result */
-	xor		a0,a1,a0	/* swap a0 & a1 using the */
-	xor		a0,a1,a1	/*  old xor trick */
-	xor		a0,a1,a0
-LSYM(l4)
-	combt,<=	0,a0,LREF(l3)		/* if a0>=0 then proceed like unsigned */
-	zdep		a1,30,8,t0	/* t0 = (a1&0xff)<<1 ********* */
-	sub,>		0,a1,t0		/* otherwise negate both and */
-	combt,<=,n	a0,t0,LREF(l2)	/*  swap back if |a0|<|a1| */
-	sub		0,a0,a1
-	movb,tr,n	t0,a0,LREF(l2)	/* 10th inst.  */
-
-LSYM(l0)	r__r_t0				/* add in this partial product */
-LSYM(l1)	a0__256a0			/* a0 <<= 8 ****************** */
-LSYM(l2)	zdep		a1,30,8,t0	/* t0 = (a1&0xff)<<1 ********* */
-LSYM(l3)	blr		t0,0		/* case on these 8 bits ****** */
-		extru		a1,23,24,a1	/* a1 >>= 8 ****************** */
-
-/*16 insts before this.  */
-/*			  a0 <<= 8 ************************** */
-LSYM(x0)	a1_ne_0_b_l2	! a0__256a0	! MILLIRETN	! nop
-LSYM(x1)	a1_ne_0_b_l1	! r__r_a0	! MILLIRETN	! nop
-LSYM(x2)	a1_ne_0_b_l1	! r__r_2a0	! MILLIRETN	! nop
-LSYM(x3)	a1_ne_0_b_l0	! t0__3a0	! MILLIRET	! r__r_t0
-LSYM(x4)	a1_ne_0_b_l1	! r__r_4a0	! MILLIRETN	! nop
-LSYM(x5)	a1_ne_0_b_l0	! t0__5a0	! MILLIRET	! r__r_t0
-LSYM(x6)	t0__3a0		! a1_ne_0_b_l1	! r__r_2t0	! MILLIRETN
-LSYM(x7)	t0__3a0		! a1_ne_0_b_l0	! r__r_4a0	! b_n_ret_t0
-LSYM(x8)	a1_ne_0_b_l1	! r__r_8a0	! MILLIRETN	! nop
-LSYM(x9)	a1_ne_0_b_l0	! t0__9a0	! MILLIRET	! r__r_t0
-LSYM(x10)	t0__5a0		! a1_ne_0_b_l1	! r__r_2t0	! MILLIRETN
-LSYM(x11)	t0__3a0		! a1_ne_0_b_l0	! r__r_8a0	! b_n_ret_t0
-LSYM(x12)	t0__3a0		! a1_ne_0_b_l1	! r__r_4t0	! MILLIRETN
-LSYM(x13)	t0__5a0		! a1_ne_0_b_l0	! r__r_8a0	! b_n_ret_t0
-LSYM(x14)	t0__3a0		! t0__2t0_a0	! b_e_shift	! r__r_2t0
-LSYM(x15)	t0__5a0		! a1_ne_0_b_l0	! t0__3t0	! b_n_ret_t0
-LSYM(x16)	t0__16a0	! a1_ne_0_b_l1	! r__r_t0	! MILLIRETN
-LSYM(x17)	t0__9a0		! a1_ne_0_b_l0	! t0__t0_8a0	! b_n_ret_t0
-LSYM(x18)	t0__9a0		! a1_ne_0_b_l1	! r__r_2t0	! MILLIRETN
-LSYM(x19)	t0__9a0		! a1_ne_0_b_l0	! t0__2t0_a0	! b_n_ret_t0
-LSYM(x20)	t0__5a0		! a1_ne_0_b_l1	! r__r_4t0	! MILLIRETN
-LSYM(x21)	t0__5a0		! a1_ne_0_b_l0	! t0__4t0_a0	! b_n_ret_t0
-LSYM(x22)	t0__5a0		! t0__2t0_a0	! b_e_shift	! r__r_2t0
-LSYM(x23)	t0__5a0		! t0__2t0_a0	! b_e_t0	! t0__2t0_a0
-LSYM(x24)	t0__3a0		! a1_ne_0_b_l1	! r__r_8t0	! MILLIRETN
-LSYM(x25)	t0__5a0		! a1_ne_0_b_l0	! t0__5t0	! b_n_ret_t0
-LSYM(x26)	t0__3a0		! t0__4t0_a0	! b_e_shift	! r__r_2t0
-LSYM(x27)	t0__3a0		! a1_ne_0_b_l0	! t0__9t0	! b_n_ret_t0
-LSYM(x28)	t0__3a0		! t0__2t0_a0	! b_e_shift	! r__r_4t0
-LSYM(x29)	t0__3a0		! t0__2t0_a0	! b_e_t0	! t0__4t0_a0
-LSYM(x30)	t0__5a0		! t0__3t0	! b_e_shift	! r__r_2t0
-LSYM(x31)	t0__32a0	! a1_ne_0_b_l0	! t0__t0ma0	! b_n_ret_t0
-LSYM(x32)	t0__32a0	! a1_ne_0_b_l1	! r__r_t0	! MILLIRETN
-LSYM(x33)	t0__8a0		! a1_ne_0_b_l0	! t0__4t0_a0	! b_n_ret_t0
-LSYM(x34)	t0__16a0	! t0__t0_a0	! b_e_shift	! r__r_2t0
-LSYM(x35)	t0__9a0		! t0__3t0	! b_e_t0	! t0__t0_8a0
-LSYM(x36)	t0__9a0		! a1_ne_0_b_l1	! r__r_4t0	! MILLIRETN
-LSYM(x37)	t0__9a0		! a1_ne_0_b_l0	! t0__4t0_a0	! b_n_ret_t0
-LSYM(x38)	t0__9a0		! t0__2t0_a0	! b_e_shift	! r__r_2t0
-LSYM(x39)	t0__9a0		! t0__2t0_a0	! b_e_t0	! t0__2t0_a0
-LSYM(x40)	t0__5a0		! a1_ne_0_b_l1	! r__r_8t0	! MILLIRETN
-LSYM(x41)	t0__5a0		! a1_ne_0_b_l0	! t0__8t0_a0	! b_n_ret_t0
-LSYM(x42)	t0__5a0		! t0__4t0_a0	! b_e_shift	! r__r_2t0
-LSYM(x43)	t0__5a0		! t0__4t0_a0	! b_e_t0	! t0__2t0_a0
-LSYM(x44)	t0__5a0		! t0__2t0_a0	! b_e_shift	! r__r_4t0
-LSYM(x45)	t0__9a0		! a1_ne_0_b_l0	! t0__5t0	! b_n_ret_t0
-LSYM(x46)	t0__9a0		! t0__5t0	! b_e_t0	! t0__t0_a0
-LSYM(x47)	t0__9a0		! t0__5t0	! b_e_t0	! t0__t0_2a0
-LSYM(x48)	t0__3a0		! a1_ne_0_b_l0	! t0__16t0	! b_n_ret_t0
-LSYM(x49)	t0__9a0		! t0__5t0	! b_e_t0	! t0__t0_4a0
-LSYM(x50)	t0__5a0		! t0__5t0	! b_e_shift	! r__r_2t0
-LSYM(x51)	t0__9a0		! t0__t0_8a0	! b_e_t0	! t0__3t0
-LSYM(x52)	t0__3a0		! t0__4t0_a0	! b_e_shift	! r__r_4t0
-LSYM(x53)	t0__3a0		! t0__4t0_a0	! b_e_t0	! t0__4t0_a0
-LSYM(x54)	t0__9a0		! t0__3t0	! b_e_shift	! r__r_2t0
-LSYM(x55)	t0__9a0		! t0__3t0	! b_e_t0	! t0__2t0_a0
-LSYM(x56)	t0__3a0		! t0__2t0_a0	! b_e_shift	! r__r_8t0
-LSYM(x57)	t0__9a0		! t0__2t0_a0	! b_e_t0	! t0__3t0
-LSYM(x58)	t0__3a0		! t0__2t0_a0	! b_e_2t0	! t0__4t0_a0
-LSYM(x59)	t0__9a0		! t0__2t0_a0	! b_e_t02a0	! t0__3t0
-LSYM(x60)	t0__5a0		! t0__3t0	! b_e_shift	! r__r_4t0
-LSYM(x61)	t0__5a0		! t0__3t0	! b_e_t0	! t0__4t0_a0
-LSYM(x62)	t0__32a0	! t0__t0ma0	! b_e_shift	! r__r_2t0
-LSYM(x63)	t0__64a0	! a1_ne_0_b_l0	! t0__t0ma0	! b_n_ret_t0
-LSYM(x64)	t0__64a0	! a1_ne_0_b_l1	! r__r_t0	! MILLIRETN
-LSYM(x65)	t0__8a0		! a1_ne_0_b_l0	! t0__8t0_a0	! b_n_ret_t0
-LSYM(x66)	t0__32a0	! t0__t0_a0	! b_e_shift	! r__r_2t0
-LSYM(x67)	t0__8a0		! t0__4t0_a0	! b_e_t0	! t0__2t0_a0
-LSYM(x68)	t0__8a0		! t0__2t0_a0	! b_e_shift	! r__r_4t0
-LSYM(x69)	t0__8a0		! t0__2t0_a0	! b_e_t0	! t0__4t0_a0
-LSYM(x70)	t0__64a0	! t0__t0_4a0	! b_e_t0	! t0__t0_2a0
-LSYM(x71)	t0__9a0		! t0__8t0	! b_e_t0	! t0__t0ma0
-LSYM(x72)	t0__9a0		! a1_ne_0_b_l1	! r__r_8t0	! MILLIRETN
-LSYM(x73)	t0__9a0		! t0__8t0_a0	! b_e_shift	! r__r_t0
-LSYM(x74)	t0__9a0		! t0__4t0_a0	! b_e_shift	! r__r_2t0
-LSYM(x75)	t0__9a0		! t0__4t0_a0	! b_e_t0	! t0__2t0_a0
-LSYM(x76)	t0__9a0		! t0__2t0_a0	! b_e_shift	! r__r_4t0
-LSYM(x77)	t0__9a0		! t0__2t0_a0	! b_e_t0	! t0__4t0_a0
-LSYM(x78)	t0__9a0		! t0__2t0_a0	! b_e_2t0	! t0__2t0_a0
-LSYM(x79)	t0__16a0	! t0__5t0	! b_e_t0	! t0__t0ma0
-LSYM(x80)	t0__16a0	! t0__5t0	! b_e_shift	! r__r_t0
-LSYM(x81)	t0__9a0		! t0__9t0	! b_e_shift	! r__r_t0
-LSYM(x82)	t0__5a0		! t0__8t0_a0	! b_e_shift	! r__r_2t0
