Merge "Merge android-4.19.30 (4afd59719) into msm-4.19"

This commit is contained in:
qctecmdr Service 2019-03-26 02:24:22 -07:00 committed by Gerrit - the friendly Code Review server
commit 7adab7b9ef
286 changed files with 4313 additions and 1173 deletions

View file

@ -0,0 +1,16 @@
What: /proc/uid_concurrent_active_time
Date: December 2018
Contact: Connor O'Brien <connoro@google.com>
Description:
The /proc/uid_concurrent_active_time file displays aggregated cputime
numbers for each uid, broken down by the total number of cores that were
active while the uid's task was running.
What: /proc/uid_concurrent_policy_time
Date: December 2018
Contact: Connor O'Brien <connoro@google.com>
Description:
The /proc/uid_concurrent_policy_time file displays aggregated cputime
numbers for each uid, broken down based on the cpufreq policy
of the core used by the uid's task and the number of cores associated
with that policy that were active while the uid's task was running.

View file

@ -102,6 +102,29 @@ Only the lists of names from directories are merged. Other content
such as metadata and extended attributes are reported for the upper
directory only. These attributes of the lower directory are hidden.
credentials
-----------
By default, all access to the upper, lower and work directories is the
recorded mounter's MAC and DAC credentials. The incoming accesses are
checked against the caller's credentials.
In the case where caller MAC or DAC credentials do not overlap, a
use case available in older versions of the driver, the
override_creds mount flag can be turned off and help when the use
pattern has caller with legitimate credentials where the mounter
does not. Several unintended side effects will occur though. The
caller without certain key capabilities or lower privilege will not
always be able to delete files or directories, create nodes, or
search some restricted directories. The ability to search and read
a directory entry is spotty as a result of the cache mechanism not
retesting the credentials because of the assumption, a privileged
caller can fill cache, then a lower privilege can read the directory
cache. The uneven security model where cache, upperdir and workdir
are opened at privilege, but accessed without creating a form of
privilege escalation, should only be used with strict understanding
of the side effects and of the security policies.
whiteouts and opaque directories
--------------------------------

View file

@ -0,0 +1,169 @@
====================
Energy Model of CPUs
====================
1. Overview
-----------
The Energy Model (EM) framework serves as an interface between drivers knowing
the power consumed by CPUs at various performance levels, and the kernel
subsystems willing to use that information to make energy-aware decisions.
The source of the information about the power consumed by CPUs can vary greatly
from one platform to another. These power costs can be estimated using
devicetree data in some cases. In others, the firmware will know better.
Alternatively, userspace might be best positioned. And so on. In order to avoid
each and every client subsystem to re-implement support for each and every
possible source of information on its own, the EM framework intervenes as an
abstraction layer which standardizes the format of power cost tables in the
kernel, hence enabling to avoid redundant work.
The figure below depicts an example of drivers (Arm-specific here, but the
approach is applicable to any architecture) providing power costs to the EM
framework, and interested clients reading the data from it.
+---------------+ +-----------------+ +---------------+
| Thermal (IPA) | | Scheduler (EAS) | | Other |
+---------------+ +-----------------+ +---------------+
| | em_pd_energy() |
| | em_cpu_get() |
+---------+ | +---------+
| | |
v v v
+---------------------+
| Energy Model |
| Framework |
+---------------------+
^ ^ ^
| | | em_register_perf_domain()
+----------+ | +---------+
| | |
+---------------+ +---------------+ +--------------+
| cpufreq-dt | | arm_scmi | | Other |
+---------------+ +---------------+ +--------------+
^ ^ ^
| | |
+--------------+ +---------------+ +--------------+
| Device Tree | | Firmware | | ? |
+--------------+ +---------------+ +--------------+
The EM framework manages power cost tables per 'performance domain' in the
system. A performance domain is a group of CPUs whose performance is scaled
together. Performance domains generally have a 1-to-1 mapping with CPUFreq
policies. All CPUs in a performance domain are required to have the same
micro-architecture. CPUs in different performance domains can have different
micro-architectures.
2. Core APIs
------------
2.1 Config options
CONFIG_ENERGY_MODEL must be enabled to use the EM framework.
2.2 Registration of performance domains
Drivers are expected to register performance domains into the EM framework by
calling the following API:
int em_register_perf_domain(cpumask_t *span, unsigned int nr_states,
struct em_data_callback *cb);
Drivers must specify the CPUs of the performance domains using the cpumask
argument, and provide a callback function returning <frequency, power> tuples
for each capacity state. The callback function provided by the driver is free
to fetch data from any relevant location (DT, firmware, ...), and by any mean
deemed necessary. See Section 3. for an example of driver implementing this
callback, and kernel/power/energy_model.c for further documentation on this
API.
2.3 Accessing performance domains
Subsystems interested in the energy model of a CPU can retrieve it using the
em_cpu_get() API. The energy model tables are allocated once upon creation of
the performance domains, and kept in memory untouched.
The energy consumed by a performance domain can be estimated using the
em_pd_energy() API. The estimation is performed assuming that the schedutil
CPUfreq governor is in use.
More details about the above APIs can be found in include/linux/energy_model.h.
3. Example driver
-----------------
This section provides a simple example of a CPUFreq driver registering a
performance domain in the Energy Model framework using the (fake) 'foo'
protocol. The driver implements an est_power() function to be provided to the
EM framework.
-> drivers/cpufreq/foo_cpufreq.c
01 static int est_power(unsigned long *mW, unsigned long *KHz, int cpu)
02 {
03 long freq, power;
04
05 /* Use the 'foo' protocol to ceil the frequency */
06 freq = foo_get_freq_ceil(cpu, *KHz);
07 if (freq < 0);
08 return freq;
09
10 /* Estimate the power cost for the CPU at the relevant freq. */
11 power = foo_estimate_power(cpu, freq);
12 if (power < 0);
13 return power;
14
15 /* Return the values to the EM framework */
16 *mW = power;
17 *KHz = freq;
18
19 return 0;
20 }
21
22 static int foo_cpufreq_init(struct cpufreq_policy *policy)
23 {
24 struct em_data_callback em_cb = EM_DATA_CB(est_power);
25 int nr_opp, ret;
26
27 /* Do the actual CPUFreq init work ... */
28 ret = do_foo_cpufreq_init(policy);
29 if (ret)
30 return ret;
31
32 /* Find the number of OPPs for this policy */
33 nr_opp = foo_get_nr_opp(policy);
34
35 /* And register the new performance domain */
36 em_register_perf_domain(policy->cpus, nr_opp, &em_cb);
37
38 return 0;
39 }
4. Support for legacy Energy Models (DEPRECATED)
------------------------------------------------
The Android kernel version 4.14 and before used a different type of EM for EAS,
referred to as the 'legacy' EM. The legacy EM relies on the out-of-tree
'sched-energy-costs' devicetree bindings to provide the kernel with power costs.
The usage of such bindings in Android has now been DEPRECATED in favour of the
mainline equivalents.
The currently supported alternatives to populate the EM include:
- using a firmware-based solution such as Arm SCMI (supported in
drivers/cpufreq/scmi-cpufreq.c);
- using the 'dynamic-power-coefficient' devicetree binding together with
PM_OPP. See the of_dev_pm_opp_get_cpu_power() helper in PM_OPP, and the
reference implementation in drivers/cpufreq/cpufreq-dt.c.
In order to ease the transition to the new EM format, Android 4.19 also provides
a compatibility driver able to load a legacy EM from DT into the EM framework.
*** Please note that THIS FEATURE WILL NOT BE AVAILABLE in future Android
kernels, and as such it must be considered only as a temporary workaround. ***
If you know what you're doing and still want to use this driver, you need to set
CONFIG_LEGACY_ENERGY_MODEL_DT=y in your kernel configuration to enable it.

View file

@ -0,0 +1,425 @@
=======================
Energy Aware Scheduling
=======================
1. Introduction
---------------
Energy Aware Scheduling (or EAS) gives the scheduler the ability to predict
the impact of its decisions on the energy consumed by CPUs. EAS relies on an
Energy Model (EM) of the CPUs to select an energy efficient CPU for each task,
with a minimal impact on throughput. This document aims at providing an
introduction on how EAS works, what are the main design decisions behind it, and
details what is needed to get it to run.
Before going any further, please note that at the time of writing:
/!\ EAS does not support platforms with symmetric CPU topologies /!\
EAS operates only on heterogeneous CPU topologies (such as Arm big.LITTLE)
because this is where the potential for saving energy through scheduling is
the highest.
The actual EM used by EAS is _not_ maintained by the scheduler, but by a
dedicated framework. For details about this framework and what it provides,
please refer to its documentation (see Documentation/power/energy-model.txt).
2. Background and Terminology
-----------------------------
To make it clear from the start:
- energy = [joule] (resource like a battery on powered devices)
- power = energy/time = [joule/second] = [watt]
The goal of EAS is to minimize energy, while still getting the job done. That
is, we want to maximize:
performance [inst/s]
--------------------
power [W]
which is equivalent to minimizing:
energy [J]
-----------
instruction
while still getting 'good' performance. It is essentially an alternative
optimization objective to the current performance-only objective for the
scheduler. This alternative considers two objectives: energy-efficiency and
performance.
The idea behind introducing an EM is to allow the scheduler to evaluate the
implications of its decisions rather than blindly applying energy-saving
techniques that may have positive effects only on some platforms. At the same
time, the EM must be as simple as possible to minimize the scheduler latency
impact.
In short, EAS changes the way CFS tasks are assigned to CPUs. When it is time
for the scheduler to decide where a task should run (during wake-up), the EM
is used to break the tie between several good CPU candidates and pick the one
that is predicted to yield the best energy consumption without harming the
system's throughput. The predictions made by EAS rely on specific elements of
knowledge about the platform's topology, which include the 'capacity' of CPUs,
and their respective energy costs.
3. Topology information
-----------------------
EAS (as well as the rest of the scheduler) uses the notion of 'capacity' to
differentiate CPUs with different computing throughput. The 'capacity' of a CPU
represents the amount of work it can absorb when running at its highest
frequency compared to the most capable CPU of the system. Capacity values are
normalized in a 1024 range, and are comparable with the utilization signals of
tasks and CPUs computed by the Per-Entity Load Tracking (PELT) mechanism. Thanks
to capacity and utilization values, EAS is able to estimate how big/busy a
task/CPU is, and to take this into consideration when evaluating performance vs
energy trade-offs. The capacity of CPUs is provided via arch-specific code
through the arch_scale_cpu_capacity() callback.
The rest of platform knowledge used by EAS is directly read from the Energy
Model (EM) framework. The EM of a platform is composed of a power cost table
per 'performance domain' in the system (see Documentation/power/energy-model.txt
for futher details about performance domains).
The scheduler manages references to the EM objects in the topology code when the
scheduling domains are built, or re-built. For each root domain (rd), the
scheduler maintains a singly linked list of all performance domains intersecting
the current rd->span. Each node in the list contains a pointer to a struct
em_perf_domain as provided by the EM framework.
The lists are attached to the root domains in order to cope with exclusive
cpuset configurations. Since the boundaries of exclusive cpusets do not
necessarily match those of performance domains, the lists of different root
domains can contain duplicate elements.
Example 1.
Let us consider a platform with 12 CPUs, split in 3 performance domains
(pd0, pd4 and pd8), organized as follows:
CPUs: 0 1 2 3 4 5 6 7 8 9 10 11
PDs: |--pd0--|--pd4--|---pd8---|
RDs: |----rd1----|-----rd2-----|
Now, consider that userspace decided to split the system with two
exclusive cpusets, hence creating two independent root domains, each
containing 6 CPUs. The two root domains are denoted rd1 and rd2 in the
above figure. Since pd4 intersects with both rd1 and rd2, it will be
present in the linked list '->pd' attached to each of them:
* rd1->pd: pd0 -> pd4
* rd2->pd: pd4 -> pd8
Please note that the scheduler will create two duplicate list nodes for
pd4 (one for each list). However, both just hold a pointer to the same
shared data structure of the EM framework.
Since the access to these lists can happen concurrently with hotplug and other
things, they are protected by RCU, like the rest of topology structures
manipulated by the scheduler.
EAS also maintains a static key (sched_energy_present) which is enabled when at
least one root domain meets all conditions for EAS to start. Those conditions
are summarized in Section 6.
4. Energy-Aware task placement
------------------------------
EAS overrides the CFS task wake-up balancing code. It uses the EM of the
platform and the PELT signals to choose an energy-efficient target CPU during
wake-up balance. When EAS is enabled, select_task_rq_fair() calls
find_energy_efficient_cpu() to do the placement decision. This function looks
for the CPU with the highest spare capacity (CPU capacity - CPU utilization) in
each performance domain since it is the one which will allow us to keep the
frequency the lowest. Then, the function checks if placing the task there could
save energy compared to leaving it on prev_cpu, i.e. the CPU where the task ran
in its previous activation.
find_energy_efficient_cpu() uses compute_energy() to estimate what will be the
energy consumed by the system if the waking task was migrated. compute_energy()
looks at the current utilization landscape of the CPUs and adjusts it to
'simulate' the task migration. The EM framework provides the em_pd_energy() API
which computes the expected energy consumption of each performance domain for
the given utilization landscape.
An example of energy-optimized task placement decision is detailed below.
Example 2.
Let us consider a (fake) platform with 2 independent performance domains
composed of two CPUs each. CPU0 and CPU1 are little CPUs; CPU2 and CPU3
are big.
The scheduler must decide where to place a task P whose util_avg = 200
and prev_cpu = 0.
The current utilization landscape of the CPUs is depicted on the graph
below. CPUs 0-3 have a util_avg of 400, 100, 600 and 500 respectively
Each performance domain has three Operating Performance Points (OPPs).
The CPU capacity and power cost associated with each OPP is listed in
the Energy Model table. The util_avg of P is shown on the figures
below as 'PP'.
CPU util.
1024 - - - - - - - Energy Model
+-----------+-------------+
| Little | Big |
768 ============= +-----+-----+------+------+
| Cap | Pwr | Cap | Pwr |
+-----+-----+------+------+
512 =========== - ##- - - - - | 170 | 50 | 512 | 400 |
## ## | 341 | 150 | 768 | 800 |
341 -PP - - - - ## ## | 512 | 300 | 1024 | 1700 |
PP ## ## +-----+-----+------+------+
170 -## - - - - ## ##
## ## ## ##
------------ -------------
CPU0 CPU1 CPU2 CPU3
Current OPP: ===== Other OPP: - - - util_avg (100 each): ##
find_energy_efficient_cpu() will first look for the CPUs with the
maximum spare capacity in the two performance domains. In this example,
CPU1 and CPU3. Then it will estimate the energy of the system if P was
placed on either of them, and check if that would save some energy
compared to leaving P on CPU0. EAS assumes that OPPs follow utilization
(which is coherent with the behaviour of the schedutil CPUFreq
governor, see Section 6. for more details on this topic).
Case 1. P is migrated to CPU1
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1024 - - - - - - -
Energy calculation:
768 ============= * CPU0: 200 / 341 * 150 = 88
* CPU1: 300 / 341 * 150 = 131
* CPU2: 600 / 768 * 800 = 625
512 - - - - - - - ##- - - - - * CPU3: 500 / 768 * 800 = 520
## ## => total_energy = 1364
341 =========== ## ##
PP ## ##
170 -## - - PP- ## ##
## ## ## ##
------------ -------------
CPU0 CPU1 CPU2 CPU3
Case 2. P is migrated to CPU3
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1024 - - - - - - -
Energy calculation:
768 ============= * CPU0: 200 / 341 * 150 = 88
* CPU1: 100 / 341 * 150 = 43
PP * CPU2: 600 / 768 * 800 = 625
512 - - - - - - - ##- - -PP - * CPU3: 700 / 768 * 800 = 729
## ## => total_energy = 1485
341 =========== ## ##
## ##
170 -## - - - - ## ##
## ## ## ##
------------ -------------
CPU0 CPU1 CPU2 CPU3
Case 3. P stays on prev_cpu / CPU 0
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1024 - - - - - - -
Energy calculation:
768 ============= * CPU0: 400 / 512 * 300 = 234
* CPU1: 100 / 512 * 300 = 58
* CPU2: 600 / 768 * 800 = 625
512 =========== - ##- - - - - * CPU3: 500 / 768 * 800 = 520
## ## => total_energy = 1437
341 -PP - - - - ## ##
PP ## ##
170 -## - - - - ## ##
## ## ## ##
------------ -------------
CPU0 CPU1 CPU2 CPU3
From these calculations, the Case 1 has the lowest total energy. So CPU 1
is be the best candidate from an energy-efficiency standpoint.
Big CPUs are generally more power hungry than the little ones and are thus used
mainly when a task doesn't fit the littles. However, little CPUs aren't always
necessarily more energy-efficient than big CPUs. For some systems, the high OPPs
of the little CPUs can be less energy-efficient than the lowest OPPs of the
bigs, for example. So, if the little CPUs happen to have enough utilization at
a specific point in time, a small task waking up at that moment could be better
of executing on the big side in order to save energy, even though it would fit
on the little side.
And even in the case where all OPPs of the big CPUs are less energy-efficient
than those of the little, using the big CPUs for a small task might still, under
specific conditions, save energy. Indeed, placing a task on a little CPU can
result in raising the OPP of the entire performance domain, and that will
increase the cost of the tasks already running there. If the waking task is
placed on a big CPU, its own execution cost might be higher than if it was
running on a little, but it won't impact the other tasks of the little CPUs
which will keep running at a lower OPP. So, when considering the total energy
consumed by CPUs, the extra cost of running that one task on a big core can be
smaller than the cost of raising the OPP on the little CPUs for all the other
tasks.
The examples above would be nearly impossible to get right in a generic way, and
for all platforms, without knowing the cost of running at different OPPs on all
CPUs of the system. Thanks to its EM-based design, EAS should cope with them
correctly without too many troubles. However, in order to ensure a minimal
impact on throughput for high-utilization scenarios, EAS also implements another
mechanism called 'over-utilization'.
5. Over-utilization
-------------------
From a general standpoint, the use-cases where EAS can help the most are those
involving a light/medium CPU utilization. Whenever long CPU-bound tasks are
being run, they will require all of the available CPU capacity, and there isn't
much that can be done by the scheduler to save energy without severly harming
throughput. In order to avoid hurting performance with EAS, CPUs are flagged as
'over-utilized' as soon as they are used at more than 80% of their compute
capacity. As long as no CPUs are over-utilized in a root domain, load balancing
is disabled and EAS overridess the wake-up balancing code. EAS is likely to load
the most energy efficient CPUs of the system more than the others if that can be
done without harming throughput. So, the load-balancer is disabled to prevent
it from breaking the energy-efficient task placement found by EAS. It is safe to
do so when the system isn't overutilized since being below the 80% tipping point
implies that:
a. there is some idle time on all CPUs, so the utilization signals used by
EAS are likely to accurately represent the 'size' of the various tasks
in the system;
b. all tasks should already be provided with enough CPU capacity,
regardless of their nice values;
c. since there is spare capacity all tasks must be blocking/sleeping
regularly and balancing at wake-up is sufficient.
As soon as one CPU goes above the 80% tipping point, at least one of the three
assumptions above becomes incorrect. In this scenario, the 'overutilized' flag
is raised for the entire root domain, EAS is disabled, and the load-balancer is
re-enabled. By doing so, the scheduler falls back onto load-based algorithms for
wake-up and load balance under CPU-bound conditions. This provides a better
respect of the nice values of tasks.
Since the notion of overutilization largely relies on detecting whether or not
there is some idle time in the system, the CPU capacity 'stolen' by higher
(than CFS) scheduling classes (as well as IRQ) must be taken into account. As
such, the detection of overutilization accounts for the capacity used not only
by CFS tasks, but also by the other scheduling classes and IRQ.
6. Dependencies and requirements for EAS
----------------------------------------
Energy Aware Scheduling depends on the CPUs of the system having specific
hardware properties and on other features of the kernel being enabled. This
section lists these dependencies and provides hints as to how they can be met.
6.1 - Asymmetric CPU topology
As mentioned in the introduction, EAS is only supported on platforms with
asymmetric CPU topologies for now. This requirement is checked at run-time by
looking for the presence of the SD_ASYM_CPUCAPACITY flag when the scheduling
domains are built.
The flag is set/cleared automatically by the scheduler topology code whenever
there are CPUs with different capacities in a root domain. The capacities of
CPUs are provided by arch-specific code through the arch_scale_cpu_capacity()
callback. As an example, arm and arm64 share an implementation of this callback
which uses a combination of CPUFreq data and device-tree bindings to compute the
capacity of CPUs (see drivers/base/arch_topology.c for more details).
So, in order to use EAS on your platform your architecture must implement the
arch_scale_cpu_capacity() callback, and some of the CPUs must have a lower
capacity than others.
Please note that EAS is not fundamentally incompatible with SMP, but no
significant savings on SMP platforms have been observed yet. This restriction
could be amended in the future if proven otherwise.
6.2 - Energy Model presence
EAS uses the EM of a platform to estimate the impact of scheduling decisions on
energy. So, your platform must provide power cost tables to the EM framework in
order to make EAS start. To do so, please refer to documentation of the
independent EM framework in Documentation/power/energy-model.txt.
Please also note that the scheduling domains need to be re-built after the
EM has been registered in order to start EAS.
6.3 - Energy Model complexity
The task wake-up path is very latency-sensitive. When the EM of a platform is
too complex (too many CPUs, too many performance domains, too many performance
states, ...), the cost of using it in the wake-up path can become prohibitive.
The energy-aware wake-up algorithm has a complexity of:
C = Nd * (Nc + Ns)
with: Nd the number of performance domains; Nc the number of CPUs; and Ns the
total number of OPPs (ex: for two perf. domains with 4 OPPs each, Ns = 8).
A complexity check is performed at the root domain level, when scheduling
domains are built. EAS will not start on a root domain if its C happens to be
higher than the completely arbitrary EM_MAX_COMPLEXITY threshold (2048 at the
time of writing).
If you really want to use EAS but the complexity of your platform's Energy
Model is too high to be used with a single root domain, you're left with only
two possible options:
1. split your system into separate, smaller, root domains using exclusive
cpusets and enable EAS locally on each of them. This option has the
benefit to work out of the box but the drawback of preventing load
balance between root domains, which can result in an unbalanced system
overall;
2. submit patches to reduce the complexity of the EAS wake-up algorithm,
hence enabling it to cope with larger EMs in reasonable time.
6.4 - Schedutil governor
EAS tries to predict at which OPP will the CPUs be running in the close future
in order to estimate their energy consumption. To do so, it is assumed that OPPs
of CPUs follow their utilization.
Although it is very difficult to provide hard guarantees regarding the accuracy
of this assumption in practice (because the hardware might not do what it is
told to do, for example), schedutil as opposed to other CPUFreq governors at
least _requests_ frequencies calculated using the utilization signals.
Consequently, the only sane governor to use together with EAS is schedutil,
because it is the only one providing some degree of consistency between
frequency requests and energy predictions.
Using EAS with any other governor than schedutil is not supported.
6.5 Scale-invariant utilization signals
In order to make accurate prediction across CPUs and for all performance
states, EAS needs frequency-invariant and CPU-invariant PELT signals. These can
be obtained using the architecture-defined arch_scale{cpu,freq}_capacity()
callbacks.
Using EAS on a platform that doesn't implement these two callbacks is not
supported.
6.6 Multithreading (SMT)
EAS in its current form is SMT unaware and is not able to leverage
multithreaded hardware to save energy. EAS considers threads as independent
CPUs, which can actually be counter-productive for both performance and energy.
EAS on SMT is not supported.

