sched: use a 2-d bitmap for searching lowest-pri CPU
The current code use a linear algorithm which causes scaling issues on larger SMP machines. This patch replaces that algorithm with a 2-dimensional bitmap to reduce latencies in the wake-up path. Signed-off-by: Gregory Haskins <ghaskins@novell.com> Acked-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This commit is contained in:
parent
f333fdc909
commit
6e0534f278
5 changed files with 239 additions and 77 deletions
|
@ -69,6 +69,7 @@ obj-$(CONFIG_TASK_DELAY_ACCT) += delayacct.o
|
|||
obj-$(CONFIG_TASKSTATS) += taskstats.o tsacct.o
|
||||
obj-$(CONFIG_MARKERS) += marker.o
|
||||
obj-$(CONFIG_LATENCYTOP) += latencytop.o
|
||||
obj-$(CONFIG_SMP) += sched_cpupri.o
|
||||
|
||||
ifneq ($(CONFIG_SCHED_NO_NO_OMIT_FRAME_POINTER),y)
|
||||
# According to Alan Modra <alan@linuxcare.com.au>, the -fno-omit-frame-pointer is
|
||||
|
|
|
@ -74,6 +74,8 @@
|
|||
#include <asm/tlb.h>
|
||||
#include <asm/irq_regs.h>
|
||||
|
||||
#include "sched_cpupri.h"
|
||||
|
||||
/*
|
||||
* Convert user-nice values [ -20 ... 0 ... 19 ]
|
||||
* to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
|
||||
|
@ -450,6 +452,9 @@ struct root_domain {
|
|||
*/
|
||||
cpumask_t rto_mask;
|
||||
atomic_t rto_count;
|
||||
#ifdef CONFIG_SMP
|
||||
struct cpupri cpupri;
|
||||
#endif
|
||||
};
|
||||
|
||||
/*
|
||||
|
@ -6392,6 +6397,8 @@ static void init_rootdomain(struct root_domain *rd)
|
|||
|
||||
cpus_clear(rd->span);
|
||||
cpus_clear(rd->online);
|
||||
|
||||
cpupri_init(&rd->cpupri);
|
||||
}
|
||||
|
||||
static void init_defrootdomain(void)
|
||||
|
|
174
kernel/sched_cpupri.c
Normal file
174
kernel/sched_cpupri.c
Normal file
|
@ -0,0 +1,174 @@
|
|||
/*
|
||||
* kernel/sched_cpupri.c
|
||||
*
|
||||
* CPU priority management
|
||||
*
|
||||
* Copyright (C) 2007-2008 Novell
|
||||
*
|
||||
* Author: Gregory Haskins <ghaskins@novell.com>
|
||||
*
|
||||
* This code tracks the priority of each CPU so that global migration
|
||||
* decisions are easy to calculate. Each CPU can be in a state as follows:
|
||||
*
|
||||
* (INVALID), IDLE, NORMAL, RT1, ... RT99
|
||||
*
|
||||
* going from the lowest priority to the highest. CPUs in the INVALID state
|
||||
* are not eligible for routing. The system maintains this state with
|
||||
* a 2 dimensional bitmap (the first for priority class, the second for cpus
|
||||
* in that class). Therefore a typical application without affinity
|
||||
* restrictions can find a suitable CPU with O(1) complexity (e.g. two bit
|
||||
* searches). For tasks with affinity restrictions, the algorithm has a
|
||||
* worst case complexity of O(min(102, nr_domcpus)), though the scenario that
|
||||
* yields the worst case search is fairly contrived.
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU General Public License
|
||||
* as published by the Free Software Foundation; version 2
|
||||
* of the License.
