Merge git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux-2.6-lguest
* git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux-2.6-lguest: (31 commits) lguest: add support for indirect ring entries lguest: suppress notifications in example Launcher lguest: try to batch interrupts on network receive lguest: avoid sending interrupts to Guest when no activity occurs. lguest: implement deferred interrupts in example Launcher lguest: remove obsolete LHREQ_BREAK call lguest: have example Launcher service all devices in separate threads lguest: use eventfds for device notification eventfd: export eventfd_signal and eventfd_fget for lguest lguest: allow any process to send interrupts lguest: PAE fixes lguest: PAE support lguest: Add support for kvm_hypercall4() lguest: replace hypercall name LHCALL_SET_PMD with LHCALL_SET_PGD lguest: use native_set_* macros, which properly handle 64-bit entries when PAE is activated lguest: map switcher with executable page table entries lguest: fix writev returning short on console output lguest: clean up length-used value in example launcher lguest: Segment selectors are 16-bit long. Fix lg_cpu.ss1 definition. lguest: beyond ARRAY_SIZE of cpu->arch.gdt ...
This commit is contained in:
commit
7f3591cfac
21 changed files with 1107 additions and 822 deletions
|
@ -1,6 +1,5 @@
|
|||
# This creates the demonstration utility "lguest" which runs a Linux guest.
|
||||
CFLAGS:=-Wall -Wmissing-declarations -Wmissing-prototypes -O3 -I../../include -I../../arch/x86/include -U_FORTIFY_SOURCE
|
||||
LDLIBS:=-lz
|
||||
CFLAGS:=-m32 -Wall -Wmissing-declarations -Wmissing-prototypes -O3 -I../../include -I../../arch/x86/include -U_FORTIFY_SOURCE
|
||||
|
||||
all: lguest
|
||||
|
||||
|
|
File diff suppressed because it is too large
Load diff
|
@ -37,7 +37,6 @@ Running Lguest:
|
|||
"Paravirtualized guest support" = Y
|
||||
"Lguest guest support" = Y
|
||||
"High Memory Support" = off/4GB
|
||||
"PAE (Physical Address Extension) Support" = N
|
||||
"Alignment value to which kernel should be aligned" = 0x100000
|
||||
(CONFIG_PARAVIRT=y, CONFIG_LGUEST_GUEST=y, CONFIG_HIGHMEM64G=n and
|
||||
CONFIG_PHYSICAL_ALIGN=0x100000)
|
||||
|
|
|
@ -17,8 +17,13 @@
|
|||
/* Pages for switcher itself, then two pages per cpu */
|
||||
#define TOTAL_SWITCHER_PAGES (SHARED_SWITCHER_PAGES + 2 * nr_cpu_ids)
|
||||
|
||||
/* We map at -4M for ease of mapping into the guest (one PTE page). */
|
||||
/* We map at -4M (-2M when PAE is activated) for ease of mapping
|
||||
* into the guest (one PTE page). */
|
||||
#ifdef CONFIG_X86_PAE
|
||||
#define SWITCHER_ADDR 0xFFE00000
|
||||
#else
|
||||
#define SWITCHER_ADDR 0xFFC00000
|
||||
#endif
|
||||
|
||||
/* Found in switcher.S */
|
||||
extern unsigned long default_idt_entries[];
|
||||
|
|
|
@ -12,11 +12,13 @@
|
|||
#define LHCALL_TS 8
|
||||
#define LHCALL_SET_CLOCKEVENT 9
|
||||
#define LHCALL_HALT 10
|
||||
#define LHCALL_SET_PMD 13
|
||||
#define LHCALL_SET_PTE 14
|
||||
#define LHCALL_SET_PMD 15
|
||||
#define LHCALL_SET_PGD 15
|
||||
#define LHCALL_LOAD_TLS 16
|
||||
#define LHCALL_NOTIFY 17
|
||||
#define LHCALL_LOAD_GDT_ENTRY 18
|
||||
#define LHCALL_SEND_INTERRUPTS 19
|
||||
|
||||
#define LGUEST_TRAP_ENTRY 0x1F
|
||||
|
||||
|
@ -32,10 +34,10 @@
|
|||
* operations? There are two ways: the direct way is to make a "hypercall",
|
||||
* to make requests of the Host Itself.
|
||||
*
|
||||
* We use the KVM hypercall mechanism. Eighteen hypercalls are
|
||||
* We use the KVM hypercall mechanism. Seventeen hypercalls are
|
||||
* available: the hypercall number is put in the %eax register, and the
|
||||
* arguments (when required) are placed in %ebx, %ecx and %edx. If a return
|
||||
* value makes sense, it's returned in %eax.
|
||||
* arguments (when required) are placed in %ebx, %ecx, %edx and %esi.
|
||||
* If a return value makes sense, it's returned in %eax.
|
||||
*
|
||||
* Grossly invalid calls result in Sudden Death at the hands of the vengeful
|
||||
* Host, rather than returning failure. This reflects Winston Churchill's
|
||||
|
@ -47,8 +49,9 @@
|
|||
|
||||
#define LHCALL_RING_SIZE 64
|
||||
struct hcall_args {
|
||||
/* These map directly onto eax, ebx, ecx, edx in struct lguest_regs */
|
||||
unsigned long arg0, arg1, arg2, arg3;
|
||||
/* These map directly onto eax, ebx, ecx, edx and esi
|
||||
* in struct lguest_regs */
|
||||
unsigned long arg0, arg1, arg2, arg3, arg4;
|
||||
};
|
||||
|
||||
#endif /* !__ASSEMBLY__ */
|
||||
|
|
|
@ -126,6 +126,7 @@ void foo(void)
|
|||
#if defined(CONFIG_LGUEST) || defined(CONFIG_LGUEST_GUEST) || defined(CONFIG_LGUEST_MODULE)
|
||||
BLANK();
|
||||
OFFSET(LGUEST_DATA_irq_enabled, lguest_data, irq_enabled);
|
||||
OFFSET(LGUEST_DATA_irq_pending, lguest_data, irq_pending);
|
||||
OFFSET(LGUEST_DATA_pgdir, lguest_data, pgdir);
|
||||
|
||||
BLANK();
|
||||
|
|
|
@ -2,7 +2,6 @@ config LGUEST_GUEST
|
|||
bool "Lguest guest support"
|
||||
select PARAVIRT
|
||||
depends on X86_32
|
||||
depends on !X86_PAE
|
||||
select VIRTIO
|
||||
select VIRTIO_RING
|
||||
select VIRTIO_CONSOLE
|
||||
|
|
|
@ -87,7 +87,7 @@ struct lguest_data lguest_data = {
|
|||
|
||||
/*G:037 async_hcall() is pretty simple: I'm quite proud of it really. We have a
|
||||
* ring buffer of stored hypercalls which the Host will run though next time we
|
||||
* do a normal hypercall. Each entry in the ring has 4 slots for the hypercall
|
||||
* do a normal hypercall. Each entry in the ring has 5 slots for the hypercall
|
||||
* arguments, and a "hcall_status" word which is 0 if the call is ready to go,
|
||||
* and 255 once the Host has finished with it.
|
||||
*
|
||||
|
@ -96,7 +96,8 @@ struct lguest_data lguest_data = {
|
|||
* effect of causing the Host to run all the stored calls in the ring buffer
|
||||
* which empties it for next time! */
|
||||
static void async_hcall(unsigned long call, unsigned long arg1,
|
||||
unsigned long arg2, unsigned long arg3)
|
||||
unsigned long arg2, unsigned long arg3,
|
||||
unsigned long arg4)
|
||||
{
|
||||
/* Note: This code assumes we're uniprocessor. */
|
||||
static unsigned int next_call;
|
||||
|
@ -108,12 +109,13 @@ static void async_hcall(unsigned long call, unsigned long arg1,
|
|||
local_irq_save(flags);
|
||||
if (lguest_data.hcall_status[next_call] != 0xFF) {
|
||||
/* Table full, so do normal hcall which will flush table. */
|
||||
kvm_hypercall3(call, arg1, arg2, arg3);
|
||||
kvm_hypercall4(call, arg1, arg2, arg3, arg4);
|
||||
} else {
|
||||
lguest_data.hcalls[next_call].arg0 = call;
|
||||
lguest_data.hcalls[next_call].arg1 = arg1;
|
||||
lguest_data.hcalls[next_call].arg2 = arg2;
|
||||
lguest_data.hcalls[next_call].arg3 = arg3;
|
||||
lguest_data.hcalls[next_call].arg4 = arg4;
|
||||
/* Arguments must all be written before we mark it to go */
|
||||
wmb();
|
||||
lguest_data.hcall_status[next_call] = 0;
|
||||
|
@ -141,7 +143,7 @@ static void lazy_hcall1(unsigned long call,
|
|||
if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
|
||||
kvm_hypercall1(call, arg1);
|
||||
else
|
||||
async_hcall(call, arg1, 0, 0);
|
||||
async_hcall(call, arg1, 0, 0, 0);
|
||||
}
|
||||
|
||||
static void lazy_hcall2(unsigned long call,
|
||||
|
@ -151,7 +153,7 @@ static void lazy_hcall2(unsigned long call,
|
|||
if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
|
||||
kvm_hypercall2(call, arg1, arg2);
|
||||
else
|
||||
async_hcall(call, arg1, arg2, 0);
|
||||
async_hcall(call, arg1, arg2, 0, 0);
|
||||
}
|
||||
|
||||
static void lazy_hcall3(unsigned long call,
|
||||
|
@ -162,9 +164,23 @@ static void lazy_hcall3(unsigned long call,
|
|||
if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
|
||||
kvm_hypercall3(call, arg1, arg2, arg3);
|
||||
else
|
||||
async_hcall(call, arg1, arg2, arg3);
|
||||
async_hcall(call, arg1, arg2, arg3, 0);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_X86_PAE
|
||||
static void lazy_hcall4(unsigned long call,
|
||||
unsigned long arg1,
|
||||
unsigned long arg2,
|
||||
unsigned long arg3,
|
||||
unsigned long arg4)
|
||||
{
|
||||
if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
|
||||
kvm_hypercall4(call, arg1, arg2, arg3, arg4);
|
||||
else
|
||||
async_hcall(call, arg1, arg2, arg3, arg4);
|
||||
}
|
||||
#endif
|
||||
|
||||
/* When lazy mode is turned off reset the per-cpu lazy mode variable and then
|
||||
* issue the do-nothing hypercall to flush any stored calls. */
|
||||
static void lguest_leave_lazy_mmu_mode(void)
|
||||
|
@ -179,7 +195,7 @@ static void lguest_end_context_switch(struct task_struct *next)
|
|||
paravirt_end_context_switch(next);
|
||||
}
|
||||
|
||||
/*G:033
|
||||
/*G:032
|
||||
* After that diversion we return to our first native-instruction
|
||||
* replacements: four functions for interrupt control.
|
||||
*
|
||||
|
@ -199,30 +215,28 @@ static unsigned long save_fl(void)
|
|||
{
|
||||
return lguest_data.irq_enabled;
|
||||
}
|
||||
PV_CALLEE_SAVE_REGS_THUNK(save_fl);
|
||||
|
||||
/* restore_flags() just sets the flags back to the value given. */
|
||||
static void restore_fl(unsigned long flags)
|
||||
{
|
||||
lguest_data.irq_enabled = flags;
|
||||
}
|
||||
PV_CALLEE_SAVE_REGS_THUNK(restore_fl);
|
||||
|
||||
/* Interrupts go off... */
|
||||
static void irq_disable(void)
|
||||
{
|
||||
lguest_data.irq_enabled = 0;
|
||||
}
|
||||
|
||||
/* Let's pause a moment. Remember how I said these are called so often?