View file

@ -1,7 +1,7 @@
# SPDX-License-Identifier: GPL-2.0
VERSION = 4
PATCHLEVEL = 19
SUBLEVEL = 27
SUBLEVEL = 30
EXTRAVERSION =
NAME = "People's Front"

View file

@ -168,6 +168,9 @@
interrupt-controller;
#interrupt-cells = <3>;
interrupt-parent = <&gic>;
clock-names = "clkout8";
clocks = <&cmu CLK_FIN_PLL>;
#clock-cells = <1>;
};
mipi_phy: video-phy {

View file

@ -49,7 +49,7 @@
};
emmc_pwrseq: pwrseq {
pinctrl-0 = <&sd1_cd>;
pinctrl-0 = <&emmc_rstn>;
pinctrl-names = "default";
compatible = "mmc-pwrseq-emmc";
reset-gpios = <&gpk1 2 GPIO_ACTIVE_LOW>;
@ -161,12 +161,6 @@
cpu0-supply = <&buck2_reg>;
};
/* RSTN signal for eMMC */
&sd1_cd {
samsung,pin-pud = <EXYNOS_PIN_PULL_NONE>;
samsung,pin-drv = <EXYNOS4_PIN_DRV_LV1>;
};
&pinctrl_1 {
gpio_power_key: power_key {
samsung,pins = "gpx1-3";
@ -184,6 +178,11 @@
samsung,pins = "gpx3-7";
samsung,pin-pud = <EXYNOS_PIN_PULL_DOWN>;
};
emmc_rstn: emmc-rstn {
samsung,pins = "gpk1-2";
samsung,pin-pud = <EXYNOS_PIN_PULL_NONE>;
};
};
&ehci {

View file

@ -334,7 +334,7 @@
buck8_reg: BUCK8 {
regulator-name = "vdd_1.8v_ldo";
regulator-min-microvolt = <800000>;
regulator-max-microvolt = <1500000>;
regulator-max-microvolt = <2000000>;
regulator-always-on;
regulator-boot-on;
};

View file

@ -462,7 +462,7 @@
};
gpt: gpt@2098000 {
compatible = "fsl,imx6sx-gpt", "fsl,imx31-gpt";
compatible = "fsl,imx6sx-gpt", "fsl,imx6dl-gpt";
reg = <0x02098000 0x4000>;
interrupts = <GIC_SPI 55 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&clks IMX6SX_CLK_GPT_BUS>,

View file

@ -263,7 +263,7 @@
compatible = "amlogic,meson6-dwmac", "snps,dwmac";
reg = <0xc9410000 0x10000
0xc1108108 0x4>;
interrupts = <GIC_SPI 8 IRQ_TYPE_EDGE_RISING>;
interrupts = <GIC_SPI 8 IRQ_TYPE_LEVEL_HIGH>;
interrupt-names = "macirq";
status = "disabled";
};

View file

@ -125,7 +125,6 @@
/* Realtek RTL8211F (0x001cc916) */
eth_phy: ethernet-phy@0 {
reg = <0>;
eee-broken-1000t;
interrupt-parent = <&gpio_intc>;
/* GPIOH_3 */
interrupts = <17 IRQ_TYPE_LEVEL_LOW>;
@ -172,8 +171,7 @@
cap-sd-highspeed;
disable-wp;
cd-gpios = <&gpio CARD_6 GPIO_ACTIVE_HIGH>;
cd-inverted;
cd-gpios = <&gpio CARD_6 GPIO_ACTIVE_LOW>;
vmmc-supply = <&tflash_vdd>;
vqmmc-supply = <&tf_io>;

View file

@ -206,8 +206,7 @@
cap-sd-highspeed;
disable-wp;
cd-gpios = <&gpio CARD_6 GPIO_ACTIVE_HIGH>;
cd-inverted;
cd-gpios = <&gpio CARD_6 GPIO_ACTIVE_LOW>;
vmmc-supply = <&vcc_3v3>;
};

View file

@ -105,7 +105,7 @@
interrupts-extended = <
&cpcap 15 0 &cpcap 14 0 &cpcap 28 0 &cpcap 19 0
&cpcap 18 0 &cpcap 17 0 &cpcap 16 0 &cpcap 49 0
&cpcap 48 1
&cpcap 48 0
>;
interrupt-names =
"id_ground", "id_float", "se0conn", "vbusvld",

View file

@ -370,6 +370,19 @@
compatible = "ti,omap2-onenand";
reg = <0 0 0x20000>; /* CS0, offset 0, IO size 128K */
/*
* These timings are based on CONFIG_OMAP_GPMC_DEBUG=y reported
* bootloader set values when booted with v4.19 using both N950
* and N9 devices (OneNAND Manufacturer: Samsung):
*
* gpmc cs0 before gpmc_cs_program_settings:
* cs0 GPMC_CS_CONFIG1: 0xfd001202
* cs0 GPMC_CS_CONFIG2: 0x00181800
* cs0 GPMC_CS_CONFIG3: 0x00030300
* cs0 GPMC_CS_CONFIG4: 0x18001804
* cs0 GPMC_CS_CONFIG5: 0x03171d1d
* cs0 GPMC_CS_CONFIG6: 0x97080000
*/
gpmc,sync-read;
gpmc,sync-write;
gpmc,burst-length = <16>;
@ -379,26 +392,27 @@
gpmc,device-width = <2>;
gpmc,mux-add-data = <2>;
gpmc,cs-on-ns = <0>;
gpmc,cs-rd-off-ns = <87>;
gpmc,cs-wr-off-ns = <87>;
gpmc,cs-rd-off-ns = <122>;
gpmc,cs-wr-off-ns = <122>;
gpmc,adv-on-ns = <0>;
gpmc,adv-rd-off-ns = <10>;
gpmc,adv-wr-off-ns = <10>;
gpmc,oe-on-ns = <15>;
gpmc,oe-off-ns = <87>;
gpmc,adv-rd-off-ns = <15>;
gpmc,adv-wr-off-ns = <15>;
gpmc,oe-on-ns = <20>;
gpmc,oe-off-ns = <122>;
gpmc,we-on-ns = <0>;
gpmc,we-off-ns = <87>;
gpmc,rd-cycle-ns = <112>;
gpmc,wr-cycle-ns = <112>;
gpmc,access-ns = <81>;
gpmc,we-off-ns = <122>;
gpmc,rd-cycle-ns = <148>;
gpmc,wr-cycle-ns = <148>;
gpmc,access-ns = <117>;
gpmc,page-burst-access-ns = <15>;
gpmc,bus-turnaround-ns = <0>;
gpmc,cycle2cycle-delay-ns = <0>;
gpmc,wait-monitoring-ns = <0>;
gpmc,clk-activation-ns = <5>;
gpmc,wr-data-mux-bus-ns = <30>;
gpmc,wr-access-ns = <81>;
gpmc,sync-clk-ps = <15000>;
gpmc,clk-activation-ns = <10>;
gpmc,wr-data-mux-bus-ns = <40>;
gpmc,wr-access-ns = <117>;
gpmc,sync-clk-ps = <15000>; /* TBC; Where this value came? */
/*
* MTD partition table corresponding to Nokia's MeeGo 1.2

View file

@ -53,7 +53,7 @@
aliases {
serial0 = &uart0;
/* ethernet0 is the H3 emac, defined in sun8i-h3.dtsi */
ethernet0 = &emac;
ethernet1 = &sdiowifi;
};

View file

@ -190,8 +190,6 @@ static int pxa_ssp_remove(struct platform_device *pdev)
if (ssp == NULL)
return -ENODEV;
iounmap(ssp->mmio_base);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
release_mem_region(res->start, resource_size(res));
@ -201,7 +199,6 @@ static int pxa_ssp_remove(struct platform_device *pdev)
list_del(&ssp->node);
mutex_unlock(&ssp_lock);
kfree(ssp);
return 0;
}

View file

@ -118,6 +118,7 @@
reset-gpios = <&gpio0 5 GPIO_ACTIVE_LOW>;
clocks = <&pmic>;
clock-names = "ext_clock";
post-power-on-delay-ms = <10>;
power-off-delay-us = <10>;
};
@ -300,7 +301,6 @@
dwmmc_0: dwmmc0@f723d000 {
cap-mmc-highspeed;
mmc-hs200-1_8v;
non-removable;
bus-width = <0x8>;
vmmc-supply = <&ldo19>;

View file

@ -399,7 +399,7 @@
};
intc: interrupt-controller@9bc0000 {
compatible = "arm,gic-v3";
compatible = "qcom,msm8996-gic-v3", "arm,gic-v3";
#interrupt-cells = <3>;
interrupt-controller;
#redistributor-regions = <1>;

View file

@ -1161,6 +1161,9 @@
<&cpg CPG_CORE R8A7796_CLK_S3D1>,
<&scif_clk>;
clock-names = "fck", "brg_int", "scif_clk";
dmas = <&dmac1 0x13>, <&dmac1 0x12>,
<&dmac2 0x13>, <&dmac2 0x12>;
dma-names = "tx", "rx", "tx", "rx";
power-domains = <&sysc R8A7796_PD_ALWAYS_ON>;
resets = <&cpg 310>;
status = "disabled";

View file

@ -951,6 +951,9 @@
<&cpg CPG_CORE R8A77965_CLK_S3D1>,
<&scif_clk>;
clock-names = "fck", "brg_int", "scif_clk";
dmas = <&dmac1 0x13>, <&dmac1 0x12>,
<&dmac2 0x13>, <&dmac2 0x12>;
dma-names = "tx", "rx", "tx", "rx";
power-domains = <&sysc R8A77965_PD_ALWAYS_ON>;
resets = <&cpg 310>;
status = "disabled";

View file

@ -101,6 +101,7 @@
sdio_pwrseq: sdio_pwrseq {
compatible = "mmc-pwrseq-simple";
reset-gpios = <&gpio 7 GPIO_ACTIVE_LOW>; /* WIFI_EN */
post-power-on-delay-ms = <10>;
};
};

View file

@ -58,6 +58,7 @@ CONFIG_ENERGY_MODEL=y
CONFIG_CPU_IDLE=y
CONFIG_ARM_CPUIDLE=y
CONFIG_CPU_FREQ=y
CONFIG_CPU_FREQ_TIMES=y
CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL=y
CONFIG_CPU_FREQ_GOV_POWERSAVE=y
CONFIG_CPU_FREQ_GOV_CONSERVATIVE=y
@ -124,6 +125,7 @@ CONFIG_NF_CT_NETLINK=y
CONFIG_NETFILTER_XT_TARGET_CLASSIFY=y
CONFIG_NETFILTER_XT_TARGET_CONNMARK=y
CONFIG_NETFILTER_XT_TARGET_CONNSECMARK=y
CONFIG_NETFILTER_XT_TARGET_CT=y
CONFIG_NETFILTER_XT_TARGET_IDLETIMER=y
CONFIG_NETFILTER_XT_TARGET_MARK=y
CONFIG_NETFILTER_XT_TARGET_NFLOG=y
@ -229,6 +231,7 @@ CONFIG_PPP_DEFLATE=y
CONFIG_PPP_MPPE=y
CONFIG_PPTP=y
CONFIG_PPPOL2TP=y
CONFIG_USB_RTL8152=y
CONFIG_USB_USBNET=y
# CONFIG_USB_NET_AX8817X is not set
# CONFIG_USB_NET_AX88179_178A is not set
@ -299,6 +302,12 @@ CONFIG_DRM=y
CONFIG_DRM_VIRTIO_GPU=y
CONFIG_SOUND=y
CONFIG_SND=y
CONFIG_SND_HRTIMER=y
# CONFIG_SND_SUPPORT_OLD_API is not set
# CONFIG_SND_VERBOSE_PROCFS is not set
# CONFIG_SND_DRIVERS is not set
CONFIG_SND_INTEL8X0=y
# CONFIG_SND_USB is not set
CONFIG_HIDRAW=y
CONFIG_UHID=y
CONFIG_HID_A4TECH=y

View file

@ -478,13 +478,13 @@ bool arch_within_kprobe_blacklist(unsigned long addr)
addr < (unsigned long)__entry_text_end) ||
(addr >= (unsigned long)__idmap_text_start &&
addr < (unsigned long)__idmap_text_end) ||
(addr >= (unsigned long)__hyp_text_start &&
addr < (unsigned long)__hyp_text_end) ||
!!search_exception_tables(addr))
return true;
if (!is_kernel_in_hyp_mode()) {
if ((addr >= (unsigned long)__hyp_text_start &&
addr < (unsigned long)__hyp_text_end) ||
(addr >= (unsigned long)__hyp_idmap_text_start &&
if ((addr >= (unsigned long)__hyp_idmap_text_start &&
addr < (unsigned long)__hyp_idmap_text_end))
return true;
}

View file

@ -76,7 +76,7 @@
status = "okay";
pinctrl-names = "default";
pinctrl-0 = <&pins_uart2>;
pinctrl-0 = <&pins_uart3>;
};
&uart4 {
@ -196,9 +196,9 @@
bias-disable;
};
pins_uart2: uart2 {
function = "uart2";
groups = "uart2-data", "uart2-hwflow";
pins_uart3: uart3 {
function = "uart3";
groups = "uart3-data", "uart3-hwflow";
bias-disable;
};

