clocksource: Get rid of the hardcoded 5 seconds sleep time limit
Slow clocksources can have a way longer sleep time than 5 seconds and even fast ones can easily cope with 600 seconds and still maintain proper accuracy. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: John Stultz <john.stultz@linaro.org> Reviewed-by: Ingo Molnar <mingo@elte.hu> Link: http://lkml.kernel.org/r/%3C20110518210136.109811585%40linutronix.de%3E
This commit is contained in:
parent
369db4c952
commit
724ed53e8a
1 changed files with 19 additions and 19 deletions
|
@ -626,19 +626,6 @@ static void clocksource_enqueue(struct clocksource *cs)
|
|||
list_add(&cs->list, entry);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Maximum time we expect to go between ticks. This includes idle
|
||||
* tickless time. It provides the trade off between selecting a
|
||||
* mult/shift pair that is very precise but can only handle a short
|
||||
* period of time, vs. a mult/shift pair that can handle long periods
|
||||
* of time but isn't as precise.
|
||||
*
|
||||
* This is a subsystem constant, and actual hardware limitations
|
||||
* may override it (ie: clocksources that wrap every 3 seconds).
|
||||
*/
|
||||
#define MAX_UPDATE_LENGTH 5 /* Seconds */
|
||||
|
||||
/**
|
||||
* __clocksource_updatefreq_scale - Used update clocksource with new freq
|
||||
* @t: clocksource to be registered
|
||||
|
@ -652,15 +639,28 @@ static void clocksource_enqueue(struct clocksource *cs)
|
|||
*/
|
||||
void __clocksource_updatefreq_scale(struct clocksource *cs, u32 scale, u32 freq)
|
||||
{
|
||||
unsigned long sec;
|
||||
|
||||
/*
|
||||
* Ideally we want to use some of the limits used in
|
||||
* clocksource_max_deferment, to provide a more informed
|
||||
* MAX_UPDATE_LENGTH. But for now this just gets the
|
||||
* register interface working properly.
|
||||
* Calc the maximum number of seconds which we can run before
|
||||
* wrapping around. For clocksources which have a mask > 32bit
|
||||
* we need to limit the max sleep time to have a good
|
||||
* conversion precision. 10 minutes is still a reasonable
|
||||
* amount. That results in a shift value of 24 for a
|
||||
* clocksource with mask >= 40bit and f >= 4GHz. That maps to
|
||||
* ~ 0.06ppm granularity for NTP. We apply the same 12.5%
|
||||
* margin as we do in clocksource_max_deferment()
|
||||
*/
|
||||
sec = (cs->mask - (cs->mask >> 5));
|
||||
do_div(sec, freq);
|
||||
do_div(sec, scale);
|
||||
if (!sec)
|
||||
sec = 1;
|
||||
else if (sec > 600 && cs->mask > UINT_MAX)
|
||||
sec = 600;
|
||||
|
||||
clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
|
||||
NSEC_PER_SEC/scale,
|
||||
MAX_UPDATE_LENGTH*scale);
|
||||
NSEC_PER_SEC / scale, sec * scale);
|
||||
cs->max_idle_ns = clocksource_max_deferment(cs);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(__clocksource_updatefreq_scale);
|
||||
|
|
Loading…
Reference in a new issue