|
||||
* Jeremy Fitzhardinge optimized them so hard early in 2009 that he had to
|
||||
* break some rules. In particular, these functions are assumed to save their
|
||||
* own registers if they need to: normal C functions assume they can trash the
|
||||
* eax register. To use normal C functions, we use
|
||||
* PV_CALLEE_SAVE_REGS_THUNK(), which pushes %eax onto the stack, calls the
|
||||
* C function, then restores it. */
|
||||
PV_CALLEE_SAVE_REGS_THUNK(save_fl);
|
||||
PV_CALLEE_SAVE_REGS_THUNK(irq_disable);
|
||||
|
||||
/* Interrupts go on... */
|
||||
static void irq_enable(void)
|
||||
{
|
||||
lguest_data.irq_enabled = X86_EFLAGS_IF;
|
||||
}
|
||||
PV_CALLEE_SAVE_REGS_THUNK(irq_enable);
|
||||
|
||||
/*:*/
|
||||
|
||||
/* These are in i386_head.S */
|
||||
extern void lg_irq_enable(void);
|
||||
extern void lg_restore_fl(unsigned long flags);
|
||||
|
||||
/*M:003 Note that we don't check for outstanding interrupts when we re-enable
|
||||
* them (or when we unmask an interrupt). This seems to work for the moment,
|
||||
* since interrupts are rare and we'll just get the interrupt on the next timer
|
||||
|
@ -368,8 +382,8 @@ static void lguest_cpuid(unsigned int *ax, unsigned int *bx,
|
|||
case 1: /* Basic feature request. */
|
||||
/* We only allow kernel to see SSE3, CMPXCHG16B and SSSE3 */
|
||||
*cx &= 0x00002201;
|
||||
/* SSE, SSE2, FXSR, MMX, CMOV, CMPXCHG8B, TSC, FPU. */
|
||||
*dx &= 0x07808111;
|
||||
/* SSE, SSE2, FXSR, MMX, CMOV, CMPXCHG8B, TSC, FPU, PAE. */
|
||||
*dx &= 0x07808151;
|
||||
/* The Host can do a nice optimization if it knows that the
|
||||
* kernel mappings (addresses above 0xC0000000 or whatever
|
||||
* PAGE_OFFSET is set to) haven't changed. But Linux calls
|
||||
|
@ -388,6 +402,11 @@ static void lguest_cpuid(unsigned int *ax, unsigned int *bx,
|
|||
if (*ax > 0x80000008)
|
||||
*ax = 0x80000008;
|
||||
break;
|
||||
case 0x80000001:
|
||||
/* Here we should fix nx cap depending on host. */
|
||||
/* For this version of PAE, we just clear NX bit. */
|
||||
*dx &= ~(1 << 20);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -521,25 +540,52 @@ static void lguest_write_cr4(unsigned long val)
|
|||
static void lguest_pte_update(struct mm_struct *mm, unsigned long addr,
|
||||
pte_t *ptep)
|
||||
{
|
||||
#ifdef CONFIG_X86_PAE
|
||||
lazy_hcall4(LHCALL_SET_PTE, __pa(mm->pgd), addr,
|
||||
ptep->pte_low, ptep->pte_high);
|
||||
#else
|
||||
lazy_hcall3(LHCALL_SET_PTE, __pa(mm->pgd), addr, ptep->pte_low);
|
||||
#endif
|
||||
}
|
||||
|
||||
static void lguest_set_pte_at(struct mm_struct *mm, unsigned long addr,
|
||||
pte_t *ptep, pte_t pteval)
|
||||
{
|
||||
*ptep = pteval;
|
||||
native_set_pte(ptep, pteval);
|
||||
lguest_pte_update(mm, addr, ptep);
|
||||
}
|
||||
|
||||
/* The Guest calls this to set a top-level entry. Again, we set the entry then
|
||||
* tell the Host which top-level page we changed, and the index of the entry we
|
||||
* changed. */
|
||||
/* The Guest calls lguest_set_pud to set a top-level entry and lguest_set_pmd
|
||||
* to set a middle-level entry when PAE is activated.
|
||||
* Again, we set the entry then tell the Host which page we changed,
|
||||
* and the index of the entry we changed. */
|
||||
#ifdef CONFIG_X86_PAE
|
||||
static void lguest_set_pud(pud_t *pudp, pud_t pudval)
|
||||
{
|
||||
native_set_pud(pudp, pudval);
|
||||
|
||||
/* 32 bytes aligned pdpt address and the index. */
|
||||
lazy_hcall2(LHCALL_SET_PGD, __pa(pudp) & 0xFFFFFFE0,
|
||||
(__pa(pudp) & 0x1F) / sizeof(pud_t));
|
||||
}
|
||||
|
||||
static void lguest_set_pmd(pmd_t *pmdp, pmd_t pmdval)
|
||||
{
|
||||
*pmdp = pmdval;
|
||||
native_set_pmd(pmdp, pmdval);
|
||||
lazy_hcall2(LHCALL_SET_PMD, __pa(pmdp) & PAGE_MASK,
|
||||
(__pa(pmdp) & (PAGE_SIZE - 1)) / 4);
|
||||
(__pa(pmdp) & (PAGE_SIZE - 1)) / sizeof(pmd_t));
|
||||
}
|
||||
#else
|
||||
|
||||
/* The Guest calls lguest_set_pmd to set a top-level entry when PAE is not
|
||||
* activated. */
|
||||
static void lguest_set_pmd(pmd_t *pmdp, pmd_t pmdval)
|
||||
{
|
||||
native_set_pmd(pmdp, pmdval);
|
||||
lazy_hcall2(LHCALL_SET_PGD, __pa(pmdp) & PAGE_MASK,
|
||||
(__pa(pmdp) & (PAGE_SIZE - 1)) / sizeof(pmd_t));
|
||||
}
|
||||
#endif
|
||||
|
||||
/* There are a couple of legacy places where the kernel sets a PTE, but we
|
||||
* don't know the top level any more. This is useless for us, since we don't
|
||||
|
@ -552,11 +598,31 @@ static void lguest_set_pmd(pmd_t *pmdp, pmd_t pmdval)
|
|||
* which brings boot back to 0.25 seconds. */
|
||||
static void lguest_set_pte(pte_t *ptep, pte_t pteval)
|
||||
{
|
||||
*ptep = pteval;
|
||||
native_set_pte(ptep, pteval);
|
||||
if (cr3_changed)
|
||||
lazy_hcall1(LHCALL_FLUSH_TLB, 1);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_X86_PAE
|
||||
static void lguest_set_pte_atomic(pte_t *ptep, pte_t pte)
|
||||
{
|
||||
native_set_pte_atomic(ptep, pte);
|
||||
if (cr3_changed)
|
||||
lazy_hcall1(LHCALL_FLUSH_TLB, 1);
|
||||
}
|
||||
|
||||
void lguest_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
|
||||
{
|
||||
native_pte_clear(mm, addr, ptep);
|
||||
lguest_pte_update(mm, addr, ptep);
|
||||
}
|
||||
|
||||
void lguest_pmd_clear(pmd_t *pmdp)
|
||||
{
|
||||
lguest_set_pmd(pmdp, __pmd(0));
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Unfortunately for Lguest, the pv_mmu_ops for page tables were based on
|
||||
* native page table operations. On native hardware you can set a new page
|
||||
* table entry whenever you want, but if you want to remove one you have to do
|
||||
|
@ -628,13 +694,12 @@ static void __init lguest_init_IRQ(void)
|
|||
{
|
||||
unsigned int i;
|
||||
|
||||
for (i = 0; i < LGUEST_IRQS; i++) {
|
||||
int vector = FIRST_EXTERNAL_VECTOR + i;
|
||||
for (i = FIRST_EXTERNAL_VECTOR; i < NR_VECTORS; i++) {
|
||||
/* Some systems map "vectors" to interrupts weirdly. Lguest has
|
||||
* a straightforward 1 to 1 mapping, so force that here. */
|
||||
__get_cpu_var(vector_irq)[vector] = i;
|
||||
if (vector != SYSCALL_VECTOR)
|
||||
set_intr_gate(vector, interrupt[i]);
|
||||
__get_cpu_var(vector_irq)[i] = i - FIRST_EXTERNAL_VECTOR;
|
||||
if (i != SYSCALL_VECTOR)
|
||||
set_intr_gate(i, interrupt[i - FIRST_EXTERNAL_VECTOR]);
|
||||
}
|
||||
/* This call is required to set up for 4k stacks, where we have
|
||||
* separate stacks for hard and soft interrupts. */
|
||||
|
@ -973,10 +1038,10 @@ static void lguest_restart(char *reason)
|
|||
*
|
||||
* Our current solution is to allow the paravirt back end to optionally patch
|
||||
* over the indirect calls to replace them with something more efficient. We
|
||||
* patch the four most commonly called functions: disable interrupts, enable
|
||||
* interrupts, restore interrupts and save interrupts. We usually have 6 or 10
|
||||
* bytes to patch into: the Guest versions of these operations are small enough
|
||||
* that we can fit comfortably.
|
||||
* patch two of the simplest of the most commonly called functions: disable
|
||||
* interrupts and save interrupts. We usually have 6 or 10 bytes to patch
|
||||
* into: the Guest versions of these operations are small enough that we can
|
||||
* fit comfortably.