View file

@ -52,6 +52,7 @@ asmlinkage void spurious_interrupt(void)
void __init init_IRQ(void)
{
int i;
unsigned int order = get_order(IRQ_STACK_SIZE);
for (i = 0; i < NR_IRQS; i++)
irq_set_noprobe(i);
@ -62,8 +63,7 @@ void __init init_IRQ(void)
arch_init_irq();
for_each_possible_cpu(i) {
int irq_pages = IRQ_STACK_SIZE / PAGE_SIZE;
void *s = (void *)__get_free_pages(GFP_KERNEL, irq_pages);
void *s = (void *)__get_free_pages(GFP_KERNEL, order);
irq_stack[i] = s;
pr_debug("CPU%d IRQ stack at 0x%p - 0x%p\n", i,

View file

@ -371,7 +371,7 @@ static inline int is_sp_move_ins(union mips_instruction *ip, int *frame_size)
static int get_frame_info(struct mips_frame_info *info)
{
bool is_mmips = IS_ENABLED(CONFIG_CPU_MICROMIPS);
union mips_instruction insn, *ip, *ip_end;
union mips_instruction insn, *ip;
const unsigned int max_insns = 128;
unsigned int last_insn_size = 0;
unsigned int i;
@ -384,10 +384,9 @@ static int get_frame_info(struct mips_frame_info *info)
if (!ip)
goto err;
ip_end = (void *)ip + info->func_size;
for (i = 0; i < max_insns && ip < ip_end; i++) {
for (i = 0; i < max_insns; i++) {
ip = (void *)ip + last_insn_size;
if (is_mmips && mm_insn_16bit(ip->halfword[0])) {
insn.word = ip->halfword[0] << 16;
last_insn_size = 2;

View file

@ -22,7 +22,7 @@
* This decides where the kernel will search for a free chunk of vm
* space during mmap's.
*/
#define TASK_UNMAPPED_BASE PAGE_ALIGN(TASK_SIZE >> 1)
#define TASK_UNMAPPED_BASE PAGE_ALIGN(TASK_SIZE / 3)
#define STACK_TOP TASK_SIZE
#define STACK_TOP_MAX STACK_TOP

View file

@ -186,7 +186,7 @@ static void __init setup_bootmem(void)
BUG_ON(mem_size == 0);
set_max_mapnr(PFN_DOWN(mem_size));
max_low_pfn = memblock_end_of_DRAM();
max_low_pfn = PFN_DOWN(memblock_end_of_DRAM());
#ifdef CONFIG_BLK_DEV_INITRD
setup_initrd();

View file

@ -29,7 +29,8 @@ static void __init zone_sizes_init(void)
unsigned long max_zone_pfns[MAX_NR_ZONES] = { 0, };
#ifdef CONFIG_ZONE_DMA32
max_zone_pfns[ZONE_DMA32] = PFN_DOWN(min(4UL * SZ_1G, max_low_pfn));
max_zone_pfns[ZONE_DMA32] = PFN_DOWN(min(4UL * SZ_1G,
(unsigned long) PFN_PHYS(max_low_pfn)));
#endif
max_zone_pfns[ZONE_NORMAL] = max_low_pfn;

View file

@ -600,6 +600,14 @@ ENTRY(trampoline_32bit_src)
leal TRAMPOLINE_32BIT_PGTABLE_OFFSET(%ecx), %eax
movl %eax, %cr3
3:
/* Set EFER.LME=1 as a precaution in case hypervsior pulls the rug */
pushl %ecx
movl $MSR_EFER, %ecx
rdmsr
btsl $_EFER_LME, %eax
wrmsr
popl %ecx
/* Enable PAE and LA57 (if required) paging modes */
movl $X86_CR4_PAE, %eax
cmpl $0, %edx

View file

@ -6,7 +6,7 @@
#define TRAMPOLINE_32BIT_PGTABLE_OFFSET 0
#define TRAMPOLINE_32BIT_CODE_OFFSET PAGE_SIZE
#define TRAMPOLINE_32BIT_CODE_SIZE 0x60
#define TRAMPOLINE_32BIT_CODE_SIZE 0x70
#define TRAMPOLINE_32BIT_STACK_END TRAMPOLINE_32BIT_SIZE

View file

@ -1,5 +1,7 @@
#include <linux/efi.h>
#include <asm/e820/types.h>
#include <asm/processor.h>
#include <asm/efi.h>
#include "pgtable.h"
#include "../string.h"
@ -37,9 +39,10 @@ int cmdline_find_option_bool(const char *option);
static unsigned long find_trampoline_placement(void)
{
unsigned long bios_start, ebda_start;
unsigned long bios_start = 0, ebda_start = 0;
unsigned long trampoline_start;
struct boot_e820_entry *entry;
char *signature;
int i;
/*
@ -47,8 +50,18 @@ static unsigned long find_trampoline_placement(void)
* This code is based on reserve_bios_regions().
*/
ebda_start = *(unsigned short *)0x40e << 4;
bios_start = *(unsigned short *)0x413 << 10;
/*
* EFI systems may not provide legacy ROM. The memory may not be mapped
* at all.
*
* Only look for values in the legacy ROM for non-EFI system.
*/
signature = (char *)&boot_params->efi_info.efi_loader_signature;
if (strncmp(signature, EFI32_LOADER_SIGNATURE, 4) &&
strncmp(signature, EFI64_LOADER_SIGNATURE, 4)) {
ebda_start = *(unsigned short *)0x40e << 4;
bios_start = *(unsigned short *)0x413 << 10;
}
if (bios_start < BIOS_START_MIN || bios_start > BIOS_START_MAX)
bios_start = BIOS_START_MAX;

View file

@ -58,6 +58,7 @@ CONFIG_ACPI_PROCFS_POWER=y
# CONFIG_ACPI_FAN is not set
# CONFIG_ACPI_THERMAL is not set
# CONFIG_X86_PM_TIMER is not set
CONFIG_CPU_FREQ_TIMES=y
CONFIG_CPU_FREQ_GOV_ONDEMAND=y
CONFIG_X86_ACPI_CPUFREQ=y
CONFIG_PCI_MSI=y
@ -96,6 +97,7 @@ CONFIG_SYN_COOKIES=y
CONFIG_NET_IPVTI=y
CONFIG_INET_ESP=y
# CONFIG_INET_XFRM_MODE_BEET is not set
CONFIG_INET_UDP_DIAG=y
CONFIG_INET_DIAG_DESTROY=y
CONFIG_TCP_CONG_ADVANCED=y
# CONFIG_TCP_CONG_BIC is not set
@ -128,6 +130,7 @@ CONFIG_NF_CT_NETLINK=y
CONFIG_NETFILTER_XT_TARGET_CLASSIFY=y
CONFIG_NETFILTER_XT_TARGET_CONNMARK=y
CONFIG_NETFILTER_XT_TARGET_CONNSECMARK=y
CONFIG_NETFILTER_XT_TARGET_CT=y
CONFIG_NETFILTER_XT_TARGET_IDLETIMER=y
CONFIG_NETFILTER_XT_TARGET_MARK=y
CONFIG_NETFILTER_XT_TARGET_NFLOG=y
@ -234,6 +237,7 @@ CONFIG_PPP=y
CONFIG_PPP_BSDCOMP=y
CONFIG_PPP_DEFLATE=y
CONFIG_PPP_MPPE=y
CONFIG_USB_RTL8152=y
CONFIG_USB_USBNET=y
# CONFIG_USB_NET_AX8817X is not set
# CONFIG_USB_NET_AX88179_178A is not set
@ -311,6 +315,12 @@ CONFIG_DRM=y
CONFIG_DRM_VIRTIO_GPU=y
CONFIG_SOUND=y
CONFIG_SND=y
CONFIG_SND_HRTIMER=y
# CONFIG_SND_SUPPORT_OLD_API is not set
# CONFIG_SND_VERBOSE_PROCFS is not set
# CONFIG_SND_DRIVERS is not set
CONFIG_SND_INTEL8X0=y
# CONFIG_SND_USB is not set
CONFIG_HIDRAW=y
CONFIG_UHID=y
CONFIG_HID_A4TECH=y

View file

@ -1970,7 +1970,7 @@ static int x86_pmu_commit_txn(struct pmu *pmu)
*/
static void free_fake_cpuc(struct cpu_hw_events *cpuc)
{
kfree(cpuc->shared_regs);
intel_cpuc_finish(cpuc);
kfree(cpuc);
}
@ -1982,14 +1982,11 @@ static struct cpu_hw_events *allocate_fake_cpuc(void)
cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
if (!cpuc)
return ERR_PTR(-ENOMEM);
/* only needed, if we have extra_regs */
if (x86_pmu.extra_regs) {
cpuc->shared_regs = allocate_shared_regs(cpu);
if (!cpuc->shared_regs)
goto error;
}
cpuc->is_fake = 1;
if (intel_cpuc_prepare(cpuc, cpu))
goto error;
return cpuc;
error:
free_fake_cpuc(cpuc);

View file

@ -1995,6 +1995,39 @@ static void intel_pmu_nhm_enable_all(int added)
intel_pmu_enable_all(added);
}
static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
{
u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;
if (cpuc->tfa_shadow != val) {
cpuc->tfa_shadow = val;
wrmsrl(MSR_TSX_FORCE_ABORT, val);
}
}
static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
{
/*
* We're going to use PMC3, make sure TFA is set before we touch it.
*/
if (cntr == 3 && !cpuc->is_fake)
intel_set_tfa(cpuc, true);
}
static void intel_tfa_pmu_enable_all(int added)
{
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
/*
* If we find PMC3 is no longer used when we enable the PMU, we can
* clear TFA.
*/
if (!test_bit(3, cpuc->active_mask))
intel_set_tfa(cpuc, false);
intel_pmu_enable_all(added);
}
static inline u64 intel_pmu_get_status(void)
{
u64 status;
@ -2652,6 +2685,35 @@ intel_stop_scheduling(struct cpu_hw_events *cpuc)
raw_spin_unlock(&excl_cntrs->lock);
}
static struct event_constraint *
dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
{
WARN_ON_ONCE(!cpuc->constraint_list);
if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
struct event_constraint *cx;
/*
* grab pre-allocated constraint entry
*/
cx = &cpuc->constraint_list[idx];
/*
* initialize dynamic constraint
* with static constraint
*/
*cx = *c;
/*
* mark constraint as dynamic
*/
cx->flags |= PERF_X86_EVENT_DYNAMIC;
c = cx;
}
return c;
}
static struct event_constraint *
intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
int idx, struct event_constraint *c)
@ -2682,27 +2744,7 @@ intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
* only needed when constraint has not yet
* been cloned (marked dynamic)
*/
if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
struct event_constraint *cx;
/*
* grab pre-allocated constraint entry
*/
cx = &cpuc->constraint_list[idx];
/*
* initialize dynamic constraint
* with static constraint
*/
*cx = *c;
/*
* mark constraint as dynamic, so we
* can free it later on
*/
cx->flags |= PERF_X86_EVENT_DYNAMIC;
c = cx;
}
c = dyn_constraint(cpuc, c, idx);
/*
* From here on, the constraint is dynamic.
@ -3229,6 +3271,26 @@ glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
return c;
}
static bool allow_tsx_force_abort = true;
static struct event_constraint *
tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
struct perf_event *event)
{
struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);
/*
* Without TFA we must not use PMC3.
*/
if (!allow_tsx_force_abort && test_bit(3, c->idxmsk) && idx >= 0) {
c = dyn_constraint(cpuc, c, idx);
c->idxmsk64 &= ~(1ULL << 3);
c->weight--;
}
return c;
}
/*
* Broadwell:
*
@ -3282,7 +3344,7 @@ ssize_t intel_event_sysfs_show(char *page, u64 config)
return x86_event_sysfs_show(page, config, event);
}
struct intel_shared_regs *allocate_shared_regs(int cpu)
static struct intel_shared_regs *allocate_shared_regs(int cpu)
{
struct intel_shared_regs *regs;
int i;
@ -3314,23 +3376,24 @@ static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
return c;
}
static int intel_pmu_cpu_prepare(int cpu)
{
struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
{
if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
cpuc->shared_regs = allocate_shared_regs(cpu);
if (!cpuc->shared_regs)
goto err;
}
if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA)) {
size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
cpuc->constraint_list = kzalloc(sz, GFP_KERNEL);
cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
if (!cpuc->constraint_list)
goto err_shared_regs;
}
if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
if (!cpuc->excl_cntrs)
goto err_constraint_list;
@ -3352,6 +3415,11 @@ static int intel_pmu_cpu_prepare(int cpu)
return -ENOMEM;
}
static int intel_pmu_cpu_prepare(int cpu)
{
return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
}
static void flip_smm_bit(void *data)
{
unsigned long set = *(unsigned long *)data;
@ -3423,9 +3491,8 @@ static void intel_pmu_cpu_starting(int cpu)
}
}
static void free_excl_cntrs(int cpu)
static void free_excl_cntrs(struct cpu_hw_events *cpuc)
{
struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
struct intel_excl_cntrs *c;
c = cpuc->excl_cntrs;
@ -3433,9 +3500,10 @@ static void free_excl_cntrs(int cpu)
if (c->core_id == -1 || --c->refcnt == 0)
kfree(c);
cpuc->excl_cntrs = NULL;
kfree(cpuc->constraint_list);
cpuc->constraint_list = NULL;
}
kfree(cpuc->constraint_list);
cpuc->constraint_list = NULL;
}
static void intel_pmu_cpu_dying(int cpu)
@ -3443,9 +3511,8 @@ static void intel_pmu_cpu_dying(int cpu)
fini_debug_store_on_cpu(cpu);
}
static void intel_pmu_cpu_dead(int cpu)
void intel_cpuc_finish(struct cpu_hw_events *cpuc)
{
struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
struct intel_shared_regs *pc;
pc = cpuc->shared_regs;
@ -3455,7 +3522,12 @@ static void intel_pmu_cpu_dead(int cpu)
cpuc->shared_regs = NULL;
}
free_excl_cntrs(cpu);
free_excl_cntrs(cpuc);
}
static void intel_pmu_cpu_dead(int cpu)
{
intel_cpuc_finish(&per_cpu(cpu_hw_events, cpu));
}
static void intel_pmu_sched_task(struct perf_event_context *ctx,
@ -3917,8 +3989,11 @@ static struct attribute *intel_pmu_caps_attrs[] = {
NULL
};
static DEVICE_BOOL_ATTR(allow_tsx_force_abort, 0644, allow_tsx_force_abort);
static struct attribute *intel_pmu_attrs[] = {
&dev_attr_freeze_on_smi.attr,
NULL, /* &dev_attr_allow_tsx_force_abort.attr.attr */
NULL,
};
@ -4374,6 +4449,15 @@ __init int intel_pmu_init(void)
x86_pmu.cpu_events = get_hsw_events_attrs();
intel_pmu_pebs_data_source_skl(
boot_cpu_data.x86_model == INTEL_FAM6_SKYLAKE_X);
if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT)) {
x86_pmu.flags |= PMU_FL_TFA;
x86_pmu.get_event_constraints = tfa_get_event_constraints;
x86_pmu.enable_all = intel_tfa_pmu_enable_all;
x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
intel_pmu_attrs[1] = &dev_attr_allow_tsx_force_abort.attr.attr;
}
pr_cont("Skylake events, ");
name = "skylake";
break;
@ -4515,7 +4599,7 @@ static __init int fixup_ht_bug(void)
hardlockup_detector_perf_restart();
for_each_online_cpu(c)
free_excl_cntrs(c);
free_excl_cntrs(&per_cpu(cpu_hw_events, c));
cpus_read_unlock();
pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");

View file

@ -242,6 +242,11 @@ struct cpu_hw_events {
struct intel_excl_cntrs *excl_cntrs;
int excl_thread_id; /* 0 or 1 */
/*
* SKL TSX_FORCE_ABORT shadow
*/
u64 tfa_shadow;
/*
* AMD specific bits
*/
@ -679,6 +684,7 @@ do { \
#define PMU_FL_EXCL_CNTRS 0x4 /* has exclusive counter requirements */
#define PMU_FL_EXCL_ENABLED 0x8 /* exclusive counter active */
#define PMU_FL_PEBS_ALL 0x10 /* all events are valid PEBS events */
#define PMU_FL_TFA 0x20 /* deal with TSX force abort */
#define EVENT_VAR(_id) event_attr_##_id
#define EVENT_PTR(_id) &event_attr_##_id.attr.attr
@ -887,7 +893,8 @@ struct event_constraint *
x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
struct perf_event *event);
struct intel_shared_regs *allocate_shared_regs(int cpu);
extern int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu);
extern void intel_cpuc_finish(struct cpu_hw_events *cpuc);
int intel_pmu_init(void);
@ -1023,9 +1030,13 @@ static inline int intel_pmu_init(void)
return 0;
}
static inline struct intel_shared_regs *allocate_shared_regs(int cpu)
static inline int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
{
return 0;
}
static inline void intel_cpuc_finish(struct cpu_hw_events *cpuc)
{
return NULL;
}
static inline int is_ht_workaround_enabled(void)

View file

@ -340,6 +340,7 @@
/* Intel-defined CPU features, CPUID level 0x00000007:0 (EDX), word 18 */
#define X86_FEATURE_AVX512_4VNNIW (18*32+ 2) /* AVX-512 Neural Network Instructions */
#define X86_FEATURE_AVX512_4FMAPS (18*32+ 3) /* AVX-512 Multiply Accumulation Single precision */
#define X86_FEATURE_TSX_FORCE_ABORT (18*32+13) /* "" TSX_FORCE_ABORT */
#define X86_FEATURE_PCONFIG (18*32+18) /* Intel PCONFIG */
#define X86_FEATURE_SPEC_CTRL (18*32+26) /* "" Speculation Control (IBRS + IBPB) */
#define X86_FEATURE_INTEL_STIBP (18*32+27) /* "" Single Thread Indirect Branch Predictors */

View file

@ -629,6 +629,12 @@
#define MSR_IA32_TSC_DEADLINE 0x000006E0
#define MSR_TSX_FORCE_ABORT 0x0000010F
#define MSR_TFA_RTM_FORCE_ABORT_BIT 0
#define MSR_TFA_RTM_FORCE_ABORT BIT_ULL(MSR_TFA_RTM_FORCE_ABORT_BIT)
/* P4/Xeon+ specific */
#define MSR_IA32_MCG_EAX 0x00000180
#define MSR_IA32_MCG_EBX 0x00000181

View file

@ -7,7 +7,11 @@
#endif
#ifdef CONFIG_KASAN
#ifdef CONFIG_KASAN_EXTRA
#define KASAN_STACK_ORDER 2
#else
#define KASAN_STACK_ORDER 1
#endif
#else
#define KASAN_STACK_ORDER 0
#endif