-LSYM(x83)	t0__5a0		! t0__8t0_a0	! b_e_t0	! t0__2t0_a0
-LSYM(x84)	t0__5a0		! t0__4t0_a0	! b_e_shift	! r__r_4t0
-LSYM(x85)	t0__8a0		! t0__2t0_a0	! b_e_t0	! t0__5t0
-LSYM(x86)	t0__5a0		! t0__4t0_a0	! b_e_2t0	! t0__2t0_a0
-LSYM(x87)	t0__9a0		! t0__9t0	! b_e_t02a0	! t0__t0_4a0
-LSYM(x88)	t0__5a0		! t0__2t0_a0	! b_e_shift	! r__r_8t0
-LSYM(x89)	t0__5a0		! t0__2t0_a0	! b_e_t0	! t0__8t0_a0
-LSYM(x90)	t0__9a0		! t0__5t0	! b_e_shift	! r__r_2t0
-LSYM(x91)	t0__9a0		! t0__5t0	! b_e_t0	! t0__2t0_a0
-LSYM(x92)	t0__5a0		! t0__2t0_a0	! b_e_4t0	! t0__2t0_a0
-LSYM(x93)	t0__32a0	! t0__t0ma0	! b_e_t0	! t0__3t0
-LSYM(x94)	t0__9a0		! t0__5t0	! b_e_2t0	! t0__t0_2a0
-LSYM(x95)	t0__9a0		! t0__2t0_a0	! b_e_t0	! t0__5t0
-LSYM(x96)	t0__8a0		! t0__3t0	! b_e_shift	! r__r_4t0
-LSYM(x97)	t0__8a0		! t0__3t0	! b_e_t0	! t0__4t0_a0
-LSYM(x98)	t0__32a0	! t0__3t0	! b_e_t0	! t0__t0_2a0
-LSYM(x99)	t0__8a0		! t0__4t0_a0	! b_e_t0	! t0__3t0
-LSYM(x100)	t0__5a0		! t0__5t0	! b_e_shift	! r__r_4t0
-LSYM(x101)	t0__5a0		! t0__5t0	! b_e_t0	! t0__4t0_a0
-LSYM(x102)	t0__32a0	! t0__t0_2a0	! b_e_t0	! t0__3t0
-LSYM(x103)	t0__5a0		! t0__5t0	! b_e_t02a0	! t0__4t0_a0
-LSYM(x104)	t0__3a0		! t0__4t0_a0	! b_e_shift	! r__r_8t0
-LSYM(x105)	t0__5a0		! t0__4t0_a0	! b_e_t0	! t0__5t0
-LSYM(x106)	t0__3a0		! t0__4t0_a0	! b_e_2t0	! t0__4t0_a0
-LSYM(x107)	t0__9a0		! t0__t0_4a0	! b_e_t02a0	! t0__8t0_a0
-LSYM(x108)	t0__9a0		! t0__3t0	! b_e_shift	! r__r_4t0
-LSYM(x109)	t0__9a0		! t0__3t0	! b_e_t0	! t0__4t0_a0
-LSYM(x110)	t0__9a0		! t0__3t0	! b_e_2t0	! t0__2t0_a0
-LSYM(x111)	t0__9a0		! t0__4t0_a0	! b_e_t0	! t0__3t0
-LSYM(x112)	t0__3a0		! t0__2t0_a0	! b_e_t0	! t0__16t0
-LSYM(x113)	t0__9a0		! t0__4t0_a0	! b_e_t02a0	! t0__3t0
-LSYM(x114)	t0__9a0		! t0__2t0_a0	! b_e_2t0	! t0__3t0
-LSYM(x115)	t0__9a0		! t0__2t0_a0	! b_e_2t0a0	! t0__3t0
-LSYM(x116)	t0__3a0		! t0__2t0_a0	! b_e_4t0	! t0__4t0_a0
-LSYM(x117)	t0__3a0		! t0__4t0_a0	! b_e_t0	! t0__9t0
-LSYM(x118)	t0__3a0		! t0__4t0_a0	! b_e_t0a0	! t0__9t0
-LSYM(x119)	t0__3a0		! t0__4t0_a0	! b_e_t02a0	! t0__9t0
-LSYM(x120)	t0__5a0		! t0__3t0	! b_e_shift	! r__r_8t0
-LSYM(x121)	t0__5a0		! t0__3t0	! b_e_t0	! t0__8t0_a0
-LSYM(x122)	t0__5a0		! t0__3t0	! b_e_2t0	! t0__4t0_a0
-LSYM(x123)	t0__5a0		! t0__8t0_a0	! b_e_t0	! t0__3t0
-LSYM(x124)	t0__32a0	! t0__t0ma0	! b_e_shift	! r__r_4t0
-LSYM(x125)	t0__5a0		! t0__5t0	! b_e_t0	! t0__5t0
-LSYM(x126)	t0__64a0	! t0__t0ma0	! b_e_shift	! r__r_2t0
-LSYM(x127)	t0__128a0	! a1_ne_0_b_l0	! t0__t0ma0	! b_n_ret_t0
-LSYM(x128)	t0__128a0	! a1_ne_0_b_l1	! r__r_t0	! MILLIRETN
-LSYM(x129)	t0__128a0	! a1_ne_0_b_l0	! t0__t0_a0	! b_n_ret_t0
-LSYM(x130)	t0__64a0	! t0__t0_a0	! b_e_shift	! r__r_2t0
-LSYM(x131)	t0__8a0		! t0__8t0_a0	! b_e_t0	! t0__2t0_a0
-LSYM(x132)	t0__8a0		! t0__4t0_a0	! b_e_shift	! r__r_4t0
-LSYM(x133)	t0__8a0		! t0__4t0_a0	! b_e_t0	! t0__4t0_a0
-LSYM(x134)	t0__8a0		! t0__4t0_a0	! b_e_2t0	! t0__2t0_a0
-LSYM(x135)	t0__9a0		! t0__5t0	! b_e_t0	! t0__3t0
-LSYM(x136)	t0__8a0		! t0__2t0_a0	! b_e_shift	! r__r_8t0
-LSYM(x137)	t0__8a0		! t0__2t0_a0	! b_e_t0	! t0__8t0_a0
-LSYM(x138)	t0__8a0		! t0__2t0_a0	! b_e_2t0	! t0__4t0_a0
-LSYM(x139)	t0__8a0		! t0__2t0_a0	! b_e_2t0a0	! t0__4t0_a0
-LSYM(x140)	t0__3a0		! t0__2t0_a0	! b_e_4t0	! t0__5t0
-LSYM(x141)	t0__8a0		! t0__2t0_a0	! b_e_4t0a0	! t0__2t0_a0
-LSYM(x142)	t0__9a0		! t0__8t0	! b_e_2t0	! t0__t0ma0
-LSYM(x143)	t0__16a0	! t0__9t0	! b_e_t0	! t0__t0ma0
-LSYM(x144)	t0__9a0		! t0__8t0	! b_e_shift	! r__r_2t0
-LSYM(x145)	t0__9a0		! t0__8t0	! b_e_t0	! t0__2t0_a0
-LSYM(x146)	t0__9a0		! t0__8t0_a0	! b_e_shift	! r__r_2t0
-LSYM(x147)	t0__9a0		! t0__8t0_a0	! b_e_t0	! t0__2t0_a0
-LSYM(x148)	t0__9a0		! t0__4t0_a0	! b_e_shift	! r__r_4t0
-LSYM(x149)	t0__9a0		! t0__4t0_a0	! b_e_t0	! t0__4t0_a0
-LSYM(x150)	t0__9a0		! t0__4t0_a0	! b_e_2t0	! t0__2t0_a0
-LSYM(x151)	t0__9a0		! t0__4t0_a0	! b_e_2t0a0	! t0__2t0_a0
-LSYM(x152)	t0__9a0		! t0__2t0_a0	! b_e_shift	! r__r_8t0
-LSYM(x153)	t0__9a0		! t0__2t0_a0	! b_e_t0	! t0__8t0_a0
-LSYM(x154)	t0__9a0		! t0__2t0_a0	! b_e_2t0	! t0__4t0_a0
-LSYM(x155)	t0__32a0	! t0__t0ma0	! b_e_t0	! t0__5t0
-LSYM(x156)	t0__9a0		! t0__2t0_a0	! b_e_4t0	! t0__2t0_a0
-LSYM(x157)	t0__32a0	! t0__t0ma0	! b_e_t02a0	! t0__5t0
-LSYM(x158)	t0__16a0	! t0__5t0	! b_e_2t0	! t0__t0ma0
-LSYM(x159)	t0__32a0	! t0__5t0	! b_e_t0	! t0__t0ma0
-LSYM(x160)	t0__5a0		! t0__4t0	! b_e_shift	! r__r_8t0
-LSYM(x161)	t0__8a0		! t0__5t0	! b_e_t0	! t0__4t0_a0
-LSYM(x162)	t0__9a0		! t0__9t0	! b_e_shift	! r__r_2t0
-LSYM(x163)	t0__9a0		! t0__9t0	! b_e_t0	! t0__2t0_a0
-LSYM(x164)	t0__5a0		! t0__8t0_a0	! b_e_shift	! r__r_4t0
-LSYM(x165)	t0__8a0		! t0__4t0_a0	! b_e_t0	! t0__5t0
-LSYM(x166)	t0__5a0		! t0__8t0_a0	! b_e_2t0	! t0__2t0_a0
-LSYM(x167)	t0__5a0		! t0__8t0_a0	! b_e_2t0a0	! t0__2t0_a0
-LSYM(x168)	t0__5a0		! t0__4t0_a0	! b_e_shift	! r__r_8t0
-LSYM(x169)	t0__5a0		! t0__4t0_a0	! b_e_t0	! t0__8t0_a0
-LSYM(x170)	t0__32a0	! t0__t0_2a0	! b_e_t0	! t0__5t0
-LSYM(x171)	t0__9a0		! t0__2t0_a0	! b_e_t0	! t0__9t0
-LSYM(x172)	t0__5a0		! t0__4t0_a0	! b_e_4t0	! t0__2t0_a0
-LSYM(x173)	t0__9a0		! t0__2t0_a0	! b_e_t02a0	! t0__9t0
-LSYM(x174)	t0__32a0	! t0__t0_2a0	! b_e_t04a0	! t0__5t0
-LSYM(x175)	t0__8a0		! t0__2t0_a0	! b_e_5t0	! t0__2t0_a0
-LSYM(x176)	t0__5a0		! t0__4t0_a0	! b_e_8t0	! t0__t0_a0
-LSYM(x177)	t0__5a0		! t0__4t0_a0	! b_e_8t0a0	! t0__t0_a0
-LSYM(x178)	t0__5a0		! t0__2t0_a0	! b_e_2t0	! t0__8t0_a0
-LSYM(x179)	t0__5a0		! t0__2t0_a0	! b_e_2t0a0	! t0__8t0_a0
-LSYM(x180)	t0__9a0		! t0__5t0	! b_e_shift	! r__r_4t0
-LSYM(x181)	t0__9a0		! t0__5t0	! b_e_t0	! t0__4t0_a0