|
||||
*
|
||||
* First we need assembly templates of each of the patchable Guest operations,
|
||||
* and these are in i386_head.S. */
|
||||
|
@ -987,8 +1052,6 @@ static const struct lguest_insns
|
|||
const char *start, *end;
|
||||
} lguest_insns[] = {
|
||||
[PARAVIRT_PATCH(pv_irq_ops.irq_disable)] = { lgstart_cli, lgend_cli },
|
||||
[PARAVIRT_PATCH(pv_irq_ops.irq_enable)] = { lgstart_sti, lgend_sti },
|
||||
[PARAVIRT_PATCH(pv_irq_ops.restore_fl)] = { lgstart_popf, lgend_popf },
|
||||
[PARAVIRT_PATCH(pv_irq_ops.save_fl)] = { lgstart_pushf, lgend_pushf },
|
||||
};
|
||||
|
||||
|
@ -1026,6 +1089,7 @@ __init void lguest_init(void)
|
|||
pv_info.name = "lguest";
|
||||
pv_info.paravirt_enabled = 1;
|
||||
pv_info.kernel_rpl = 1;
|
||||
pv_info.shared_kernel_pmd = 1;
|
||||
|
||||
/* We set up all the lguest overrides for sensitive operations. These
|
||||
* are detailed with the operations themselves. */
|
||||
|
@ -1033,9 +1097,9 @@ __init void lguest_init(void)
|
|||
/* interrupt-related operations */
|
||||
pv_irq_ops.init_IRQ = lguest_init_IRQ;
|
||||
pv_irq_ops.save_fl = PV_CALLEE_SAVE(save_fl);
|
||||
pv_irq_ops.restore_fl = PV_CALLEE_SAVE(restore_fl);
|
||||
pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(lg_restore_fl);
|
||||
pv_irq_ops.irq_disable = PV_CALLEE_SAVE(irq_disable);
|
||||
pv_irq_ops.irq_enable = PV_CALLEE_SAVE(irq_enable);
|
||||
pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(lg_irq_enable);
|
||||
pv_irq_ops.safe_halt = lguest_safe_halt;
|
||||
|
||||
/* init-time operations */
|
||||
|
@ -1071,6 +1135,12 @@ __init void lguest_init(void)
|
|||
pv_mmu_ops.set_pte = lguest_set_pte;
|
||||
pv_mmu_ops.set_pte_at = lguest_set_pte_at;
|
||||
pv_mmu_ops.set_pmd = lguest_set_pmd;
|
||||
#ifdef CONFIG_X86_PAE
|
||||
pv_mmu_ops.set_pte_atomic = lguest_set_pte_atomic;
|
||||
pv_mmu_ops.pte_clear = lguest_pte_clear;
|
||||
pv_mmu_ops.pmd_clear = lguest_pmd_clear;
|
||||
pv_mmu_ops.set_pud = lguest_set_pud;
|
||||
#endif
|
||||
pv_mmu_ops.read_cr2 = lguest_read_cr2;
|
||||
pv_mmu_ops.read_cr3 = lguest_read_cr3;
|
||||
pv_mmu_ops.lazy_mode.enter = paravirt_enter_lazy_mmu;
|
||||
|
|
|
@ -46,10 +46,64 @@ ENTRY(lguest_entry)
|
|||
.globl lgstart_##name; .globl lgend_##name
|
||||
|
||||
LGUEST_PATCH(cli, movl $0, lguest_data+LGUEST_DATA_irq_enabled)
|
||||
LGUEST_PATCH(sti, movl $X86_EFLAGS_IF, lguest_data+LGUEST_DATA_irq_enabled)
|
||||
LGUEST_PATCH(popf, movl %eax, lguest_data+LGUEST_DATA_irq_enabled)
|
||||
LGUEST_PATCH(pushf, movl lguest_data+LGUEST_DATA_irq_enabled, %eax)
|
||||
/*:*/
|
||||
|
||||
/*G:033 But using those wrappers is inefficient (we'll see why that doesn't
|
||||
* matter for save_fl and irq_disable later). If we write our routines
|
||||
* carefully in assembler, we can avoid clobbering any registers and avoid
|
||||
* jumping through the wrapper functions.
|
||||
*
|
||||
* I skipped over our first piece of assembler, but this one is worth studying
|
||||
* in a bit more detail so I'll describe in easy stages. First, the routine
|
||||
* to enable interrupts: */
|
||||
ENTRY(lg_irq_enable)
|
||||
/* The reverse of irq_disable, this sets lguest_data.irq_enabled to
|
||||
* X86_EFLAGS_IF (ie. "Interrupts enabled"). */
|
||||
movl $X86_EFLAGS_IF, lguest_data+LGUEST_DATA_irq_enabled
|
||||
/* But now we need to check if the Host wants to know: there might have
|
||||
* been interrupts waiting to be delivered, in which case it will have
|
||||
* set lguest_data.irq_pending to X86_EFLAGS_IF. If it's not zero, we
|
||||
* jump to send_interrupts, otherwise we're done. */
|
||||
testl $0, lguest_data+LGUEST_DATA_irq_pending
|
||||
jnz send_interrupts
|
||||
/* One cool thing about x86 is that you can do many things without using
|
||||
* a register. In this case, the normal path hasn't needed to save or
|
||||
* restore any registers at all! */
|
||||
ret
|
||||
send_interrupts:
|
||||
/* OK, now we need a register: eax is used for the hypercall number,
|
||||
* which is LHCALL_SEND_INTERRUPTS.
|
||||
*
|
||||
* We used not to bother with this pending detection at all, which was
|
||||
* much simpler. Sooner or later the Host would realize it had to
|
||||
* send us an interrupt. But that turns out to make performance 7
|
||||
* times worse on a simple tcp benchmark. So now we do this the hard
|
||||
* way. */
|
||||
pushl %eax
|
||||
movl $LHCALL_SEND_INTERRUPTS, %eax
|
||||
/* This is a vmcall instruction (same thing that KVM uses). Older
|
||||
* assembler versions might not know the "vmcall" instruction, so we
|
||||
* create one manually here. */
|
||||
.byte 0x0f,0x01,0xc1 /* KVM_HYPERCALL */
|
||||
popl %eax
|
||||
ret
|
||||
|
||||
/* Finally, the "popf" or "restore flags" routine. The %eax register holds the
|
||||
* flags (in practice, either X86_EFLAGS_IF or 0): if it's X86_EFLAGS_IF we're
|
||||
* enabling interrupts again, if it's 0 we're leaving them off. */
|
||||
ENTRY(lg_restore_fl)
|
||||
/* This is just "lguest_data.irq_enabled = flags;" */
|
||||
movl %eax, lguest_data+LGUEST_DATA_irq_enabled
|
||||
/* Now, if the %eax value has enabled interrupts and
|
||||
* lguest_data.irq_pending is set, we want to tell the Host so it can
|
||||
* deliver any outstanding interrupts. Fortunately, both values will
|
||||
* be X86_EFLAGS_IF (ie. 512) in that case, and the "testl"
|
||||
* instruction will AND them together for us. If both are set, we
|
||||
* jump to send_interrupts. */
|
||||
testl lguest_data+LGUEST_DATA_irq_pending, %eax
|
||||
jnz send_interrupts
|
||||
/* Again, the normal path has used no extra registers. Clever, huh? */
|
||||
ret
|
||||
|
||||
/* These demark the EIP range where host should never deliver interrupts. */
|
||||
.global lguest_noirq_start
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
config LGUEST
|
||||
tristate "Linux hypervisor example code"
|
||||
depends on X86_32 && EXPERIMENTAL && !X86_PAE && FUTEX
|
||||
depends on X86_32 && EXPERIMENTAL && EVENTFD
|
||||
select HVC_DRIVER
|
||||
---help---
|
||||
This is a very simple module which allows you to run
|
||||
|
|
|
@ -95,7 +95,7 @@ static __init int map_switcher(void)
|
|||
* array of struct pages. It increments that pointer, but we don't
|
||||
* care. */
|
||||
pagep = switcher_page;
|
||||
err = map_vm_area(switcher_vma, PAGE_KERNEL, &pagep);
|
||||
err = map_vm_area(switcher_vma, PAGE_KERNEL_EXEC, &pagep);
|
||||
if (err) {
|
||||
printk("lguest: map_vm_area failed: %i\n", err);
|
||||
goto free_vma;
|
||||
|
@ -188,6 +188,9 @@ int run_guest(struct lg_cpu *cpu, unsigned long __user *user)
|
|||
{
|
||||
/* We stop running once the Guest is dead. */
|
||||
while (!cpu->lg->dead) {
|
||||
unsigned int irq;
|
||||
bool more;
|
||||
|
||||
/* First we run any hypercalls the Guest wants done. */
|
||||
if (cpu->hcall)
|
||||
do_hypercalls(cpu);
|
||||
|
@ -195,23 +198,23 @@ int run_guest(struct lg_cpu *cpu, unsigned long __user *user)
|
|||
/* It's possible the Guest did a NOTIFY hypercall to the
|
||||
* Launcher, in which case we return from the read() now. */
|
||||
if (cpu->pending_notify) {
|
||||
if (put_user(cpu->pending_notify, user))
|
||||
return -EFAULT;
|
||||
return sizeof(cpu->pending_notify);
|
||||
if (!send_notify_to_eventfd(cpu)) {
|
||||
if (put_user(cpu->pending_notify, user))
|
||||
return -EFAULT;
|
||||
return sizeof(cpu->pending_notify);
|
||||
}
|
||||
}
|
||||
|
||||
/* Check for signals */
|
||||
if (signal_pending(current))
|
||||
return -ERESTARTSYS;
|
||||
|
||||
/* If Waker set break_out, return to Launcher. */
|
||||
if (cpu->break_out)
|
||||
return -EAGAIN;
|
||||
|
||||
/* Check if there are any interrupts which can be delivered now:
|
||||
* if so, this sets up the hander to be executed when we next
|
||||
* run the Guest. */
|
||||
maybe_do_interrupt(cpu);
|
||||
irq = interrupt_pending(cpu, &more);
|
||||
if (irq < LGUEST_IRQS)
|
||||
try_deliver_interrupt(cpu, irq, more);
|
||||
|
||||
/* All long-lived kernel loops need to check with this horrible
|
||||
* thing called the freezer. If the Host is trying to suspend,
|
||||
|
@ -224,10 +227,15 @@ int run_guest(struct lg_cpu *cpu, unsigned long __user *user)
|
|||
break;
|
||||
|
||||
/* If the Guest asked to be stopped, we sleep. The Guest's
|
||||
* clock timer or LHREQ_BREAK from the Waker will wake us. */
|
||||
* clock timer will wake us. */
|
||||
if (cpu->halted) {
|
||||
set_current_state(TASK_INTERRUPTIBLE);
|
||||
schedule();
|
||||
/* Just before we sleep, make sure no interrupt snuck in
|
||||
* which we should be doing. */
|
||||
if (interrupt_pending(cpu, &more) < LGUEST_IRQS)
|
||||
set_current_state(TASK_RUNNING);
|
||||
else
|
||||
schedule();
|
||||
continue;
|
||||
}
|
||||
|
||||
|
|
|
@ -37,6 +37,10 @@ static void do_hcall(struct lg_cpu *cpu, struct hcall_args *args)
|
|||
/* This call does nothing, except by breaking out of the Guest
|
||||
* it makes us process all the asynchronous hypercalls. */
|
||||
break;
|
||||
case LHCALL_SEND_INTERRUPTS:
|
||||
/* This call does nothing too, but by breaking out of the Guest
|
||||
* it makes us process any pending interrupts. */
|
||||
break;
|
||||
case LHCALL_LGUEST_INIT:
|
||||
/* You can't get here unless you're already initialized. Don't
|
||||
* do that. */
|
||||
|
@ -73,11 +77,21 @@ static void do_hcall(struct lg_cpu *cpu, struct hcall_args *args)
|
|||
guest_set_stack(cpu, args->arg1, args->arg2, args->arg3);
|
||||
break;
|
||||
case LHCALL_SET_PTE:
|
||||
#ifdef CONFIG_X86_PAE
|
||||
guest_set_pte(cpu, args->arg1, args->arg2,
|
||||
__pte(args->arg3 | (u64)args->arg4 << 32));
|
||||
#else
|
||||
guest_set_pte(cpu, args->arg1, args->arg2, __pte(args->arg3));
|
||||
#endif
|
||||
break;
|
||||
case LHCALL_SET_PGD:
|
||||
guest_set_pgd(cpu->lg, args->arg1, args->arg2);
|
||||
break;
|
||||
#ifdef CONFIG_X86_PAE
|
||||
case LHCALL_SET_PMD:
|
||||
guest_set_pmd(cpu->lg, args->arg1, args->arg2);
|
||||
break;
|
||||
#endif
|
||||
case LHCALL_SET_CLOCKEVENT:
|
||||
guest_set_clockevent(cpu, args->arg1);
|
||||
break;
|
||||
|
|
|
@ -128,30 +128,39 @@ static void set_guest_interrupt(struct lg_cpu *cpu, u32 lo, u32 hi,
|
|||
/*H:205
|
||||
* Virtual Interrupts.