View file

@ -818,11 +818,9 @@ static void init_amd_bd(struct cpuinfo_x86 *c)
static void init_amd_zn(struct cpuinfo_x86 *c)
{
set_cpu_cap(c, X86_FEATURE_ZEN);
/*
* Fix erratum 1076: CPB feature bit not being set in CPUID. It affects
* all up to and including B1.
*/
if (c->x86_model <= 1 && c->x86_stepping <= 1)
/* Fix erratum 1076: CPB feature bit not being set in CPUID. */
if (!cpu_has(c, X86_FEATURE_CPB))
set_cpu_cap(c, X86_FEATURE_CPB);
}

View file

@ -707,7 +707,7 @@ load_microcode_amd(bool save, u8 family, const u8 *data, size_t size)
if (!p) {
return ret;
} else {
if (boot_cpu_data.microcode == p->patch_id)
if (boot_cpu_data.microcode >= p->patch_id)
return ret;
ret = UCODE_NEW;

View file

@ -167,6 +167,9 @@ setup_efi_state(struct boot_params *params, unsigned long params_load_addr,
struct efi_info *current_ei = &boot_params.efi_info;
struct efi_info *ei = &params->efi_info;
if (!efi_enabled(EFI_RUNTIME_SERVICES))
return 0;
if (!current_ei->efi_memmap_size)
return 0;

View file

@ -641,6 +641,22 @@ DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_INTEL, 0x334b, quirk_no_aersid);
DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_INTEL, 0x334c, quirk_no_aersid);
DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_INTEL, 0x334d, quirk_no_aersid);
static void quirk_intel_th_dnv(struct pci_dev *dev)
{
struct resource *r = &dev->resource[4];
/*
* Denverton reports 2k of RTIT_BAR (intel_th resource 4), which
* appears to be 4 MB in reality.
*/
if (r->end == r->start + 0x7ff) {
r->start = 0;
r->end = 0x3fffff;
r->flags |= IORESOURCE_UNSET;
}
}
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x19e1, quirk_intel_th_dnv);
#ifdef CONFIG_PHYS_ADDR_T_64BIT
#define AMD_141b_MMIO_BASE(x) (0x80 + (x) * 0x8)

View file

@ -33,6 +33,7 @@ CONFIG_SMP=y
CONFIG_HOTPLUG_CPU=y
# CONFIG_INITIALIZE_XTENSA_MMU_INSIDE_VMLINUX is not set
# CONFIG_PCI is not set
CONFIG_VECTORS_OFFSET=0x00002000
CONFIG_XTENSA_PLATFORM_XTFPGA=y
CONFIG_CMDLINE_BOOL=y
CONFIG_CMDLINE="earlycon=uart8250,mmio32native,0xfd050020,115200n8 console=ttyS0,115200n8 ip=dhcp root=/dev/nfs rw debug memmap=96M@0"

View file

@ -280,12 +280,13 @@ should_never_return:
movi a2, cpu_start_ccount
1:
memw
l32i a3, a2, 0
beqi a3, 0, 1b
movi a3, 0
s32i a3, a2, 0
memw
1:
memw
l32i a3, a2, 0
beqi a3, 0, 1b
wsr a3, ccount
@ -321,11 +322,13 @@ ENTRY(cpu_restart)
rsr a0, prid
neg a2, a0
movi a3, cpu_start_id
memw
s32i a2, a3, 0
#if XCHAL_DCACHE_IS_WRITEBACK
dhwbi a3, 0
#endif
1:
memw
l32i a2, a3, 0
dhi a3, 0
bne a2, a0, 1b

View file

@ -320,8 +320,8 @@ unsigned long get_wchan(struct task_struct *p)
/* Stack layout: sp-4: ra, sp-3: sp' */
pc = MAKE_PC_FROM_RA(*(unsigned long*)sp - 4, sp);
sp = *(unsigned long *)sp - 3;
pc = MAKE_PC_FROM_RA(SPILL_SLOT(sp, 0), sp);
sp = SPILL_SLOT(sp, 1);
} while (count++ < 16);
return 0;
}

View file

@ -83,7 +83,7 @@ void __init smp_prepare_cpus(unsigned int max_cpus)
{
unsigned i;
for (i = 0; i < max_cpus; ++i)
for_each_possible_cpu(i)
set_cpu_present(i, true);
}
@ -96,6 +96,11 @@ void __init smp_init_cpus(void)
pr_info("%s: Core Count = %d\n", __func__, ncpus);
pr_info("%s: Core Id = %d\n", __func__, core_id);
if (ncpus > NR_CPUS) {
ncpus = NR_CPUS;
pr_info("%s: limiting core count by %d\n", __func__, ncpus);
}
for (i = 0; i < ncpus; ++i)
set_cpu_possible(i, true);
}
@ -195,9 +200,11 @@ static int boot_secondary(unsigned int cpu, struct task_struct *ts)
int i;
#ifdef CONFIG_HOTPLUG_CPU
cpu_start_id = cpu;
system_flush_invalidate_dcache_range(
(unsigned long)&cpu_start_id, sizeof(cpu_start_id));
WRITE_ONCE(cpu_start_id, cpu);
/* Pairs with the third memw in the cpu_restart */
mb();
system_flush_invalidate_dcache_range((unsigned long)&cpu_start_id,
sizeof(cpu_start_id));
#endif
smp_call_function_single(0, mx_cpu_start, (void *)cpu, 1);
@ -206,18 +213,21 @@ static int boot_secondary(unsigned int cpu, struct task_struct *ts)
ccount = get_ccount();
while (!ccount);
cpu_start_ccount = ccount;
WRITE_ONCE(cpu_start_ccount, ccount);
while (time_before(jiffies, timeout)) {
do {
/*
* Pairs with the first two memws in the
* .Lboot_secondary.
*/
mb();
if (!cpu_start_ccount)
break;
}
ccount = READ_ONCE(cpu_start_ccount);
} while (ccount && time_before(jiffies, timeout));
if (cpu_start_ccount) {
if (ccount) {
smp_call_function_single(0, mx_cpu_stop,
(void *)cpu, 1);
cpu_start_ccount = 0;
(void *)cpu, 1);
WRITE_ONCE(cpu_start_ccount, 0);
return -EIO;
}
}
@ -237,6 +247,7 @@ int __cpu_up(unsigned int cpu, struct task_struct *idle)
pr_debug("%s: Calling wakeup_secondary(cpu:%d, idle:%p, sp: %08lx)\n",
__func__, cpu, idle, start_info.stack);
init_completion(&cpu_running);
ret = boot_secondary(cpu, idle);
if (ret == 0) {
wait_for_completion_timeout(&cpu_running,
@ -298,8 +309,10 @@ void __cpu_die(unsigned int cpu)
unsigned long timeout = jiffies + msecs_to_jiffies(1000);
while (time_before(jiffies, timeout)) {
system_invalidate_dcache_range((unsigned long)&cpu_start_id,
sizeof(cpu_start_id));
if (cpu_start_id == -cpu) {
sizeof(cpu_start_id));
/* Pairs with the second memw in the cpu_restart */
mb();
if (READ_ONCE(cpu_start_id) == -cpu) {
platform_cpu_kill(cpu);
return;
}

View file

@ -89,7 +89,7 @@ static int ccount_timer_shutdown(struct clock_event_device *evt)
container_of(evt, struct ccount_timer, evt);
if (timer->irq_enabled) {
disable_irq(evt->irq);
disable_irq_nosync(evt->irq);
timer->irq_enabled = 0;
}
return 0;

View file

@ -72,6 +72,7 @@
#include <linux/sched/loadavg.h>
#include <linux/sched/signal.h>
#include <trace/events/block.h>
#include <linux/blk-mq.h>
#include "blk-rq-qos.h"
#include "blk-stat.h"
@ -568,6 +569,9 @@ static void blkcg_iolatency_done_bio(struct rq_qos *rqos, struct bio *bio)
return;
enabled = blk_iolatency_enabled(iolat->blkiolat);
if (!enabled)
return;
while (blkg && blkg->parent) {
iolat = blkg_to_lat(blkg);
if (!iolat) {
@ -577,7 +581,7 @@ static void blkcg_iolatency_done_bio(struct rq_qos *rqos, struct bio *bio)
rqw = &iolat->rq_wait;
atomic_dec(&rqw->inflight);
if (!enabled || iolat->min_lat_nsec == 0)
if (iolat->min_lat_nsec == 0)
goto next;
iolatency_record_time(iolat, &bio->bi_issue, now,
issue_as_root);
@ -721,10 +725,13 @@ int blk_iolatency_init(struct request_queue *q)
return 0;
}
static void iolatency_set_min_lat_nsec(struct blkcg_gq *blkg, u64 val)
/*
* return 1 for enabling iolatency, return -1 for disabling iolatency, otherwise
* return 0.
*/
static int iolatency_set_min_lat_nsec(struct blkcg_gq *blkg, u64 val)
{
struct iolatency_grp *iolat = blkg_to_lat(blkg);
struct blk_iolatency *blkiolat = iolat->blkiolat;
u64 oldval = iolat->min_lat_nsec;
iolat->min_lat_nsec = val;
@ -733,9 +740,10 @@ static void iolatency_set_min_lat_nsec(struct blkcg_gq *blkg, u64 val)
BLKIOLATENCY_MAX_WIN_SIZE);
if (!oldval && val)
atomic_inc(&blkiolat->enabled);
return 1;
if (oldval && !val)
atomic_dec(&blkiolat->enabled);
return -1;
return 0;
}
static void iolatency_clear_scaling(struct blkcg_gq *blkg)
@ -768,6 +776,7 @@ static ssize_t iolatency_set_limit(struct kernfs_open_file *of, char *buf,
u64 lat_val = 0;
u64 oldval;
int ret;
int enable = 0;
ret = blkg_conf_prep(blkcg, &blkcg_policy_iolatency, buf, &ctx);
if (ret)
@ -803,7 +812,12 @@ static ssize_t iolatency_set_limit(struct kernfs_open_file *of, char *buf,
blkg = ctx.blkg;
oldval = iolat->min_lat_nsec;
iolatency_set_min_lat_nsec(blkg, lat_val);
enable = iolatency_set_min_lat_nsec(blkg, lat_val);
if (enable) {
WARN_ON_ONCE(!blk_get_queue(blkg->q));
blkg_get(blkg);
}
if (oldval != iolat->min_lat_nsec) {
iolatency_clear_scaling(blkg);
}
@ -811,6 +825,24 @@ static ssize_t iolatency_set_limit(struct kernfs_open_file *of, char *buf,
ret = 0;
out:
blkg_conf_finish(&ctx);
if (ret == 0 && enable) {
struct iolatency_grp *tmp = blkg_to_lat(blkg);
struct blk_iolatency *blkiolat = tmp->blkiolat;
blk_mq_freeze_queue(blkg->q);
if (enable == 1)
atomic_inc(&blkiolat->enabled);
else if (enable == -1)
atomic_dec(&blkiolat->enabled);
else
WARN_ON_ONCE(1);
blk_mq_unfreeze_queue(blkg->q);
blkg_put(blkg);
blk_put_queue(blkg->q);
}
return ret ?: nbytes;
}
@ -910,8 +942,14 @@ static void iolatency_pd_offline(struct blkg_policy_data *pd)
{
struct iolatency_grp *iolat = pd_to_lat(pd);
struct blkcg_gq *blkg = lat_to_blkg(iolat);
struct blk_iolatency *blkiolat = iolat->blkiolat;
int ret;
iolatency_set_min_lat_nsec(blkg, 0);
ret = iolatency_set_min_lat_nsec(blkg, 0);
if (ret == 1)
atomic_inc(&blkiolat->enabled);
if (ret == -1)
atomic_dec(&blkiolat->enabled);
iolatency_clear_scaling(blkg);
}

View file

@ -984,9 +984,9 @@ static void __device_release_driver(struct device *dev, struct device *parent)
drv->remove(dev);
device_links_driver_cleanup(dev);
dma_deconfigure(dev);
devres_release_all(dev);
dma_deconfigure(dev);
dev->driver = NULL;
dev_set_drvdata(dev, NULL);
if (dev->pm_domain && dev->pm_domain->dismiss)

View file

@ -544,10 +544,9 @@ struct btrtl_device_info *btrtl_initialize(struct hci_dev *hdev,
hdev->bus);
if (!btrtl_dev->ic_info) {
rtl_dev_err(hdev, "rtl: unknown IC info, lmp subver %04x, hci rev %04x, hci ver %04x",
rtl_dev_info(hdev, "rtl: unknown IC info, lmp subver %04x, hci rev %04x, hci ver %04x",
lmp_subver, hci_rev, hci_ver);
ret = -EINVAL;
goto err_free;
return btrtl_dev;
}
if (btrtl_dev->ic_info->has_rom_version) {
@ -602,6 +601,11 @@ int btrtl_download_firmware(struct hci_dev *hdev,
* standard btusb. Once that firmware is uploaded, the subver changes
* to a different value.
*/
if (!btrtl_dev->ic_info) {
rtl_dev_info(hdev, "rtl: assuming no firmware upload needed\n");
return 0;
}
switch (btrtl_dev->ic_info->lmp_subver) {
case RTL_ROM_LMP_8723A:
case RTL_ROM_LMP_3499:

View file

@ -32,6 +32,7 @@
#include <linux/wait.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/nospec.h>
#include <asm/io.h>
#include <linux/uaccess.h>
@ -386,7 +387,11 @@ static ssize_t ac_write(struct file *file, const char __user *buf, size_t count,
TicCard = st_loc.tic_des_from_pc; /* tic number to send */
IndexCard = NumCard - 1;
if((NumCard < 1) || (NumCard > MAX_BOARD) || !apbs[IndexCard].RamIO)
if (IndexCard >= MAX_BOARD)
return -EINVAL;
IndexCard = array_index_nospec(IndexCard, MAX_BOARD);
if (!apbs[IndexCard].RamIO)
return -EINVAL;
#ifdef DEBUG
@ -697,6 +702,7 @@ static long ac_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
unsigned char IndexCard;
void __iomem *pmem;
int ret = 0;
static int warncount = 10;
volatile unsigned char byte_reset_it;
struct st_ram_io *adgl;
void __user *argp = (void __user *)arg;
@ -711,16 +717,12 @@ static long ac_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
mutex_lock(&ac_mutex);
IndexCard = adgl->num_card-1;
if(cmd != 6 && ((IndexCard >= MAX_BOARD) || !apbs[IndexCard].RamIO)) {
static int warncount = 10;
if (warncount) {
printk( KERN_WARNING "APPLICOM driver IOCTL, bad board number %d\n",(int)IndexCard+1);
warncount--;
}
kfree(adgl);
mutex_unlock(&ac_mutex);
return -EINVAL;
}
if (cmd != 6 && IndexCard >= MAX_BOARD)
goto err;
IndexCard = array_index_nospec(IndexCard, MAX_BOARD);
if (cmd != 6 && !apbs[IndexCard].RamIO)
goto err;
switch (cmd) {
@ -838,5 +840,16 @@ static long ac_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
kfree(adgl);
mutex_unlock(&ac_mutex);
return 0;
err:
if (warncount) {
pr_warn("APPLICOM driver IOCTL, bad board number %d\n",
(int)IndexCard + 1);
warncount--;
}
kfree(adgl);
mutex_unlock(&ac_mutex);
return -EINVAL;
}

View file

@ -131,8 +131,8 @@ static const char * const gcc_parent_names_6[] = {
"core_bi_pll_test_se",
};
static const char * const gcc_parent_names_7[] = {
"bi_tcxo",
static const char * const gcc_parent_names_7_ao[] = {
"bi_tcxo_ao",
"gpll0",
"gpll0_out_even",
"core_bi_pll_test_se",
@ -144,6 +144,12 @@ static const char * const gcc_parent_names_8[] = {
"core_bi_pll_test_se",
};
static const char * const gcc_parent_names_8_ao[] = {
"bi_tcxo_ao",
"gpll0",
"core_bi_pll_test_se",
};
static const struct parent_map gcc_parent_map_10[] = {
{ P_BI_TCXO, 0 },
{ P_GPLL0_OUT_MAIN, 1 },
@ -226,7 +232,7 @@ static struct clk_rcg2 gcc_cpuss_ahb_clk_src = {
.freq_tbl = ftbl_gcc_cpuss_ahb_clk_src,
.clkr.hw.init = &(struct clk_init_data){
.name = "gcc_cpuss_ahb_clk_src",
.parent_names = gcc_parent_names_7,
.parent_names = gcc_parent_names_7_ao,
.num_parents = 4,
.ops = &clk_rcg2_ops,
},
@ -245,7 +251,7 @@ static struct clk_rcg2 gcc_cpuss_rbcpr_clk_src = {
.freq_tbl = ftbl_gcc_cpuss_rbcpr_clk_src,
.clkr.hw.init = &(struct clk_init_data){
.name = "gcc_cpuss_rbcpr_clk_src",
.parent_names = gcc_parent_names_8,
.parent_names = gcc_parent_names_8_ao,
.num_parents = 3,
.ops = &clk_rcg2_ops,
},

View file

@ -367,8 +367,10 @@ int ti_clk_parse_divider_data(int *div_table, int num_dividers, int max_div,
num_dividers = i;
tmp = kcalloc(valid_div + 1, sizeof(*tmp), GFP_KERNEL);
if (!tmp)
if (!tmp) {
*table = ERR_PTR(-ENOMEM);
return -ENOMEM;
}
valid_div = 0;
*width = 0;
@ -403,6 +405,7 @@ struct clk_hw *ti_clk_build_component_div(struct ti_clk_divider *setup)
{
struct clk_omap_divider *div;
struct clk_omap_reg *reg;
int ret;
if (!setup)
return NULL;
@ -422,6 +425,12 @@ struct clk_hw *ti_clk_build_component_div(struct ti_clk_divider *setup)
div->flags |= CLK_DIVIDER_POWER_OF_TWO;
div->table = _get_div_table_from_setup(setup, &div->width);
if (IS_ERR(div->table)) {
ret = PTR_ERR(div->table);
kfree(div);
return ERR_PTR(ret);
}
div->shift = setup->bit_shift;
div->latch = -EINVAL;