|
||||
*/
|
||||
|
||||
#include "sched_cpupri.h"
|
||||
|
||||
/* Convert between a 140 based task->prio, and our 102 based cpupri */
|
||||
static int convert_prio(int prio)
|
||||
{
|
||||
int cpupri;
|
||||
|
||||
if (prio == CPUPRI_INVALID)
|
||||
cpupri = CPUPRI_INVALID;
|
||||
else if (prio == MAX_PRIO)
|
||||
cpupri = CPUPRI_IDLE;
|
||||
else if (prio >= MAX_RT_PRIO)
|
||||
cpupri = CPUPRI_NORMAL;
|
||||
else
|
||||
cpupri = MAX_RT_PRIO - prio + 1;
|
||||
|
||||
return cpupri;
|
||||
}
|
||||
|
||||
#define for_each_cpupri_active(array, idx) \
|
||||
for (idx = find_first_bit(array, CPUPRI_NR_PRIORITIES); \
|
||||
idx < CPUPRI_NR_PRIORITIES; \
|
||||
idx = find_next_bit(array, CPUPRI_NR_PRIORITIES, idx+1))
|
||||
|
||||
/**
|
||||
* cpupri_find - find the best (lowest-pri) CPU in the system
|
||||
* @cp: The cpupri context
|
||||
* @p: The task
|
||||
* @lowest_mask: A mask to fill in with selected CPUs
|
||||
*
|
||||
* Note: This function returns the recommended CPUs as calculated during the
|
||||
* current invokation. By the time the call returns, the CPUs may have in
|
||||
* fact changed priorities any number of times. While not ideal, it is not
|
||||
* an issue of correctness since the normal rebalancer logic will correct
|
||||
* any discrepancies created by racing against the uncertainty of the current
|
||||
* priority configuration.
|
||||
*
|
||||
* Returns: (int)bool - CPUs were found
|
||||
*/
|
||||
int cpupri_find(struct cpupri *cp, struct task_struct *p,
|
||||
cpumask_t *lowest_mask)
|
||||
{
|
||||
int idx = 0;
|
||||
int task_pri = convert_prio(p->prio);
|
||||
|
||||
for_each_cpupri_active(cp->pri_active, idx) {
|
||||
struct cpupri_vec *vec = &cp->pri_to_cpu[idx];
|
||||
cpumask_t mask;
|
||||
|
||||
if (idx >= task_pri)
|
||||
break;
|
||||
|
||||
cpus_and(mask, p->cpus_allowed, vec->mask);
|
||||
|
||||
if (cpus_empty(mask))
|
||||
continue;
|
||||
|
||||
*lowest_mask = mask;
|
||||
return 1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* cpupri_set - update the cpu priority setting
|
||||
* @cp: The cpupri context
|
||||
* @cpu: The target cpu
|
||||
* @pri: The priority (INVALID-RT99) to assign to this CPU
|
||||
*
|
||||
* Note: Assumes cpu_rq(cpu)->lock is locked
|
||||
*
|
||||
* Returns: (void)
|
||||
*/
|
||||
void cpupri_set(struct cpupri *cp, int cpu, int newpri)
|
||||
{
|
||||
int *currpri = &cp->cpu_to_pri[cpu];
|
||||
int oldpri = *currpri;
|
||||
unsigned long flags;
|
||||
|
||||
newpri = convert_prio(newpri);
|
||||
|
||||
BUG_ON(newpri >= CPUPRI_NR_PRIORITIES);
|
||||
|
||||
if (newpri == oldpri)
|
||||
return;
|
||||
|
||||
/*
|
||||
* If the cpu was currently mapped to a different value, we
|
||||
* first need to unmap the old value
|
||||
*/
|
||||
if (likely(oldpri != CPUPRI_INVALID)) {
|
||||
struct cpupri_vec *vec = &cp->pri_to_cpu[oldpri];
|
||||
|
||||
spin_lock_irqsave(&vec->lock, flags);
|
||||
|
||||
vec->count--;
|
||||
if (!vec->count)
|
||||
clear_bit(oldpri, cp->pri_active);
|
||||
cpu_clear(cpu, vec->mask);
|
||||
|
||||
spin_unlock_irqrestore(&vec->lock, flags);
|
||||
}
|
||||
|
||||
if (likely(newpri != CPUPRI_INVALID)) {
|
||||
struct cpupri_vec *vec = &cp->pri_to_cpu[newpri];
|
||||
|
||||
spin_lock_irqsave(&vec->lock, flags);
|
||||
|
||||
cpu_set(cpu, vec->mask);
|
||||
vec->count++;
|
||||
if (vec->count == 1)
|
||||
set_bit(newpri, cp->pri_active);
|
||||
|
||||
spin_unlock_irqrestore(&vec->lock, flags);
|
||||
}
|
||||
|
||||
*currpri = newpri;
|
||||
}
|
||||
|
||||
/**
|
||||
* cpupri_init - initialize the cpupri structure
