BUILD_BUG_ON: make it handle more cases

BUILD_BUG_ON used to use the optimizer to do code elimination or fail
at link time; it was changed to first the size of a negative array (a
nicer compile time error), then (in
8c87df457c) to a bitfield.

This forced us to change some non-constant cases to MAYBE_BUILD_BUG_ON();
as Jan points out in that commit, it didn't work as intended anyway.

bitfields: needs a literal constant at parse time, and can't be put under
	"if (__builtin_constant_p(x))" for example.
negative array: can handle anything, but if the compiler can't tell it's
	a constant, silently has no effect.
link time: breaks link if the compiler can't determine the value, but the
	linker output is not usually as informative as a compiler error.

If we use the negative-array-size method *and* the link time trick,
we get the ability to use BUILD_BUG_ON() under __builtin_constant_p()
branches, and maximal ability for the compiler to detect errors at
build time.

We also document it thoroughly.

Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Cc: Jan Beulich <JBeulich@novell.com>
Acked-by: Hollis Blanchard <hollisb@us.ibm.com>
This commit is contained in:
Rusty Russell 2011-01-24 14:45:10 -06:00
parent 1bae4ce27c
commit 7ef88ad561

View file

@ -575,12 +575,6 @@ struct sysinfo {
char _f[20-2*sizeof(long)-sizeof(int)]; /* Padding: libc5 uses this.. */
};
/* Force a compilation error if condition is true */
#define BUILD_BUG_ON(condition) ((void)BUILD_BUG_ON_ZERO(condition))
/* Force a compilation error if condition is constant and true */
#define MAYBE_BUILD_BUG_ON(cond) ((void)sizeof(char[1 - 2 * !!(cond)]))
/* Force a compilation error if a constant expression is not a power of 2 */
#define BUILD_BUG_ON_NOT_POWER_OF_2(n) \
BUILD_BUG_ON((n) == 0 || (((n) & ((n) - 1)) != 0))
@ -592,6 +586,33 @@ struct sysinfo {
#define BUILD_BUG_ON_ZERO(e) (sizeof(struct { int:-!!(e); }))
#define BUILD_BUG_ON_NULL(e) ((void *)sizeof(struct { int:-!!(e); }))
/**
* BUILD_BUG_ON - break compile if a condition is true.
* @cond: the condition which the compiler should know is false.
*
* If you have some code which relies on certain constants being equal, or
* other compile-time-evaluated condition, you should use BUILD_BUG_ON to
* detect if someone changes it.
*
* The implementation uses gcc's reluctance to create a negative array, but
* gcc (as of 4.4) only emits that error for obvious cases (eg. not arguments
* to inline functions). So as a fallback we use the optimizer; if it can't
* prove the condition is false, it will cause a link error on the undefined
* "__build_bug_on_failed". This error message can be harder to track down
* though, hence the two different methods.
*/
#ifndef __OPTIMIZE__
#define BUILD_BUG_ON(condition) ((void)sizeof(char[1 - 2*!!(condition)]))
#else
extern int __build_bug_on_failed;
#define BUILD_BUG_ON(condition) \
do { \
((void)sizeof(char[1 - 2*!!(condition)])); \
if (condition) __build_bug_on_failed = 1; \
} while(0)
#endif
#define MAYBE_BUILD_BUG_ON(condition) BUILD_BUG_ON(condition)
/* Trap pasters of __FUNCTION__ at compile-time */
#define __FUNCTION__ (__func__)