[PATCH] cfq-iosched: cleanups, fixes, dead code removal

A collection of little fixes and cleanups:

- We don't use the 'queued' sysfs exported attribute, since the
  may_queue() logic was rewritten. So kill it.

- Remove dead defines.

- cfq_set_active_queue() can be rewritten cleaner with else if conditions.

- Several places had cfq_exit_cfqq() like logic, abstract that out and
  use that.

- Annotate the cfqq kmem_cache_alloc() so the allocator knows that this
  is a repeat allocation if it fails with __GFP_WAIT set. Allows the
  allocator to start freeing some memory, if needed. CFQ already loops for
  this condition, so might as well pass the hint down.

- Remove cfqd->rq_starved logic. It's not needed anymore after we dropped
  the crq allocation in cfq_set_request().

- Remove uneeded parameter passing.

Signed-off-by: Jens Axboe <axboe@suse.de>
This commit is contained in:
Jens Axboe 2006-07-22 16:48:31 +02:00 committed by Jens Axboe
parent e6a1c874a0
commit 89850f7ee9

View file

@ -17,7 +17,6 @@
* tunables * tunables
*/ */
static const int cfq_quantum = 4; /* max queue in one round of service */ static const int cfq_quantum = 4; /* max queue in one round of service */
static const int cfq_queued = 8; /* minimum rq allocate limit per-queue*/
static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 }; static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
static const int cfq_back_max = 16 * 1024; /* maximum backwards seek, in KiB */ static const int cfq_back_max = 16 * 1024; /* maximum backwards seek, in KiB */
static const int cfq_back_penalty = 2; /* penalty of a backwards seek */ static const int cfq_back_penalty = 2; /* penalty of a backwards seek */
@ -54,7 +53,6 @@ static struct completion *ioc_gone;
#define CFQ_PRIO_LISTS IOPRIO_BE_NR #define CFQ_PRIO_LISTS IOPRIO_BE_NR
#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE) #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
#define cfq_class_be(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_BE)
#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT) #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
#define ASYNC (0) #define ASYNC (0)
@ -98,9 +96,6 @@ struct cfq_data {
int rq_in_driver; int rq_in_driver;
int hw_tag; int hw_tag;
/*
* schedule slice state info
*/
/* /*
* idle window management * idle window management
*/ */
@ -117,13 +112,10 @@ struct cfq_data {
sector_t last_sector; sector_t last_sector;
unsigned long last_end_request; unsigned long last_end_request;
unsigned int rq_starved;
/* /*
* tunables, see top of file * tunables, see top of file
*/ */
unsigned int cfq_quantum; unsigned int cfq_quantum;
unsigned int cfq_queued;
unsigned int cfq_fifo_expire[2]; unsigned int cfq_fifo_expire[2];
unsigned int cfq_back_penalty; unsigned int cfq_back_penalty;
unsigned int cfq_back_max; unsigned int cfq_back_max;
@ -484,12 +476,14 @@ cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
{ {
struct task_struct *tsk = current; struct task_struct *tsk = current;
pid_t key = cfq_queue_pid(tsk, bio_data_dir(bio)); pid_t key = cfq_queue_pid(tsk, bio_data_dir(bio));
sector_t sector = bio->bi_sector + bio_sectors(bio);
struct cfq_queue *cfqq; struct cfq_queue *cfqq;
cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio); cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
if (cfqq) if (cfqq) {
sector_t sector = bio->bi_sector + bio_sectors(bio);
return elv_rb_find(&cfqq->sort_list, sector); return elv_rb_find(&cfqq->sort_list, sector);
}
return NULL; return NULL;
} }