|
||||
* @cp: The cpupri context
|
||||
*
|
||||
* Returns: (void)
|
||||
*/
|
||||
void cpupri_init(struct cpupri *cp)
|
||||
{
|
||||
int i;
|
||||
|
||||
memset(cp, 0, sizeof(*cp));
|
||||
|
||||
for (i = 0; i < CPUPRI_NR_PRIORITIES; i++) {
|
||||
struct cpupri_vec *vec = &cp->pri_to_cpu[i];
|
||||
|
||||
spin_lock_init(&vec->lock);
|
||||
vec->count = 0;
|
||||
cpus_clear(vec->mask);
|
||||
}
|
||||
|
||||
for_each_possible_cpu(i)
|
||||
cp->cpu_to_pri[i] = CPUPRI_INVALID;
|
||||
}
|
||||
|
||||
|
36
kernel/sched_cpupri.h
Normal file
36
kernel/sched_cpupri.h
Normal file
|
@ -0,0 +1,36 @@
|
|||
#ifndef _LINUX_CPUPRI_H
|
||||
#define _LINUX_CPUPRI_H
|
||||
|
||||
#include <linux/sched.h>
|
||||
|
||||
#define CPUPRI_NR_PRIORITIES 2+MAX_RT_PRIO
|
||||
#define CPUPRI_NR_PRI_WORDS CPUPRI_NR_PRIORITIES/BITS_PER_LONG
|
||||
|
||||
#define CPUPRI_INVALID -1
|
||||
#define CPUPRI_IDLE 0
|
||||
#define CPUPRI_NORMAL 1
|
||||
/* values 2-101 are RT priorities 0-99 */
|
||||
|
||||
struct cpupri_vec {
|
||||
spinlock_t lock;
|
||||
int count;
|
||||
cpumask_t mask;
|
||||
};
|
||||
|
||||
struct cpupri {
|
||||
struct cpupri_vec pri_to_cpu[CPUPRI_NR_PRIORITIES];
|
||||
long pri_active[CPUPRI_NR_PRI_WORDS];
|
||||
int cpu_to_pri[NR_CPUS];
|
||||
};
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
int cpupri_find(struct cpupri *cp,
|
||||
struct task_struct *p, cpumask_t *lowest_mask);
|
||||
void cpupri_set(struct cpupri *cp, int cpu, int pri);
|
||||
void cpupri_init(struct cpupri *cp);
|
||||
#else
|
||||
#define cpupri_set(cp, cpu, pri) do { } while (0)
|
||||
#define cpupri_init() do { } while (0)
|
||||
#endif
|
||||
|
||||
#endif /* _LINUX_CPUPRI_H */
|
|
@ -391,8 +391,11 @@ void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
|
|||
WARN_ON(!rt_prio(rt_se_prio(rt_se)));
|
||||
rt_rq->rt_nr_running++;
|
||||
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
|
||||
if (rt_se_prio(rt_se) < rt_rq->highest_prio)
|
||||
if (rt_se_prio(rt_se) < rt_rq->highest_prio) {
|
||||
struct rq *rq = rq_of_rt_rq(rt_rq);
|
||||
rt_rq->highest_prio = rt_se_prio(rt_se);
|
||||
cpupri_set(&rq->rd->cpupri, rq->cpu, rt_se_prio(rt_se));
|
||||
}
|
||||
#endif
|
||||
#ifdef CONFIG_SMP
|
||||
if (rt_se->nr_cpus_allowed > 1) {
|
||||
|
@ -416,6 +419,10 @@ void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
|
|||
static inline
|
||||
void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
|
||||
{
|
||||
#ifdef CONFIG_SMP
|
||||
int highest_prio = rt_rq->highest_prio;
|
||||
#endif
|
||||
|
||||
WARN_ON(!rt_prio(rt_se_prio(rt_se)));
|
||||
WARN_ON(!rt_rq->rt_nr_running);
|
||||
rt_rq->rt_nr_running--;
|
||||
|
@ -439,6 +446,11 @@ void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
|
|||
rq->rt.rt_nr_migratory--;
|
||||
}
|
||||
|
||||
if (rt_rq->highest_prio != highest_prio) {
|
||||
struct rq *rq = rq_of_rt_rq(rt_rq);
|
||||
cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio);
|
||||
}
|
||||
|
||||
update_rt_migration(rq_of_rt_rq(rt_rq));
|
||||
#endif /* CONFIG_SMP */
|
||||
#ifdef CONFIG_RT_GROUP_SCHED
|
||||
|
@ -763,73 +775,6 @@ static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
|
|||
|
||||
static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
|
||||
|
||||
static int find_lowest_cpus(struct task_struct *task, cpumask_t *lowest_mask)
|
||||
{
|
||||
int lowest_prio = -1;
|
||||
int lowest_cpu = -1;
|
||||
int count = 0;
|
||||
int cpu;
|
||||
|
||||
cpus_and(*lowest_mask, task_rq(task)->rd->online, task->cpus_allowed);
|
||||
|
||||
/*
|
||||
* Scan each rq for the lowest prio.