-LSYM(x182)	t0__9a0		! t0__5t0	! b_e_2t0	! t0__2t0_a0
-LSYM(x183)	t0__9a0		! t0__5t0	! b_e_2t0a0	! t0__2t0_a0
-LSYM(x184)	t0__5a0		! t0__9t0	! b_e_4t0	! t0__t0_a0
-LSYM(x185)	t0__9a0		! t0__4t0_a0	! b_e_t0	! t0__5t0
-LSYM(x186)	t0__32a0	! t0__t0ma0	! b_e_2t0	! t0__3t0
-LSYM(x187)	t0__9a0		! t0__4t0_a0	! b_e_t02a0	! t0__5t0
-LSYM(x188)	t0__9a0		! t0__5t0	! b_e_4t0	! t0__t0_2a0
-LSYM(x189)	t0__5a0		! t0__4t0_a0	! b_e_t0	! t0__9t0
-LSYM(x190)	t0__9a0		! t0__2t0_a0	! b_e_2t0	! t0__5t0
-LSYM(x191)	t0__64a0	! t0__3t0	! b_e_t0	! t0__t0ma0
-LSYM(x192)	t0__8a0		! t0__3t0	! b_e_shift	! r__r_8t0
-LSYM(x193)	t0__8a0		! t0__3t0	! b_e_t0	! t0__8t0_a0
-LSYM(x194)	t0__8a0		! t0__3t0	! b_e_2t0	! t0__4t0_a0
-LSYM(x195)	t0__8a0		! t0__8t0_a0	! b_e_t0	! t0__3t0
-LSYM(x196)	t0__8a0		! t0__3t0	! b_e_4t0	! t0__2t0_a0
-LSYM(x197)	t0__8a0		! t0__3t0	! b_e_4t0a0	! t0__2t0_a0
-LSYM(x198)	t0__64a0	! t0__t0_2a0	! b_e_t0	! t0__3t0
-LSYM(x199)	t0__8a0		! t0__4t0_a0	! b_e_2t0a0	! t0__3t0
-LSYM(x200)	t0__5a0		! t0__5t0	! b_e_shift	! r__r_8t0
-LSYM(x201)	t0__5a0		! t0__5t0	! b_e_t0	! t0__8t0_a0
-LSYM(x202)	t0__5a0		! t0__5t0	! b_e_2t0	! t0__4t0_a0
-LSYM(x203)	t0__5a0		! t0__5t0	! b_e_2t0a0	! t0__4t0_a0
-LSYM(x204)	t0__8a0		! t0__2t0_a0	! b_e_4t0	! t0__3t0
-LSYM(x205)	t0__5a0		! t0__8t0_a0	! b_e_t0	! t0__5t0
-LSYM(x206)	t0__64a0	! t0__t0_4a0	! b_e_t02a0	! t0__3t0
-LSYM(x207)	t0__8a0		! t0__2t0_a0	! b_e_3t0	! t0__4t0_a0
-LSYM(x208)	t0__5a0		! t0__5t0	! b_e_8t0	! t0__t0_a0
-LSYM(x209)	t0__5a0		! t0__5t0	! b_e_8t0a0	! t0__t0_a0
-LSYM(x210)	t0__5a0		! t0__4t0_a0	! b_e_2t0	! t0__5t0
-LSYM(x211)	t0__5a0		! t0__4t0_a0	! b_e_2t0a0	! t0__5t0
-LSYM(x212)	t0__3a0		! t0__4t0_a0	! b_e_4t0	! t0__4t0_a0
-LSYM(x213)	t0__3a0		! t0__4t0_a0	! b_e_4t0a0	! t0__4t0_a0
-LSYM(x214)	t0__9a0		! t0__t0_4a0	! b_e_2t04a0	! t0__8t0_a0
-LSYM(x215)	t0__5a0		! t0__4t0_a0	! b_e_5t0	! t0__2t0_a0
-LSYM(x216)	t0__9a0		! t0__3t0	! b_e_shift	! r__r_8t0
-LSYM(x217)	t0__9a0		! t0__3t0	! b_e_t0	! t0__8t0_a0
-LSYM(x218)	t0__9a0		! t0__3t0	! b_e_2t0	! t0__4t0_a0
-LSYM(x219)	t0__9a0		! t0__8t0_a0	! b_e_t0	! t0__3t0
-LSYM(x220)	t0__3a0		! t0__9t0	! b_e_4t0	! t0__2t0_a0
-LSYM(x221)	t0__3a0		! t0__9t0	! b_e_4t0a0	! t0__2t0_a0
-LSYM(x222)	t0__9a0		! t0__4t0_a0	! b_e_2t0	! t0__3t0
-LSYM(x223)	t0__9a0		! t0__4t0_a0	! b_e_2t0a0	! t0__3t0
-LSYM(x224)	t0__9a0		! t0__3t0	! b_e_8t0	! t0__t0_a0
-LSYM(x225)	t0__9a0		! t0__5t0	! b_e_t0	! t0__5t0
-LSYM(x226)	t0__3a0		! t0__2t0_a0	! b_e_t02a0	! t0__32t0
-LSYM(x227)	t0__9a0		! t0__5t0	! b_e_t02a0	! t0__5t0
-LSYM(x228)	t0__9a0		! t0__2t0_a0	! b_e_4t0	! t0__3t0
-LSYM(x229)	t0__9a0		! t0__2t0_a0	! b_e_4t0a0	! t0__3t0
-LSYM(x230)	t0__9a0		! t0__5t0	! b_e_5t0	! t0__t0_a0
-LSYM(x231)	t0__9a0		! t0__2t0_a0	! b_e_3t0	! t0__4t0_a0
-LSYM(x232)	t0__3a0		! t0__2t0_a0	! b_e_8t0	! t0__4t0_a0
-LSYM(x233)	t0__3a0		! t0__2t0_a0	! b_e_8t0a0	! t0__4t0_a0
-LSYM(x234)	t0__3a0		! t0__4t0_a0	! b_e_2t0	! t0__9t0
-LSYM(x235)	t0__3a0		! t0__4t0_a0	! b_e_2t0a0	! t0__9t0
-LSYM(x236)	t0__9a0		! t0__2t0_a0	! b_e_4t08a0	! t0__3t0
-LSYM(x237)	t0__16a0	! t0__5t0	! b_e_3t0	! t0__t0ma0
-LSYM(x238)	t0__3a0		! t0__4t0_a0	! b_e_2t04a0	! t0__9t0
-LSYM(x239)	t0__16a0	! t0__5t0	! b_e_t0ma0	! t0__3t0
-LSYM(x240)	t0__9a0		! t0__t0_a0	! b_e_8t0	! t0__3t0
-LSYM(x241)	t0__9a0		! t0__t0_a0	! b_e_8t0a0	! t0__3t0
-LSYM(x242)	t0__5a0		! t0__3t0	! b_e_2t0	! t0__8t0_a0
-LSYM(x243)	t0__9a0		! t0__9t0	! b_e_t0	! t0__3t0
-LSYM(x244)	t0__5a0		! t0__3t0	! b_e_4t0	! t0__4t0_a0
-LSYM(x245)	t0__8a0		! t0__3t0	! b_e_5t0	! t0__2t0_a0
-LSYM(x246)	t0__5a0		! t0__8t0_a0	! b_e_2t0	! t0__3t0
-LSYM(x247)	t0__5a0		! t0__8t0_a0	! b_e_2t0a0	! t0__3t0
-LSYM(x248)	t0__32a0	! t0__t0ma0	! b_e_shift	! r__r_8t0
-LSYM(x249)	t0__32a0	! t0__t0ma0	! b_e_t0	! t0__8t0_a0
-LSYM(x250)	t0__5a0		! t0__5t0	! b_e_2t0	! t0__5t0
-LSYM(x251)	t0__5a0		! t0__5t0	! b_e_2t0a0	! t0__5t0
-LSYM(x252)	t0__64a0	! t0__t0ma0	! b_e_shift	! r__r_4t0
-LSYM(x253)	t0__64a0	! t0__t0ma0	! b_e_t0	! t0__4t0_a0
-LSYM(x254)	t0__128a0	! t0__t0ma0	! b_e_shift	! r__r_2t0
-LSYM(x255)	t0__256a0	! a1_ne_0_b_l0	! t0__t0ma0	! b_n_ret_t0
-/*1040 insts before this.  */
-LSYM(ret_t0)	MILLIRET
-LSYM(e_t0)	r__r_t0
-LSYM(e_shift)	a1_ne_0_b_l2
-	a0__256a0	/* a0 <<= 8 *********** */
-	MILLIRETN
-LSYM(e_t0ma0)	a1_ne_0_b_l0
-	t0__t0ma0
-	MILLIRET
-	r__r_t0
-LSYM(e_t0a0)	a1_ne_0_b_l0
-	t0__t0_a0
-	MILLIRET
-	r__r_t0
-LSYM(e_t02a0)	a1_ne_0_b_l0
-	t0__t0_2a0
-	MILLIRET
-	r__r_t0
-LSYM(e_t04a0)	a1_ne_0_b_l0
-	t0__t0_4a0
-	MILLIRET
-	r__r_t0
-LSYM(e_2t0)	a1_ne_0_b_l1
-	r__r_2t0
-	MILLIRETN
-LSYM(e_2t0a0)	a1_ne_0_b_l0
-	t0__2t0_a0
-	MILLIRET
-	r__r_t0
-LSYM(e2t04a0)	t0__t0_2a0
-	a1_ne_0_b_l1
-	r__r_2t0
-	MILLIRETN
-LSYM(e_3t0)	a1_ne_0_b_l0
-	t0__3t0
-	MILLIRET
-	r__r_t0
-LSYM(e_4t0)	a1_ne_0_b_l1
-	r__r_4t0
-	MILLIRETN
-LSYM(e_4t0a0)	a1_ne_0_b_l0
-	t0__4t0_a0
-	MILLIRET
-	r__r_t0
-LSYM(e4t08a0)	t0__t0_2a0
-	a1_ne_0_b_l1
-	r__r_4t0
-	MILLIRETN
-LSYM(e_5t0)	a1_ne_0_b_l0
-	t0__5t0
-	MILLIRET
-	r__r_t0
-LSYM(e_8t0)	a1_ne_0_b_l1
-	r__r_8t0
-	MILLIRETN
-LSYM(e_8t0a0)	a1_ne_0_b_l0
-	t0__8t0_a0
-	MILLIRET
-	r__r_t0
-
-	.procend
-	.end
-#endif
diff --git a/arch/parisc/lib/milli/milli.h b/arch/parisc/lib/milli/milli.h
deleted file mode 100644
index 19ac79f336de..000000000000
--- a/arch/parisc/lib/milli/milli.h
+++ /dev/null
@@ -1,165 +0,0 @@
-/* 32 and 64-bit millicode, original author Hewlett-Packard
-   adapted for gcc by Paul Bame <bame@debian.org>
-   and Alan Modra <alan@linuxcare.com.au>.