@ -699,26 +693,25 @@ static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
{ {
struct cfq_queue *cfqq = NULL; struct cfq_queue *cfqq = NULL;
/* if (!list_empty(&cfqd->cur_rr) || cfq_get_next_prio_level(cfqd) != -1) {
* if current list is non-empty, grab first entry. if it is empty, /*
* get next prio level and grab first entry then if any are spliced * if current list is non-empty, grab first entry. if it is
*/ * empty, get next prio level and grab first entry then if any
if (!list_empty(&cfqd->cur_rr) || cfq_get_next_prio_level(cfqd) != -1) * are spliced
*/
cfqq = list_entry_cfqq(cfqd->cur_rr.next); cfqq = list_entry_cfqq(cfqd->cur_rr.next);
} else if (!list_empty(&cfqd->busy_rr)) {
/* /*
* If no new queues are available, check if the busy list has some * If no new queues are available, check if the busy list has
* before falling back to idle io. * some before falling back to idle io.
*/ */
if (!cfqq && !list_empty(&cfqd->busy_rr))
cfqq = list_entry_cfqq(cfqd->busy_rr.next); cfqq = list_entry_cfqq(cfqd->busy_rr.next);
} else if (!list_empty(&cfqd->idle_rr)) {
/* /*
* if we have idle queues and no rt or be queues had pending * if we have idle queues and no rt or be queues had pending
* requests, either allow immediate service if the grace period * requests, either allow immediate service if the grace period
* has passed or arm the idle grace timer * has passed or arm the idle grace timer
*/ */
if (!cfqq && !list_empty(&cfqd->idle_rr)) {
unsigned long end = cfqd->last_end_request + CFQ_IDLE_GRACE; unsigned long end = cfqd->last_end_request + CFQ_IDLE_GRACE;
if (time_after_eq(jiffies, end)) if (time_after_eq(jiffies, end))
@ -793,18 +786,19 @@ static inline struct request *cfq_check_fifo(struct cfq_queue *cfqq)
{ {
struct cfq_data *cfqd = cfqq->cfqd; struct cfq_data *cfqd = cfqq->cfqd;
struct request *rq; struct request *rq;
int fifo;
if (cfq_cfqq_fifo_expire(cfqq)) if (cfq_cfqq_fifo_expire(cfqq))
return NULL; return NULL;
if (list_empty(&cfqq->fifo))
return NULL;
if (!list_empty(&cfqq->fifo)) { fifo = cfq_cfqq_class_sync(cfqq);
int fifo = cfq_cfqq_class_sync(cfqq); rq = rq_entry_fifo(cfqq->fifo.next);
rq = rq_entry_fifo(cfqq->fifo.next); if (time_after(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo])) {
if (time_after(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo])) { cfq_mark_cfqq_fifo_expire(cfqq);
cfq_mark_cfqq_fifo_expire(cfqq); return rq;
return rq;
}
} }
return NULL; return NULL;
@ -1096,40 +1090,48 @@ static void cfq_trim(struct io_context *ioc)
cfq_free_io_context(ioc); cfq_free_io_context(ioc);
} }
static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
if (unlikely(cfqq == cfqd->active_queue))
__cfq_slice_expired(cfqd, cfqq, 0);
cfq_put_queue(cfqq);
}
static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
struct cfq_io_context *cic)
{
if (cic->cfqq[ASYNC]) {
cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
cic->cfqq[ASYNC] = NULL;
}
if (cic->cfqq[SYNC]) {
cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
cic->cfqq[SYNC] = NULL;
}
cic->key = NULL;
list_del_init(&cic->queue_list);
}
/* /*
* Called with interrupts disabled * Called with interrupts disabled
*/ */
static void cfq_exit_single_io_context(struct cfq_io_context *cic) static void cfq_exit_single_io_context(struct cfq_io_context *cic)
{ {
struct cfq_data *cfqd = cic->key; struct cfq_data *cfqd = cic->key;
request_queue_t *q;
if (!cfqd)
return;
q = cfqd->queue;
WARN_ON(!irqs_disabled()); WARN_ON(!irqs_disabled());
spin_lock(q->queue_lock); if (cfqd) {
request_queue_t *q = cfqd->queue;
if (cic->cfqq[ASYNC]) { spin_lock(q->queue_lock);