|
||||
*
|
||||
* maybe_do_interrupt() gets called before every entry to the Guest, to see if
|
||||
* we should divert the Guest to running an interrupt handler. */
|
||||
void maybe_do_interrupt(struct lg_cpu *cpu)
|
||||
* interrupt_pending() returns the first pending interrupt which isn't blocked
|
||||
* by the Guest. It is called before every entry to the Guest, and just before
|
||||
* we go to sleep when the Guest has halted itself. */
|
||||
unsigned int interrupt_pending(struct lg_cpu *cpu, bool *more)
|
||||
{
|
||||
unsigned int irq;
|
||||
DECLARE_BITMAP(blk, LGUEST_IRQS);
|
||||
struct desc_struct *idt;
|
||||
|
||||
/* If the Guest hasn't even initialized yet, we can do nothing. */
|
||||
if (!cpu->lg->lguest_data)
|
||||
return;
|
||||
return LGUEST_IRQS;
|
||||
|
||||
/* Take our "irqs_pending" array and remove any interrupts the Guest
|
||||
* wants blocked: the result ends up in "blk". */
|
||||
if (copy_from_user(&blk, cpu->lg->lguest_data->blocked_interrupts,
|
||||
sizeof(blk)))
|
||||
return;
|
||||
return LGUEST_IRQS;
|
||||
bitmap_andnot(blk, cpu->irqs_pending, blk, LGUEST_IRQS);
|
||||
|
||||
/* Find the first interrupt. */
|
||||
irq = find_first_bit(blk, LGUEST_IRQS);
|
||||
/* None? Nothing to do */
|
||||
if (irq >= LGUEST_IRQS)
|
||||
return;
|
||||
*more = find_next_bit(blk, LGUEST_IRQS, irq+1);
|
||||
|
||||
return irq;
|
||||
}
|
||||
|
||||
/* This actually diverts the Guest to running an interrupt handler, once an
|
||||
* interrupt has been identified by interrupt_pending(). */
|
||||
void try_deliver_interrupt(struct lg_cpu *cpu, unsigned int irq, bool more)
|
||||
{
|
||||
struct desc_struct *idt;
|
||||
|
||||
BUG_ON(irq >= LGUEST_IRQS);
|
||||
|
||||
/* They may be in the middle of an iret, where they asked us never to
|
||||
* deliver interrupts. */
|
||||
|
@ -170,8 +179,12 @@ void maybe_do_interrupt(struct lg_cpu *cpu)
|
|||
u32 irq_enabled;
|
||||
if (get_user(irq_enabled, &cpu->lg->lguest_data->irq_enabled))
|
||||
irq_enabled = 0;
|
||||
if (!irq_enabled)
|
||||
if (!irq_enabled) {
|
||||
/* Make sure they know an IRQ is pending. */
|
||||
put_user(X86_EFLAGS_IF,
|
||||
&cpu->lg->lguest_data->irq_pending);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
/* Look at the IDT entry the Guest gave us for this interrupt. The
|
||||
|
@ -194,6 +207,25 @@ void maybe_do_interrupt(struct lg_cpu *cpu)
|
|||
* here is a compromise which means at least it gets updated every
|
||||
* timer interrupt. */
|
||||
write_timestamp(cpu);
|
||||
|
||||
/* If there are no other interrupts we want to deliver, clear
|
||||
* the pending flag. */
|
||||
if (!more)
|
||||
put_user(0, &cpu->lg->lguest_data->irq_pending);
|
||||
}
|
||||
|
||||
/* And this is the routine when we want to set an interrupt for the Guest. */
|
||||
void set_interrupt(struct lg_cpu *cpu, unsigned int irq)
|
||||
{
|
||||
/* Next time the Guest runs, the core code will see if it can deliver
|
||||
* this interrupt. */
|
||||
set_bit(irq, cpu->irqs_pending);
|
||||
|
||||
/* Make sure it sees it; it might be asleep (eg. halted), or
|
||||
* running the Guest right now, in which case kick_process()
|
||||
* will knock it out. */
|
||||
if (!wake_up_process(cpu->tsk))
|
||||
kick_process(cpu->tsk);
|
||||
}
|
||||
/*:*/
|
||||
|
||||
|
@ -510,10 +542,7 @@ static enum hrtimer_restart clockdev_fn(struct hrtimer *timer)
|
|||
struct lg_cpu *cpu = container_of(timer, struct lg_cpu, hrt);
|
||||
|
||||
/* Remember the first interrupt is the timer interrupt. */
|
||||
set_bit(0, cpu->irqs_pending);
|
||||
/* If the Guest is actually stopped, we need to wake it up. */
|
||||
if (cpu->halted)
|
||||
wake_up_process(cpu->tsk);
|
||||
set_interrupt(cpu, 0);
|
||||
return HRTIMER_NORESTART;
|
||||
}
|
||||
|
||||
|
|
|
@ -49,7 +49,7 @@ struct lg_cpu {
|
|||
u32 cr2;
|
||||
int ts;
|
||||
u32 esp1;
|
||||
u8 ss1;
|
||||
u16 ss1;
|
||||
|
||||
/* Bitmap of what has changed: see CHANGED_* above. */
|
||||
int changed;
|
||||
|
@ -71,9 +71,7 @@ struct lg_cpu {
|
|||
/* Virtual clock device */
|
||||
struct hrtimer hrt;
|
||||
|
||||
/* Do we need to stop what we're doing and return to userspace? */
|
||||
int break_out;
|
||||
wait_queue_head_t break_wq;
|
||||
/* Did the Guest tell us to halt? */
|
||||
int halted;
|
||||
|
||||
/* Pending virtual interrupts */
|
||||
|
@ -82,6 +80,16 @@ struct lg_cpu {
|
|||
struct lg_cpu_arch arch;
|
||||
};
|
||||
|
||||
struct lg_eventfd {
|
||||
unsigned long addr;
|
||||
struct file *event;
|
||||
};
|
||||
|
||||
struct lg_eventfd_map {
|
||||
unsigned int num;
|
||||
struct lg_eventfd map[];
|
||||
};
|
||||
|
||||
/* The private info the thread maintains about the guest. */
|
||||
struct lguest
|
||||
{
|
||||
|
@ -102,6 +110,8 @@ struct lguest
|
|||
unsigned int stack_pages;
|
||||
u32 tsc_khz;
|
||||
|
||||
struct lg_eventfd_map *eventfds;
|
||||
|
||||
/* Dead? */
|
||||
const char *dead;
|
||||
};
|
||||
|
@ -137,9 +147,13 @@ int run_guest(struct lg_cpu *cpu, unsigned long __user *user);
|
|||
* in the kernel. */
|
||||
#define pgd_flags(x) (pgd_val(x) & ~PAGE_MASK)
|
||||
#define pgd_pfn(x) (pgd_val(x) >> PAGE_SHIFT)
|
||||
#define pmd_flags(x) (pmd_val(x) & ~PAGE_MASK)
|
||||
#define pmd_pfn(x) (pmd_val(x) >> PAGE_SHIFT)
|
||||
|
||||
/* interrupts_and_traps.c: */
|
||||
void maybe_do_interrupt(struct lg_cpu *cpu);
|
||||
unsigned int interrupt_pending(struct lg_cpu *cpu, bool *more);
|
||||
void try_deliver_interrupt(struct lg_cpu *cpu, unsigned int irq, bool more);
|
||||
void set_interrupt(struct lg_cpu *cpu, unsigned int irq);
|
||||
bool deliver_trap(struct lg_cpu *cpu, unsigned int num);
|
||||
void load_guest_idt_entry(struct lg_cpu *cpu, unsigned int i,
|
||||
u32 low, u32 hi);
|
||||
|
@ -150,6 +164,7 @@ void setup_default_idt_entries(struct lguest_ro_state *state,
|
|||
void copy_traps(const struct lg_cpu *cpu, struct desc_struct *idt,
|
||||
const unsigned long *def);
|
||||
void guest_set_clockevent(struct lg_cpu *cpu, unsigned long delta);
|
||||
bool send_notify_to_eventfd(struct lg_cpu *cpu);
|
||||
void init_clockdev(struct lg_cpu *cpu);
|
||||
bool check_syscall_vector(struct lguest *lg);
|
||||
int init_interrupts(void);
|
||||
|
@ -168,7 +183,10 @@ void copy_gdt_tls(const struct lg_cpu *cpu, struct desc_struct *gdt);
|
|||
int init_guest_pagetable(struct lguest *lg);
|
||||
void free_guest_pagetable(struct lguest *lg);
|
||||
void guest_new_pagetable(struct lg_cpu *cpu, unsigned long pgtable);
|
||||
void guest_set_pgd(struct lguest *lg, unsigned long gpgdir, u32 i);
|
||||
#ifdef CONFIG_X86_PAE
|
||||
void guest_set_pmd(struct lguest *lg, unsigned long gpgdir, u32 i);
|
||||
#endif
|
||||
void guest_pagetable_clear_all(struct lg_cpu *cpu);
|
||||
void guest_pagetable_flush_user(struct lg_cpu *cpu);
|
||||
void guest_set_pte(struct lg_cpu *cpu, unsigned long gpgdir,
|
||||
|
|
|
@ -7,32 +7,83 @@
|
|||
#include <linux/miscdevice.h>
|
||||
#include <linux/fs.h>
|
||||
#include <linux/sched.h>
|
||||
#include <linux/eventfd.h>
|
||||
#include <linux/file.h>
|
||||
#include "lg.h"
|
||||
|
||||
/*L:055 When something happens, the Waker process needs a way to stop the
|
||||
* kernel running the Guest and return to the Launcher. So the Waker writes
|
||||
* LHREQ_BREAK and the value "1" to /dev/lguest to do this. Once the Launcher
|
||||
* has done whatever needs attention, it writes LHREQ_BREAK and "0" to release
|
||||
* the Waker. */
|
||||
static int break_guest_out(struct lg_cpu *cpu, const unsigned long __user*input)
|
||||
bool send_notify_to_eventfd(struct lg_cpu *cpu)
|
||||
{
|
||||
unsigned long on;
|
||||
unsigned int i;
|
||||
struct lg_eventfd_map *map;
|
||||
|
||||
/* Fetch whether they're turning break on or off. */
|
||||
if (get_user(on, input) != 0)
|
||||
/* lg->eventfds is RCU-protected */
|
||||
rcu_read_lock();
|
||||
map = rcu_dereference(cpu->lg->eventfds);
|
||||
for (i = 0; i < map->num; i++) {
|
||||
if (map->map[i].addr == cpu->pending_notify) {
|
||||
eventfd_signal(map->map[i].event, 1);
|
||||
cpu->pending_notify = 0;
|
||||
break;
|
||||
}
|
||||
}
|
||||
rcu_read_unlock();
|
||||
return cpu->pending_notify == 0;
|
||||
}
|
||||
|
||||
static int add_eventfd(struct lguest *lg, unsigned long addr, int fd)
|
||||
{
|
||||
struct lg_eventfd_map *new, *old = lg->eventfds;
|
||||
|
||||
if (!addr)
|
||||
return -EINVAL;
|
||||
|
||||
/* Replace the old array with the new one, carefully: others can
|
||||
* be accessing it at the same time */
|
||||
new = kmalloc(sizeof(*new) + sizeof(new->map[0]) * (old->num + 1),
|
||||
GFP_KERNEL);
|
||||
if (!new)
|
||||
return -ENOMEM;
|
||||
|
||||
/* First make identical copy. */
|
||||
memcpy(new->map, old->map, sizeof(old->map[0]) * old->num);
|
||||
new->num = old->num;
|
||||
|
||||
/* Now append new entry. */
|
||||
new->map[new->num].addr = addr;
|
||||
new->map[new->num].event = eventfd_fget(fd);
|
||||
if (IS_ERR(new->map[new->num].event)) {
|
||||
kfree(new);
|
||||
return PTR_ERR(new->map[new->num].event);
|
||||
}
|
||||
new->num++;
|
||||
|
||||
/* Now put new one in place. */
|
||||
rcu_assign_pointer(lg->eventfds, new);
|
||||
|
||||
/* We're not in a big hurry. Wait until noone's looking at old
|
||||
* version, then delete it. */
|
||||
synchronize_rcu();
|
||||
kfree(old);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int attach_eventfd(struct lguest *lg, const unsigned long __user *input)
|
||||
{
|
||||
unsigned long addr, fd;
|
||||
int err;
|
||||
|
||||
if (get_user(addr, input) != 0)
|
||||
return -EFAULT;
|
||||
input++;
|
||||
if (get_user(fd, input) != 0)
|
||||
return -EFAULT;
|
||||
|
||||
if (on) {
|
||||
cpu->break_out = 1;
|
||||
/* Pop it out of the Guest (may be running on different CPU) */