-
-   Copyright 2001, 2002, 2003 Free Software Foundation, Inc.
-
-   This file is part of GCC and is released under the terms of
-   of the GNU General Public License as published by the Free Software
-   Foundation; either version 2, or (at your option) any later version.
-   See the file COPYING in the top-level GCC source directory for a copy
-   of the license.  */
-
-#ifndef _PA_MILLI_H_
-#define _PA_MILLI_H_
-
-#define L_dyncall
-#define L_divI
-#define L_divU
-#define L_remI
-#define L_remU
-#define L_div_const
-#define L_mulI
-
-#ifdef CONFIG_64BIT
-        .level  2.0w
-#endif
-
-/* Hardware General Registers.  */
-r0:	.reg	%r0
-r1:	.reg	%r1
-r2:	.reg	%r2
-r3:	.reg	%r3
-r4:	.reg	%r4
-r5:	.reg	%r5
-r6:	.reg	%r6
-r7:	.reg	%r7
-r8:	.reg	%r8
-r9:	.reg	%r9
-r10:	.reg	%r10
-r11:	.reg	%r11
-r12:	.reg	%r12
-r13:	.reg	%r13
-r14:	.reg	%r14
-r15:	.reg	%r15
-r16:	.reg	%r16
-r17:	.reg	%r17
-r18:	.reg	%r18
-r19:	.reg	%r19
-r20:	.reg	%r20
-r21:	.reg	%r21
-r22:	.reg	%r22
-r23:	.reg	%r23
-r24:	.reg	%r24
-r25:	.reg	%r25
-r26:	.reg	%r26
-r27:	.reg	%r27
-r28:	.reg	%r28
-r29:	.reg	%r29
-r30:	.reg	%r30
-r31:	.reg	%r31
-
-/* Hardware Space Registers.  */
-sr0:	.reg	%sr0
-sr1:	.reg	%sr1
-sr2:	.reg	%sr2
-sr3:	.reg	%sr3
-sr4:	.reg	%sr4
-sr5:	.reg	%sr5
-sr6:	.reg	%sr6
-sr7:	.reg	%sr7
-
-/* Hardware Floating Point Registers.  */
-fr0:	.reg	%fr0
-fr1:	.reg	%fr1
-fr2:	.reg	%fr2
-fr3:	.reg	%fr3
-fr4:	.reg	%fr4
-fr5:	.reg	%fr5
-fr6:	.reg	%fr6
-fr7:	.reg	%fr7
-fr8:	.reg	%fr8
-fr9:	.reg	%fr9
-fr10:	.reg	%fr10
-fr11:	.reg	%fr11
-fr12:	.reg	%fr12
-fr13:	.reg	%fr13
-fr14:	.reg	%fr14
-fr15:	.reg	%fr15
-
-/* Hardware Control Registers.  */
-cr11:	.reg	%cr11
-sar:	.reg	%cr11	/* Shift Amount Register */
-
-/* Software Architecture General Registers.  */
-rp:	.reg    r2	/* return pointer */
-#ifdef CONFIG_64BIT
-mrp:	.reg	r2 	/* millicode return pointer */
-#else
-mrp:	.reg	r31	/* millicode return pointer */
-#endif
-ret0:	.reg    r28	/* return value */
-ret1:	.reg    r29	/* return value (high part of double) */
-sp:	.reg 	r30	/* stack pointer */
-dp:	.reg	r27	/* data pointer */
-arg0:	.reg	r26	/* argument */
-arg1:	.reg	r25	/* argument or high part of double argument */
-arg2:	.reg	r24	/* argument */
-arg3:	.reg	r23	/* argument or high part of double argument */
-
-/* Software Architecture Space Registers.  */
-/* 		sr0	; return link from BLE */
-sret:	.reg	sr1	/* return value */
-sarg:	.reg	sr1	/* argument */
-/* 		sr4	; PC SPACE tracker */
-/* 		sr5	; process private data */
-
-/* Frame Offsets (millicode convention!)  Used when calling other
-   millicode routines.  Stack unwinding is dependent upon these
-   definitions.  */
-r31_slot:	.equ	-20	/* "current RP" slot */
-sr0_slot:	.equ	-16     /* "static link" slot */
-#if defined(CONFIG_64BIT)
-mrp_slot:       .equ    -16	/* "current RP" slot */
-psp_slot:       .equ    -8	/* "previous SP" slot */
-#else
-mrp_slot:	.equ	-20     /* "current RP" slot (replacing "r31_slot") */
-#endif
-
-
-#define DEFINE(name,value)name:	.EQU	value
-#define RDEFINE(name,value)name:	.REG	value
-#ifdef milliext
-#define MILLI_BE(lbl)   BE    lbl(sr7,r0)
-#define MILLI_BEN(lbl)  BE,n  lbl(sr7,r0)
-#define MILLI_BLE(lbl)	BLE   lbl(sr7,r0)
-#define MILLI_BLEN(lbl)	BLE,n lbl(sr7,r0)
-#define MILLIRETN	BE,n  0(sr0,mrp)
-#define MILLIRET	BE    0(sr0,mrp)
-#define MILLI_RETN	BE,n  0(sr0,mrp)
-#define MILLI_RET	BE    0(sr0,mrp)
-#else
-#define MILLI_BE(lbl)	B     lbl
-#define MILLI_BEN(lbl)  B,n   lbl
-#define MILLI_BLE(lbl)	BL    lbl,mrp
-#define MILLI_BLEN(lbl)	BL,n  lbl,mrp
-#define MILLIRETN	BV,n  0(mrp)
-#define MILLIRET	BV    0(mrp)
-#define MILLI_RETN	BV,n  0(mrp)
-#define MILLI_RET	BV    0(mrp)
-#endif
-
-#define CAT(a,b)	a##b
-
-#define SUBSPA_MILLI	 .section .text
-#define SUBSPA_MILLI_DIV .section .text.div,"ax",@progbits! .align 16
-#define SUBSPA_MILLI_MUL .section .text.mul,"ax",@progbits! .align 16
-#define ATTR_MILLI
-#define SUBSPA_DATA	 .section .data
-#define ATTR_DATA
-#define GLOBAL		 $global$
-#define GSYM(sym) 	 !sym:
-#define LSYM(sym)	 !CAT(.L,sym:)
-#define LREF(sym)	 CAT(.L,sym)
-
-#endif /*_PA_MILLI_H_*/
diff --git a/arch/parisc/lib/milli/mulI.S b/arch/parisc/lib/milli/mulI.S
deleted file mode 100644
index 4c7e0c36d15e..000000000000
--- a/arch/parisc/lib/milli/mulI.S
+++ /dev/null
@@ -1,474 +0,0 @@
-/* 32 and 64-bit millicode, original author Hewlett-Packard
-   adapted for gcc by Paul Bame <bame@debian.org>
-   and Alan Modra <alan@linuxcare.com.au>.
-
-   Copyright 2001, 2002, 2003 Free Software Foundation, Inc.
-
-   This file is part of GCC and is released under the terms of
-   of the GNU General Public License as published by the Free Software
-   Foundation; either version 2, or (at your option) any later version.
-   See the file COPYING in the top-level GCC source directory for a copy
-   of the license.  */
-
-#include "milli.h"
-
-#ifdef L_mulI
-/* VERSION "@(#)$$mulI $ Revision: 12.4 $ $ Date: 94/03/17 17:18:51 $" */
-/******************************************************************************
-This routine is used on PA2.0 processors when gcc -mno-fpregs is used
-
-ROUTINE:	$$mulI
-
-
-DESCRIPTION:	
-
-	$$mulI multiplies two single word integers, giving a single 
-	word result.  
-
-
-INPUT REGISTERS:
-
-	arg0 = Operand 1
-	arg1 = Operand 2
-	r31  == return pc
-	sr0  == return space when called externally 
-
-
-OUTPUT REGISTERS:
-
-	arg0 = undefined
-	arg1 = undefined
-	ret1 = result 
-
-OTHER REGISTERS AFFECTED:
-
-	r1   = undefined
-
-SIDE EFFECTS:
-
-	Causes a trap under the following conditions:  NONE
-	Changes memory at the following places:  NONE
-
-PERMISSIBLE CONTEXT:
-
-	Unwindable
-	Does not create a stack frame
-	Is usable for internal or external microcode
-
-DISCUSSION:
-
-	Calls other millicode routines via mrp:  NONE
-	Calls other millicode routines:  NONE
-
-***************************************************************************/
-
-
-#define	a0	%arg0
-#define	a1	%arg1
-#define	t0	%r1
-#define	r	%ret1
-
-#define	a0__128a0	zdep	a0,24,25,a0
-#define	a0__256a0	zdep	a0,23,24,a0
-#define	a1_ne_0_b_l0	comb,<>	a1,0,LREF(l0)
