pkt_sched: Add multiqueue scheduler support

This patch is intended to add a qdisc to support the new tx multiqueue
architecture by providing a band for each hardware queue.  By doing
this it is possible to support a different qdisc per physical hardware
queue.

This qdisc uses the skb->queue_mapping to select which band to place
the traffic onto.  It then uses a round robin w/ a check to see if the
subqueue is stopped to determine which band to dequeue the packet from.

Signed-off-by: Alexander Duyck <alexander.h.duyck@intel.com>
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
Alexander Duyck 2008-09-12 16:29:34 -07:00 committed by David S. Miller
parent 78d15e8275
commit 92651940ab
5 changed files with 530 additions and 1 deletions

View file

@ -24,4 +24,49 @@ netif_{start|stop|wake}_subqueue() functions to manage each queue while the
device is still operational. netdev->queue_lock is still used when the device
comes online or when it's completely shut down (unregister_netdev(), etc.).
Author: Peter P. Waskiewicz Jr. <peter.p.waskiewicz.jr@intel.com>
Section 2: Qdisc support for multiqueue devices
-----------------------------------------------
Currently two qdiscs support multiqueue devices. The first is the default
pfifo_fast qdisc. This qdisc supports one qdisc per hardware queue. A new
round-robin qdisc, sch_multiq also supports multiple hardware queues. The
qdisc is responsible for classifying the skb's and then directing the skb's to
bands and queues based on the value in skb->queue_mapping. Use this field in
the base driver to determine which queue to send the skb to.
sch_multiq has been added for hardware that wishes to avoid unnecessary
requeuing. It will cycle though the bands and verify that the hardware queue
associated with the band is not stopped prior to dequeuing a packet.
On qdisc load, the number of bands is based on the number of queues on the
hardware. Once the association is made, any skb with skb->queue_mapping set,
will be queued to the band associated with the hardware queue.
Section 3: Brief howto using MULTIQ for multiqueue devices
---------------------------------------------------------------
The userspace command 'tc,' part of the iproute2 package, is used to configure
qdiscs. To add the MULTIQ qdisc to your network device, assuming the device
is called eth0, run the following command:
# tc qdisc add dev eth0 root handle 1: multiq
The qdisc will allocate the number of bands to equal the number of queues that
the device reports, and bring the qdisc online. Assuming eth0 has 4 Tx
queues, the band mapping would look like:
band 0 => queue 0
band 1 => queue 1
band 2 => queue 2
band 3 => queue 3
Traffic will begin flowing through each queue if your base device has either
the default simple_tx_hash or a custom netdev->select_queue() defined.
The behavior of tc filters remains the same.
Author: Alexander Duyck <alexander.h.duyck@intel.com>
Original Author: Peter P. Waskiewicz Jr. <peter.p.waskiewicz.jr@intel.com>

View file

@ -123,6 +123,13 @@ struct tc_prio_qopt
__u8 priomap[TC_PRIO_MAX+1]; /* Map: logical priority -> PRIO band */
};
/* MULTIQ section */
struct tc_multiq_qopt {
__u16 bands; /* Number of bands */
__u16 max_bands; /* Maximum number of queues */
};
/* TBF section */
struct tc_tbf_qopt

View file

@ -106,6 +106,15 @@ config NET_SCH_PRIO
To compile this code as a module, choose M here: the
module will be called sch_prio.
config NET_SCH_MULTIQ
tristate "Hardware Multiqueue-aware Multi Band Queuing (MULTIQ)"
---help---
Say Y here if you want to use an n-band queue packet scheduler
to support devices that have multiple hardware transmit queues.
To compile this code as a module, choose M here: the
module will be called sch_multiq.
config NET_SCH_RED
tristate "Random Early Detection (RED)"
---help---