if (unlikely(cic->cfqq[ASYNC] == cfqd->active_queue)) __cfq_exit_single_io_context(cfqd, cic);
__cfq_slice_expired(cfqd, cic->cfqq[ASYNC], 0); spin_unlock(q->queue_lock);
cfq_put_queue(cic->cfqq[ASYNC]);
cic->cfqq[ASYNC] = NULL;
} }
if (cic->cfqq[SYNC]) {
if (unlikely(cic->cfqq[SYNC] == cfqd->active_queue))
__cfq_slice_expired(cfqd, cic->cfqq[SYNC], 0);
cfq_put_queue(cic->cfqq[SYNC]);
cic->cfqq[SYNC] = NULL;
}
cic->key = NULL;
list_del_init(&cic->queue_list);
spin_unlock(q->queue_lock);
} }
static void cfq_exit_io_context(struct io_context *ioc) static void cfq_exit_io_context(struct io_context *ioc)
@ -1286,8 +1288,14 @@ cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk,
cfqq = new_cfqq; cfqq = new_cfqq;
new_cfqq = NULL; new_cfqq = NULL;
} else if (gfp_mask & __GFP_WAIT) { } else if (gfp_mask & __GFP_WAIT) {
/*
* Inform the allocator of the fact that we will
* just repeat this allocation if it fails, to allow
* the allocator to do whatever it needs to attempt to
* free memory.
*/
spin_unlock_irq(cfqd->queue->queue_lock); spin_unlock_irq(cfqd->queue->queue_lock);
new_cfqq = kmem_cache_alloc(cfq_pool, gfp_mask); new_cfqq = kmem_cache_alloc(cfq_pool, gfp_mask|__GFP_NOFAIL);
spin_lock_irq(cfqd->queue->queue_lock); spin_lock_irq(cfqd->queue->queue_lock);
goto retry; goto retry;
} else { } else {
@ -1739,9 +1747,7 @@ static void cfq_prio_boost(struct cfq_queue *cfqq)
cfq_resort_rr_list(cfqq, 0); cfq_resort_rr_list(cfqq, 0);
} }
static inline int static inline int __cfq_may_queue(struct cfq_queue *cfqq)
__cfq_may_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq,
struct task_struct *task, int rw)
{ {
if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) && if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
!cfq_cfqq_must_alloc_slice(cfqq)) { !cfq_cfqq_must_alloc_slice(cfqq)) {
@ -1769,27 +1775,12 @@ static int cfq_may_queue(request_queue_t *q, int rw)
cfq_init_prio_data(cfqq); cfq_init_prio_data(cfqq);
cfq_prio_boost(cfqq); cfq_prio_boost(cfqq);
return __cfq_may_queue(cfqd, cfqq, tsk, rw); return __cfq_may_queue(cfqq);
} }
return ELV_MQUEUE_MAY; return ELV_MQUEUE_MAY;
} }
static void cfq_check_waiters(request_queue_t *q, struct cfq_queue *cfqq)
{
struct cfq_data *cfqd = q->elevator->elevator_data;
if (unlikely(cfqd->rq_starved)) {
struct request_list *rl = &q->rq;
smp_mb();
if (waitqueue_active(&rl->wait[READ]))
wake_up(&rl->wait[READ]);
if (waitqueue_active(&rl->wait[WRITE]))
wake_up(&rl->wait[WRITE]);
}
}
/* /*
* queue lock held here * queue lock held here
*/ */
@ -1808,7 +1799,6 @@ static void cfq_put_request(request_queue_t *q, struct request *rq)
rq->elevator_private = NULL; rq->elevator_private = NULL;
rq->elevator_private2 = NULL; rq->elevator_private2 = NULL;
cfq_check_waiters(q, cfqq);
cfq_put_queue(cfqq); cfq_put_queue(cfqq);
} }
} }
@ -1848,7 +1838,6 @@ cfq_set_request(request_queue_t *q, struct request *rq, gfp_t gfp_mask)
cfqq->allocated[rw]++; cfqq->allocated[rw]++;
cfq_clear_cfqq_must_alloc(cfqq); cfq_clear_cfqq_must_alloc(cfqq);
cfqd->rq_starved = 0;
atomic_inc(&cfqq->ref); atomic_inc(&cfqq->ref);
spin_unlock_irqrestore(q->queue_lock, flags); spin_unlock_irqrestore(q->queue_lock, flags);
@ -1860,12 +1849,7 @@ cfq_set_request(request_queue_t *q, struct request *rq, gfp_t gfp_mask)
queue_fail: queue_fail:
if (cic) if (cic)
put_io_context(cic->ioc); put_io_context(cic->ioc);
/*
* mark us rq allocation starved. we need to kickstart the process
* ourselves if there are no pending requests that can do it for us.
* that would be an extremely rare OOM situation