View file

@ -250,6 +250,7 @@ void proc_coredump_connector(struct task_struct *task)
{
struct cn_msg *msg;
struct proc_event *ev;
struct task_struct *parent;
__u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
if (atomic_read(&proc_event_num_listeners) < 1)
@ -262,8 +263,14 @@ void proc_coredump_connector(struct task_struct *task)
ev->what = PROC_EVENT_COREDUMP;
ev->event_data.coredump.process_pid = task->pid;
ev->event_data.coredump.process_tgid = task->tgid;
ev->event_data.coredump.parent_pid = task->real_parent->pid;
ev->event_data.coredump.parent_tgid = task->real_parent->tgid;
rcu_read_lock();
if (pid_alive(task)) {
parent = rcu_dereference(task->real_parent);
ev->event_data.coredump.parent_pid = parent->pid;
ev->event_data.coredump.parent_tgid = parent->tgid;
}
rcu_read_unlock();
memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
msg->ack = 0; /* not used */
@ -276,6 +283,7 @@ void proc_exit_connector(struct task_struct *task)
{
struct cn_msg *msg;
struct proc_event *ev;
struct task_struct *parent;
__u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
if (atomic_read(&proc_event_num_listeners) < 1)
@ -290,8 +298,14 @@ void proc_exit_connector(struct task_struct *task)
ev->event_data.exit.process_tgid = task->tgid;
ev->event_data.exit.exit_code = task->exit_code;
ev->event_data.exit.exit_signal = task->exit_signal;
ev->event_data.exit.parent_pid = task->real_parent->pid;
ev->event_data.exit.parent_tgid = task->real_parent->tgid;
rcu_read_lock();
if (pid_alive(task)) {
parent = rcu_dereference(task->real_parent);
ev->event_data.exit.parent_pid = parent->pid;
ev->event_data.exit.parent_tgid = parent->tgid;
}
rcu_read_unlock();
memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
msg->ack = 0; /* not used */

View file

@ -358,7 +358,7 @@ static void cpufreq_notify_transition(struct cpufreq_policy *policy,
}
cpufreq_stats_record_transition(policy, freqs->new);
cpufreq_times_record_transition(freqs);
cpufreq_times_record_transition(policy, freqs->new);
policy->cur = freqs->new;
}
}
@ -555,13 +555,13 @@ EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
* SYSFS INTERFACE *
*********************************************************************/
static ssize_t show_boost(struct kobject *kobj,
struct attribute *attr, char *buf)
struct kobj_attribute *attr, char *buf)
{
return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
}
static ssize_t store_boost(struct kobject *kobj, struct attribute *attr,
const char *buf, size_t count)
static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
const char *buf, size_t count)
{
int ret, enable;
@ -1869,9 +1869,15 @@ EXPORT_SYMBOL(cpufreq_unregister_notifier);
unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
unsigned int target_freq)
{
int ret;
target_freq = clamp_val(target_freq, policy->min, policy->max);
return cpufreq_driver->fast_switch(policy, target_freq);
ret = cpufreq_driver->fast_switch(policy, target_freq);
if (ret)
cpufreq_times_record_transition(policy, ret);
return ret;
}
EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);

View file

@ -32,11 +32,17 @@ static DECLARE_HASHTABLE(uid_hash_table, UID_HASH_BITS);
static DEFINE_SPINLOCK(task_time_in_state_lock); /* task->time_in_state */
static DEFINE_SPINLOCK(uid_lock); /* uid_hash_table */
struct concurrent_times {
atomic64_t active[NR_CPUS];
atomic64_t policy[NR_CPUS];
};
struct uid_entry {
uid_t uid;
unsigned int max_state;
struct hlist_node hash;
struct rcu_head rcu;
struct concurrent_times *concurrent_times;
u64 time_in_state[0];
};
@ -87,6 +93,7 @@ static struct uid_entry *find_uid_entry_locked(uid_t uid)
static struct uid_entry *find_or_register_uid_locked(uid_t uid)
{
struct uid_entry *uid_entry, *temp;
struct concurrent_times *times;
unsigned int max_state = READ_ONCE(next_offset);
size_t alloc_size = sizeof(*uid_entry) + max_state *
sizeof(uid_entry->time_in_state[0]);
@ -115,9 +122,15 @@ static struct uid_entry *find_or_register_uid_locked(uid_t uid)
uid_entry = kzalloc(alloc_size, GFP_ATOMIC);
if (!uid_entry)
return NULL;
times = kzalloc(sizeof(*times), GFP_ATOMIC);
if (!times) {
kfree(uid_entry);
return NULL;
}
uid_entry->uid = uid;
uid_entry->max_state = max_state;
uid_entry->concurrent_times = times;
hash_add_rcu(uid_hash_table, &uid_entry->hash, uid);
@ -180,10 +193,12 @@ static void *uid_seq_start(struct seq_file *seq, loff_t *pos)
static void *uid_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
(*pos)++;
do {
(*pos)++;
if (*pos >= HASH_SIZE(uid_hash_table))
return NULL;
if (*pos >= HASH_SIZE(uid_hash_table))
return NULL;
} while (hlist_empty(&uid_hash_table[*pos]));
return &uid_hash_table[*pos];
}
@ -207,7 +222,8 @@ static int uid_time_in_state_seq_show(struct seq_file *m, void *v)
if (freqs->freq_table[i] ==
CPUFREQ_ENTRY_INVALID)
continue;
seq_printf(m, " %d", freqs->freq_table[i]);
seq_put_decimal_ull(m, " ",
freqs->freq_table[i]);
}
}
seq_putc(m, '\n');
@ -216,13 +232,16 @@ static int uid_time_in_state_seq_show(struct seq_file *m, void *v)
rcu_read_lock();
hlist_for_each_entry_rcu(uid_entry, (struct hlist_head *)v, hash) {
if (uid_entry->max_state)
seq_printf(m, "%d:", uid_entry->uid);
if (uid_entry->max_state) {
seq_put_decimal_ull(m, "", uid_entry->uid);
seq_putc(m, ':');
}
for (i = 0; i < uid_entry->max_state; ++i) {
u64 time;
if (freq_index_invalid(i))
continue;
seq_printf(m, " %lu", (unsigned long)nsec_to_clock_t(
uid_entry->time_in_state[i]));
time = nsec_to_clock_t(uid_entry->time_in_state[i]);
seq_put_decimal_ull(m, " ", time);
}
if (uid_entry->max_state)
seq_putc(m, '\n');
@ -232,6 +251,86 @@ static int uid_time_in_state_seq_show(struct seq_file *m, void *v)
return 0;
}
static int concurrent_time_seq_show(struct seq_file *m, void *v,
atomic64_t *(*get_times)(struct concurrent_times *))
{
struct uid_entry *uid_entry;
int i, num_possible_cpus = num_possible_cpus();
rcu_read_lock();
hlist_for_each_entry_rcu(uid_entry, (struct hlist_head *)v, hash) {
atomic64_t *times = get_times(uid_entry->concurrent_times);
seq_put_decimal_ull(m, "", (u64)uid_entry->uid);
seq_putc(m, ':');
for (i = 0; i < num_possible_cpus; ++i) {
u64 time = nsec_to_clock_t(atomic64_read(&times[i]));
seq_put_decimal_ull(m, " ", time);
}
seq_putc(m, '\n');
}
rcu_read_unlock();
return 0;
}
static inline atomic64_t *get_active_times(struct concurrent_times *times)
{
return times->active;
}
static int concurrent_active_time_seq_show(struct seq_file *m, void *v)
{
if (v == uid_hash_table) {
seq_put_decimal_ull(m, "cpus: ", num_possible_cpus());
seq_putc(m, '\n');
}
return concurrent_time_seq_show(m, v, get_active_times);
}
static inline atomic64_t *get_policy_times(struct concurrent_times *times)
{
return times->policy;
}
static int concurrent_policy_time_seq_show(struct seq_file *m, void *v)
{
int i;
struct cpu_freqs *freqs, *last_freqs = NULL;
if (v == uid_hash_table) {
int cnt = 0;
for_each_possible_cpu(i) {
freqs = all_freqs[i];
if (!freqs)
continue;
if (freqs != last_freqs) {
if (last_freqs) {
seq_put_decimal_ull(m, ": ", cnt);
seq_putc(m, ' ');
cnt = 0;
}
seq_put_decimal_ull(m, "policy", i);
last_freqs = freqs;
}
cnt++;
}
if (last_freqs) {
seq_put_decimal_ull(m, ": ", cnt);
seq_putc(m, '\n');
}
}
return concurrent_time_seq_show(m, v, get_policy_times);
}
void cpufreq_task_times_init(struct task_struct *p)
{
unsigned long flags;
@ -326,11 +425,16 @@ void cpufreq_acct_update_power(struct task_struct *p, u64 cputime)
{
unsigned long flags;
unsigned int state;
unsigned int active_cpu_cnt = 0;
unsigned int policy_cpu_cnt = 0;
unsigned int policy_first_cpu;
struct uid_entry *uid_entry;
struct cpu_freqs *freqs = all_freqs[task_cpu(p)];
struct cpufreq_policy *policy;
uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
int cpu = 0;
if (!freqs || p->flags & PF_EXITING)
if (!freqs || is_idle_task(p) || p->flags & PF_EXITING)
return;
state = freqs->offset + READ_ONCE(freqs->last_index);
@ -346,6 +450,42 @@ void cpufreq_acct_update_power(struct task_struct *p, u64 cputime)
if (uid_entry && state < uid_entry->max_state)
uid_entry->time_in_state[state] += cputime;
spin_unlock_irqrestore(&uid_lock, flags);
rcu_read_lock();
uid_entry = find_uid_entry_rcu(uid);
if (!uid_entry) {
rcu_read_unlock();
return;
}
for_each_possible_cpu(cpu)
if (!idle_cpu(cpu))
++active_cpu_cnt;
atomic64_add(cputime,
&uid_entry->concurrent_times->active[active_cpu_cnt - 1]);
policy = cpufreq_cpu_get(task_cpu(p));
if (!policy) {
/*
* This CPU may have just come up and not have a cpufreq policy
* yet.
*/
rcu_read_unlock();
return;
}
for_each_cpu(cpu, policy->related_cpus)
if (!idle_cpu(cpu))
++policy_cpu_cnt;
policy_first_cpu = cpumask_first(policy->related_cpus);
cpufreq_cpu_put(policy);
atomic64_add(cputime,
&uid_entry->concurrent_times->policy[policy_first_cpu +
policy_cpu_cnt - 1]);
rcu_read_unlock();
}
void cpufreq_times_create_policy(struct cpufreq_policy *policy)
@ -387,6 +527,14 @@ void cpufreq_times_create_policy(struct cpufreq_policy *policy)
all_freqs[cpu] = freqs;
}
static void uid_entry_reclaim(struct rcu_head *rcu)
{
struct uid_entry *uid_entry = container_of(rcu, struct uid_entry, rcu);
kfree(uid_entry->concurrent_times);
kfree(uid_entry);
}
void cpufreq_task_times_remove_uids(uid_t uid_start, uid_t uid_end)
{
struct uid_entry *uid_entry;
@ -400,7 +548,7 @@ void cpufreq_task_times_remove_uids(uid_t uid_start, uid_t uid_end)
hash, uid_start) {
if (uid_start == uid_entry->uid) {
hash_del_rcu(&uid_entry->hash);
kfree_rcu(uid_entry, rcu);
call_rcu(&uid_entry->rcu, uid_entry_reclaim);
}
}
}
@ -408,24 +556,17 @@ void cpufreq_task_times_remove_uids(uid_t uid_start, uid_t uid_end)
spin_unlock_irqrestore(&uid_lock, flags);
}
void cpufreq_times_record_transition(struct cpufreq_freqs *freq)
void cpufreq_times_record_transition(struct cpufreq_policy *policy,
unsigned int new_freq)
{
int index;
struct cpu_freqs *freqs = all_freqs[freq->cpu];
struct cpufreq_policy *policy;
struct cpu_freqs *freqs = all_freqs[policy->cpu];
if (!freqs)
return;
policy = cpufreq_cpu_get(freq->cpu);
if (!policy)
return;
index = cpufreq_frequency_table_get_index(policy, freq->new);
index = cpufreq_frequency_table_get_index(policy, new_freq);
if (index >= 0)
WRITE_ONCE(freqs->last_index, index);
cpufreq_cpu_put(policy);
}
static const struct seq_operations uid_time_in_state_seq_ops = {
@ -453,11 +594,55 @@ static const struct file_operations uid_time_in_state_fops = {
.release = seq_release,
};
static const struct seq_operations concurrent_active_time_seq_ops = {
.start = uid_seq_start,
.next = uid_seq_next,
.stop = uid_seq_stop,
.show = concurrent_active_time_seq_show,
};
static int concurrent_active_time_open(struct inode *inode, struct file *file)
{
return seq_open(file, &concurrent_active_time_seq_ops);
}
static const struct file_operations concurrent_active_time_fops = {
.open = concurrent_active_time_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
};
static const struct seq_operations concurrent_policy_time_seq_ops = {
.start = uid_seq_start,
.next = uid_seq_next,
.stop = uid_seq_stop,
.show = concurrent_policy_time_seq_show,
};
static int concurrent_policy_time_open(struct inode *inode, struct file *file)
{
return seq_open(file, &concurrent_policy_time_seq_ops);
}
static const struct file_operations concurrent_policy_time_fops = {
.open = concurrent_policy_time_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
};
static int __init cpufreq_times_init(void)
{
proc_create_data("uid_time_in_state", 0444, NULL,
&uid_time_in_state_fops, NULL);
proc_create_data("uid_concurrent_active_time", 0444, NULL,
&concurrent_active_time_fops, NULL);
proc_create_data("uid_concurrent_policy_time", 0444, NULL,
&concurrent_policy_time_fops, NULL);
return 0;
}

View file

@ -833,7 +833,7 @@ static void intel_pstate_update_policies(void)
/************************** sysfs begin ************************/
#define show_one(file_name, object) \
static ssize_t show_##file_name \
(struct kobject *kobj, struct attribute *attr, char *buf) \
(struct kobject *kobj, struct kobj_attribute *attr, char *buf) \
{ \
return sprintf(buf, "%u\n", global.object); \
}
@ -842,7 +842,7 @@ static ssize_t intel_pstate_show_status(char *buf);
static int intel_pstate_update_status(const char *buf, size_t size);
static ssize_t show_status(struct kobject *kobj,
struct attribute *attr, char *buf)
struct kobj_attribute *attr, char *buf)
{
ssize_t ret;
@ -853,7 +853,7 @@ static ssize_t show_status(struct kobject *kobj,
return ret;
}
static ssize_t store_status(struct kobject *a, struct attribute *b,
static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
const char *buf, size_t count)
{
char *p = memchr(buf, '\n', count);
@ -867,7 +867,7 @@ static ssize_t store_status(struct kobject *a, struct attribute *b,
}
static ssize_t show_turbo_pct(struct kobject *kobj,
struct attribute *attr, char *buf)
struct kobj_attribute *attr, char *buf)
{
struct cpudata *cpu;
int total, no_turbo, turbo_pct;
@ -893,7 +893,7 @@ static ssize_t show_turbo_pct(struct kobject *kobj,
}
static ssize_t show_num_pstates(struct kobject *kobj,
struct attribute *attr, char *buf)
struct kobj_attribute *attr, char *buf)
{
struct cpudata *cpu;
int total;
@ -914,7 +914,7 @@ static ssize_t show_num_pstates(struct kobject *kobj,
}
static ssize_t show_no_turbo(struct kobject *kobj,
struct attribute *attr, char *buf)
struct kobj_attribute *attr, char *buf)
{
ssize_t ret;
@ -936,7 +936,7 @@ static ssize_t show_no_turbo(struct kobject *kobj,
return ret;
}
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
const char *buf, size_t count)
{
unsigned int input;
@ -983,7 +983,7 @@ static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
return count;
}
static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
const char *buf, size_t count)
{
unsigned int input;
@ -1013,7 +1013,7 @@ static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
return count;
}
static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
const char *buf, size_t count)
{
unsigned int input;
@ -1045,12 +1045,13 @@ static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
}
static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
struct attribute *attr, char *buf)
struct kobj_attribute *attr, char *buf)
{
return sprintf(buf, "%u\n", hwp_boost);
}
static ssize_t store_hwp_dynamic_boost(struct kobject *a, struct attribute *b,
static ssize_t store_hwp_dynamic_boost(struct kobject *a,
struct kobj_attribute *b,
const char *buf, size_t count)
{
unsigned int input;

View file

@ -203,6 +203,7 @@ struct at_xdmac_chan {
u32 save_cim;
u32 save_cnda;
u32 save_cndc;
u32 irq_status;
unsigned long status;
struct tasklet_struct tasklet;
struct dma_slave_config sconfig;
@ -1580,8 +1581,8 @@ static void at_xdmac_tasklet(unsigned long data)
struct at_xdmac_desc *desc;
u32 error_mask;
dev_dbg(chan2dev(&atchan->chan), "%s: status=0x%08lx\n",
__func__, atchan->status);
dev_dbg(chan2dev(&atchan->chan), "%s: status=0x%08x\n",
__func__, atchan->irq_status);
error_mask = AT_XDMAC_CIS_RBEIS
| AT_XDMAC_CIS_WBEIS
@ -1589,15 +1590,15 @@ static void at_xdmac_tasklet(unsigned long data)
if (at_xdmac_chan_is_cyclic(atchan)) {
at_xdmac_handle_cyclic(atchan);
} else if ((atchan->status & AT_XDMAC_CIS_LIS)
|| (atchan->status & error_mask)) {
} else if ((atchan->irq_status & AT_XDMAC_CIS_LIS)
|| (atchan->irq_status & error_mask)) {
struct dma_async_tx_descriptor *txd;
if (atchan->status & AT_XDMAC_CIS_RBEIS)
if (atchan->irq_status & AT_XDMAC_CIS_RBEIS)
dev_err(chan2dev(&atchan->chan), "read bus error!!!");
if (atchan->status & AT_XDMAC_CIS_WBEIS)
if (atchan->irq_status & AT_XDMAC_CIS_WBEIS)
dev_err(chan2dev(&atchan->chan), "write bus error!!!");
if (atchan->status & AT_XDMAC_CIS_ROIS)
if (atchan->irq_status & AT_XDMAC_CIS_ROIS)
dev_err(chan2dev(&atchan->chan), "request overflow error!!!");
spin_lock_bh(&atchan->lock);
@ -1652,7 +1653,7 @@ static irqreturn_t at_xdmac_interrupt(int irq, void *dev_id)
atchan = &atxdmac->chan[i];
chan_imr = at_xdmac_chan_read(atchan, AT_XDMAC_CIM);
chan_status = at_xdmac_chan_read(atchan, AT_XDMAC_CIS);
atchan->status = chan_status & chan_imr;
atchan->irq_status = chan_status & chan_imr;
dev_vdbg(atxdmac->dma.dev,
"%s: chan%d: imr=0x%x, status=0x%x\n",
__func__, i, chan_imr, chan_status);
@ -1666,7 +1667,7 @@ static irqreturn_t at_xdmac_interrupt(int irq, void *dev_id)
at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
if (atchan->status & (AT_XDMAC_CIS_RBEIS | AT_XDMAC_CIS_WBEIS))
if (atchan->irq_status & (AT_XDMAC_CIS_RBEIS | AT_XDMAC_CIS_WBEIS))
at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask);
tasklet_schedule(&atchan->tasklet);