-#define	a1_ne_0_b_l1	comb,<>	a1,0,LREF(l1)
-#define	a1_ne_0_b_l2	comb,<>	a1,0,LREF(l2)
-#define	b_n_ret_t0	b,n	LREF(ret_t0)
-#define	b_e_shift	b	LREF(e_shift)
-#define	b_e_t0ma0	b	LREF(e_t0ma0)
-#define	b_e_t0		b	LREF(e_t0)
-#define	b_e_t0a0	b	LREF(e_t0a0)
-#define	b_e_t02a0	b	LREF(e_t02a0)
-#define	b_e_t04a0	b	LREF(e_t04a0)
-#define	b_e_2t0		b	LREF(e_2t0)
-#define	b_e_2t0a0	b	LREF(e_2t0a0)
-#define	b_e_2t04a0	b	LREF(e2t04a0)
-#define	b_e_3t0		b	LREF(e_3t0)
-#define	b_e_4t0		b	LREF(e_4t0)
-#define	b_e_4t0a0	b	LREF(e_4t0a0)
-#define	b_e_4t08a0	b	LREF(e4t08a0)
-#define	b_e_5t0		b	LREF(e_5t0)
-#define	b_e_8t0		b	LREF(e_8t0)
-#define	b_e_8t0a0	b	LREF(e_8t0a0)
-#define	r__r_a0		add	r,a0,r
-#define	r__r_2a0	sh1add	a0,r,r
-#define	r__r_4a0	sh2add	a0,r,r
-#define	r__r_8a0	sh3add	a0,r,r
-#define	r__r_t0		add	r,t0,r
-#define	r__r_2t0	sh1add	t0,r,r
-#define	r__r_4t0	sh2add	t0,r,r
-#define	r__r_8t0	sh3add	t0,r,r
-#define	t0__3a0		sh1add	a0,a0,t0
-#define	t0__4a0		sh2add	a0,0,t0
-#define	t0__5a0		sh2add	a0,a0,t0
-#define	t0__8a0		sh3add	a0,0,t0
-#define	t0__9a0		sh3add	a0,a0,t0
-#define	t0__16a0	zdep	a0,27,28,t0
-#define	t0__32a0	zdep	a0,26,27,t0
-#define	t0__64a0	zdep	a0,25,26,t0
-#define	t0__128a0	zdep	a0,24,25,t0
-#define	t0__t0ma0	sub	t0,a0,t0
-#define	t0__t0_a0	add	t0,a0,t0
-#define	t0__t0_2a0	sh1add	a0,t0,t0
-#define	t0__t0_4a0	sh2add	a0,t0,t0
-#define	t0__t0_8a0	sh3add	a0,t0,t0
-#define	t0__2t0_a0	sh1add	t0,a0,t0
-#define	t0__3t0		sh1add	t0,t0,t0
-#define	t0__4t0		sh2add	t0,0,t0
-#define	t0__4t0_a0	sh2add	t0,a0,t0
-#define	t0__5t0		sh2add	t0,t0,t0
-#define	t0__8t0		sh3add	t0,0,t0
-#define	t0__8t0_a0	sh3add	t0,a0,t0
-#define	t0__9t0		sh3add	t0,t0,t0
-#define	t0__16t0	zdep	t0,27,28,t0
-#define	t0__32t0	zdep	t0,26,27,t0
-#define	t0__256a0	zdep	a0,23,24,t0
-
-
-	SUBSPA_MILLI
-	ATTR_MILLI
-	.align 16
-	.proc
-	.callinfo millicode
-	.export $$mulI,millicode
-GSYM($$mulI)	
-	combt,<<=	a1,a0,LREF(l4)	/* swap args if unsigned a1>a0 */
-	copy		0,r		/* zero out the result */
-	xor		a0,a1,a0	/* swap a0 & a1 using the */
-	xor		a0,a1,a1	/*  old xor trick */
-	xor		a0,a1,a0
-LSYM(l4)
-	combt,<=	0,a0,LREF(l3)		/* if a0>=0 then proceed like unsigned */
-	zdep		a1,30,8,t0	/* t0 = (a1&0xff)<<1 ********* */
-	sub,>		0,a1,t0		/* otherwise negate both and */
-	combt,<=,n	a0,t0,LREF(l2)	/*  swap back if |a0|<|a1| */
-	sub		0,a0,a1
-	movb,tr,n	t0,a0,LREF(l2)	/* 10th inst.  */
-
-LSYM(l0)	r__r_t0				/* add in this partial product */
-LSYM(l1)	a0__256a0			/* a0 <<= 8 ****************** */
-LSYM(l2)	zdep		a1,30,8,t0	/* t0 = (a1&0xff)<<1 ********* */
-LSYM(l3)	blr		t0,0		/* case on these 8 bits ****** */
-		extru		a1,23,24,a1	/* a1 >>= 8 ****************** */
-
-/*16 insts before this.  */
-/*			  a0 <<= 8 ************************** */
-LSYM(x0)	a1_ne_0_b_l2	! a0__256a0	! MILLIRETN	! nop
-LSYM(x1)	a1_ne_0_b_l1	! r__r_a0	! MILLIRETN	! nop
-LSYM(x2)	a1_ne_0_b_l1	! r__r_2a0	! MILLIRETN	! nop
-LSYM(x3)	a1_ne_0_b_l0	! t0__3a0	! MILLIRET	! r__r_t0
-LSYM(x4)	a1_ne_0_b_l1	! r__r_4a0	! MILLIRETN	! nop
-LSYM(x5)	a1_ne_0_b_l0	! t0__5a0	! MILLIRET	! r__r_t0
-LSYM(x6)	t0__3a0		! a1_ne_0_b_l1	! r__r_2t0	! MILLIRETN
-LSYM(x7)	t0__3a0		! a1_ne_0_b_l0	! r__r_4a0	! b_n_ret_t0
-LSYM(x8)	a1_ne_0_b_l1	! r__r_8a0	! MILLIRETN	! nop
-LSYM(x9)	a1_ne_0_b_l0	! t0__9a0	! MILLIRET	! r__r_t0
-LSYM(x10)	t0__5a0		! a1_ne_0_b_l1	! r__r_2t0	! MILLIRETN
-LSYM(x11)	t0__3a0		! a1_ne_0_b_l0	! r__r_8a0	! b_n_ret_t0
-LSYM(x12)	t0__3a0		! a1_ne_0_b_l1	! r__r_4t0	! MILLIRETN
-LSYM(x13)	t0__5a0		! a1_ne_0_b_l0	! r__r_8a0	! b_n_ret_t0
-LSYM(x14)	t0__3a0		! t0__2t0_a0	! b_e_shift	! r__r_2t0
-LSYM(x15)	t0__5a0		! a1_ne_0_b_l0	! t0__3t0	! b_n_ret_t0
-LSYM(x16)	t0__16a0	! a1_ne_0_b_l1	! r__r_t0	! MILLIRETN
-LSYM(x17)	t0__9a0		! a1_ne_0_b_l0	! t0__t0_8a0	! b_n_ret_t0
-LSYM(x18)	t0__9a0		! a1_ne_0_b_l1	! r__r_2t0	! MILLIRETN
-LSYM(x19)	t0__9a0		! a1_ne_0_b_l0	! t0__2t0_a0	! b_n_ret_t0
-LSYM(x20)	t0__5a0		! a1_ne_0_b_l1	! r__r_4t0	! MILLIRETN
-LSYM(x21)	t0__5a0		! a1_ne_0_b_l0	! t0__4t0_a0	! b_n_ret_t0
-LSYM(x22)	t0__5a0		! t0__2t0_a0	! b_e_shift	! r__r_2t0
-LSYM(x23)	t0__5a0		! t0__2t0_a0	! b_e_t0	! t0__2t0_a0
-LSYM(x24)	t0__3a0		! a1_ne_0_b_l1	! r__r_8t0	! MILLIRETN
-LSYM(x25)	t0__5a0		! a1_ne_0_b_l0	! t0__5t0	! b_n_ret_t0
-LSYM(x26)	t0__3a0		! t0__4t0_a0	! b_e_shift	! r__r_2t0
-LSYM(x27)	t0__3a0		! a1_ne_0_b_l0	! t0__9t0	! b_n_ret_t0
-LSYM(x28)	t0__3a0		! t0__2t0_a0	! b_e_shift	! r__r_4t0
-LSYM(x29)	t0__3a0		! t0__2t0_a0	! b_e_t0	! t0__4t0_a0
-LSYM(x30)	t0__5a0		! t0__3t0	! b_e_shift	! r__r_2t0
-LSYM(x31)	t0__32a0	! a1_ne_0_b_l0	! t0__t0ma0	! b_n_ret_t0
-LSYM(x32)	t0__32a0	! a1_ne_0_b_l1	! r__r_t0	! MILLIRETN
-LSYM(x33)	t0__8a0		! a1_ne_0_b_l0	! t0__4t0_a0	! b_n_ret_t0
-LSYM(x34)	t0__16a0	! t0__t0_a0	! b_e_shift	! r__r_2t0
-LSYM(x35)	t0__9a0		! t0__3t0	! b_e_t0	! t0__t0_8a0
-LSYM(x36)	t0__9a0		! a1_ne_0_b_l1	! r__r_4t0	! MILLIRETN
-LSYM(x37)	t0__9a0		! a1_ne_0_b_l0	! t0__4t0_a0	! b_n_ret_t0
-LSYM(x38)	t0__9a0		! t0__2t0_a0	! b_e_shift	! r__r_2t0
-LSYM(x39)	t0__9a0		! t0__2t0_a0	! b_e_t0	! t0__2t0_a0
-LSYM(x40)	t0__5a0		! a1_ne_0_b_l1	! r__r_8t0	! MILLIRETN
-LSYM(x41)	t0__5a0		! a1_ne_0_b_l0	! t0__8t0_a0	! b_n_ret_t0
-LSYM(x42)	t0__5a0		! t0__4t0_a0	! b_e_shift	! r__r_2t0
-LSYM(x43)	t0__5a0		! t0__4t0_a0	! b_e_t0	! t0__2t0_a0
-LSYM(x44)	t0__5a0		! t0__2t0_a0	! b_e_shift	! r__r_4t0
-LSYM(x45)	t0__9a0		! a1_ne_0_b_l0	! t0__5t0	! b_n_ret_t0
-LSYM(x46)	t0__9a0		! t0__5t0	! b_e_t0	! t0__t0_a0
-LSYM(x47)	t0__9a0		! t0__5t0	! b_e_t0	! t0__t0_2a0
-LSYM(x48)	t0__3a0		! a1_ne_0_b_l0	! t0__16t0	! b_n_ret_t0
-LSYM(x49)	t0__9a0		! t0__5t0	! b_e_t0	! t0__t0_4a0
-LSYM(x50)	t0__5a0		! t0__5t0	! b_e_shift	! r__r_2t0
-LSYM(x51)	t0__9a0		! t0__t0_8a0	! b_e_t0	! t0__3t0
-LSYM(x52)	t0__3a0		! t0__4t0_a0	! b_e_shift	! r__r_4t0
-LSYM(x53)	t0__3a0		! t0__4t0_a0	! b_e_t0	! t0__4t0_a0
-LSYM(x54)	t0__9a0		! t0__3t0	! b_e_shift	! r__r_2t0
-LSYM(x55)	t0__9a0		! t0__3t0	! b_e_t0	! t0__2t0_a0
-LSYM(x56)	t0__3a0		! t0__2t0_a0	! b_e_shift	! r__r_8t0
-LSYM(x57)	t0__9a0		! t0__2t0_a0	! b_e_t0	! t0__3t0
-LSYM(x58)	t0__3a0		! t0__2t0_a0	! b_e_2t0	! t0__4t0_a0