View file

@ -26,6 +26,7 @@ obj-$(CONFIG_NET_SCH_SFQ) += sch_sfq.o
obj-$(CONFIG_NET_SCH_TBF) += sch_tbf.o
obj-$(CONFIG_NET_SCH_TEQL) += sch_teql.o
obj-$(CONFIG_NET_SCH_PRIO) += sch_prio.o
obj-$(CONFIG_NET_SCH_MULTIQ) += sch_multiq.o
obj-$(CONFIG_NET_SCH_ATM) += sch_atm.o
obj-$(CONFIG_NET_SCH_NETEM) += sch_netem.o
obj-$(CONFIG_NET_CLS_U32) += cls_u32.o

467
net/sched/sch_multiq.c Normal file
View file

@ -0,0 +1,467 @@
/*
* Copyright (c) 2008, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 59 Temple
* Place - Suite 330, Boston, MA 02111-1307 USA.
*
* Author: Alexander Duyck <alexander.h.duyck@intel.com>
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/skbuff.h>
#include <net/netlink.h>
#include <net/pkt_sched.h>
struct multiq_sched_data {
u16 bands;
u16 max_bands;
u16 curband;
struct tcf_proto *filter_list;
struct Qdisc **queues;
};
static struct Qdisc *
multiq_classify(struct sk_buff *skb, struct Qdisc *sch, int *qerr)
{
struct multiq_sched_data *q = qdisc_priv(sch);
u32 band;
struct tcf_result res;
int err;
*qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
err = tc_classify(skb, q->filter_list, &res);
#ifdef CONFIG_NET_CLS_ACT
switch (err) {
case TC_ACT_STOLEN:
case TC_ACT_QUEUED:
*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
case TC_ACT_SHOT:
return NULL;
}
#endif
band = skb_get_queue_mapping(skb);
if (band >= q->bands)
return q->queues[0];
return q->queues[band];
}
static int
multiq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
{
struct Qdisc *qdisc;
int ret;
qdisc = multiq_classify(skb, sch, &ret);
#ifdef CONFIG_NET_CLS_ACT
if (qdisc == NULL) {
if (ret & __NET_XMIT_BYPASS)
sch->qstats.drops++;
kfree_skb(skb);
return ret;
}
#endif
ret = qdisc_enqueue(skb, qdisc);
if (ret == NET_XMIT_SUCCESS) {
sch->bstats.bytes += qdisc_pkt_len(skb);
sch->bstats.packets++;
sch->q.qlen++;
return NET_XMIT_SUCCESS;
}
if (net_xmit_drop_count(ret))
sch->qstats.drops++;
return ret;
}
static int
multiq_requeue(struct sk_buff *skb, struct Qdisc *sch)
{
struct Qdisc *qdisc;
int ret;
qdisc = multiq_classify(skb, sch, &ret);
#ifdef CONFIG_NET_CLS_ACT
if (qdisc == NULL) {
if (ret & __NET_XMIT_BYPASS)
sch->qstats.drops++;
kfree_skb(skb);
return ret;
}
#endif
ret = qdisc->ops->requeue(skb, qdisc);
if (ret == NET_XMIT_SUCCESS) {
sch->q.qlen++;
sch->qstats.requeues++;
return NET_XMIT_SUCCESS;
}
if (net_xmit_drop_count(ret))
sch->qstats.drops++;
return ret;
}
static struct sk_buff *multiq_dequeue(struct Qdisc *sch)
{
struct multiq_sched_data *q = qdisc_priv(sch);
struct Qdisc *qdisc;
struct sk_buff *skb;
int band;
for (band = 0; band < q->bands; band++) {
/* cycle through bands to ensure fairness */
q->curband++;
if (q->curband >= q->bands)
q->curband = 0;
/* Check that target subqueue is available before
* pulling an skb to avoid excessive requeues
*/
if (!__netif_subqueue_stopped(qdisc_dev(sch), q->curband)) {
qdisc = q->queues[q->curband];
skb = qdisc->dequeue(qdisc);
if (skb) {
sch->q.qlen--;
return skb;
}
}
}
return NULL;
}
static unsigned int multiq_drop(struct Qdisc *sch)
