sched: optimize RT affinity
The current code base assumes a relatively flat CPU/core topology and will route RT tasks to any CPU fairly equally. In the real world, there are various toplogies and affinities that govern where a task is best suited to run with the smallest amount of overhead. NUMA and multi-core CPUs are prime examples of topologies that can impact cache performance. Fortunately, linux is already structured to represent these topologies via the sched_domains interface. So we change our RT router to consult a combination of topology and affinity policy to best place tasks during migration. Signed-off-by: Gregory Haskins <ghaskins@novell.com> Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
This commit is contained in:
parent
318e0893ce
commit
6e1254d2c4
1 changed files with 88 additions and 12 deletions
|
@ -281,35 +281,111 @@ static struct task_struct *pick_next_highest_task_rt(struct rq *rq,
|
||||||
}
|
}
|
||||||
|
|
||||||
static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
|
static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
|
||||||
|
static DEFINE_PER_CPU(cpumask_t, valid_cpu_mask);
|
||||||
|
|
||||||
static int find_lowest_rq(struct task_struct *task)
|
static int find_lowest_cpus(struct task_struct *task, cpumask_t *lowest_mask)
|
||||||
{
|
{
|
||||||
int cpu;
|
int cpu;
|
||||||
cpumask_t *cpu_mask = &__get_cpu_var(local_cpu_mask);
|
cpumask_t *valid_mask = &__get_cpu_var(valid_cpu_mask);
|
||||||
struct rq *lowest_rq = NULL;
|
int lowest_prio = -1;
|
||||||
|
int ret = 0;
|
||||||
|
|
||||||
cpus_and(*cpu_mask, cpu_online_map, task->cpus_allowed);
|
cpus_clear(*lowest_mask);
|
||||||
|
cpus_and(*valid_mask, cpu_online_map, task->cpus_allowed);
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* Scan each rq for the lowest prio.
|
* Scan each rq for the lowest prio.
|
||||||
*/
|
*/
|
||||||
for_each_cpu_mask(cpu, *cpu_mask) {
|
for_each_cpu_mask(cpu, *valid_mask) {
|
||||||
struct rq *rq = cpu_rq(cpu);
|
struct rq *rq = cpu_rq(cpu);
|
||||||
|
|
||||||
/* We look for lowest RT prio or non-rt CPU */
|
/* We look for lowest RT prio or non-rt CPU */
|
||||||
if (rq->rt.highest_prio >= MAX_RT_PRIO) {
|
if (rq->rt.highest_prio >= MAX_RT_PRIO) {
|
||||||
lowest_rq = rq;
|
if (ret)
|
||||||
break;
|
cpus_clear(*lowest_mask);
|
||||||
|
cpu_set(rq->cpu, *lowest_mask);
|
||||||
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
/* no locking for now */
|
/* no locking for now */
|
||||||
if (rq->rt.highest_prio > task->prio &&
|
if ((rq->rt.highest_prio > task->prio)
|
||||||
(!lowest_rq || rq->rt.highest_prio > lowest_rq->rt.highest_prio)) {
|
&& (rq->rt.highest_prio >= lowest_prio)) {
|
||||||
lowest_rq = rq;
|
if (rq->rt.highest_prio > lowest_prio) {
|
||||||
|
/* new low - clear old data */
|
||||||
|
lowest_prio = rq->rt.highest_prio;
|
||||||
|
cpus_clear(*lowest_mask);
|
||||||
|
}
|
||||||
|
cpu_set(rq->cpu, *lowest_mask);
|
||||||
|
ret = 1;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
return lowest_rq ? lowest_rq->cpu : -1;
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
|
||||||
|
{
|
||||||
|
int first;
|
||||||
|
|
||||||
|
/* "this_cpu" is cheaper to preempt than a remote processor */
|
||||||
|
if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
|
||||||
|
return this_cpu;
|
||||||
|
|
||||||
|
first = first_cpu(*mask);
|
||||||
|
if (first != NR_CPUS)
|
||||||
|
return first;
|
||||||
|
|
||||||
|
return -1;
|
||||||
|
}
|
||||||
|
|
||||||
|
static int find_lowest_rq(struct task_struct *task)
|
||||||
|
{
|
||||||
|
struct sched_domain *sd;
|
||||||
|
cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
|
||||||
|
int this_cpu = smp_processor_id();
|
||||||
|
int cpu = task_cpu(task);
|
||||||
|
|
||||||
|
if (!find_lowest_cpus(task, lowest_mask))
|
||||||
|
return -1;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* At this point we have built a mask of cpus representing the
|
||||||
|
* lowest priority tasks in the system. Now we want to elect
|
||||||
|
* the best one based on our affinity and topology.
|
||||||
|
*
|
||||||
|
* We prioritize the last cpu that the task executed on since
|
||||||
|
* it is most likely cache-hot in that location.
|
||||||
|
*/
|
||||||
|
if (cpu_isset(cpu, *lowest_mask))
|
||||||
|
return cpu;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Otherwise, we consult the sched_domains span maps to figure
|
||||||
|
* out which cpu is logically closest to our hot cache data.
|
||||||
|
*/
|
||||||
|
if (this_cpu == cpu)
|
||||||
|
this_cpu = -1; /* Skip this_cpu opt if the same */
|
||||||
|
|
||||||
|
for_each_domain(cpu, sd) {
|
||||||
|
if (sd->flags & SD_WAKE_AFFINE) {
|
||||||
|
cpumask_t domain_mask;
|
||||||
|
int best_cpu;
|
||||||
|
|
||||||
|
cpus_and(domain_mask, sd->span, *lowest_mask);
|
||||||
|
|
||||||
|
best_cpu = pick_optimal_cpu(this_cpu,
|
||||||
|
&domain_mask);
|
||||||
|
if (best_cpu != -1)
|
||||||
|
return best_cpu;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
* And finally, if there were no matches within the domains
|
||||||
|
* just give the caller *something* to work with from the compatible
|
||||||
|
* locations.
|
||||||
|
*/
|
||||||
|
return pick_optimal_cpu(this_cpu, lowest_mask);
|
||||||
}
|
}
|
||||||
|
|
||||||
/* Will lock the rq it finds */
|
/* Will lock the rq it finds */
|
||||||
|
|
Loading…
Reference in a new issue