-LSYM(x59)	t0__9a0		! t0__2t0_a0	! b_e_t02a0	! t0__3t0
-LSYM(x60)	t0__5a0		! t0__3t0	! b_e_shift	! r__r_4t0
-LSYM(x61)	t0__5a0		! t0__3t0	! b_e_t0	! t0__4t0_a0
-LSYM(x62)	t0__32a0	! t0__t0ma0	! b_e_shift	! r__r_2t0
-LSYM(x63)	t0__64a0	! a1_ne_0_b_l0	! t0__t0ma0	! b_n_ret_t0
-LSYM(x64)	t0__64a0	! a1_ne_0_b_l1	! r__r_t0	! MILLIRETN
-LSYM(x65)	t0__8a0		! a1_ne_0_b_l0	! t0__8t0_a0	! b_n_ret_t0
-LSYM(x66)	t0__32a0	! t0__t0_a0	! b_e_shift	! r__r_2t0
-LSYM(x67)	t0__8a0		! t0__4t0_a0	! b_e_t0	! t0__2t0_a0
-LSYM(x68)	t0__8a0		! t0__2t0_a0	! b_e_shift	! r__r_4t0
-LSYM(x69)	t0__8a0		! t0__2t0_a0	! b_e_t0	! t0__4t0_a0
-LSYM(x70)	t0__64a0	! t0__t0_4a0	! b_e_t0	! t0__t0_2a0
-LSYM(x71)	t0__9a0		! t0__8t0	! b_e_t0	! t0__t0ma0
-LSYM(x72)	t0__9a0		! a1_ne_0_b_l1	! r__r_8t0	! MILLIRETN
-LSYM(x73)	t0__9a0		! t0__8t0_a0	! b_e_shift	! r__r_t0
-LSYM(x74)	t0__9a0		! t0__4t0_a0	! b_e_shift	! r__r_2t0
-LSYM(x75)	t0__9a0		! t0__4t0_a0	! b_e_t0	! t0__2t0_a0
-LSYM(x76)	t0__9a0		! t0__2t0_a0	! b_e_shift	! r__r_4t0
-LSYM(x77)	t0__9a0		! t0__2t0_a0	! b_e_t0	! t0__4t0_a0
-LSYM(x78)	t0__9a0		! t0__2t0_a0	! b_e_2t0	! t0__2t0_a0
-LSYM(x79)	t0__16a0	! t0__5t0	! b_e_t0	! t0__t0ma0
-LSYM(x80)	t0__16a0	! t0__5t0	! b_e_shift	! r__r_t0
-LSYM(x81)	t0__9a0		! t0__9t0	! b_e_shift	! r__r_t0
-LSYM(x82)	t0__5a0		! t0__8t0_a0	! b_e_shift	! r__r_2t0
-LSYM(x83)	t0__5a0		! t0__8t0_a0	! b_e_t0	! t0__2t0_a0
-LSYM(x84)	t0__5a0		! t0__4t0_a0	! b_e_shift	! r__r_4t0
-LSYM(x85)	t0__8a0		! t0__2t0_a0	! b_e_t0	! t0__5t0
-LSYM(x86)	t0__5a0		! t0__4t0_a0	! b_e_2t0	! t0__2t0_a0
-LSYM(x87)	t0__9a0		! t0__9t0	! b_e_t02a0	! t0__t0_4a0
-LSYM(x88)	t0__5a0		! t0__2t0_a0	! b_e_shift	! r__r_8t0
-LSYM(x89)	t0__5a0		! t0__2t0_a0	! b_e_t0	! t0__8t0_a0
-LSYM(x90)	t0__9a0		! t0__5t0	! b_e_shift	! r__r_2t0
-LSYM(x91)	t0__9a0		! t0__5t0	! b_e_t0	! t0__2t0_a0
-LSYM(x92)	t0__5a0		! t0__2t0_a0	! b_e_4t0	! t0__2t0_a0
-LSYM(x93)	t0__32a0	! t0__t0ma0	! b_e_t0	! t0__3t0
-LSYM(x94)	t0__9a0		! t0__5t0	! b_e_2t0	! t0__t0_2a0
-LSYM(x95)	t0__9a0		! t0__2t0_a0	! b_e_t0	! t0__5t0
-LSYM(x96)	t0__8a0		! t0__3t0	! b_e_shift	! r__r_4t0
-LSYM(x97)	t0__8a0		! t0__3t0	! b_e_t0	! t0__4t0_a0
-LSYM(x98)	t0__32a0	! t0__3t0	! b_e_t0	! t0__t0_2a0
-LSYM(x99)	t0__8a0		! t0__4t0_a0	! b_e_t0	! t0__3t0
-LSYM(x100)	t0__5a0		! t0__5t0	! b_e_shift	! r__r_4t0
-LSYM(x101)	t0__5a0		! t0__5t0	! b_e_t0	! t0__4t0_a0
-LSYM(x102)	t0__32a0	! t0__t0_2a0	! b_e_t0	! t0__3t0
-LSYM(x103)	t0__5a0		! t0__5t0	! b_e_t02a0	! t0__4t0_a0
-LSYM(x104)	t0__3a0		! t0__4t0_a0	! b_e_shift	! r__r_8t0
-LSYM(x105)	t0__5a0		! t0__4t0_a0	! b_e_t0	! t0__5t0
-LSYM(x106)	t0__3a0		! t0__4t0_a0	! b_e_2t0	! t0__4t0_a0
-LSYM(x107)	t0__9a0		! t0__t0_4a0	! b_e_t02a0	! t0__8t0_a0
-LSYM(x108)	t0__9a0		! t0__3t0	! b_e_shift	! r__r_4t0
-LSYM(x109)	t0__9a0		! t0__3t0	! b_e_t0	! t0__4t0_a0
-LSYM(x110)	t0__9a0		! t0__3t0	! b_e_2t0	! t0__2t0_a0
-LSYM(x111)	t0__9a0		! t0__4t0_a0	! b_e_t0	! t0__3t0
-LSYM(x112)	t0__3a0		! t0__2t0_a0	! b_e_t0	! t0__16t0
-LSYM(x113)	t0__9a0		! t0__4t0_a0	! b_e_t02a0	! t0__3t0
-LSYM(x114)	t0__9a0		! t0__2t0_a0	! b_e_2t0	! t0__3t0
-LSYM(x115)	t0__9a0		! t0__2t0_a0	! b_e_2t0a0	! t0__3t0
-LSYM(x116)	t0__3a0		! t0__2t0_a0	! b_e_4t0	! t0__4t0_a0
-LSYM(x117)	t0__3a0		! t0__4t0_a0	! b_e_t0	! t0__9t0
-LSYM(x118)	t0__3a0		! t0__4t0_a0	! b_e_t0a0	! t0__9t0
-LSYM(x119)	t0__3a0		! t0__4t0_a0	! b_e_t02a0	! t0__9t0
-LSYM(x120)	t0__5a0		! t0__3t0	! b_e_shift	! r__r_8t0
-LSYM(x121)	t0__5a0		! t0__3t0	! b_e_t0	! t0__8t0_a0
-LSYM(x122)	t0__5a0		! t0__3t0	! b_e_2t0	! t0__4t0_a0
-LSYM(x123)	t0__5a0		! t0__8t0_a0	! b_e_t0	! t0__3t0
-LSYM(x124)	t0__32a0	! t0__t0ma0	! b_e_shift	! r__r_4t0
-LSYM(x125)	t0__5a0		! t0__5t0	! b_e_t0	! t0__5t0
-LSYM(x126)	t0__64a0	! t0__t0ma0	! b_e_shift	! r__r_2t0
-LSYM(x127)	t0__128a0	! a1_ne_0_b_l0	! t0__t0ma0	! b_n_ret_t0
-LSYM(x128)	t0__128a0	! a1_ne_0_b_l1	! r__r_t0	! MILLIRETN
-LSYM(x129)	t0__128a0	! a1_ne_0_b_l0	! t0__t0_a0	! b_n_ret_t0
-LSYM(x130)	t0__64a0	! t0__t0_a0	! b_e_shift	! r__r_2t0
-LSYM(x131)	t0__8a0		! t0__8t0_a0	! b_e_t0	! t0__2t0_a0
-LSYM(x132)	t0__8a0		! t0__4t0_a0	! b_e_shift	! r__r_4t0
-LSYM(x133)	t0__8a0		! t0__4t0_a0	! b_e_t0	! t0__4t0_a0
-LSYM(x134)	t0__8a0		! t0__4t0_a0	! b_e_2t0	! t0__2t0_a0
-LSYM(x135)	t0__9a0		! t0__5t0	! b_e_t0	! t0__3t0
-LSYM(x136)	t0__8a0		! t0__2t0_a0	! b_e_shift	! r__r_8t0
-LSYM(x137)	t0__8a0		! t0__2t0_a0	! b_e_t0	! t0__8t0_a0
-LSYM(x138)	t0__8a0		! t0__2t0_a0	! b_e_2t0	! t0__4t0_a0
-LSYM(x139)	t0__8a0		! t0__2t0_a0	! b_e_2t0a0	! t0__4t0_a0
-LSYM(x140)	t0__3a0		! t0__2t0_a0	! b_e_4t0	! t0__5t0
-LSYM(x141)	t0__8a0		! t0__2t0_a0	! b_e_4t0a0	! t0__2t0_a0
-LSYM(x142)	t0__9a0		! t0__8t0	! b_e_2t0	! t0__t0ma0
-LSYM(x143)	t0__16a0	! t0__9t0	! b_e_t0	! t0__t0ma0
-LSYM(x144)	t0__9a0		! t0__8t0	! b_e_shift	! r__r_2t0
-LSYM(x145)	t0__9a0		! t0__8t0	! b_e_t0	! t0__2t0_a0
-LSYM(x146)	t0__9a0		! t0__8t0_a0	! b_e_shift	! r__r_2t0
-LSYM(x147)	t0__9a0		! t0__8t0_a0	! b_e_t0	! t0__2t0_a0
-LSYM(x148)	t0__9a0		! t0__4t0_a0	! b_e_shift	! r__r_4t0
-LSYM(x149)	t0__9a0		! t0__4t0_a0	! b_e_t0	! t0__4t0_a0
-LSYM(x150)	t0__9a0		! t0__4t0_a0	! b_e_2t0	! t0__2t0_a0
-LSYM(x151)	t0__9a0		! t0__4t0_a0	! b_e_2t0a0	! t0__2t0_a0
-LSYM(x152)	t0__9a0		! t0__2t0_a0	! b_e_shift	! r__r_8t0
-LSYM(x153)	t0__9a0		! t0__2t0_a0	! b_e_t0	! t0__8t0_a0
-LSYM(x154)	t0__9a0		! t0__2t0_a0	! b_e_2t0	! t0__4t0_a0
-LSYM(x155)	t0__32a0	! t0__t0ma0	! b_e_t0	! t0__5t0
-LSYM(x156)	t0__9a0		! t0__2t0_a0	! b_e_4t0	! t0__2t0_a0
-LSYM(x157)	t0__32a0	! t0__t0ma0	! b_e_t02a0	! t0__5t0
-LSYM(x158)	t0__16a0	! t0__5t0	! b_e_2t0	! t0__t0ma0
-LSYM(x159)	t0__32a0	! t0__5t0	! b_e_t0	! t0__t0ma0
-LSYM(x160)	t0__5a0		! t0__4t0	! b_e_shift	! r__r_8t0
-LSYM(x161)	t0__8a0		! t0__5t0	! b_e_t0	! t0__4t0_a0
-LSYM(x162)	t0__9a0		! t0__9t0	! b_e_shift	! r__r_2t0
-LSYM(x163)	t0__9a0		! t0__9t0	! b_e_t0	! t0__2t0_a0
-LSYM(x164)	t0__5a0		! t0__8t0_a0	! b_e_shift	! r__r_4t0
-LSYM(x165)	t0__8a0		! t0__4t0_a0	! b_e_t0	! t0__5t0
-LSYM(x166)	t0__5a0		! t0__8t0_a0	! b_e_2t0	! t0__2t0_a0
-LSYM(x167)	t0__5a0		! t0__8t0_a0	! b_e_2t0a0	! t0__2t0_a0
-LSYM(x168)	t0__5a0		! t0__4t0_a0	! b_e_shift	! r__r_8t0
-LSYM(x169)	t0__5a0		! t0__4t0_a0	! b_e_t0	! t0__8t0_a0