View file

@ -642,11 +642,9 @@ static int dmatest_func(void *data)
srcs[i] = um->addr[i] + src_off;
ret = dma_mapping_error(dev->dev, um->addr[i]);
if (ret) {
dmaengine_unmap_put(um);
result("src mapping error", total_tests,
src_off, dst_off, len, ret);
failed_tests++;
continue;
goto error_unmap_continue;
}
um->to_cnt++;
}
@ -661,11 +659,9 @@ static int dmatest_func(void *data)
DMA_BIDIRECTIONAL);
ret = dma_mapping_error(dev->dev, dsts[i]);
if (ret) {
dmaengine_unmap_put(um);
result("dst mapping error", total_tests,
src_off, dst_off, len, ret);
failed_tests++;
continue;
goto error_unmap_continue;
}
um->bidi_cnt++;
}
@ -693,12 +689,10 @@ static int dmatest_func(void *data)
}
if (!tx) {
dmaengine_unmap_put(um);
result("prep error", total_tests, src_off,
dst_off, len, ret);
msleep(100);
failed_tests++;
continue;
goto error_unmap_continue;
}
done->done = false;
@ -707,12 +701,10 @@ static int dmatest_func(void *data)
cookie = tx->tx_submit(tx);
if (dma_submit_error(cookie)) {
dmaengine_unmap_put(um);
result("submit error", total_tests, src_off,
dst_off, len, ret);
msleep(100);
failed_tests++;
continue;
goto error_unmap_continue;
}
dma_async_issue_pending(chan);
@ -725,16 +717,14 @@ static int dmatest_func(void *data)
dmaengine_unmap_put(um);
result("test timed out", total_tests, src_off, dst_off,
len, 0);
failed_tests++;
continue;
goto error_unmap_continue;
} else if (status != DMA_COMPLETE) {
dmaengine_unmap_put(um);
result(status == DMA_ERROR ?
"completion error status" :
"completion busy status", total_tests, src_off,
dst_off, len, ret);
failed_tests++;
continue;
goto error_unmap_continue;
}
dmaengine_unmap_put(um);
@ -779,6 +769,12 @@ static int dmatest_func(void *data)
verbose_result("test passed", total_tests, src_off,
dst_off, len, 0);
}
continue;
error_unmap_continue:
dmaengine_unmap_put(um);
failed_tests++;
}
ktime = ktime_sub(ktime_get(), ktime);
ktime = ktime_sub(ktime, comparetime);

View file

@ -542,6 +542,7 @@ static umode_t __init ibft_check_tgt_for(void *data, int type)
case ISCSI_BOOT_TGT_NIC_ASSOC:
case ISCSI_BOOT_TGT_CHAP_TYPE:
rc = S_IRUGO;
break;
case ISCSI_BOOT_TGT_NAME:
if (tgt->tgt_name_len)
rc = S_IRUGO;

View file

@ -310,30 +310,26 @@ static int sirf_probe(struct serdev_device *serdev)
ret = -ENODEV;
goto err_put_device;
}
ret = regulator_enable(data->vcc);
if (ret)
goto err_put_device;
/* Wait for chip to boot into hibernate mode. */
msleep(SIRF_BOOT_DELAY);
}
if (data->wakeup) {
ret = gpiod_to_irq(data->wakeup);
if (ret < 0)
goto err_put_device;
goto err_disable_vcc;
data->irq = ret;
ret = devm_request_threaded_irq(dev, data->irq, NULL,
sirf_wakeup_handler,
ret = request_threaded_irq(data->irq, NULL, sirf_wakeup_handler,
IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
"wakeup", data);
if (ret)
goto err_put_device;
}
if (data->on_off) {
ret = regulator_enable(data->vcc);
if (ret)
goto err_put_device;
/* Wait for chip to boot into hibernate mode */
msleep(SIRF_BOOT_DELAY);
goto err_disable_vcc;
}
if (IS_ENABLED(CONFIG_PM)) {
@ -342,7 +338,7 @@ static int sirf_probe(struct serdev_device *serdev)
} else {
ret = sirf_runtime_resume(dev);
if (ret < 0)
goto err_disable_vcc;
goto err_free_irq;
}
ret = gnss_register_device(gdev);
@ -356,6 +352,9 @@ static int sirf_probe(struct serdev_device *serdev)
pm_runtime_disable(dev);
else
sirf_runtime_suspend(dev);
err_free_irq:
if (data->wakeup)
free_irq(data->irq, data);
err_disable_vcc:
if (data->on_off)
regulator_disable(data->vcc);
@ -376,6 +375,9 @@ static void sirf_remove(struct serdev_device *serdev)
else
sirf_runtime_suspend(&serdev->dev);
if (data->wakeup)
free_irq(data->irq, data);
if (data->on_off)
regulator_disable(data->vcc);

View file

@ -259,6 +259,7 @@ static int vf610_gpio_probe(struct platform_device *pdev)
struct vf610_gpio_port *port;
struct resource *iores;
struct gpio_chip *gc;
int i;
int ret;
port = devm_kzalloc(&pdev->dev, sizeof(*port), GFP_KERNEL);
@ -298,6 +299,10 @@ static int vf610_gpio_probe(struct platform_device *pdev)
if (ret < 0)
return ret;
/* Mask all GPIO interrupts */
for (i = 0; i < gc->ngpio; i++)
vf610_gpio_writel(0, port->base + PORT_PCR(i));
/* Clear the interrupt status register for all GPIO's */
vf610_gpio_writel(~0, port->base + PORT_ISFR);

View file

@ -1443,7 +1443,8 @@ static umode_t hwmon_attributes_visible(struct kobject *kobj,
effective_mode &= ~S_IWUSR;
if ((adev->flags & AMD_IS_APU) &&
(attr == &sensor_dev_attr_power1_cap_max.dev_attr.attr ||
(attr == &sensor_dev_attr_power1_average.dev_attr.attr ||
attr == &sensor_dev_attr_power1_cap_max.dev_attr.attr ||
attr == &sensor_dev_attr_power1_cap_min.dev_attr.attr||
attr == &sensor_dev_attr_power1_cap.dev_attr.attr))
return 0;

View file

@ -37,6 +37,7 @@
#include "amdgpu_display.h"
#include <drm/amdgpu_drm.h>
#include <linux/dma-buf.h>
#include <linux/dma-fence-array.h>
static const struct dma_buf_ops amdgpu_dmabuf_ops;
@ -188,6 +189,48 @@ amdgpu_gem_prime_import_sg_table(struct drm_device *dev,
return ERR_PTR(ret);
}
static int
__reservation_object_make_exclusive(struct reservation_object *obj)
{
struct dma_fence **fences;
unsigned int count;
int r;
if (!reservation_object_get_list(obj)) /* no shared fences to convert */
return 0;
r = reservation_object_get_fences_rcu(obj, NULL, &count, &fences);
if (r)
return r;
if (count == 0) {
/* Now that was unexpected. */
} else if (count == 1) {
reservation_object_add_excl_fence(obj, fences[0]);
dma_fence_put(fences[0]);
kfree(fences);
} else {
struct dma_fence_array *array;
array = dma_fence_array_create(count, fences,
dma_fence_context_alloc(1), 0,
false);
if (!array)
goto err_fences_put;
reservation_object_add_excl_fence(obj, &array->base);
dma_fence_put(&array->base);
}
return 0;
err_fences_put:
while (count--)
dma_fence_put(fences[count]);
kfree(fences);
return -ENOMEM;
}
/**
* amdgpu_gem_map_attach - &dma_buf_ops.attach implementation
* @dma_buf: shared DMA buffer
@ -219,16 +262,16 @@ static int amdgpu_gem_map_attach(struct dma_buf *dma_buf,
if (attach->dev->driver != adev->dev->driver) {
/*
* Wait for all shared fences to complete before we switch to future
* use of exclusive fence on this prime shared bo.
* We only create shared fences for internal use, but importers
* of the dmabuf rely on exclusive fences for implicitly
* tracking write hazards. As any of the current fences may
* correspond to a write, we need to convert all existing
* fences on the reservation object into a single exclusive
* fence.
*/
r = reservation_object_wait_timeout_rcu(bo->tbo.resv,
true, false,
MAX_SCHEDULE_TIMEOUT);
if (unlikely(r < 0)) {
DRM_DEBUG_PRIME("Fence wait failed: %li\n", r);
r = __reservation_object_make_exclusive(bo->tbo.resv);
if (r)
goto error_unreserve;
}
}
/* pin buffer into GTT */

View file

@ -3011,14 +3011,15 @@ void amdgpu_vm_get_task_info(struct amdgpu_device *adev, unsigned int pasid,
struct amdgpu_task_info *task_info)
{
struct amdgpu_vm *vm;
unsigned long flags;
spin_lock(&adev->vm_manager.pasid_lock);
spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
if (vm)
*task_info = vm->task_info;
spin_unlock(&adev->vm_manager.pasid_lock);
spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
}
/**

View file

@ -1573,6 +1573,15 @@ int drm_atomic_helper_async_check(struct drm_device *dev,
if (old_plane_state->fb != new_plane_state->fb)
return -EINVAL;
/*
* FIXME: Since prepare_fb and cleanup_fb are always called on
* the new_plane_state for async updates we need to block framebuffer
* changes. This prevents use of a fb that's been cleaned up and
* double cleanups from occuring.
*/
if (old_plane_state->fb != new_plane_state->fb)
return -EINVAL;
funcs = plane->helper_private;
if (!funcs->atomic_async_update)
return -EINVAL;

View file

@ -5676,7 +5676,7 @@ int ci_dpm_init(struct radeon_device *rdev)
u16 data_offset, size;
u8 frev, crev;
struct ci_power_info *pi;
enum pci_bus_speed speed_cap;
enum pci_bus_speed speed_cap = PCI_SPEED_UNKNOWN;
struct pci_dev *root = rdev->pdev->bus->self;
int ret;
@ -5685,7 +5685,8 @@ int ci_dpm_init(struct radeon_device *rdev)
return -ENOMEM;
rdev->pm.dpm.priv = pi;
speed_cap = pcie_get_speed_cap(root);
if (!pci_is_root_bus(rdev->pdev->bus))
speed_cap = pcie_get_speed_cap(root);
if (speed_cap == PCI_SPEED_UNKNOWN) {
pi->sys_pcie_mask = 0;
} else {

View file

@ -6899,7 +6899,7 @@ int si_dpm_init(struct radeon_device *rdev)
struct ni_power_info *ni_pi;
struct si_power_info *si_pi;
struct atom_clock_dividers dividers;
enum pci_bus_speed speed_cap;
enum pci_bus_speed speed_cap = PCI_SPEED_UNKNOWN;
struct pci_dev *root = rdev->pdev->bus->self;
int ret;
@ -6911,7 +6911,8 @@ int si_dpm_init(struct radeon_device *rdev)
eg_pi = &ni_pi->eg;
pi = &eg_pi->rv7xx;
speed_cap = pcie_get_speed_cap(root);
if (!pci_is_root_bus(rdev->pdev->bus))
speed_cap = pcie_get_speed_cap(root);
if (speed_cap == PCI_SPEED_UNKNOWN) {
si_pi->sys_pcie_mask = 0;
} else {

View file

@ -672,6 +672,7 @@ static int sun4i_tcon_init_clocks(struct device *dev,
return PTR_ERR(tcon->sclk0);
}
}
clk_prepare_enable(tcon->sclk0);
if (tcon->quirks->has_channel_1) {
tcon->sclk1 = devm_clk_get(dev, "tcon-ch1");
@ -686,6 +687,7 @@ static int sun4i_tcon_init_clocks(struct device *dev,
static void sun4i_tcon_free_clocks(struct sun4i_tcon *tcon)
{
clk_disable_unprepare(tcon->sclk0);
clk_disable_unprepare(tcon->clk);
}

View file

@ -1498,8 +1498,7 @@ static int omap_i2c_remove(struct platform_device *pdev)
return 0;
}
#ifdef CONFIG_PM
static int omap_i2c_runtime_suspend(struct device *dev)
static int __maybe_unused omap_i2c_runtime_suspend(struct device *dev)
{
struct omap_i2c_dev *omap = dev_get_drvdata(dev);
@ -1525,7 +1524,7 @@ static int omap_i2c_runtime_suspend(struct device *dev)
return 0;
}
static int omap_i2c_runtime_resume(struct device *dev)
static int __maybe_unused omap_i2c_runtime_resume(struct device *dev)
{
struct omap_i2c_dev *omap = dev_get_drvdata(dev);
@ -1540,20 +1539,18 @@ static int omap_i2c_runtime_resume(struct device *dev)
}
static const struct dev_pm_ops omap_i2c_pm_ops = {
SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
SET_RUNTIME_PM_OPS(omap_i2c_runtime_suspend,
omap_i2c_runtime_resume, NULL)
};
#define OMAP_I2C_PM_OPS (&omap_i2c_pm_ops)
#else
#define OMAP_I2C_PM_OPS NULL
#endif /* CONFIG_PM */
static struct platform_driver omap_i2c_driver = {
.probe = omap_i2c_probe,
.remove = omap_i2c_remove,
.driver = {
.name = "omap_i2c",
.pm = OMAP_I2C_PM_OPS,
.pm = &omap_i2c_pm_ops,
.of_match_table = of_match_ptr(omap_i2c_of_match),
},
};

View file

@ -980,7 +980,6 @@ void hfi1_ud_rcv(struct hfi1_packet *packet)
opcode == IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE) {
wc.ex.imm_data = packet->ohdr->u.ud.imm_data;
wc.wc_flags = IB_WC_WITH_IMM;
tlen -= sizeof(u32);
} else if (opcode == IB_OPCODE_UD_SEND_ONLY) {
wc.ex.imm_data = 0;
wc.wc_flags = 0;

View file

@ -513,7 +513,6 @@ void qib_ud_rcv(struct qib_ibport *ibp, struct ib_header *hdr,
opcode == IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE) {
wc.ex.imm_data = ohdr->u.ud.imm_data;
wc.wc_flags = IB_WC_WITH_IMM;
tlen -= sizeof(u32);
} else if (opcode == IB_OPCODE_UD_SEND_ONLY) {
wc.ex.imm_data = 0;
wc.wc_flags = 0;

View file

@ -248,7 +248,6 @@ struct ipoib_cm_tx {
struct list_head list;
struct net_device *dev;
struct ipoib_neigh *neigh;
struct ipoib_path *path;
struct ipoib_tx_buf *tx_ring;
unsigned int tx_head;
unsigned int tx_tail;

View file

@ -1312,7 +1312,6 @@ struct ipoib_cm_tx *ipoib_cm_create_tx(struct net_device *dev, struct ipoib_path
neigh->cm = tx;
tx->neigh = neigh;
tx->path = path;
tx->dev = dev;
list_add(&tx->list, &priv->cm.start_list);
set_bit(IPOIB_FLAG_INITIALIZED, &tx->flags);
@ -1371,7 +1370,7 @@ static void ipoib_cm_tx_start(struct work_struct *work)
neigh->daddr + QPN_AND_OPTIONS_OFFSET);
goto free_neigh;
}
memcpy(&pathrec, &p->path->pathrec, sizeof(pathrec));
memcpy(&pathrec, &path->pathrec, sizeof(pathrec));
spin_unlock_irqrestore(&priv->lock, flags);
netif_tx_unlock_bh(dev);

View file

@ -1337,6 +1337,7 @@ static const struct acpi_device_id elan_acpi_id[] = {
{ "ELAN0000", 0 },
{ "ELAN0100", 0 },
{ "ELAN0600", 0 },
{ "ELAN0601", 0 },
{ "ELAN0602", 0 },
{ "ELAN0605", 0 },
{ "ELAN0608", 0 },

View file

@ -187,6 +187,7 @@ enum {
MODEL_DIGITIZER_II = 0x5544, /* UD */
MODEL_GRAPHIRE = 0x4554, /* ET */
MODEL_PENPARTNER = 0x4354, /* CT */
MODEL_ARTPAD_II = 0x4B54, /* KT */
};
static void wacom_handle_model_response(struct wacom *wacom)
@ -245,6 +246,7 @@ static void wacom_handle_model_response(struct wacom *wacom)
wacom->flags = F_HAS_STYLUS2 | F_HAS_SCROLLWHEEL;
break;
case MODEL_ARTPAD_II:
case MODEL_DIGITIZER_II:
wacom->dev->name = "Wacom Digitizer II";
wacom->dev->id.version = MODEL_DIGITIZER_II;

View file

@ -1929,16 +1929,13 @@ static void do_attach(struct iommu_dev_data *dev_data,
static void do_detach(struct iommu_dev_data *dev_data)
{
struct protection_domain *domain = dev_data->domain;
struct amd_iommu *iommu;
u16 alias;
iommu = amd_iommu_rlookup_table[dev_data->devid];
alias = dev_data->alias;
/* decrease reference counters */
dev_data->domain->dev_iommu[iommu->index] -= 1;
dev_data->domain->dev_cnt -= 1;
/* Update data structures */
dev_data->domain = NULL;
list_del(&dev_data->list);
@ -1948,6 +1945,16 @@ static void do_detach(struct iommu_dev_data *dev_data)
/* Flush the DTE entry */
device_flush_dte(dev_data);
/* Flush IOTLB */
domain_flush_tlb_pde(domain);
/* Wait for the flushes to finish */
domain_flush_complete(domain);
/* decrease reference counters - needs to happen after the flushes */
domain->dev_iommu[iommu->index] -= 1;
domain->dev_cnt -= 1;
}
/*
@ -2555,13 +2562,13 @@ static int map_sg(struct device *dev, struct scatterlist *sglist,
bus_addr = address + s->dma_address + (j << PAGE_SHIFT);
iommu_unmap_page(domain, bus_addr, PAGE_SIZE);
if (--mapped_pages)
if (--mapped_pages == 0)
goto out_free_iova;
}
}
out_free_iova:
free_iova_fast(&dma_dom->iovad, address, npages);
free_iova_fast(&dma_dom->iovad, address >> PAGE_SHIFT, npages);
out_err:
return 0;