|
||||
wake_up_process(cpu->tsk);
|
||||
/* Wait for them to reset it */
|
||||
return wait_event_interruptible(cpu->break_wq, !cpu->break_out);
|
||||
} else {
|
||||
cpu->break_out = 0;
|
||||
wake_up(&cpu->break_wq);
|
||||
return 0;
|
||||
}
|
||||
mutex_lock(&lguest_lock);
|
||||
err = add_eventfd(lg, addr, fd);
|
||||
mutex_unlock(&lguest_lock);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*L:050 Sending an interrupt is done by writing LHREQ_IRQ and an interrupt
|
||||
|
@ -45,9 +96,8 @@ static int user_send_irq(struct lg_cpu *cpu, const unsigned long __user *input)
|
|||
return -EFAULT;
|
||||
if (irq >= LGUEST_IRQS)
|
||||
return -EINVAL;
|
||||
/* Next time the Guest runs, the core code will see if it can deliver
|
||||
* this interrupt. */
|
||||
set_bit(irq, cpu->irqs_pending);
|
||||
|
||||
set_interrupt(cpu, irq);
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@ -126,9 +176,6 @@ static int lg_cpu_start(struct lg_cpu *cpu, unsigned id, unsigned long start_ip)
|
|||
* address. */
|
||||
lguest_arch_setup_regs(cpu, start_ip);
|
||||
|
||||
/* Initialize the queue for the Waker to wait on */
|
||||
init_waitqueue_head(&cpu->break_wq);
|
||||
|
||||
/* We keep a pointer to the Launcher task (ie. current task) for when
|
||||
* other Guests want to wake this one (eg. console input). */
|
||||
cpu->tsk = current;
|
||||
|
@ -185,6 +232,13 @@ static int initialize(struct file *file, const unsigned long __user *input)
|
|||
goto unlock;
|
||||
}
|
||||
|
||||
lg->eventfds = kmalloc(sizeof(*lg->eventfds), GFP_KERNEL);
|
||||
if (!lg->eventfds) {
|
||||
err = -ENOMEM;
|
||||
goto free_lg;
|
||||
}
|
||||
lg->eventfds->num = 0;
|
||||
|
||||
/* Populate the easy fields of our "struct lguest" */
|
||||
lg->mem_base = (void __user *)args[0];
|
||||
lg->pfn_limit = args[1];
|
||||
|
@ -192,7 +246,7 @@ static int initialize(struct file *file, const unsigned long __user *input)
|
|||
/* This is the first cpu (cpu 0) and it will start booting at args[2] */
|
||||
err = lg_cpu_start(&lg->cpus[0], 0, args[2]);
|
||||
if (err)
|
||||
goto release_guest;
|
||||
goto free_eventfds;
|
||||
|
||||
/* Initialize the Guest's shadow page tables, using the toplevel
|
||||
* address the Launcher gave us. This allocates memory, so can fail. */
|
||||
|
@ -211,7 +265,9 @@ static int initialize(struct file *file, const unsigned long __user *input)
|
|||
free_regs:
|
||||
/* FIXME: This should be in free_vcpu */
|
||||
free_page(lg->cpus[0].regs_page);
|
||||
release_guest:
|
||||
free_eventfds:
|
||||
kfree(lg->eventfds);
|
||||
free_lg:
|
||||
kfree(lg);
|
||||
unlock:
|
||||
mutex_unlock(&lguest_lock);
|
||||
|
@ -252,11 +308,6 @@ static ssize_t write(struct file *file, const char __user *in,
|
|||
/* Once the Guest is dead, you can only read() why it died. */
|
||||
if (lg->dead)
|
||||
return -ENOENT;
|
||||
|
||||
/* If you're not the task which owns the Guest, all you can do
|
||||
* is break the Launcher out of running the Guest. */
|
||||
if (current != cpu->tsk && req != LHREQ_BREAK)
|
||||
return -EPERM;
|
||||
}
|
||||
|
||||
switch (req) {
|
||||
|
@ -264,8 +315,8 @@ static ssize_t write(struct file *file, const char __user *in,
|
|||
return initialize(file, input);
|
||||
case LHREQ_IRQ:
|
||||
return user_send_irq(cpu, input);
|
||||
case LHREQ_BREAK:
|
||||
return break_guest_out(cpu, input);
|
||||
case LHREQ_EVENTFD:
|
||||
return attach_eventfd(lg, input);
|
||||
default:
|
||||
return -EINVAL;
|
||||
}
|
||||
|
@ -303,6 +354,12 @@ static int close(struct inode *inode, struct file *file)
|
|||
* the Launcher's memory management structure. */
|
||||
mmput(lg->cpus[i].mm);
|
||||
}
|
||||
|
||||
/* Release any eventfds they registered. */
|
||||
for (i = 0; i < lg->eventfds->num; i++)
|
||||
fput(lg->eventfds->map[i].event);
|
||||
kfree(lg->eventfds);
|
||||
|
||||
/* If lg->dead doesn't contain an error code it will be NULL or a
|
||||
* kmalloc()ed string, either of which is ok to hand to kfree(). */
|
||||
if (!IS_ERR(lg->dead))
|
||||
|
|
|
@ -53,6 +53,17 @@
|
|||
* page. */
|
||||
#define SWITCHER_PGD_INDEX (PTRS_PER_PGD - 1)
|
||||
|
||||
/* For PAE we need the PMD index as well. We use the last 2MB, so we
|
||||
* will need the last pmd entry of the last pmd page. */
|
||||
#ifdef CONFIG_X86_PAE
|
||||
#define SWITCHER_PMD_INDEX (PTRS_PER_PMD - 1)
|
||||
#define RESERVE_MEM 2U
|
||||
#define CHECK_GPGD_MASK _PAGE_PRESENT
|
||||
#else
|
||||
#define RESERVE_MEM 4U
|
||||
#define CHECK_GPGD_MASK _PAGE_TABLE
|
||||
#endif
|
||||
|
||||
/* We actually need a separate PTE page for each CPU. Remember that after the
|
||||
* Switcher code itself comes two pages for each CPU, and we don't want this
|
||||
* CPU's guest to see the pages of any other CPU. */
|
||||
|
@ -73,24 +84,59 @@ static pgd_t *spgd_addr(struct lg_cpu *cpu, u32 i, unsigned long vaddr)
|
|||
{
|
||||
unsigned int index = pgd_index(vaddr);
|
||||
|
||||
#ifndef CONFIG_X86_PAE
|
||||
/* We kill any Guest trying to touch the Switcher addresses. */
|
||||
if (index >= SWITCHER_PGD_INDEX) {
|
||||
kill_guest(cpu, "attempt to access switcher pages");
|
||||
index = 0;
|
||||
}
|
||||
#endif
|
||||
/* Return a pointer index'th pgd entry for the i'th page table. */
|
||||
return &cpu->lg->pgdirs[i].pgdir[index];
|
||||
}
|
||||
|
||||
#ifdef CONFIG_X86_PAE
|
||||
/* This routine then takes the PGD entry given above, which contains the
|
||||
* address of the PMD page. It then returns a pointer to the PMD entry for the
|
||||
* given address. */
|
||||
static pmd_t *spmd_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr)
|
||||
{
|
||||
unsigned int index = pmd_index(vaddr);
|
||||
pmd_t *page;
|
||||
|
||||
/* We kill any Guest trying to touch the Switcher addresses. */
|
||||
if (pgd_index(vaddr) == SWITCHER_PGD_INDEX &&
|
||||
index >= SWITCHER_PMD_INDEX) {
|
||||
kill_guest(cpu, "attempt to access switcher pages");
|
||||
index = 0;
|
||||
}
|
||||
|
||||
/* You should never call this if the PGD entry wasn't valid */
|
||||
BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
|
||||
page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
|
||||
|
||||
return &page[index];
|
||||
}
|
||||
#endif
|
||||
|
||||
/* This routine then takes the page directory entry returned above, which
|
||||
* contains the address of the page table entry (PTE) page. It then returns a
|
||||
* pointer to the PTE entry for the given address. */
|
||||
static pte_t *spte_addr(pgd_t spgd, unsigned long vaddr)
|
||||
static pte_t *spte_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr)
|
||||
{
|
||||
#ifdef CONFIG_X86_PAE
|
||||
pmd_t *pmd = spmd_addr(cpu, spgd, vaddr);
|
||||
pte_t *page = __va(pmd_pfn(*pmd) << PAGE_SHIFT);
|
||||
|
||||
/* You should never call this if the PMD entry wasn't valid */
|
||||
BUG_ON(!(pmd_flags(*pmd) & _PAGE_PRESENT));
|
||||
#else
|
||||
pte_t *page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
|
||||
/* You should never call this if the PGD entry wasn't valid */
|
||||
BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
|
||||
return &page[(vaddr >> PAGE_SHIFT) % PTRS_PER_PTE];
|
||||
#endif
|
||||
|
||||
return &page[pte_index(vaddr)];
|
||||
}
|
||||
|
||||
/* These two functions just like the above two, except they access the Guest
|
||||
|
@ -101,12 +147,32 @@ static unsigned long gpgd_addr(struct lg_cpu *cpu, unsigned long vaddr)
|
|||
return cpu->lg->pgdirs[cpu->cpu_pgd].gpgdir + index * sizeof(pgd_t);
|
||||
}
|
||||
|
||||
static unsigned long gpte_addr(pgd_t gpgd, unsigned long vaddr)
|
||||
#ifdef CONFIG_X86_PAE
|
||||
static unsigned long gpmd_addr(pgd_t gpgd, unsigned long vaddr)
|
||||
{
|
||||
unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
|
||||
BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
|
||||
return gpage + ((vaddr>>PAGE_SHIFT) % PTRS_PER_PTE) * sizeof(pte_t);
|
||||
return gpage + pmd_index(vaddr) * sizeof(pmd_t);
|
||||
}
|
||||
|
||||
static unsigned long gpte_addr(struct lg_cpu *cpu,
|
||||
pmd_t gpmd, unsigned long vaddr)
|
||||
{
|
||||
unsigned long gpage = pmd_pfn(gpmd) << PAGE_SHIFT;
|
||||
|
||||
BUG_ON(!(pmd_flags(gpmd) & _PAGE_PRESENT));
|
||||
return gpage + pte_index(vaddr) * sizeof(pte_t);
|
||||
}
|
||||
#else
|
||||
static unsigned long gpte_addr(struct lg_cpu *cpu,
|
||||
pgd_t gpgd, unsigned long vaddr)
|
||||
{
|
||||
unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
|
||||
|
||||
BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
|
||||
return gpage + pte_index(vaddr) * sizeof(pte_t);
|
||||
}
|
||||
#endif
|
||||
/*:*/
|
||||
|
||||
/*M:014 get_pfn is slow: we could probably try to grab batches of pages here as
|
||||
|
@ -171,7 +237,7 @@ static void release_pte(pte_t pte)
|
|||
/* Remember that get_user_pages_fast() took a reference to the page, in
|
||||
* get_pfn()? We have to put it back now. */
|
||||
if (pte_flags(pte) & _PAGE_PRESENT)
|
||||
put_page(pfn_to_page(pte_pfn(pte)));
|
||||
put_page(pte_page(pte));
|
||||
}
|
||||
/*:*/
|
||||
|
||||
|
@ -184,11 +250,20 @@ static void check_gpte(struct lg_cpu *cpu, pte_t gpte)
|
|||
|
||||
static void check_gpgd(struct lg_cpu *cpu, pgd_t gpgd)
|
||||
{
|
||||
if ((pgd_flags(gpgd) & ~_PAGE_TABLE) ||
|
||||
if ((pgd_flags(gpgd) & ~CHECK_GPGD_MASK) ||
|
||||
(pgd_pfn(gpgd) >= cpu->lg->pfn_limit))
|
||||
kill_guest(cpu, "bad page directory entry");
|
||||
}
|
||||
|
||||
#ifdef CONFIG_X86_PAE
|
||||
static void check_gpmd(struct lg_cpu *cpu, pmd_t gpmd)
|
||||
{
|
||||
if ((pmd_flags(gpmd) & ~_PAGE_TABLE) ||
|
||||
(pmd_pfn(gpmd) >= cpu->lg->pfn_limit))
|
||||
kill_guest(cpu, "bad page middle directory entry");
|
||||
}
|
||||
#endif
|
||||
|
||||
/*H:330
|
||||
* (i) Looking up a page table entry when the Guest faults.