{
struct multiq_sched_data *q = qdisc_priv(sch);
int band;
unsigned int len;
struct Qdisc *qdisc;
for (band = q->bands-1; band >= 0; band--) {
qdisc = q->queues[band];
if (qdisc->ops->drop) {
len = qdisc->ops->drop(qdisc);
if (len != 0) {
sch->q.qlen--;
return len;
}
}
}
return 0;
}
static void
multiq_reset(struct Qdisc *sch)
{
u16 band;
struct multiq_sched_data *q = qdisc_priv(sch);
for (band = 0; band < q->bands; band++)
qdisc_reset(q->queues[band]);
sch->q.qlen = 0;
q->curband = 0;
}
static void
multiq_destroy(struct Qdisc *sch)
{
int band;
struct multiq_sched_data *q = qdisc_priv(sch);
tcf_destroy_chain(&q->filter_list);
for (band = 0; band < q->bands; band++)
qdisc_destroy(q->queues[band]);
kfree(q->queues);
}
static int multiq_tune(struct Qdisc *sch, struct nlattr *opt)
{
struct multiq_sched_data *q = qdisc_priv(sch);
struct tc_multiq_qopt *qopt;
int i;
if (!netif_is_multiqueue(qdisc_dev(sch)))
return -EINVAL;
if (nla_len(opt) < sizeof(*qopt))
return -EINVAL;
qopt = nla_data(opt);
qopt->bands = qdisc_dev(sch)->real_num_tx_queues;
sch_tree_lock(sch);
q->bands = qopt->bands;
for (i = q->bands; i < q->max_bands; i++) {
struct Qdisc *child = xchg(&q->queues[i], &noop_qdisc);
if (child != &noop_qdisc) {
qdisc_tree_decrease_qlen(child, child->q.qlen);
qdisc_destroy(child);
}
}
sch_tree_unlock(sch);
for (i = 0; i < q->bands; i++) {
if (q->queues[i] == &noop_qdisc) {
struct Qdisc *child;
child = qdisc_create_dflt(qdisc_dev(sch),
sch->dev_queue,
&pfifo_qdisc_ops,
TC_H_MAKE(sch->handle,
i + 1));
if (child) {
sch_tree_lock(sch);
child = xchg(&q->queues[i], child);
if (child != &noop_qdisc) {
qdisc_tree_decrease_qlen(child,
child->q.qlen);
qdisc_destroy(child);
}
sch_tree_unlock(sch);
}
}
}
return 0;
}
static int multiq_init(struct Qdisc *sch, struct nlattr *opt)
{
struct multiq_sched_data *q = qdisc_priv(sch);
int i;
q->queues = NULL;
if (opt == NULL)
return -EINVAL;
q->max_bands = qdisc_dev(sch)->num_tx_queues;
q->queues = kcalloc(q->max_bands, sizeof(struct Qdisc *), GFP_KERNEL);
if (!q->queues)
return -ENOBUFS;
for (i = 0; i < q->max_bands; i++)
q->queues[i] = &noop_qdisc;
return multiq_tune(sch, opt);
}
static int multiq_dump(struct Qdisc *sch, struct sk_buff *skb)
{
struct multiq_sched_data *q = qdisc_priv(sch);
unsigned char *b = skb_tail_pointer(skb);
struct tc_multiq_qopt opt;
opt.bands = q->bands;
opt.max_bands = q->max_bands;
NLA_PUT(skb, TCA_OPTIONS, sizeof(opt), &opt);
return skb->len;
nla_put_failure:
nlmsg_trim(skb, b);
return -1;
}
static int multiq_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
struct Qdisc **old)
{
struct multiq_sched_data *q = qdisc_priv(sch);
unsigned long band = arg - 1;
if (band >= q->bands)
return -EINVAL;
if (new == NULL)
new = &noop_qdisc;
sch_tree_lock(sch);
*old = q->queues[band];
q->queues[band] = new;
qdisc_tree_decrease_qlen(*old, (*old)->q.qlen);
qdisc_reset(*old);
sch_tree_unlock(sch);
return 0;
}
static struct Qdisc *
multiq_leaf(struct Qdisc *sch, unsigned long arg)
{
struct multiq_sched_data *q = qdisc_priv(sch);