View file

@ -1581,6 +1581,9 @@ static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
nr_irqs /= 2;
} while (nr_irqs > 0);
if (!nr_irqs)
err = -ENOSPC;
if (err)
goto out;
@ -1951,6 +1954,29 @@ static void its_free_pending_table(struct page *pt)
get_order(max_t(u32, LPI_PENDBASE_SZ, SZ_64K)));
}
static u64 its_clear_vpend_valid(void __iomem *vlpi_base)
{
u32 count = 1000000; /* 1s! */
bool clean;
u64 val;
val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
val &= ~GICR_VPENDBASER_Valid;
gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
do {
val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
clean = !(val & GICR_VPENDBASER_Dirty);
if (!clean) {
count--;
cpu_relax();
udelay(1);
}
} while (!clean && count);
return val;
}
static void its_cpu_init_lpis(void)
{
void __iomem *rbase = gic_data_rdist_rd_base();
@ -2024,6 +2050,30 @@ static void its_cpu_init_lpis(void)
val |= GICR_CTLR_ENABLE_LPIS;
writel_relaxed(val, rbase + GICR_CTLR);
if (gic_rdists->has_vlpis) {
void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
/*
* It's possible for CPU to receive VLPIs before it is
* sheduled as a vPE, especially for the first CPU, and the
* VLPI with INTID larger than 2^(IDbits+1) will be considered
* as out of range and dropped by GIC.
* So we initialize IDbits to known value to avoid VLPI drop.
*/
val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
smp_processor_id(), val);
gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
/*
* Also clear Valid bit of GICR_VPENDBASER, in case some
* ancient programming gets left in and has possibility of
* corrupting memory.
*/
val = its_clear_vpend_valid(vlpi_base);
WARN_ON(val & GICR_VPENDBASER_Dirty);
}
/* Make sure the GIC has seen the above */
dsb(sy);
}
@ -2644,26 +2694,11 @@ static void its_vpe_schedule(struct its_vpe *vpe)
static void its_vpe_deschedule(struct its_vpe *vpe)
{
void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
u32 count = 1000000; /* 1s! */
bool clean;
u64 val;
/* We're being scheduled out */
val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
val &= ~GICR_VPENDBASER_Valid;
gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
val = its_clear_vpend_valid(vlpi_base);
do {
val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
clean = !(val & GICR_VPENDBASER_Dirty);
if (!clean) {
count--;
cpu_relax();
udelay(1);
}
} while (!clean && count);
if (unlikely(!clean && !count)) {
if (unlikely(val & GICR_VPENDBASER_Dirty)) {
pr_err_ratelimited("ITS virtual pending table not cleaning\n");
vpe->idai = false;
vpe->pending_last = true;

View file

@ -34,6 +34,9 @@
#define SEL_INT_PENDING (1 << 6)
#define SEL_INT_NUM_MASK 0x3f
#define MMP2_ICU_INT_ROUTE_PJ4_IRQ (1 << 5)
#define MMP2_ICU_INT_ROUTE_PJ4_FIQ (1 << 6)
struct icu_chip_data {
int nr_irqs;
unsigned int virq_base;
@ -190,7 +193,8 @@ static const struct mmp_intc_conf mmp_conf = {
static const struct mmp_intc_conf mmp2_conf = {
.conf_enable = 0x20,
.conf_disable = 0x0,
.conf_mask = 0x7f,
.conf_mask = MMP2_ICU_INT_ROUTE_PJ4_IRQ |
MMP2_ICU_INT_ROUTE_PJ4_FIQ,
};
static void __exception_irq_entry mmp_handle_irq(struct pt_regs *regs)

View file

@ -4630,7 +4630,6 @@ static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
atomic_inc(&r10_bio->remaining);
read_bio->bi_next = NULL;
generic_make_request(read_bio);
sector_nr += nr_sectors;
sectors_done += nr_sectors;
if (sector_nr <= last)
goto read_more;

View file

@ -1065,11 +1065,19 @@ static int uvc_parse_standard_control(struct uvc_device *dev,
return -EINVAL;
}
/* Make sure the terminal type MSB is not null, otherwise it
* could be confused with a unit.
/*
* Reject invalid terminal types that would cause issues:
*
* - The high byte must be non-zero, otherwise it would be
* confused with a unit.
*
* - Bit 15 must be 0, as we use it internally as a terminal
* direction flag.
*
* Other unknown types are accepted.
*/
type = get_unaligned_le16(&buffer[4]);
if ((type & 0xff00) == 0) {
if ((type & 0x7f00) == 0 || (type & 0x8000) != 0) {
uvc_trace(UVC_TRACE_DESCR, "device %d videocontrol "
"interface %d INPUT_TERMINAL %d has invalid "
"type 0x%04x, skipping\n", udev->devnum,

View file

@ -1171,29 +1171,22 @@ static rx_handler_result_t bond_handle_frame(struct sk_buff **pskb)
}
}
/* Link-local multicast packets should be passed to the
* stack on the link they arrive as well as pass them to the
* bond-master device. These packets are mostly usable when
* stack receives it with the link on which they arrive
* (e.g. LLDP) they also must be available on master. Some of
* the use cases include (but are not limited to): LLDP agents
* that must be able to operate both on enslaved interfaces as
* well as on bonds themselves; linux bridges that must be able
* to process/pass BPDUs from attached bonds when any kind of
* STP version is enabled on the network.
/*
* For packets determined by bond_should_deliver_exact_match() call to
* be suppressed we want to make an exception for link-local packets.
* This is necessary for e.g. LLDP daemons to be able to monitor
* inactive slave links without being forced to bind to them
* explicitly.
*
* At the same time, packets that are passed to the bonding master
* (including link-local ones) can have their originating interface
* determined via PACKET_ORIGDEV socket option.
*/
if (is_link_local_ether_addr(eth_hdr(skb)->h_dest)) {
struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
if (nskb) {
nskb->dev = bond->dev;
nskb->queue_mapping = 0;
netif_rx(nskb);
}
return RX_HANDLER_PASS;
}
if (bond_should_deliver_exact_match(skb, slave, bond))
if (bond_should_deliver_exact_match(skb, slave, bond)) {
if (is_link_local_ether_addr(eth_hdr(skb)->h_dest))
return RX_HANDLER_PASS;
return RX_HANDLER_EXACT;
}
skb->dev = bond->dev;

View file

@ -884,7 +884,7 @@ static uint64_t _mv88e6xxx_get_ethtool_stat(struct mv88e6xxx_chip *chip,
default:
return U64_MAX;
}
value = (((u64)high) << 16) | low;
value = (((u64)high) << 32) | low;
return value;
}
@ -3070,7 +3070,7 @@ static const struct mv88e6xxx_ops mv88e6161_ops = {
.port_disable_pri_override = mv88e6xxx_port_disable_pri_override,
.port_link_state = mv88e6352_port_link_state,
.port_get_cmode = mv88e6185_port_get_cmode,
.stats_snapshot = mv88e6320_g1_stats_snapshot,
.stats_snapshot = mv88e6xxx_g1_stats_snapshot,
.stats_set_histogram = mv88e6095_g1_stats_set_histogram,
.stats_get_sset_count = mv88e6095_stats_get_sset_count,
.stats_get_strings = mv88e6095_stats_get_strings,
@ -4188,7 +4188,7 @@ static const struct mv88e6xxx_info mv88e6xxx_table[] = {
.name = "Marvell 88E6190",
.num_databases = 4096,
.num_ports = 11, /* 10 + Z80 */
.num_internal_phys = 11,
.num_internal_phys = 9,
.num_gpio = 16,
.max_vid = 8191,
.port_base_addr = 0x0,
@ -4211,7 +4211,7 @@ static const struct mv88e6xxx_info mv88e6xxx_table[] = {
.name = "Marvell 88E6190X",
.num_databases = 4096,
.num_ports = 11, /* 10 + Z80 */
.num_internal_phys = 11,
.num_internal_phys = 9,
.num_gpio = 16,
.max_vid = 8191,
.port_base_addr = 0x0,
@ -4234,7 +4234,7 @@ static const struct mv88e6xxx_info mv88e6xxx_table[] = {
.name = "Marvell 88E6191",
.num_databases = 4096,
.num_ports = 11, /* 10 + Z80 */
.num_internal_phys = 11,
.num_internal_phys = 9,
.max_vid = 8191,
.port_base_addr = 0x0,
.phy_base_addr = 0x0,
@ -4281,7 +4281,7 @@ static const struct mv88e6xxx_info mv88e6xxx_table[] = {
.name = "Marvell 88E6290",
.num_databases = 4096,
.num_ports = 11, /* 10 + Z80 */
.num_internal_phys = 11,
.num_internal_phys = 9,
.num_gpio = 16,
.max_vid = 8191,
.port_base_addr = 0x0,
@ -4443,7 +4443,7 @@ static const struct mv88e6xxx_info mv88e6xxx_table[] = {
.name = "Marvell 88E6390",
.num_databases = 4096,
.num_ports = 11, /* 10 + Z80 */
.num_internal_phys = 11,
.num_internal_phys = 9,
.num_gpio = 16,
.max_vid = 8191,
.port_base_addr = 0x0,
@ -4466,7 +4466,7 @@ static const struct mv88e6xxx_info mv88e6xxx_table[] = {
.name = "Marvell 88E6390X",
.num_databases = 4096,
.num_ports = 11, /* 10 + Z80 */
.num_internal_phys = 11,
.num_internal_phys = 9,
.num_gpio = 16,
.max_vid = 8191,
.port_base_addr = 0x0,
@ -4561,6 +4561,14 @@ static int mv88e6xxx_smi_init(struct mv88e6xxx_chip *chip,
return 0;
}
static void mv88e6xxx_ports_cmode_init(struct mv88e6xxx_chip *chip)
{
int i;
for (i = 0; i < mv88e6xxx_num_ports(chip); i++)
chip->ports[i].cmode = MV88E6XXX_PORT_STS_CMODE_INVALID;
}
static enum dsa_tag_protocol mv88e6xxx_get_tag_protocol(struct dsa_switch *ds,
int port)
{
@ -4597,6 +4605,8 @@ static const char *mv88e6xxx_drv_probe(struct device *dsa_dev,
if (err)
goto free;
mv88e6xxx_ports_cmode_init(chip);
mutex_lock(&chip->reg_lock);
err = mv88e6xxx_switch_reset(chip);
mutex_unlock(&chip->reg_lock);

View file

@ -190,7 +190,7 @@ int mv88e6xxx_port_set_duplex(struct mv88e6xxx_chip *chip, int port, int dup)
/* normal duplex detection */
break;
default:
return -EINVAL;
return -EOPNOTSUPP;
}
err = mv88e6xxx_port_write(chip, port, MV88E6XXX_PORT_MAC_CTL, reg);
@ -374,6 +374,10 @@ int mv88e6390x_port_set_cmode(struct mv88e6xxx_chip *chip, int port,
cmode = 0;
}
/* cmode doesn't change, nothing to do for us */
if (cmode == chip->ports[port].cmode)
return 0;
lane = mv88e6390x_serdes_get_lane(chip, port);
if (lane < 0)
return lane;
@ -384,7 +388,7 @@ int mv88e6390x_port_set_cmode(struct mv88e6xxx_chip *chip, int port,
return err;
}
err = mv88e6390_serdes_power(chip, port, false);
err = mv88e6390x_serdes_power(chip, port, false);
if (err)
return err;
@ -400,7 +404,7 @@ int mv88e6390x_port_set_cmode(struct mv88e6xxx_chip *chip, int port,
if (err)
return err;
err = mv88e6390_serdes_power(chip, port, true);
err = mv88e6390x_serdes_power(chip, port, true);
if (err)
return err;

View file

@ -52,6 +52,7 @@
#define MV88E6185_PORT_STS_CMODE_1000BASE_X 0x0005
#define MV88E6185_PORT_STS_CMODE_PHY 0x0006
#define MV88E6185_PORT_STS_CMODE_DISABLED 0x0007
#define MV88E6XXX_PORT_STS_CMODE_INVALID 0xff
/* Offset 0x01: MAC (or PCS or Physical) Control Register */
#define MV88E6XXX_PORT_MAC_CTL 0x01

View file

@ -145,7 +145,8 @@ u32 msgdma_tx_completions(struct altera_tse_private *priv)
& 0xffff;
if (inuse) { /* Tx FIFO is not empty */
ready = priv->tx_prod - priv->tx_cons - inuse - 1;
ready = max_t(int,
priv->tx_prod - priv->tx_cons - inuse - 1, 0);
} else {
/* Check for buffered last packet */
status = csrrd32(priv->tx_dma_csr, msgdma_csroffs(status));

View file

@ -463,6 +463,12 @@ static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
}
length >>= 9;
if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) {
dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n",
skb->len);
i = 0;
goto tx_dma_error;
}
flags |= bnxt_lhint_arr[length];
txbd->tx_bd_len_flags_type = cpu_to_le32(flags);

View file

@ -643,6 +643,7 @@
#define MACB_CAPS_JUMBO 0x00000020
#define MACB_CAPS_GEM_HAS_PTP 0x00000040
#define MACB_CAPS_BD_RD_PREFETCH 0x00000080
#define MACB_CAPS_NEEDS_RSTONUBR 0x00000100
#define MACB_CAPS_FIFO_MODE 0x10000000
#define MACB_CAPS_GIGABIT_MODE_AVAILABLE 0x20000000
#define MACB_CAPS_SG_DISABLED 0x40000000
@ -1214,6 +1215,8 @@ struct macb {
int rx_bd_rd_prefetch;
int tx_bd_rd_prefetch;
u32 rx_intr_mask;
};
#ifdef CONFIG_MACB_USE_HWSTAMP

View file

@ -56,8 +56,7 @@
/* level of occupied TX descriptors under which we wake up TX process */
#define MACB_TX_WAKEUP_THRESH(bp) (3 * (bp)->tx_ring_size / 4)
#define MACB_RX_INT_FLAGS (MACB_BIT(RCOMP) | MACB_BIT(RXUBR) \
| MACB_BIT(ISR_ROVR))
#define MACB_RX_INT_FLAGS (MACB_BIT(RCOMP) | MACB_BIT(ISR_ROVR))
#define MACB_TX_ERR_FLAGS (MACB_BIT(ISR_TUND) \
| MACB_BIT(ISR_RLE) \
| MACB_BIT(TXERR))
@ -1271,7 +1270,7 @@ static int macb_poll(struct napi_struct *napi, int budget)
queue_writel(queue, ISR, MACB_BIT(RCOMP));
napi_reschedule(napi);
} else {
queue_writel(queue, IER, MACB_RX_INT_FLAGS);
queue_writel(queue, IER, bp->rx_intr_mask);
}
}
@ -1289,7 +1288,7 @@ static void macb_hresp_error_task(unsigned long data)
u32 ctrl;
for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
queue_writel(queue, IDR, MACB_RX_INT_FLAGS |
queue_writel(queue, IDR, bp->rx_intr_mask |
MACB_TX_INT_FLAGS |
MACB_BIT(HRESP));
}
@ -1319,7 +1318,7 @@ static void macb_hresp_error_task(unsigned long data)
/* Enable interrupts */
queue_writel(queue, IER,
MACB_RX_INT_FLAGS |
bp->rx_intr_mask |
MACB_TX_INT_FLAGS |
MACB_BIT(HRESP));
}
@ -1373,14 +1372,14 @@ static irqreturn_t macb_interrupt(int irq, void *dev_id)
(unsigned int)(queue - bp->queues),
(unsigned long)status);
if (status & MACB_RX_INT_FLAGS) {
if (status & bp->rx_intr_mask) {
/* There's no point taking any more interrupts
* until we have processed the buffers. The
* scheduling call may fail if the poll routine
* is already scheduled, so disable interrupts
* now.
*/
queue_writel(queue, IDR, MACB_RX_INT_FLAGS);
queue_writel(queue, IDR, bp->rx_intr_mask);
if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
queue_writel(queue, ISR, MACB_BIT(RCOMP));
@ -1413,8 +1412,9 @@ static irqreturn_t macb_interrupt(int irq, void *dev_id)
/* There is a hardware issue under heavy load where DMA can
* stop, this causes endless "used buffer descriptor read"
* interrupts but it can be cleared by re-enabling RX. See
* the at91 manual, section 41.3.1 or the Zynq manual
* section 16.7.4 for details.
* the at91rm9200 manual, section 41.3.1 or the Zynq manual
* section 16.7.4 for details. RXUBR is only enabled for
* these two versions.
*/
if (status & MACB_BIT(RXUBR)) {
ctrl = macb_readl(bp, NCR);
@ -2264,7 +2264,7 @@ static void macb_init_hw(struct macb *bp)
/* Enable interrupts */
queue_writel(queue, IER,
MACB_RX_INT_FLAGS |
bp->rx_intr_mask |
MACB_TX_INT_FLAGS |
MACB_BIT(HRESP));
}
@ -3912,6 +3912,7 @@ static const struct macb_config sama5d4_config = {
};
static const struct macb_config emac_config = {
.caps = MACB_CAPS_NEEDS_RSTONUBR,
.clk_init = at91ether_clk_init,
.init = at91ether_init,
};
@ -3933,7 +3934,8 @@ static const struct macb_config zynqmp_config = {
};
static const struct macb_config zynq_config = {
.caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_NO_GIGABIT_HALF,
.caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_NO_GIGABIT_HALF |
MACB_CAPS_NEEDS_RSTONUBR,
.dma_burst_length = 16,
.clk_init = macb_clk_init,
.init = macb_init,
@ -4088,6 +4090,10 @@ static int macb_probe(struct platform_device *pdev)
macb_dma_desc_get_size(bp);
}
bp->rx_intr_mask = MACB_RX_INT_FLAGS;
if (bp->caps & MACB_CAPS_NEEDS_RSTONUBR)
bp->rx_intr_mask |= MACB_BIT(RXUBR);
mac = of_get_mac_address(np);
if (mac) {
ether_addr_copy(bp->dev->dev_addr, mac);