|
||||
*
|
||||
|
@ -207,6 +282,11 @@ bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
|
|||
pte_t gpte;
|
||||
pte_t *spte;
|
||||
|
||||
#ifdef CONFIG_X86_PAE
|
||||
pmd_t *spmd;
|
||||
pmd_t gpmd;
|
||||
#endif
|
||||
|
||||
/* First step: get the top-level Guest page table entry. */
|
||||
gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
|
||||
/* Toplevel not present? We can't map it in. */
|
||||
|
@ -228,12 +308,45 @@ bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
|
|||
check_gpgd(cpu, gpgd);
|
||||
/* And we copy the flags to the shadow PGD entry. The page
|
||||
* number in the shadow PGD is the page we just allocated. */
|
||||
*spgd = __pgd(__pa(ptepage) | pgd_flags(gpgd));
|
||||
set_pgd(spgd, __pgd(__pa(ptepage) | pgd_flags(gpgd)));
|
||||
}
|
||||
|
||||
#ifdef CONFIG_X86_PAE
|
||||
gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t);
|
||||
/* middle level not present? We can't map it in. */
|
||||
if (!(pmd_flags(gpmd) & _PAGE_PRESENT))
|
||||
return false;
|
||||
|
||||
/* Now look at the matching shadow entry. */
|
||||
spmd = spmd_addr(cpu, *spgd, vaddr);
|
||||
|
||||
if (!(pmd_flags(*spmd) & _PAGE_PRESENT)) {
|
||||
/* No shadow entry: allocate a new shadow PTE page. */
|
||||
unsigned long ptepage = get_zeroed_page(GFP_KERNEL);
|
||||
|
||||
/* This is not really the Guest's fault, but killing it is
|
||||
* simple for this corner case. */
|
||||
if (!ptepage) {
|
||||
kill_guest(cpu, "out of memory allocating pte page");
|
||||
return false;
|
||||
}
|
||||
|
||||
/* We check that the Guest pmd is OK. */
|
||||
check_gpmd(cpu, gpmd);
|
||||
|
||||
/* And we copy the flags to the shadow PMD entry. The page
|
||||
* number in the shadow PMD is the page we just allocated. */
|
||||
native_set_pmd(spmd, __pmd(__pa(ptepage) | pmd_flags(gpmd)));
|
||||
}
|
||||
|
||||
/* OK, now we look at the lower level in the Guest page table: keep its
|
||||
* address, because we might update it later. */
|
||||
gpte_ptr = gpte_addr(gpgd, vaddr);
|
||||
gpte_ptr = gpte_addr(cpu, gpmd, vaddr);
|
||||
#else
|
||||
/* OK, now we look at the lower level in the Guest page table: keep its
|
||||
* address, because we might update it later. */
|
||||
gpte_ptr = gpte_addr(cpu, gpgd, vaddr);
|
||||
#endif
|
||||
gpte = lgread(cpu, gpte_ptr, pte_t);
|
||||
|
||||
/* If this page isn't in the Guest page tables, we can't page it in. */
|
||||
|
@ -259,7 +372,7 @@ bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
|
|||
gpte = pte_mkdirty(gpte);
|
||||
|
||||
/* Get the pointer to the shadow PTE entry we're going to set. */
|
||||
spte = spte_addr(*spgd, vaddr);
|
||||
spte = spte_addr(cpu, *spgd, vaddr);
|
||||
/* If there was a valid shadow PTE entry here before, we release it.
|
||||
* This can happen with a write to a previously read-only entry. */
|
||||
release_pte(*spte);
|
||||
|
@ -273,7 +386,7 @@ bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
|
|||
* table entry, even if the Guest says it's writable. That way
|
||||
* we will come back here when a write does actually occur, so
|
||||
* we can update the Guest's _PAGE_DIRTY flag. */
|
||||
*spte = gpte_to_spte(cpu, pte_wrprotect(gpte), 0);
|
||||
native_set_pte(spte, gpte_to_spte(cpu, pte_wrprotect(gpte), 0));
|
||||
|
||||
/* Finally, we write the Guest PTE entry back: we've set the
|
||||
* _PAGE_ACCESSED and maybe the _PAGE_DIRTY flags. */
|
||||
|
@ -301,14 +414,23 @@ static bool page_writable(struct lg_cpu *cpu, unsigned long vaddr)
|
|||
pgd_t *spgd;
|
||||
unsigned long flags;
|
||||
|
||||
#ifdef CONFIG_X86_PAE
|
||||
pmd_t *spmd;
|
||||
#endif
|
||||
/* Look at the current top level entry: is it present? */
|
||||
spgd = spgd_addr(cpu, cpu->cpu_pgd, vaddr);
|
||||
if (!(pgd_flags(*spgd) & _PAGE_PRESENT))
|
||||
return false;
|
||||
|
||||
#ifdef CONFIG_X86_PAE
|
||||
spmd = spmd_addr(cpu, *spgd, vaddr);
|
||||
if (!(pmd_flags(*spmd) & _PAGE_PRESENT))
|
||||
return false;
|
||||
#endif
|
||||
|
||||
/* Check the flags on the pte entry itself: it must be present and
|
||||
* writable. */
|
||||
flags = pte_flags(*(spte_addr(*spgd, vaddr)));
|
||||
flags = pte_flags(*(spte_addr(cpu, *spgd, vaddr)));
|
||||
|
||||
return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW);
|
||||
}
|
||||
|
@ -322,8 +444,43 @@ void pin_page(struct lg_cpu *cpu, unsigned long vaddr)
|
|||
kill_guest(cpu, "bad stack page %#lx", vaddr);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_X86_PAE
|
||||
static void release_pmd(pmd_t *spmd)
|
||||
{
|
||||
/* If the entry's not present, there's nothing to release. */
|
||||
if (pmd_flags(*spmd) & _PAGE_PRESENT) {
|
||||
unsigned int i;
|
||||
pte_t *ptepage = __va(pmd_pfn(*spmd) << PAGE_SHIFT);
|
||||
/* For each entry in the page, we might need to release it. */
|
||||
for (i = 0; i < PTRS_PER_PTE; i++)
|
||||
release_pte(ptepage[i]);
|
||||
/* Now we can free the page of PTEs */
|
||||
free_page((long)ptepage);
|
||||
/* And zero out the PMD entry so we never release it twice. */
|
||||
native_set_pmd(spmd, __pmd(0));
|
||||
}
|
||||
}
|
||||
|
||||
static void release_pgd(pgd_t *spgd)
|
||||
{
|
||||
/* If the entry's not present, there's nothing to release. */
|
||||
if (pgd_flags(*spgd) & _PAGE_PRESENT) {
|
||||
unsigned int i;
|
||||
pmd_t *pmdpage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
|
||||
|
||||
for (i = 0; i < PTRS_PER_PMD; i++)
|
||||
release_pmd(&pmdpage[i]);
|
||||
|
||||
/* Now we can free the page of PMDs */
|
||||
free_page((long)pmdpage);
|
||||
/* And zero out the PGD entry so we never release it twice. */
|
||||
set_pgd(spgd, __pgd(0));
|
||||
}
|
||||
}
|
||||
|
||||
#else /* !CONFIG_X86_PAE */
|
||||
/*H:450 If we chase down the release_pgd() code, it looks like this: */
|
||||
static void release_pgd(struct lguest *lg, pgd_t *spgd)
|
||||
static void release_pgd(pgd_t *spgd)
|
||||
{
|
||||
/* If the entry's not present, there's nothing to release. */
|
||||
if (pgd_flags(*spgd) & _PAGE_PRESENT) {
|
||||
|
@ -341,7 +498,7 @@ static void release_pgd(struct lguest *lg, pgd_t *spgd)
|
|||
*spgd = __pgd(0);
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
/*H:445 We saw flush_user_mappings() twice: once from the flush_user_mappings()
|
||||
* hypercall and once in new_pgdir() when we re-used a top-level pgdir page.