*/
cfqd->rq_starved = 1;
cfq_schedule_dispatch(cfqd); cfq_schedule_dispatch(cfqd);
spin_unlock_irqrestore(q->queue_lock, flags); spin_unlock_irqrestore(q->queue_lock, flags);
return 1; return 1;
@ -1874,25 +1858,9 @@ cfq_set_request(request_queue_t *q, struct request *rq, gfp_t gfp_mask)
static void cfq_kick_queue(void *data) static void cfq_kick_queue(void *data)
{ {
request_queue_t *q = data; request_queue_t *q = data;
struct cfq_data *cfqd = q->elevator->elevator_data;
unsigned long flags; unsigned long flags;
spin_lock_irqsave(q->queue_lock, flags); spin_lock_irqsave(q->queue_lock, flags);
if (cfqd->rq_starved) {
struct request_list *rl = &q->rq;
/*
* we aren't guaranteed to get a request after this, but we
* have to be opportunistic
*/
smp_mb();
if (waitqueue_active(&rl->wait[READ]))
wake_up(&rl->wait[READ]);
if (waitqueue_active(&rl->wait[WRITE]))
wake_up(&rl->wait[WRITE]);
}
blk_remove_plug(q); blk_remove_plug(q);
q->request_fn(q); q->request_fn(q);
spin_unlock_irqrestore(q->queue_lock, flags); spin_unlock_irqrestore(q->queue_lock, flags);
@ -1987,16 +1955,8 @@ static void cfq_exit_queue(elevator_t *e)
struct cfq_io_context *cic = list_entry(cfqd->cic_list.next, struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
struct cfq_io_context, struct cfq_io_context,
queue_list); queue_list);
if (cic->cfqq[ASYNC]) {
cfq_put_queue(cic->cfqq[ASYNC]); __cfq_exit_single_io_context(cfqd, cic);
cic->cfqq[ASYNC] = NULL;
}
if (cic->cfqq[SYNC]) {
cfq_put_queue(cic->cfqq[SYNC]);
cic->cfqq[SYNC] = NULL;
}
cic->key = NULL;
list_del_init(&cic->queue_list);
} }
spin_unlock_irq(q->queue_lock); spin_unlock_irq(q->queue_lock);
@ -2047,7 +2007,6 @@ static void *cfq_init_queue(request_queue_t *q, elevator_t *e)
INIT_WORK(&cfqd->unplug_work, cfq_kick_queue, q); INIT_WORK(&cfqd->unplug_work, cfq_kick_queue, q);
cfqd->cfq_queued = cfq_queued;
cfqd->cfq_quantum = cfq_quantum; cfqd->cfq_quantum = cfq_quantum;
cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0]; cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1]; cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
@ -2119,7 +2078,6 @@ static ssize_t __FUNC(elevator_t *e, char *page) \
return cfq_var_show(__data, (page)); \ return cfq_var_show(__data, (page)); \
} }
SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0); SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
SHOW_FUNCTION(cfq_queued_show, cfqd->cfq_queued, 0);
SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1); SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1); SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0); SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
@ -2147,7 +2105,6 @@ static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
return ret; \ return ret; \
} }
STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0); STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
STORE_FUNCTION(cfq_queued_store, &cfqd->cfq_queued, 1, UINT_MAX, 0);
STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1); STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1); STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0); STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
@ -2163,7 +2120,6 @@ STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX,
static struct elv_fs_entry cfq_attrs[] = { static struct elv_fs_entry cfq_attrs[] = {
CFQ_ATTR(quantum), CFQ_ATTR(quantum),
CFQ_ATTR(queued),
CFQ_ATTR(fifo_expire_sync), CFQ_ATTR(fifo_expire_sync),
CFQ_ATTR(fifo_expire_async), CFQ_ATTR(fifo_expire_async),
CFQ_ATTR(back_seek_max), CFQ_ATTR(back_seek_max),