-LSYM(x170)	t0__32a0	! t0__t0_2a0	! b_e_t0	! t0__5t0
-LSYM(x171)	t0__9a0		! t0__2t0_a0	! b_e_t0	! t0__9t0
-LSYM(x172)	t0__5a0		! t0__4t0_a0	! b_e_4t0	! t0__2t0_a0
-LSYM(x173)	t0__9a0		! t0__2t0_a0	! b_e_t02a0	! t0__9t0
-LSYM(x174)	t0__32a0	! t0__t0_2a0	! b_e_t04a0	! t0__5t0
-LSYM(x175)	t0__8a0		! t0__2t0_a0	! b_e_5t0	! t0__2t0_a0
-LSYM(x176)	t0__5a0		! t0__4t0_a0	! b_e_8t0	! t0__t0_a0
-LSYM(x177)	t0__5a0		! t0__4t0_a0	! b_e_8t0a0	! t0__t0_a0
-LSYM(x178)	t0__5a0		! t0__2t0_a0	! b_e_2t0	! t0__8t0_a0
-LSYM(x179)	t0__5a0		! t0__2t0_a0	! b_e_2t0a0	! t0__8t0_a0
-LSYM(x180)	t0__9a0		! t0__5t0	! b_e_shift	! r__r_4t0
-LSYM(x181)	t0__9a0		! t0__5t0	! b_e_t0	! t0__4t0_a0
-LSYM(x182)	t0__9a0		! t0__5t0	! b_e_2t0	! t0__2t0_a0
-LSYM(x183)	t0__9a0		! t0__5t0	! b_e_2t0a0	! t0__2t0_a0
-LSYM(x184)	t0__5a0		! t0__9t0	! b_e_4t0	! t0__t0_a0
-LSYM(x185)	t0__9a0		! t0__4t0_a0	! b_e_t0	! t0__5t0
-LSYM(x186)	t0__32a0	! t0__t0ma0	! b_e_2t0	! t0__3t0
-LSYM(x187)	t0__9a0		! t0__4t0_a0	! b_e_t02a0	! t0__5t0
-LSYM(x188)	t0__9a0		! t0__5t0	! b_e_4t0	! t0__t0_2a0
-LSYM(x189)	t0__5a0		! t0__4t0_a0	! b_e_t0	! t0__9t0
-LSYM(x190)	t0__9a0		! t0__2t0_a0	! b_e_2t0	! t0__5t0
-LSYM(x191)	t0__64a0	! t0__3t0	! b_e_t0	! t0__t0ma0
-LSYM(x192)	t0__8a0		! t0__3t0	! b_e_shift	! r__r_8t0
-LSYM(x193)	t0__8a0		! t0__3t0	! b_e_t0	! t0__8t0_a0
-LSYM(x194)	t0__8a0		! t0__3t0	! b_e_2t0	! t0__4t0_a0
-LSYM(x195)	t0__8a0		! t0__8t0_a0	! b_e_t0	! t0__3t0
-LSYM(x196)	t0__8a0		! t0__3t0	! b_e_4t0	! t0__2t0_a0
-LSYM(x197)	t0__8a0		! t0__3t0	! b_e_4t0a0	! t0__2t0_a0
-LSYM(x198)	t0__64a0	! t0__t0_2a0	! b_e_t0	! t0__3t0
-LSYM(x199)	t0__8a0		! t0__4t0_a0	! b_e_2t0a0	! t0__3t0
-LSYM(x200)	t0__5a0		! t0__5t0	! b_e_shift	! r__r_8t0
-LSYM(x201)	t0__5a0		! t0__5t0	! b_e_t0	! t0__8t0_a0
-LSYM(x202)	t0__5a0		! t0__5t0	! b_e_2t0	! t0__4t0_a0
-LSYM(x203)	t0__5a0		! t0__5t0	! b_e_2t0a0	! t0__4t0_a0
-LSYM(x204)	t0__8a0		! t0__2t0_a0	! b_e_4t0	! t0__3t0
-LSYM(x205)	t0__5a0		! t0__8t0_a0	! b_e_t0	! t0__5t0
-LSYM(x206)	t0__64a0	! t0__t0_4a0	! b_e_t02a0	! t0__3t0
-LSYM(x207)	t0__8a0		! t0__2t0_a0	! b_e_3t0	! t0__4t0_a0
-LSYM(x208)	t0__5a0		! t0__5t0	! b_e_8t0	! t0__t0_a0
-LSYM(x209)	t0__5a0		! t0__5t0	! b_e_8t0a0	! t0__t0_a0
-LSYM(x210)	t0__5a0		! t0__4t0_a0	! b_e_2t0	! t0__5t0
-LSYM(x211)	t0__5a0		! t0__4t0_a0	! b_e_2t0a0	! t0__5t0
-LSYM(x212)	t0__3a0		! t0__4t0_a0	! b_e_4t0	! t0__4t0_a0
-LSYM(x213)	t0__3a0		! t0__4t0_a0	! b_e_4t0a0	! t0__4t0_a0
-LSYM(x214)	t0__9a0		! t0__t0_4a0	! b_e_2t04a0	! t0__8t0_a0
-LSYM(x215)	t0__5a0		! t0__4t0_a0	! b_e_5t0	! t0__2t0_a0
-LSYM(x216)	t0__9a0		! t0__3t0	! b_e_shift	! r__r_8t0
-LSYM(x217)	t0__9a0		! t0__3t0	! b_e_t0	! t0__8t0_a0
-LSYM(x218)	t0__9a0		! t0__3t0	! b_e_2t0	! t0__4t0_a0
-LSYM(x219)	t0__9a0		! t0__8t0_a0	! b_e_t0	! t0__3t0
-LSYM(x220)	t0__3a0		! t0__9t0	! b_e_4t0	! t0__2t0_a0
-LSYM(x221)	t0__3a0		! t0__9t0	! b_e_4t0a0	! t0__2t0_a0
-LSYM(x222)	t0__9a0		! t0__4t0_a0	! b_e_2t0	! t0__3t0
-LSYM(x223)	t0__9a0		! t0__4t0_a0	! b_e_2t0a0	! t0__3t0
-LSYM(x224)	t0__9a0		! t0__3t0	! b_e_8t0	! t0__t0_a0
-LSYM(x225)	t0__9a0		! t0__5t0	! b_e_t0	! t0__5t0
-LSYM(x226)	t0__3a0		! t0__2t0_a0	! b_e_t02a0	! t0__32t0
-LSYM(x227)	t0__9a0		! t0__5t0	! b_e_t02a0	! t0__5t0
-LSYM(x228)	t0__9a0		! t0__2t0_a0	! b_e_4t0	! t0__3t0
-LSYM(x229)	t0__9a0		! t0__2t0_a0	! b_e_4t0a0	! t0__3t0
-LSYM(x230)	t0__9a0		! t0__5t0	! b_e_5t0	! t0__t0_a0
-LSYM(x231)	t0__9a0		! t0__2t0_a0	! b_e_3t0	! t0__4t0_a0
-LSYM(x232)	t0__3a0		! t0__2t0_a0	! b_e_8t0	! t0__4t0_a0
-LSYM(x233)	t0__3a0		! t0__2t0_a0	! b_e_8t0a0	! t0__4t0_a0
-LSYM(x234)	t0__3a0		! t0__4t0_a0	! b_e_2t0	! t0__9t0
-LSYM(x235)	t0__3a0		! t0__4t0_a0	! b_e_2t0a0	! t0__9t0
-LSYM(x236)	t0__9a0		! t0__2t0_a0	! b_e_4t08a0	! t0__3t0
-LSYM(x237)	t0__16a0	! t0__5t0	! b_e_3t0	! t0__t0ma0
-LSYM(x238)	t0__3a0		! t0__4t0_a0	! b_e_2t04a0	! t0__9t0
-LSYM(x239)	t0__16a0	! t0__5t0	! b_e_t0ma0	! t0__3t0
-LSYM(x240)	t0__9a0		! t0__t0_a0	! b_e_8t0	! t0__3t0
-LSYM(x241)	t0__9a0		! t0__t0_a0	! b_e_8t0a0	! t0__3t0
-LSYM(x242)	t0__5a0		! t0__3t0	! b_e_2t0	! t0__8t0_a0
-LSYM(x243)	t0__9a0		! t0__9t0	! b_e_t0	! t0__3t0
-LSYM(x244)	t0__5a0		! t0__3t0	! b_e_4t0	! t0__4t0_a0
-LSYM(x245)	t0__8a0		! t0__3t0	! b_e_5t0	! t0__2t0_a0
-LSYM(x246)	t0__5a0		! t0__8t0_a0	! b_e_2t0	! t0__3t0
-LSYM(x247)	t0__5a0		! t0__8t0_a0	! b_e_2t0a0	! t0__3t0
-LSYM(x248)	t0__32a0	! t0__t0ma0	! b_e_shift	! r__r_8t0
-LSYM(x249)	t0__32a0	! t0__t0ma0	! b_e_t0	! t0__8t0_a0
-LSYM(x250)	t0__5a0		! t0__5t0	! b_e_2t0	! t0__5t0
-LSYM(x251)	t0__5a0		! t0__5t0	! b_e_2t0a0	! t0__5t0
-LSYM(x252)	t0__64a0	! t0__t0ma0	! b_e_shift	! r__r_4t0
-LSYM(x253)	t0__64a0	! t0__t0ma0	! b_e_t0	! t0__4t0_a0
-LSYM(x254)	t0__128a0	! t0__t0ma0	! b_e_shift	! r__r_2t0
-LSYM(x255)	t0__256a0	! a1_ne_0_b_l0	! t0__t0ma0	! b_n_ret_t0
-/*1040 insts before this.  */
-LSYM(ret_t0)	MILLIRET
-LSYM(e_t0)	r__r_t0
-LSYM(e_shift)	a1_ne_0_b_l2
-	a0__256a0	/* a0 <<= 8 *********** */
-	MILLIRETN
-LSYM(e_t0ma0)	a1_ne_0_b_l0
-	t0__t0ma0
-	MILLIRET
-	r__r_t0
-LSYM(e_t0a0)	a1_ne_0_b_l0
-	t0__t0_a0
-	MILLIRET
-	r__r_t0
-LSYM(e_t02a0)	a1_ne_0_b_l0
-	t0__t0_2a0
-	MILLIRET
-	r__r_t0
-LSYM(e_t04a0)	a1_ne_0_b_l0
-	t0__t0_4a0
-	MILLIRET
-	r__r_t0
-LSYM(e_2t0)	a1_ne_0_b_l1
-	r__r_2t0
-	MILLIRETN
-LSYM(e_2t0a0)	a1_ne_0_b_l0
-	t0__2t0_a0
-	MILLIRET
-	r__r_t0
-LSYM(e2t04a0)	t0__t0_2a0
-	a1_ne_0_b_l1
-	r__r_2t0
-	MILLIRETN
-LSYM(e_3t0)	a1_ne_0_b_l0
-	t0__3t0
-	MILLIRET
-	r__r_t0
-LSYM(e_4t0)	a1_ne_0_b_l1
-	r__r_4t0
-	MILLIRETN
-LSYM(e_4t0a0)	a1_ne_0_b_l0
-	t0__4t0_a0
-	MILLIRET
-	r__r_t0
-LSYM(e4t08a0)	t0__t0_2a0
-	a1_ne_0_b_l1
-	r__r_4t0
-	MILLIRETN
-LSYM(e_5t0)	a1_ne_0_b_l0
-	t0__5t0
-	MILLIRET
-	r__r_t0
-LSYM(e_8t0)	a1_ne_0_b_l1
-	r__r_8t0
-	MILLIRETN
-LSYM(e_8t0a0)	a1_ne_0_b_l0
-	t0__8t0_a0
-	MILLIRET
-	r__r_t0
-
-	.procend
-	.end
-#endif
diff --git a/arch/parisc/lib/milli/remI.S b/arch/parisc/lib/milli/remI.S
deleted file mode 100644
index 63bc094471e2..000000000000
--- a/arch/parisc/lib/milli/remI.S
+++ /dev/null
@@ -1,185 +0,0 @@
-/* 32 and 64-bit millicode, original author Hewlett-Packard
-   adapted for gcc by Paul Bame <bame@debian.org>
-   and Alan Modra <alan@linuxcare.com.au>.