|
||||
* It simply releases every PTE page from 0 up to the Guest's kernel address. */
|
||||
|
@ -350,7 +507,7 @@ static void flush_user_mappings(struct lguest *lg, int idx)
|
|||
unsigned int i;
|
||||
/* Release every pgd entry up to the kernel's address. */
|
||||
for (i = 0; i < pgd_index(lg->kernel_address); i++)
|
||||
release_pgd(lg, lg->pgdirs[idx].pgdir + i);
|
||||
release_pgd(lg->pgdirs[idx].pgdir + i);
|
||||
}
|
||||
|
||||
/*H:440 (v) Flushing (throwing away) page tables,
|
||||
|
@ -369,7 +526,9 @@ unsigned long guest_pa(struct lg_cpu *cpu, unsigned long vaddr)
|
|||
{
|
||||
pgd_t gpgd;
|
||||
pte_t gpte;
|
||||
|
||||
#ifdef CONFIG_X86_PAE
|
||||
pmd_t gpmd;
|
||||
#endif
|
||||
/* First step: get the top-level Guest page table entry. */
|
||||
gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
|
||||
/* Toplevel not present? We can't map it in. */
|
||||
|
@ -378,7 +537,14 @@ unsigned long guest_pa(struct lg_cpu *cpu, unsigned long vaddr)
|
|||
return -1UL;
|
||||
}
|
||||
|
||||
gpte = lgread(cpu, gpte_addr(gpgd, vaddr), pte_t);
|
||||
#ifdef CONFIG_X86_PAE
|
||||
gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t);
|
||||
if (!(pmd_flags(gpmd) & _PAGE_PRESENT))
|
||||
kill_guest(cpu, "Bad address %#lx", vaddr);
|
||||
gpte = lgread(cpu, gpte_addr(cpu, gpmd, vaddr), pte_t);
|
||||
#else
|
||||
gpte = lgread(cpu, gpte_addr(cpu, gpgd, vaddr), pte_t);
|
||||
#endif
|
||||
if (!(pte_flags(gpte) & _PAGE_PRESENT))
|
||||
kill_guest(cpu, "Bad address %#lx", vaddr);
|
||||
|
||||
|
@ -405,6 +571,9 @@ static unsigned int new_pgdir(struct lg_cpu *cpu,
|
|||
int *blank_pgdir)
|
||||
{
|
||||
unsigned int next;
|
||||
#ifdef CONFIG_X86_PAE
|
||||
pmd_t *pmd_table;
|
||||
#endif
|
||||
|
||||
/* We pick one entry at random to throw out. Choosing the Least
|
||||
* Recently Used might be better, but this is easy. */
|
||||
|
@ -416,10 +585,27 @@ static unsigned int new_pgdir(struct lg_cpu *cpu,
|
|||
/* If the allocation fails, just keep using the one we have */
|
||||
if (!cpu->lg->pgdirs[next].pgdir)
|
||||
next = cpu->cpu_pgd;
|
||||
else
|
||||
/* This is a blank page, so there are no kernel
|
||||
* mappings: caller must map the stack! */
|
||||
else {
|
||||
#ifdef CONFIG_X86_PAE
|
||||
/* In PAE mode, allocate a pmd page and populate the
|
||||
* last pgd entry. */
|
||||
pmd_table = (pmd_t *)get_zeroed_page(GFP_KERNEL);
|
||||
if (!pmd_table) {
|
||||
free_page((long)cpu->lg->pgdirs[next].pgdir);
|
||||
set_pgd(cpu->lg->pgdirs[next].pgdir, __pgd(0));
|
||||
next = cpu->cpu_pgd;
|
||||
} else {
|
||||
set_pgd(cpu->lg->pgdirs[next].pgdir +
|
||||
SWITCHER_PGD_INDEX,
|
||||
__pgd(__pa(pmd_table) | _PAGE_PRESENT));
|
||||
/* This is a blank page, so there are no kernel
|
||||
* mappings: caller must map the stack! */
|
||||
*blank_pgdir = 1;
|
||||
}
|
||||
#else
|
||||
*blank_pgdir = 1;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
/* Record which Guest toplevel this shadows. */
|
||||
cpu->lg->pgdirs[next].gpgdir = gpgdir;
|
||||
|
@ -431,7 +617,7 @@ static unsigned int new_pgdir(struct lg_cpu *cpu,
|
|||
|
||||
/*H:430 (iv) Switching page tables
|
||||
*
|
||||
* Now we've seen all the page table setting and manipulation, let's see what
|
||||
* Now we've seen all the page table setting and manipulation, let's see
|
||||
* what happens when the Guest changes page tables (ie. changes the top-level
|
||||
* pgdir). This occurs on almost every context switch. */
|
||||
void guest_new_pagetable(struct lg_cpu *cpu, unsigned long pgtable)
|
||||
|
@ -460,10 +646,25 @@ static void release_all_pagetables(struct lguest *lg)
|
|||
|
||||
/* Every shadow pagetable this Guest has */
|
||||
for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
|
||||
if (lg->pgdirs[i].pgdir)
|
||||
if (lg->pgdirs[i].pgdir) {
|
||||
#ifdef CONFIG_X86_PAE
|
||||
pgd_t *spgd;
|
||||
pmd_t *pmdpage;
|
||||
unsigned int k;
|
||||
|
||||
/* Get the last pmd page. */
|
||||
spgd = lg->pgdirs[i].pgdir + SWITCHER_PGD_INDEX;
|
||||
pmdpage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
|
||||
|
||||
/* And release the pmd entries of that pmd page,
|
||||
* except for the switcher pmd. */
|
||||
for (k = 0; k < SWITCHER_PMD_INDEX; k++)
|
||||
release_pmd(&pmdpage[k]);
|
||||
#endif
|
||||
/* Every PGD entry except the Switcher at the top */
|
||||
for (j = 0; j < SWITCHER_PGD_INDEX; j++)
|
||||
release_pgd(lg, lg->pgdirs[i].pgdir + j);
|
||||
release_pgd(lg->pgdirs[i].pgdir + j);
|
||||
}
|
||||
}
|
||||
|
||||
/* We also throw away everything when a Guest tells us it's changed a kernel
|
||||
|
@ -504,24 +705,37 @@ static void do_set_pte(struct lg_cpu *cpu, int idx,
|
|||
{
|
||||
/* Look up the matching shadow page directory entry. */
|
||||
pgd_t *spgd = spgd_addr(cpu, idx, vaddr);
|
||||
#ifdef CONFIG_X86_PAE
|
||||
pmd_t *spmd;
|
||||
#endif
|
||||
|
||||
/* If the top level isn't present, there's no entry to update. */
|
||||
if (pgd_flags(*spgd) & _PAGE_PRESENT) {
|
||||
/* Otherwise, we start by releasing the existing entry. */
|
||||
pte_t *spte = spte_addr(*spgd, vaddr);
|
||||
release_pte(*spte);
|
||||
#ifdef CONFIG_X86_PAE
|
||||
spmd = spmd_addr(cpu, *spgd, vaddr);
|
||||
if (pmd_flags(*spmd) & _PAGE_PRESENT) {
|
||||
#endif
|
||||
/* Otherwise, we start by releasing
|
||||
* the existing entry. */
|
||||
pte_t *spte = spte_addr(cpu, *spgd, vaddr);
|
||||
release_pte(*spte);
|
||||
|
||||
/* If they're setting this entry as dirty or accessed, we might
|
||||
* as well put that entry they've given us in now. This shaves
|
||||
* 10% off a copy-on-write micro-benchmark. */
|
||||
if (pte_flags(gpte) & (_PAGE_DIRTY | _PAGE_ACCESSED)) {
|
||||
check_gpte(cpu, gpte);
|
||||
*spte = gpte_to_spte(cpu, gpte,
|
||||
pte_flags(gpte) & _PAGE_DIRTY);
|
||||
} else
|
||||
/* Otherwise kill it and we can demand_page() it in
|
||||
* later. */
|
||||
*spte = __pte(0);
|
||||
/* If they're setting this entry as dirty or accessed,
|
||||
* we might as well put that entry they've given us
|
||||
* in now. This shaves 10% off a
|
||||
* copy-on-write micro-benchmark. */
|
||||
if (pte_flags(gpte) & (_PAGE_DIRTY | _PAGE_ACCESSED)) {
|
||||
check_gpte(cpu, gpte);
|
||||
native_set_pte(spte,
|
||||
gpte_to_spte(cpu, gpte,
|
||||
pte_flags(gpte) & _PAGE_DIRTY));
|
||||
} else
|
||||
/* Otherwise kill it and we can demand_page()
|
||||
* it in later. */
|
||||
native_set_pte(spte, __pte(0));
|
||||
#ifdef CONFIG_X86_PAE
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -568,12 +782,10 @@ void guest_set_pte(struct lg_cpu *cpu,
|
|||
*
|
||||
* So with that in mind here's our code to to update a (top-level) PGD entry:
|
||||
*/
|
||||
void guest_set_pmd(struct lguest *lg, unsigned long gpgdir, u32 idx)
|
||||
void guest_set_pgd(struct lguest *lg, unsigned long gpgdir, u32 idx)
|
||||
{
|
||||
int pgdir;
|
||||
|
||||
/* The kernel seems to try to initialize this early on: we ignore its
|
||||
* attempts to map over the Switcher. */
|
||||
if (idx >= SWITCHER_PGD_INDEX)
|
||||
return;
|
||||
|
||||
|
@ -581,8 +793,14 @@ void guest_set_pmd(struct lguest *lg, unsigned long gpgdir, u32 idx)
|
|||
pgdir = find_pgdir(lg, gpgdir);
|
||||
if (pgdir < ARRAY_SIZE(lg->pgdirs))
|
||||
/* ... throw it away. */
|
||||
release_pgd(lg, lg->pgdirs[pgdir].pgdir + idx);
|
||||
release_pgd(lg->pgdirs[pgdir].pgdir + idx);
|
||||
}
|
||||
#ifdef CONFIG_X86_PAE
|
||||
void guest_set_pmd(struct lguest *lg, unsigned long pmdp, u32 idx)
|
||||
{
|
||||
guest_pagetable_clear_all(&lg->cpus[0]);
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Once we know how much memory we have we can construct simple identity
|
||||
* (which set virtual == physical) and linear mappings
|
||||
|
@ -596,8 +814,16 @@ static unsigned long setup_pagetables(struct lguest *lg,
|
|||
{
|
||||
pgd_t __user *pgdir;
|
||||
pte_t __user *linear;
|
||||
unsigned int mapped_pages, i, linear_pages, phys_linear;
|
||||
unsigned long mem_base = (unsigned long)lg->mem_base;
|
||||
unsigned int mapped_pages, i, linear_pages;
|
||||
#ifdef CONFIG_X86_PAE
|
||||
pmd_t __user *pmds;
|
||||
unsigned int j;
|
||||
pgd_t pgd;
|
||||
pmd_t pmd;
|
||||
#else
|
||||
unsigned int phys_linear;
|
||||
#endif
|
||||
|
||||
/* We have mapped_pages frames to map, so we need
|
||||
* linear_pages page tables to map them. */
|
||||
|
@ -610,6 +836,9 @@ static unsigned long setup_pagetables(struct lguest *lg,
|
|||
/* Now we use the next linear_pages pages as pte pages */
|
||||
linear = (void *)pgdir - linear_pages * PAGE_SIZE;
|
||||
|
||||
#ifdef CONFIG_X86_PAE
|
||||
pmds = (void *)linear - PAGE_SIZE;
|
||||
#endif
|
||||
/* Linear mapping is easy: put every page's address into the
|
||||
* mapping in order. */
|
||||
for (i = 0; i < mapped_pages; i++) {
|
||||
|
@ -621,6 +850,22 @@ static unsigned long setup_pagetables(struct lguest *lg,
|
|||
|
||||
/* The top level points to the linear page table pages above.