|
||||
*/
|
||||
for_each_cpu_mask(cpu, *lowest_mask) {
|
||||
struct rq *rq = cpu_rq(cpu);
|
||||
|
||||
/* We look for lowest RT prio or non-rt CPU */
|
||||
if (rq->rt.highest_prio >= MAX_RT_PRIO) {
|
||||
/*
|
||||
* if we already found a low RT queue
|
||||
* and now we found this non-rt queue
|
||||
* clear the mask and set our bit.
|
||||
* Otherwise just return the queue as is
|
||||
* and the count==1 will cause the algorithm
|
||||
* to use the first bit found.
|
||||
*/
|
||||
if (lowest_cpu != -1) {
|
||||
cpus_clear(*lowest_mask);
|
||||
cpu_set(rq->cpu, *lowest_mask);
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* no locking for now */
|
||||
if ((rq->rt.highest_prio > task->prio)
|
||||
&& (rq->rt.highest_prio >= lowest_prio)) {
|
||||
if (rq->rt.highest_prio > lowest_prio) {
|
||||
/* new low - clear old data */
|
||||
lowest_prio = rq->rt.highest_prio;
|
||||
lowest_cpu = cpu;
|
||||
count = 0;
|
||||
}
|
||||
count++;
|
||||
} else
|
||||
cpu_clear(cpu, *lowest_mask);
|
||||
}
|
||||
|
||||
/*
|
||||
* Clear out all the set bits that represent
|
||||
* runqueues that were of higher prio than
|
||||
* the lowest_prio.
|
||||
*/
|
||||
if (lowest_cpu > 0) {
|
||||
/*
|
||||
* Perhaps we could add another cpumask op to
|
||||
* zero out bits. Like cpu_zero_bits(cpumask, nrbits);
|
||||
* Then that could be optimized to use memset and such.
|
||||
*/
|
||||
for_each_cpu_mask(cpu, *lowest_mask) {
|
||||
if (cpu >= lowest_cpu)
|
||||
break;
|
||||
cpu_clear(cpu, *lowest_mask);
|
||||
}
|
||||
}
|
||||
|
||||
return count;
|
||||
}
|
||||
|
||||
static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
|
||||
{
|
||||
int first;
|
||||
|
@ -851,18 +796,13 @@ static int find_lowest_rq(struct task_struct *task)
|
|||
cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
|
||||
int this_cpu = smp_processor_id();
|
||||
int cpu = task_cpu(task);
|
||||
int count = find_lowest_cpus(task, lowest_mask);
|
||||
|
||||
if (!count)
|
||||
if (task->rt.nr_cpus_allowed == 1)
|
||||
return -1; /* No other targets possible */
|
||||
|
||||
if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
|
||||
return -1; /* No targets found */
|
||||
|
||||
/*
|
||||
* There is no sense in performing an optimal search if only one
|
||||
* target is found.
|
||||
*/
|
||||
if (count == 1)
|
||||
return first_cpu(*lowest_mask);
|
||||
|
||||
/*
|
||||
* At this point we have built a mask of cpus representing the
|
||||
* lowest priority tasks in the system. Now we want to elect
|
||||
|
@ -1218,6 +1158,8 @@ static void join_domain_rt(struct rq *rq)
|
|||
{
|
||||
if (rq->rt.overloaded)
|
||||
rt_set_overload(rq);
|
||||
|
||||
cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio);
|
||||
}
|
||||
|
||||
/* Assumes rq->lock is held */
|
||||
|
@ -1225,6 +1167,8 @@ static void leave_domain_rt(struct rq *rq)
|
|||
{
|
||||
if (rq->rt.overloaded)
|
||||
rt_clear_overload(rq);
|
||||
|
||||
cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
|
||||
}
|
||||
|
||||
/*
|
||||
|
|
Loading…
Reference in a new issue