ACPI PM: Restore the 2.6.24 suspend ordering
Some time ago it turned out that our suspend code ordering broke some NVidia-based systems that hung if _PTS was executed with one of the PCI devices, specifically a USB controller, in a low power state. Then, it was noticed that the suspend code ordering was not compliant with ACPI 1.0, although it was compliant with ACPI 2.0 (and later), and it was argued that the code had to be changed for that reason (ref. http://bugzilla.kernel.org/show_bug.cgi?id=9528). So we did, but evidently we did wrong, because it's now turning out that some systems have been broken by this change. Refs: http://bugzilla.kernel.org/show_bug.cgi?id=10340 https://bugzilla.novell.com/show_bug.cgi?id=374217#c16 [ I said at that time that something like this might happend, but the majority of people involved thought that it was improbable due to the necessity to preserve the compliance of hardware with ACPI 1.0. ] This actually is a quite serious regression from 2.6.24. Moreover, the ACPI 1.0 ordering of suspend code introduced another issue that I have only noticed recently. Namely, if the suspend of one of devices fails, the already suspended devices will be resumed without executing _WAK before, which leads to problems on some systems (for example, in such situations thermal management is broken on my HP nx6325). Consequently, it also breaks suspend debugging on the affected systems. Note also, that the requirement to execute _PTS before suspending devices does not really make sense, because the device in question may be put into a low power state at run time for a reason unrelated to a system-wide suspend. For the reasons outlined above, the change of the suspend ordering should be reverted, which is done by the patch below. [ Felix Möller: "I am the reporter from the original Novell Bug: https://bugzilla.novell.com/show_bug.cgi?id=374217 I just tried current git head (two hours ago) with the patch (the one from the beginning of this thread) from Rafael and without it. With the patch my MacBook does suspend without it does not." ] Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Tested-by: Felix Möller <felix@derklecks.de> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit is contained in:
parent
cabce28ec0
commit
7731ce63d9
2 changed files with 14 additions and 62 deletions
|
@ -170,11 +170,6 @@ and is between 256 and 4096 characters. It is defined in the file
|
|||
acpi_irq_isa= [HW,ACPI] If irq_balance, mark listed IRQs used by ISA
|
||||
Format: <irq>,<irq>...
|
||||
|
||||
acpi_new_pts_ordering [HW,ACPI]
|
||||
Enforce the ACPI 2.0 ordering of the _PTS control
|
||||
method wrt putting devices into low power states
|
||||
default: pre ACPI 2.0 ordering of _PTS
|
||||
|
||||
acpi_no_auto_ssdt [HW,ACPI] Disable automatic loading of SSDT
|
||||
|
||||
acpi_os_name= [HW,ACPI] Tell ACPI BIOS the name of the OS
|
||||
|
|
|
@ -26,21 +26,6 @@ u8 sleep_states[ACPI_S_STATE_COUNT];
|
|||
|
||||
#ifdef CONFIG_PM_SLEEP
|
||||
static u32 acpi_target_sleep_state = ACPI_STATE_S0;
|
||||
static bool acpi_sleep_finish_wake_up;
|
||||
|
||||
/*
|
||||
* ACPI 2.0 and later want us to execute _PTS after suspending devices, so we
|
||||
* allow the user to request that behavior by using the 'acpi_new_pts_ordering'
|
||||
* kernel command line option that causes the following variable to be set.