View file

@ -2419,6 +2419,8 @@ static int hns_nic_dev_probe(struct platform_device *pdev)
out_notify_fail:
(void)cancel_work_sync(&priv->service_task);
out_read_prop_fail:
/* safe for ACPI FW */
of_node_put(to_of_node(priv->fwnode));
free_netdev(ndev);
return ret;
}
@ -2448,6 +2450,9 @@ static int hns_nic_dev_remove(struct platform_device *pdev)
set_bit(NIC_STATE_REMOVING, &priv->state);
(void)cancel_work_sync(&priv->service_task);
/* safe for ACPI FW */
of_node_put(to_of_node(priv->fwnode));
free_netdev(ndev);
return 0;
}

View file

@ -1157,16 +1157,18 @@ static int hns_get_regs_len(struct net_device *net_dev)
*/
static int hns_nic_nway_reset(struct net_device *netdev)
{
int ret = 0;
struct phy_device *phy = netdev->phydev;
if (netif_running(netdev)) {
/* if autoneg is disabled, don't restart auto-negotiation */
if (phy && phy->autoneg == AUTONEG_ENABLE)
ret = genphy_restart_aneg(phy);
}
if (!netif_running(netdev))
return 0;
return ret;
if (!phy)
return -EOPNOTSUPP;
if (phy->autoneg != AUTONEG_ENABLE)
return -EINVAL;
return genphy_restart_aneg(phy);
}
static u32

View file

@ -321,7 +321,7 @@ static int hns_mdio_read(struct mii_bus *bus, int phy_id, int regnum)
}
hns_mdio_cmd_write(mdio_dev, is_c45,
MDIO_C45_WRITE_ADDR, phy_id, devad);
MDIO_C45_READ, phy_id, devad);
}
/* Step 5: waitting for MDIO_COMMAND_REG 's mdio_start==0,*/

View file

@ -424,9 +424,9 @@ static void i40e_get_netdev_stats_struct(struct net_device *netdev,
struct rtnl_link_stats64 *stats)
{
struct i40e_netdev_priv *np = netdev_priv(netdev);
struct i40e_ring *tx_ring, *rx_ring;
struct i40e_vsi *vsi = np->vsi;
struct rtnl_link_stats64 *vsi_stats = i40e_get_vsi_stats_struct(vsi);
struct i40e_ring *ring;
int i;
if (test_bit(__I40E_VSI_DOWN, vsi->state))
@ -440,24 +440,26 @@ static void i40e_get_netdev_stats_struct(struct net_device *netdev,
u64 bytes, packets;
unsigned int start;
tx_ring = READ_ONCE(vsi->tx_rings[i]);
if (!tx_ring)
ring = READ_ONCE(vsi->tx_rings[i]);
if (!ring)
continue;
i40e_get_netdev_stats_struct_tx(tx_ring, stats);
i40e_get_netdev_stats_struct_tx(ring, stats);
rx_ring = &tx_ring[1];
if (i40e_enabled_xdp_vsi(vsi)) {
ring++;
i40e_get_netdev_stats_struct_tx(ring, stats);
}
ring++;
do {
start = u64_stats_fetch_begin_irq(&rx_ring->syncp);
packets = rx_ring->stats.packets;
bytes = rx_ring->stats.bytes;
} while (u64_stats_fetch_retry_irq(&rx_ring->syncp, start));
start = u64_stats_fetch_begin_irq(&ring->syncp);
packets = ring->stats.packets;
bytes = ring->stats.bytes;
} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
stats->rx_packets += packets;
stats->rx_bytes += bytes;
if (i40e_enabled_xdp_vsi(vsi))
i40e_get_netdev_stats_struct_tx(&rx_ring[1], stats);
}
rcu_read_unlock();

View file

@ -46,6 +46,7 @@
#include <linux/mii.h>
#include <linux/of_device.h>
#include <linux/of_net.h>
#include <linux/dmi.h>
#include <asm/irq.h>
@ -93,7 +94,7 @@ static int copybreak __read_mostly = 128;
module_param(copybreak, int, 0);
MODULE_PARM_DESC(copybreak, "Receive copy threshold");
static int disable_msi = 0;
static int disable_msi = -1;
module_param(disable_msi, int, 0);
MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
@ -4931,6 +4932,24 @@ static const char *sky2_name(u8 chipid, char *buf, int sz)
return buf;
}
static const struct dmi_system_id msi_blacklist[] = {
{
.ident = "Dell Inspiron 1545",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."),
DMI_MATCH(DMI_PRODUCT_NAME, "Inspiron 1545"),
},
},
{
.ident = "Gateway P-79",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Gateway"),
DMI_MATCH(DMI_PRODUCT_NAME, "P-79"),
},
},
{}
};
static int sky2_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct net_device *dev, *dev1;
@ -5042,6 +5061,9 @@ static int sky2_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
goto err_out_free_pci;
}
if (disable_msi == -1)
disable_msi = !!dmi_check_system(msi_blacklist);
if (!disable_msi && pci_enable_msi(pdev) == 0) {
err = sky2_test_msi(hw);
if (err) {

View file

@ -2645,6 +2645,8 @@ int mlx4_cmd_use_events(struct mlx4_dev *dev)
if (!priv->cmd.context)
return -ENOMEM;
if (mlx4_is_mfunc(dev))
mutex_lock(&priv->cmd.slave_cmd_mutex);
down_write(&priv->cmd.switch_sem);
for (i = 0; i < priv->cmd.max_cmds; ++i) {
priv->cmd.context[i].token = i;
@ -2670,6 +2672,8 @@ int mlx4_cmd_use_events(struct mlx4_dev *dev)
down(&priv->cmd.poll_sem);
priv->cmd.use_events = 1;
up_write(&priv->cmd.switch_sem);
if (mlx4_is_mfunc(dev))
mutex_unlock(&priv->cmd.slave_cmd_mutex);
return err;
}
@ -2682,6 +2686,8 @@ void mlx4_cmd_use_polling(struct mlx4_dev *dev)
struct mlx4_priv *priv = mlx4_priv(dev);
int i;
if (mlx4_is_mfunc(dev))
mutex_lock(&priv->cmd.slave_cmd_mutex);
down_write(&priv->cmd.switch_sem);
priv->cmd.use_events = 0;
@ -2689,9 +2695,12 @@ void mlx4_cmd_use_polling(struct mlx4_dev *dev)
down(&priv->cmd.event_sem);
kfree(priv->cmd.context);
priv->cmd.context = NULL;
up(&priv->cmd.poll_sem);
up_write(&priv->cmd.switch_sem);
if (mlx4_is_mfunc(dev))
mutex_unlock(&priv->cmd.slave_cmd_mutex);
}
struct mlx4_cmd_mailbox *mlx4_alloc_cmd_mailbox(struct mlx4_dev *dev)

View file

@ -2719,13 +2719,13 @@ static int qp_get_mtt_size(struct mlx4_qp_context *qpc)
int total_pages;
int total_mem;
int page_offset = (be32_to_cpu(qpc->params2) >> 6) & 0x3f;
int tot;
sq_size = 1 << (log_sq_size + log_sq_sride + 4);
rq_size = (srq|rss|xrc) ? 0 : (1 << (log_rq_size + log_rq_stride + 4));
total_mem = sq_size + rq_size;
total_pages =
roundup_pow_of_two((total_mem + (page_offset << 6)) >>
page_shift);
tot = (total_mem + (page_offset << 6)) >> page_shift;
total_pages = !tot ? 1 : roundup_pow_of_two(tot);
return total_pages;
}

View file

@ -585,8 +585,7 @@ static int lan743x_intr_open(struct lan743x_adapter *adapter)
if (adapter->csr.flags &
LAN743X_CSR_FLAG_SUPPORTS_INTR_AUTO_SET_CLR) {
flags = LAN743X_VECTOR_FLAG_VECTOR_ENABLE_AUTO_CLEAR |
LAN743X_VECTOR_FLAG_VECTOR_ENABLE_AUTO_SET |
flags = LAN743X_VECTOR_FLAG_VECTOR_ENABLE_AUTO_SET |
LAN743X_VECTOR_FLAG_SOURCE_ENABLE_AUTO_SET |
LAN743X_VECTOR_FLAG_SOURCE_ENABLE_AUTO_CLEAR |
LAN743X_VECTOR_FLAG_SOURCE_STATUS_AUTO_CLEAR;
@ -599,12 +598,6 @@ static int lan743x_intr_open(struct lan743x_adapter *adapter)
/* map TX interrupt to vector */
int_vec_map1 |= INT_VEC_MAP1_TX_VEC_(index, vector);
lan743x_csr_write(adapter, INT_VEC_MAP1, int_vec_map1);
if (flags &
LAN743X_VECTOR_FLAG_VECTOR_ENABLE_AUTO_CLEAR) {
int_vec_en_auto_clr |= INT_VEC_EN_(vector);
lan743x_csr_write(adapter, INT_VEC_EN_AUTO_CLR,
int_vec_en_auto_clr);
}
/* Remove TX interrupt from shared mask */
intr->vector_list[0].int_mask &= ~int_bit;
@ -1403,7 +1396,8 @@ static int lan743x_tx_frame_start(struct lan743x_tx *tx,
}
static void lan743x_tx_frame_add_lso(struct lan743x_tx *tx,
unsigned int frame_length)
unsigned int frame_length,
int nr_frags)
{
/* called only from within lan743x_tx_xmit_frame.
* assuming tx->ring_lock has already been acquired.
@ -1413,6 +1407,10 @@ static void lan743x_tx_frame_add_lso(struct lan743x_tx *tx,
/* wrap up previous descriptor */
tx->frame_data0 |= TX_DESC_DATA0_EXT_;
if (nr_frags <= 0) {
tx->frame_data0 |= TX_DESC_DATA0_LS_;
tx->frame_data0 |= TX_DESC_DATA0_IOC_;
}
tx_descriptor = &tx->ring_cpu_ptr[tx->frame_tail];
tx_descriptor->data0 = tx->frame_data0;
@ -1517,8 +1515,11 @@ static void lan743x_tx_frame_end(struct lan743x_tx *tx,
u32 tx_tail_flags = 0;
/* wrap up previous descriptor */
tx->frame_data0 |= TX_DESC_DATA0_LS_;
tx->frame_data0 |= TX_DESC_DATA0_IOC_;
if ((tx->frame_data0 & TX_DESC_DATA0_DTYPE_MASK_) ==
TX_DESC_DATA0_DTYPE_DATA_) {
tx->frame_data0 |= TX_DESC_DATA0_LS_;
tx->frame_data0 |= TX_DESC_DATA0_IOC_;
}
tx_descriptor = &tx->ring_cpu_ptr[tx->frame_tail];
buffer_info = &tx->buffer_info[tx->frame_tail];
@ -1603,7 +1604,7 @@ static netdev_tx_t lan743x_tx_xmit_frame(struct lan743x_tx *tx,
}
if (gso)
lan743x_tx_frame_add_lso(tx, frame_length);
lan743x_tx_frame_add_lso(tx, frame_length, nr_frags);
if (nr_frags <= 0)
goto finish;
@ -1897,7 +1898,17 @@ static int lan743x_rx_next_index(struct lan743x_rx *rx, int index)
return ((++index) % rx->ring_size);
}
static int lan743x_rx_allocate_ring_element(struct lan743x_rx *rx, int index)
static struct sk_buff *lan743x_rx_allocate_skb(struct lan743x_rx *rx)
{
int length = 0;
length = (LAN743X_MAX_FRAME_SIZE + ETH_HLEN + 4 + RX_HEAD_PADDING);
return __netdev_alloc_skb(rx->adapter->netdev,
length, GFP_ATOMIC | GFP_DMA);
}
static int lan743x_rx_init_ring_element(struct lan743x_rx *rx, int index,
struct sk_buff *skb)
{
struct lan743x_rx_buffer_info *buffer_info;
struct lan743x_rx_descriptor *descriptor;
@ -1906,9 +1917,7 @@ static int lan743x_rx_allocate_ring_element(struct lan743x_rx *rx, int index)
length = (LAN743X_MAX_FRAME_SIZE + ETH_HLEN + 4 + RX_HEAD_PADDING);
descriptor = &rx->ring_cpu_ptr[index];
buffer_info = &rx->buffer_info[index];
buffer_info->skb = __netdev_alloc_skb(rx->adapter->netdev,
length,
GFP_ATOMIC | GFP_DMA);
buffer_info->skb = skb;
if (!(buffer_info->skb))
return -ENOMEM;
buffer_info->dma_ptr = dma_map_single(&rx->adapter->pdev->dev,
@ -2055,8 +2064,19 @@ static int lan743x_rx_process_packet(struct lan743x_rx *rx)
/* packet is available */
if (first_index == last_index) {
/* single buffer packet */
struct sk_buff *new_skb = NULL;
int packet_length;
new_skb = lan743x_rx_allocate_skb(rx);
if (!new_skb) {
/* failed to allocate next skb.
* Memory is very low.
* Drop this packet and reuse buffer.
*/
lan743x_rx_reuse_ring_element(rx, first_index);
goto process_extension;
}
buffer_info = &rx->buffer_info[first_index];
skb = buffer_info->skb;
descriptor = &rx->ring_cpu_ptr[first_index];
@ -2076,7 +2096,7 @@ static int lan743x_rx_process_packet(struct lan743x_rx *rx)
skb_put(skb, packet_length - 4);
skb->protocol = eth_type_trans(skb,
rx->adapter->netdev);
lan743x_rx_allocate_ring_element(rx, first_index);
lan743x_rx_init_ring_element(rx, first_index, new_skb);
} else {
int index = first_index;
@ -2089,26 +2109,23 @@ static int lan743x_rx_process_packet(struct lan743x_rx *rx)
if (first_index <= last_index) {
while ((index >= first_index) &&
(index <= last_index)) {
lan743x_rx_release_ring_element(rx,
index);
lan743x_rx_allocate_ring_element(rx,
index);
lan743x_rx_reuse_ring_element(rx,
index);
index = lan743x_rx_next_index(rx,
index);
}
} else {
while ((index >= first_index) ||
(index <= last_index)) {
lan743x_rx_release_ring_element(rx,
index);
lan743x_rx_allocate_ring_element(rx,
index);
lan743x_rx_reuse_ring_element(rx,
index);
index = lan743x_rx_next_index(rx,
index);
}
}
}
process_extension:
if (extension_index >= 0) {
descriptor = &rx->ring_cpu_ptr[extension_index];
buffer_info = &rx->buffer_info[extension_index];
@ -2285,7 +2302,9 @@ static int lan743x_rx_ring_init(struct lan743x_rx *rx)
rx->last_head = 0;
for (index = 0; index < rx->ring_size; index++) {
ret = lan743x_rx_allocate_ring_element(rx, index);
struct sk_buff *new_skb = lan743x_rx_allocate_skb(rx);
ret = lan743x_rx_init_ring_element(rx, index, new_skb);
if (ret)
goto cleanup;
}

View file

@ -473,19 +473,19 @@ static void qed_init_qm_pq(struct qed_hwfn *p_hwfn,
/* get pq index according to PQ_FLAGS */
static u16 *qed_init_qm_get_idx_from_flags(struct qed_hwfn *p_hwfn,
u32 pq_flags)
unsigned long pq_flags)
{
struct qed_qm_info *qm_info = &p_hwfn->qm_info;
/* Can't have multiple flags set here */
if (bitmap_weight((unsigned long *)&pq_flags,
if (bitmap_weight(&pq_flags,
sizeof(pq_flags) * BITS_PER_BYTE) > 1) {
DP_ERR(p_hwfn, "requested multiple pq flags 0x%x\n", pq_flags);
DP_ERR(p_hwfn, "requested multiple pq flags 0x%lx\n", pq_flags);
goto err;
}
if (!(qed_get_pq_flags(p_hwfn) & pq_flags)) {
DP_ERR(p_hwfn, "pq flag 0x%x is not set\n", pq_flags);
DP_ERR(p_hwfn, "pq flag 0x%lx is not set\n", pq_flags);
goto err;
}

View file

@ -609,6 +609,10 @@ qed_sp_update_accept_mode(struct qed_hwfn *p_hwfn,
(!!(accept_filter & QED_ACCEPT_MCAST_MATCHED) &&
!!(accept_filter & QED_ACCEPT_MCAST_UNMATCHED)));
SET_FIELD(state, ETH_VPORT_TX_MODE_UCAST_ACCEPT_ALL,
(!!(accept_filter & QED_ACCEPT_UCAST_MATCHED) &&
!!(accept_filter & QED_ACCEPT_UCAST_UNMATCHED)));
SET_FIELD(state, ETH_VPORT_TX_MODE_BCAST_ACCEPT_ALL,
!!(accept_filter & QED_ACCEPT_BCAST));
@ -744,6 +748,11 @@ int qed_sp_vport_update(struct qed_hwfn *p_hwfn,
return rc;
}
if (p_params->update_ctl_frame_check) {
p_cmn->ctl_frame_mac_check_en = p_params->mac_chk_en;
p_cmn->ctl_frame_ethtype_check_en = p_params->ethtype_chk_en;
}
/* Update mcast bins for VFs, PF doesn't use this functionality */
qed_sp_update_mcast_bin(p_hwfn, p_ramrod, p_params);
@ -2207,7 +2216,7 @@ static int qed_fill_eth_dev_info(struct qed_dev *cdev,
u16 num_queues = 0;
/* Since the feature controls only queue-zones,
* make sure we have the contexts [rx, tx, xdp] to
* make sure we have the contexts [rx, xdp, tcs] to
* match.
*/
for_each_hwfn(cdev, i) {
@ -2217,7 +2226,8 @@ static int qed_fill_eth_dev_info(struct qed_dev *cdev,
u16 cids;
cids = hwfn->pf_params.eth_pf_params.num_cons;
num_queues += min_t(u16, l2_queues, cids / 3);
cids /= (2 + info->num_tc);
num_queues += min_t(u16, l2_queues, cids);
}
/* queues might theoretically be >256, but interrupts'
@ -2688,7 +2698,8 @@ static int qed_configure_filter_rx_mode(struct qed_dev *cdev,
if (type == QED_FILTER_RX_MODE_TYPE_PROMISC) {
accept_flags.rx_accept_filter |= QED_ACCEPT_UCAST_UNMATCHED |
QED_ACCEPT_MCAST_UNMATCHED;
accept_flags.tx_accept_filter |= QED_ACCEPT_MCAST_UNMATCHED;
accept_flags.tx_accept_filter |= QED_ACCEPT_UCAST_UNMATCHED |
QED_ACCEPT_MCAST_UNMATCHED;
} else if (type == QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC) {
accept_flags.rx_accept_filter |= QED_ACCEPT_MCAST_UNMATCHED;
accept_flags.tx_accept_filter |= QED_ACCEPT_MCAST_UNMATCHED;

Some files were not shown because too many files have changed in this diff Show more