|
||||
* We setup the identity and linear mappings here. */
|
||||
#ifdef CONFIG_X86_PAE
|
||||
for (i = j = 0; i < mapped_pages && j < PTRS_PER_PMD;
|
||||
i += PTRS_PER_PTE, j++) {
|
||||
native_set_pmd(&pmd, __pmd(((unsigned long)(linear + i)
|
||||
- mem_base) | _PAGE_PRESENT | _PAGE_RW | _PAGE_USER));
|
||||
|
||||
if (copy_to_user(&pmds[j], &pmd, sizeof(pmd)) != 0)
|
||||
return -EFAULT;
|
||||
}
|
||||
|
||||
set_pgd(&pgd, __pgd(((u32)pmds - mem_base) | _PAGE_PRESENT));
|
||||
if (copy_to_user(&pgdir[0], &pgd, sizeof(pgd)) != 0)
|
||||
return -EFAULT;
|
||||
if (copy_to_user(&pgdir[3], &pgd, sizeof(pgd)) != 0)
|
||||
return -EFAULT;
|
||||
#else
|
||||
phys_linear = (unsigned long)linear - mem_base;
|
||||
for (i = 0; i < mapped_pages; i += PTRS_PER_PTE) {
|
||||
pgd_t pgd;
|
||||
|
@ -633,6 +878,7 @@ static unsigned long setup_pagetables(struct lguest *lg,
|
|||
&pgd, sizeof(pgd)))
|
||||
return -EFAULT;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* We return the top level (guest-physical) address: remember where
|
||||
* this is. */
|
||||
|
@ -648,7 +894,10 @@ int init_guest_pagetable(struct lguest *lg)
|
|||
u64 mem;
|
||||
u32 initrd_size;
|
||||
struct boot_params __user *boot = (struct boot_params *)lg->mem_base;
|
||||
|
||||
#ifdef CONFIG_X86_PAE
|
||||
pgd_t *pgd;
|
||||
pmd_t *pmd_table;
|
||||
#endif
|
||||
/* Get the Guest memory size and the ramdisk size from the boot header
|
||||
* located at lg->mem_base (Guest address 0). */
|
||||
if (copy_from_user(&mem, &boot->e820_map[0].size, sizeof(mem))
|
||||
|
@ -663,6 +912,15 @@ int init_guest_pagetable(struct lguest *lg)
|
|||
lg->pgdirs[0].pgdir = (pgd_t *)get_zeroed_page(GFP_KERNEL);
|
||||
if (!lg->pgdirs[0].pgdir)
|
||||
return -ENOMEM;
|
||||
#ifdef CONFIG_X86_PAE
|
||||
pgd = lg->pgdirs[0].pgdir;
|
||||
pmd_table = (pmd_t *) get_zeroed_page(GFP_KERNEL);
|
||||
if (!pmd_table)
|
||||
return -ENOMEM;
|
||||
|
||||
set_pgd(pgd + SWITCHER_PGD_INDEX,
|
||||
__pgd(__pa(pmd_table) | _PAGE_PRESENT));
|
||||
#endif
|
||||
lg->cpus[0].cpu_pgd = 0;
|
||||
return 0;
|
||||
}
|
||||
|
@ -672,17 +930,24 @@ void page_table_guest_data_init(struct lg_cpu *cpu)
|
|||
{
|
||||
/* We get the kernel address: above this is all kernel memory. */
|
||||
if (get_user(cpu->lg->kernel_address,
|
||||
&cpu->lg->lguest_data->kernel_address)
|
||||
/* We tell the Guest that it can't use the top 4MB of virtual
|
||||
* addresses used by the Switcher. */
|
||||
|| put_user(4U*1024*1024, &cpu->lg->lguest_data->reserve_mem)
|
||||
|| put_user(cpu->lg->pgdirs[0].gpgdir, &cpu->lg->lguest_data->pgdir))
|
||||
&cpu->lg->lguest_data->kernel_address)
|
||||
/* We tell the Guest that it can't use the top 2 or 4 MB
|
||||
* of virtual addresses used by the Switcher. */
|
||||
|| put_user(RESERVE_MEM * 1024 * 1024,
|
||||
&cpu->lg->lguest_data->reserve_mem)
|
||||
|| put_user(cpu->lg->pgdirs[0].gpgdir,
|
||||
&cpu->lg->lguest_data->pgdir))
|
||||
kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data);
|
||||
|
||||
/* In flush_user_mappings() we loop from 0 to
|
||||
* "pgd_index(lg->kernel_address)". This assumes it won't hit the
|
||||
* Switcher mappings, so check that now. */
|
||||
#ifdef CONFIG_X86_PAE
|
||||
if (pgd_index(cpu->lg->kernel_address) == SWITCHER_PGD_INDEX &&
|
||||
pmd_index(cpu->lg->kernel_address) == SWITCHER_PMD_INDEX)
|
||||
#else
|
||||
if (pgd_index(cpu->lg->kernel_address) >= SWITCHER_PGD_INDEX)
|
||||
#endif
|
||||
kill_guest(cpu, "bad kernel address %#lx",
|
||||
cpu->lg->kernel_address);
|
||||
}
|
||||
|
@ -708,16 +973,30 @@ void free_guest_pagetable(struct lguest *lg)
|
|||
void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages)
|
||||
{
|
||||
pte_t *switcher_pte_page = __get_cpu_var(switcher_pte_pages);
|
||||
pgd_t switcher_pgd;
|
||||
pte_t regs_pte;
|
||||
unsigned long pfn;
|
||||
|
||||
#ifdef CONFIG_X86_PAE
|
||||
pmd_t switcher_pmd;
|
||||
pmd_t *pmd_table;
|
||||
|
||||
native_set_pmd(&switcher_pmd, pfn_pmd(__pa(switcher_pte_page) >>
|
||||
PAGE_SHIFT, PAGE_KERNEL_EXEC));
|
||||
|
||||
pmd_table = __va(pgd_pfn(cpu->lg->
|
||||
pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX])
|
||||
<< PAGE_SHIFT);
|
||||
native_set_pmd(&pmd_table[SWITCHER_PMD_INDEX], switcher_pmd);
|
||||
#else
|
||||
pgd_t switcher_pgd;
|
||||
|
||||
/* Make the last PGD entry for this Guest point to the Switcher's PTE
|
||||
* page for this CPU (with appropriate flags). */
|
||||
switcher_pgd = __pgd(__pa(switcher_pte_page) | __PAGE_KERNEL);
|
||||
switcher_pgd = __pgd(__pa(switcher_pte_page) | __PAGE_KERNEL_EXEC);
|
||||
|
||||
cpu->lg->pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX] = switcher_pgd;
|
||||
|
||||
#endif
|
||||
/* We also change the Switcher PTE page. When we're running the Guest,
|
||||
* we want the Guest's "regs" page to appear where the first Switcher
|
||||
* page for this CPU is. This is an optimization: when the Switcher
|
||||
|
@ -726,8 +1005,9 @@ void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages)
|
|||
* page is already mapped there, we don't have to copy them out
|
||||
* again. */
|
||||
pfn = __pa(cpu->regs_page) >> PAGE_SHIFT;
|
||||
regs_pte = pfn_pte(pfn, __pgprot(__PAGE_KERNEL));
|
||||
switcher_pte_page[(unsigned long)pages/PAGE_SIZE%PTRS_PER_PTE] = regs_pte;
|
||||
native_set_pte(®s_pte, pfn_pte(pfn, PAGE_KERNEL));
|
||||
native_set_pte(&switcher_pte_page[pte_index((unsigned long)pages)],
|
||||
regs_pte);
|
||||
}
|
||||
/*:*/
|
||||
|
||||
|
@ -752,21 +1032,21 @@ static __init void populate_switcher_pte_page(unsigned int cpu,
|
|||
|
||||
/* The first entries are easy: they map the Switcher code. */
|
||||
for (i = 0; i < pages; i++) {
|
||||
pte[i] = mk_pte(switcher_page[i],
|
||||
__pgprot(_PAGE_PRESENT|_PAGE_ACCESSED));
|
||||
native_set_pte(&pte[i], mk_pte(switcher_page[i],
|
||||
__pgprot(_PAGE_PRESENT|_PAGE_ACCESSED)));
|
||||
}
|
||||
|
||||
/* The only other thing we map is this CPU's pair of pages. */
|
||||
i = pages + cpu*2;
|
||||
|
||||
/* First page (Guest registers) is writable from the Guest */
|
||||
pte[i] = pfn_pte(page_to_pfn(switcher_page[i]),
|
||||
__pgprot(_PAGE_PRESENT|_PAGE_ACCESSED|_PAGE_RW));
|
||||
native_set_pte(&pte[i], pfn_pte(page_to_pfn(switcher_page[i]),
|
||||
__pgprot(_PAGE_PRESENT|_PAGE_ACCESSED|_PAGE_RW)));
|
||||
|
||||
/* The second page contains the "struct lguest_ro_state", and is
|
||||
* read-only. */
|
||||
pte[i+1] = pfn_pte(page_to_pfn(switcher_page[i+1]),
|
||||
__pgprot(_PAGE_PRESENT|_PAGE_ACCESSED));
|
||||
native_set_pte(&pte[i+1], pfn_pte(page_to_pfn(switcher_page[i+1]),
|
||||
__pgprot(_PAGE_PRESENT|_PAGE_ACCESSED)));
|
||||
}
|
||||
|
||||
/* We've made it through the page table code. Perhaps our tired brains are
|
||||
|
|
|
@ -150,7 +150,7 @@ void load_guest_gdt_entry(struct lg_cpu *cpu, u32 num, u32 lo, u32 hi)
|
|||
{
|
||||
/* We assume the Guest has the same number of GDT entries as the
|
||||
* Host, otherwise we'd have to dynamically allocate the Guest GDT. */
|
||||
if (num > ARRAY_SIZE(cpu->arch.gdt))
|
||||
if (num >= ARRAY_SIZE(cpu->arch.gdt))
|
||||
kill_guest(cpu, "too many gdt entries %i", num);
|
||||
|
||||
/* Set it up, then fix it. */
|
||||
|
|
|
@ -16,6 +16,7 @@
|
|||
#include <linux/anon_inodes.h>
|
||||
#include <linux/eventfd.h>
|
||||
#include <linux/syscalls.h>
|
||||
#include <linux/module.h>
|
||||
|
||||
struct eventfd_ctx {
|
||||
wait_queue_head_t wqh;
|
||||
|
@ -56,6 +57,7 @@ int eventfd_signal(struct file *file, int n)
|
|||
|
||||
return n;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(eventfd_signal);
|
||||
|
||||
static int eventfd_release(struct inode *inode, struct file *file)
|
||||
{
|
||||
|
@ -197,6 +199,7 @@ struct file *eventfd_fget(int fd)
|
|||
|
||||
return file;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(eventfd_fget);
|
||||
|
||||
SYSCALL_DEFINE2(eventfd2, unsigned int, count, int, flags)
|
||||
{
|
||||
|
|
|
@ -30,6 +30,10 @@ struct lguest_data
|
|||
/* Wallclock time set by the Host. */
|
||||
struct timespec time;
|
||||
|
||||
/* Interrupt pending set by the Host. The Guest should do a hypercall
|
||||
* if it re-enables interrupts and sees this set (to X86_EFLAGS_IF). */
|
||||
int irq_pending;
|
||||
|
||||
/* Async hypercall ring. Instead of directly making hypercalls, we can
|
||||
* place them in here for processing the next time the Host wants.
|
||||
* This batching can be quite efficient. */
|
||||
|
|
|
@ -57,7 +57,8 @@ enum lguest_req
|
|||
LHREQ_INITIALIZE, /* + base, pfnlimit, start */
|
||||
LHREQ_GETDMA, /* No longer used */
|
||||
LHREQ_IRQ, /* + irq */
|
||||
LHREQ_BREAK, /* + on/off flag (on blocks until someone does off) */
|
||||
LHREQ_BREAK, /* No longer used */
|
||||
LHREQ_EVENTFD, /* + address, fd. */
|
||||
};
|
||||
|
||||
/* The alignment to use between consumer and producer parts of vring.
|
||||
|
|
|
@ -2192,6 +2192,7 @@ void kick_process(struct task_struct *p)
|
|||
smp_send_reschedule(cpu);
|
||||
preempt_enable();
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(kick_process);
|
||||
|
||||
/*
|
||||
* Return a low guess at the load of a migration-source cpu weighted
|
||||
|
|
Loading…
Reference in a new issue