unsigned long band = arg - 1;
if (band >= q->bands)
return NULL;
return q->queues[band];
}
static unsigned long multiq_get(struct Qdisc *sch, u32 classid)
{
struct multiq_sched_data *q = qdisc_priv(sch);
unsigned long band = TC_H_MIN(classid);
if (band - 1 >= q->bands)
return 0;
return band;
}
static unsigned long multiq_bind(struct Qdisc *sch, unsigned long parent,
u32 classid)
{
return multiq_get(sch, classid);
}
static void multiq_put(struct Qdisc *q, unsigned long cl)
{
return;
}
static int multiq_change(struct Qdisc *sch, u32 handle, u32 parent,
struct nlattr **tca, unsigned long *arg)
{
unsigned long cl = *arg;
struct multiq_sched_data *q = qdisc_priv(sch);
if (cl - 1 > q->bands)
return -ENOENT;
return 0;
}
static int multiq_delete(struct Qdisc *sch, unsigned long cl)
{
struct multiq_sched_data *q = qdisc_priv(sch);
if (cl - 1 > q->bands)
return -ENOENT;
return 0;
}
static int multiq_dump_class(struct Qdisc *sch, unsigned long cl,
struct sk_buff *skb, struct tcmsg *tcm)
{
struct multiq_sched_data *q = qdisc_priv(sch);
if (cl - 1 > q->bands)
return -ENOENT;
tcm->tcm_handle |= TC_H_MIN(cl);
if (q->queues[cl-1])
tcm->tcm_info = q->queues[cl-1]->handle;
return 0;
}
static int multiq_dump_class_stats(struct Qdisc *sch, unsigned long cl,
struct gnet_dump *d)
{
struct multiq_sched_data *q = qdisc_priv(sch);
struct Qdisc *cl_q;
cl_q = q->queues[cl - 1];
if (gnet_stats_copy_basic(d, &cl_q->bstats) < 0 ||
gnet_stats_copy_queue(d, &cl_q->qstats) < 0)
return -1;
return 0;
}
static void multiq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
{
struct multiq_sched_data *q = qdisc_priv(sch);
int band;
if (arg->stop)
return;
for (band = 0; band < q->bands; band++) {
if (arg->count < arg->skip) {
arg->count++;
continue;
}
if (arg->fn(sch, band+1, arg) < 0) {
arg->stop = 1;
break;
}
arg->count++;
}
}
static struct tcf_proto **multiq_find_tcf(struct Qdisc *sch, unsigned long cl)
{
struct multiq_sched_data *q = qdisc_priv(sch);
if (cl)
return NULL;
return &q->filter_list;
}
static const struct Qdisc_class_ops multiq_class_ops = {
.graft = multiq_graft,
.leaf = multiq_leaf,
.get = multiq_get,
.put = multiq_put,
.change = multiq_change,
.delete = multiq_delete,
.walk = multiq_walk,
.tcf_chain = multiq_find_tcf,
.bind_tcf = multiq_bind,
.unbind_tcf = multiq_put,
.dump = multiq_dump_class,
.dump_stats = multiq_dump_class_stats,
};
static struct Qdisc_ops multiq_qdisc_ops __read_mostly = {
.next = NULL,
.cl_ops = &multiq_class_ops,
.id = "multiq",
.priv_size = sizeof(struct multiq_sched_data),
.enqueue = multiq_enqueue,
.dequeue = multiq_dequeue,
.requeue = multiq_requeue,
.drop = multiq_drop,
.init = multiq_init,
.reset = multiq_reset,
.destroy = multiq_destroy,
.change = multiq_tune,
.dump = multiq_dump,
.owner = THIS_MODULE,
};
static int __init multiq_module_init(void)
{
return register_qdisc(&multiq_qdisc_ops);
}
static void __exit multiq_module_exit(void)
{
unregister_qdisc(&multiq_qdisc_ops);
}
module_init(multiq_module_init)
module_exit(multiq_module_exit)
MODULE_LICENSE("GPL");