|
||||
*/
|
||||
static bool new_pts_ordering;
|
||||
|
||||
static int __init acpi_new_pts_ordering(char *str)
|
||||
{
|
||||
new_pts_ordering = true;
|
||||
return 1;
|
||||
}
|
||||
__setup("acpi_new_pts_ordering", acpi_new_pts_ordering);
|
||||
#endif
|
||||
|
||||
static int acpi_sleep_prepare(u32 acpi_state)
|
||||
|
@ -91,14 +76,6 @@ static int acpi_pm_begin(suspend_state_t pm_state)
|
|||
|
||||
if (sleep_states[acpi_state]) {
|
||||
acpi_target_sleep_state = acpi_state;
|
||||
if (new_pts_ordering)
|
||||
return 0;
|
||||
|
||||
error = acpi_sleep_prepare(acpi_state);
|
||||
if (error)
|
||||
acpi_target_sleep_state = ACPI_STATE_S0;
|
||||
else
|
||||
acpi_sleep_finish_wake_up = true;
|
||||
} else {
|
||||
printk(KERN_ERR "ACPI does not support this state: %d\n",
|
||||
pm_state);
|
||||
|
@ -116,14 +93,11 @@ static int acpi_pm_begin(suspend_state_t pm_state)
|
|||
|
||||
static int acpi_pm_prepare(void)
|
||||
{
|
||||
if (new_pts_ordering) {
|
||||
int error = acpi_sleep_prepare(acpi_target_sleep_state);
|
||||
int error = acpi_sleep_prepare(acpi_target_sleep_state);
|
||||
|
||||
if (error) {
|
||||
acpi_target_sleep_state = ACPI_STATE_S0;
|
||||
return error;
|
||||
}
|
||||
acpi_sleep_finish_wake_up = true;
|
||||
if (error) {
|
||||
acpi_target_sleep_state = ACPI_STATE_S0;
|
||||
return error;
|
||||
}
|
||||
|
||||
return ACPI_SUCCESS(acpi_hw_disable_all_gpes()) ? 0 : -EFAULT;
|
||||
|
@ -212,7 +186,6 @@ static void acpi_pm_finish(void)
|
|||
acpi_set_firmware_waking_vector((acpi_physical_address) 0);
|
||||
|
||||
acpi_target_sleep_state = ACPI_STATE_S0;
|
||||
acpi_sleep_finish_wake_up = false;
|
||||
|
||||
#ifdef CONFIG_X86
|
||||
if (init_8259A_after_S1) {
|
||||
|
@ -229,11 +202,10 @@ static void acpi_pm_finish(void)
|
|||
static void acpi_pm_end(void)
|
||||
{
|
||||
/*
|
||||
* This is necessary in case acpi_pm_finish() is not called directly
|
||||
* during a failing transition to a sleep state.
|
||||
* This is necessary in case acpi_pm_finish() is not called during a
|
||||
* failing transition to a sleep state.
|
||||
*/
|
||||
if (acpi_sleep_finish_wake_up)
|
||||
acpi_pm_finish();
|
||||
acpi_target_sleep_state = ACPI_STATE_S0;
|
||||
}
|
||||
|
||||
static int acpi_pm_state_valid(suspend_state_t pm_state)
|
||||
|
@ -285,31 +257,18 @@ static struct dmi_system_id __initdata acpisleep_dmi_table[] = {
|
|||
#ifdef CONFIG_HIBERNATION
|
||||
static int acpi_hibernation_begin(void)
|
||||
{
|
||||
int error;
|
||||
|
||||
acpi_target_sleep_state = ACPI_STATE_S4;
|
||||
if (new_pts_ordering)
|
||||
return 0;
|
||||
|
||||
error = acpi_sleep_prepare(ACPI_STATE_S4);
|
||||
if (error)
|
||||
acpi_target_sleep_state = ACPI_STATE_S0;
|
||||
else
|
||||
acpi_sleep_finish_wake_up = true;
|
||||
|
||||
return error;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int acpi_hibernation_prepare(void)
|
||||
{
|
||||
if (new_pts_ordering) {
|
||||
int error = acpi_sleep_prepare(ACPI_STATE_S4);
|
||||
int error = acpi_sleep_prepare(ACPI_STATE_S4);
|
||||
|
||||
if (error) {
|
||||
acpi_target_sleep_state = ACPI_STATE_S0;
|
||||
return error;
|
||||
}
|
||||
acpi_sleep_finish_wake_up = true;
|
||||
if (error) {
|
||||
acpi_target_sleep_state = ACPI_STATE_S0;
|
||||
return error;
|
||||
}
|
||||
|
||||
return ACPI_SUCCESS(acpi_hw_disable_all_gpes()) ? 0 : -EFAULT;
|
||||
|
@ -353,17 +312,15 @@ static void acpi_hibernation_finish(void)
|
|||
acpi_set_firmware_waking_vector((acpi_physical_address) 0);
|
||||
|
||||
acpi_target_sleep_state = ACPI_STATE_S0;
|
||||
acpi_sleep_finish_wake_up = false;
|
||||
}
|
||||
|
||||
static void acpi_hibernation_end(void)
|
||||
{
|
||||
/*
|
||||
* This is necessary in case acpi_hibernation_finish() is not called
|
||||
* directly during a failing transition to the sleep state.
|
||||
* during a failing transition to the sleep state.
|
||||
*/
|
||||
if (acpi_sleep_finish_wake_up)
|
||||
acpi_hibernation_finish();
|
||||
acpi_target_sleep_state = ACPI_STATE_S0;
|
||||
}
|
||||
|
||||
static int acpi_hibernation_pre_restore(void)
|
||||
|
|
Loading…
Reference in a new issue