-
-   Copyright 2001, 2002, 2003 Free Software Foundation, Inc.
-
-   This file is part of GCC and is released under the terms of
-   of the GNU General Public License as published by the Free Software
-   Foundation; either version 2, or (at your option) any later version.
-   See the file COPYING in the top-level GCC source directory for a copy
-   of the license.  */
-
-#include "milli.h"
-
-#ifdef L_remI
-/* ROUTINE:	$$remI
-
-   DESCRIPTION:
-   .	$$remI returns the remainder of the division of two signed 32-bit
-   .	integers.  The sign of the remainder is the same as the sign of
-   .	the dividend.
-
-
-   INPUT REGISTERS:
-   .	arg0 == dividend
-   .	arg1 == divisor
-   .	mrp  == return pc
-   .	sr0  == return space when called externally
-
-   OUTPUT REGISTERS:
-   .	arg0 = destroyed
-   .	arg1 = destroyed
-   .	ret1 = remainder
-
-   OTHER REGISTERS AFFECTED:
-   .	r1   = undefined
-
-   SIDE EFFECTS:
-   .	Causes a trap under the following conditions:  DIVIDE BY ZERO
-   .	Changes memory at the following places:  NONE
-
-   PERMISSIBLE CONTEXT:
-   .	Unwindable
-   .	Does not create a stack frame
-   .	Is usable for internal or external microcode
-
-   DISCUSSION:
-   .	Calls other millicode routines via mrp:  NONE
-   .	Calls other millicode routines:  NONE  */
-
-RDEFINE(tmp,r1)
-RDEFINE(retreg,ret1)
-
-	SUBSPA_MILLI
-	ATTR_MILLI
-	.proc
-	.callinfo millicode
-	.entry
-GSYM($$remI)
-GSYM($$remoI)
-	.export $$remI,MILLICODE
-	.export $$remoI,MILLICODE
-	ldo		-1(arg1),tmp		/*  is there at most one bit set ? */
-	and,<>		arg1,tmp,r0		/*  if not, don't use power of 2 */
-	addi,>		0,arg1,r0		/*  if denominator > 0, use power */
-						/*  of 2 */
-	b,n		LREF(neg_denom)
-LSYM(pow2)
-	comb,>,n	0,arg0,LREF(neg_num)	/*  is numerator < 0 ? */
-	and		arg0,tmp,retreg		/*  get the result */
-	MILLIRETN
-LSYM(neg_num)
-	subi		0,arg0,arg0		/*  negate numerator */
-	and		arg0,tmp,retreg		/*  get the result */
-	subi		0,retreg,retreg		/*  negate result */
-	MILLIRETN
-LSYM(neg_denom)
-	addi,<		0,arg1,r0		/*  if arg1 >= 0, it's not power */
-						/*  of 2 */
-	b,n		LREF(regular_seq)
-	sub		r0,arg1,tmp		/*  make denominator positive */
-	comb,=,n	arg1,tmp,LREF(regular_seq) /*  test against 0x80000000 and 0 */
-	ldo		-1(tmp),retreg		/*  is there at most one bit set ? */
-	and,=		tmp,retreg,r0		/*  if not, go to regular_seq */
-	b,n		LREF(regular_seq)
-	comb,>,n	0,arg0,LREF(neg_num_2)	/*  if arg0 < 0, negate it  */
-	and		arg0,retreg,retreg
-	MILLIRETN
-LSYM(neg_num_2)
-	subi		0,arg0,tmp		/*  test against 0x80000000 */
-	and		tmp,retreg,retreg
-	subi		0,retreg,retreg
-	MILLIRETN
-LSYM(regular_seq)
-	addit,=		0,arg1,0		/*  trap if div by zero */
-	add,>=		0,arg0,retreg		/*  move dividend, if retreg < 0, */
-	sub		0,retreg,retreg		/*    make it positive */
-	sub		0,arg1, tmp		/*  clear carry,  */
-						/*    negate the divisor */
-	ds		0, tmp,0		/*  set V-bit to the comple- */
-						/*    ment of the divisor sign */
-	or		0,0, tmp		/*  clear  tmp */
-	add		retreg,retreg,retreg	/*  shift msb bit into carry */
-	ds		 tmp,arg1, tmp		/*  1st divide step, if no carry */
-						/*    out, msb of quotient = 0 */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-LSYM(t1)
-	ds		 tmp,arg1, tmp		/*  2nd divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  3rd divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  4th divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  5th divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  6th divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  7th divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  8th divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  9th divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  10th divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  11th divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  12th divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  13th divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  14th divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  15th divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  16th divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  17th divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  18th divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  19th divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  20th divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  21st divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  22nd divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  23rd divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  24th divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  25th divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  26th divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  27th divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  28th divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  29th divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  30th divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  31st divide step */
-	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
-	ds		 tmp,arg1, tmp		/*  32nd divide step, */
-	addc		retreg,retreg,retreg	/*  shift last bit into retreg */
-	movb,>=,n	 tmp,retreg,LREF(finish) /*  branch if pos.  tmp */
-	add,<		arg1,0,0		/*  if arg1 > 0, add arg1 */
-	add,tr		 tmp,arg1,retreg	/*    for correcting remainder tmp */
-	sub		 tmp,arg1,retreg	/*  else add absolute value arg1 */
-LSYM(finish)
-	add,>=		arg0,0,0		/*  set sign of remainder */
-	sub		0,retreg,retreg		/*    to sign of dividend */
-	MILLIRET
-	nop
-	.exit
-	.procend
-#ifdef milliext
-	.origin 0x00000200
-#endif
-	.end
-#endif
diff --git a/arch/parisc/lib/milli/remU.S b/arch/parisc/lib/milli/remU.S
deleted file mode 100644
index c0a2d6e247c3..000000000000
--- a/arch/parisc/lib/milli/remU.S
+++ /dev/null
@@ -1,148 +0,0 @@
-/* 32 and 64-bit millicode, original author Hewlett-Packard
-   adapted for gcc by Paul Bame <bame@debian.org>
-   and Alan Modra <alan@linuxcare.com.au>.
-
-   Copyright 2001, 2002, 2003 Free Software Foundation, Inc.
-
-   This file is part of GCC and is released under the terms of
-   of the GNU General Public License as published by the Free Software
-   Foundation; either version 2, or (at your option) any later version.
-   See the file COPYING in the top-level GCC source directory for a copy
-   of the license.  */
-
-#include "milli.h"
-
-#ifdef L_remU
-/* ROUTINE:	$$remU
-   .	Single precision divide for remainder with unsigned binary integers.
-   .
-   .	The remainder must be dividend-(dividend/divisor)*divisor.
-   .	Divide by zero is trapped.
-
-   INPUT REGISTERS:
-   .	arg0 ==	dividend
-   .	arg1 == divisor
-   .	mrp  == return pc
-   .	sr0  == return space when called externally
-
-   OUTPUT REGISTERS:
-   .	arg0 =	undefined
-   .	arg1 =	undefined
-   .	ret1 =	remainder
-
-   OTHER REGISTERS AFFECTED:
-   .	r1   =	undefined
-
-   SIDE EFFECTS:
-   .	Causes a trap under the following conditions:  DIVIDE BY ZERO
-   .	Changes memory at the following places:  NONE
-
-   PERMISSIBLE CONTEXT:
-   .	Unwindable.
-   .	Does not create a stack frame.
-   .	Suitable for internal or external millicode.
-   .	Assumes the special millicode register conventions.
-
-   DISCUSSION:
-   .	Calls other millicode routines using mrp: NONE
-   .	Calls other millicode routines: NONE  */
-
-
-RDEFINE(temp,r1)
-RDEFINE(rmndr,ret1)	/*  r29 */
-	SUBSPA_MILLI
-	ATTR_MILLI
-	.export $$remU,millicode
-	.proc
-	.callinfo	millicode
-	.entry
-GSYM($$remU)
-	ldo	-1(arg1),temp		/*  is there at most one bit set ? */
-	and,=	arg1,temp,r0		/*  if not, don't use power of 2 */
-	b	LREF(regular_seq)
-	addit,=	0,arg1,r0		/*  trap on div by zero */
-	and	arg0,temp,rmndr		/*  get the result for power of 2 */
-	MILLIRETN
-LSYM(regular_seq)
-	comib,>=,n  0,arg1,LREF(special_case)
-	subi	0,arg1,rmndr		/*  clear carry, negate the divisor */
-	ds	r0,rmndr,r0		/*  set V-bit to 1 */
-	add	arg0,arg0,temp		/*  shift msb bit into carry */
-	ds	r0,arg1,rmndr		/*  1st divide step, if no carry */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  2nd divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  3rd divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  4th divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  5th divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  6th divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  7th divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  8th divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  9th divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  10th divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  11th divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  12th divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  13th divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  14th divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  15th divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  16th divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  17th divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  18th divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  19th divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  20th divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  21st divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  22nd divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  23rd divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  24th divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  25th divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  26th divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  27th divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  28th divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  29th divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  30th divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  31st divide step */
-	addc	temp,temp,temp		/*  shift temp with/into carry */
-	ds	rmndr,arg1,rmndr		/*  32nd divide step, */
-	comiclr,<= 0,rmndr,r0
-	  add	rmndr,arg1,rmndr	/*  correction */
-	MILLIRETN
-	nop
-
-/* Putting >= on the last DS and deleting COMICLR does not work!  */
-LSYM(special_case)
-	sub,>>=	arg0,arg1,rmndr
-	  copy	arg0,rmndr
-	MILLIRETN
-	nop
-	.exit
-	.procend
-	.end
-#endif