edac.rst: move concepts dictionary from edac.h

Instead of storing the concepts dictionary inside header file,
move it to the subsystem documentation.

Signed-off-by: Mauro Carvalho Chehab <mchehab@s-opensource.com>
This commit is contained in:
Mauro Carvalho Chehab 2016-10-29 16:13:23 -02:00
parent e002075819
commit 6b1fb6f703
2 changed files with 106 additions and 108 deletions

View file

@ -1,6 +1,112 @@
Error Detection And Correction (EDAC) Devices
=============================================
Main Concepts used at the EDAC subsystem
----------------------------------------
There are several things to be aware of that aren't at all obvious, like
*sockets, *socket sets*, *banks*, *rows*, *chip-select rows*, *channels*,
etc...
These are some of the many terms that are thrown about that don't always
mean what people think they mean (Inconceivable!). In the interest of
creating a common ground for discussion, terms and their definitions
will be established.
* Memory devices
The individual DRAM chips on a memory stick. These devices commonly
output 4 and 8 bits each (x4, x8). Grouping several of these in parallel
provides the number of bits that the memory controller expects:
typically 72 bits, in order to provide 64 bits + 8 bits of ECC data.
* Memory Stick
A printed circuit board that aggregates multiple memory devices in
parallel. In general, this is the Field Replaceable Unit (FRU) which
gets replaced, in the case of excessive errors. Most often it is also
called DIMM (Dual Inline Memory Module).
* Memory Socket
A physical connector on the motherboard that accepts a single memory
stick. Also called as "slot" on several datasheets.
* Channel
A memory controller channel, responsible to communicate with a group of
DIMMs. Each channel has its own independent control (command) and data
bus, and can be used independently or grouped with other channels.
* Branch
It is typically the highest hierarchy on a Fully-Buffered DIMM memory
controller. Typically, it contains two channels. Two channels at the
same branch can be used in single mode or in lockstep mode. When
lockstep is enabled, the cacheline is doubled, but it generally brings
some performance penalty. Also, it is generally not possible to point to
just one memory stick when an error occurs, as the error correction code
is calculated using two DIMMs instead of one. Due to that, it is capable
of correcting more errors than on single mode.
* Single-channel
The data accessed by the memory controller is contained into one dimm
only. E. g. if the data is 64 bits-wide, the data flows to the CPU using
one 64 bits parallel access. Typically used with SDR, DDR, DDR2 and DDR3
memories. FB-DIMM and RAMBUS use a different concept for channel, so
this concept doesn't apply there.
* Double-channel
The data size accessed by the memory controller is interlaced into two
dimms, accessed at the same time. E. g. if the DIMM is 64 bits-wide (72
bits with ECC), the data flows to the CPU using a 128 bits parallel
access.
* Chip-select row
This is the name of the DRAM signal used to select the DRAM ranks to be
accessed. Common chip-select rows for single channel are 64 bits, for
dual channel 128 bits. It may not be visible by the memory controller,
as some DIMM types have a memory buffer that can hide direct access to
it from the Memory Controller.
* Single-Ranked stick
A Single-ranked stick has 1 chip-select row of memory. Motherboards
commonly drive two chip-select pins to a memory stick. A single-ranked
stick, will occupy only one of those rows. The other will be unused.
.. _doubleranked:
* Double-Ranked stick
A double-ranked stick has two chip-select rows which access different
sets of memory devices. The two rows cannot be accessed concurrently.
* Double-sided stick
**DEPRECATED TERM**, see :ref:`Double-Ranked stick <doubleranked>`.
A double-sided stick has two chip-select rows which access different sets
of memory devices. The two rows cannot be accessed concurrently.
"Double-sided" is irrespective of the memory devices being mounted on
both sides of the memory stick.
* Socket set
All of the memory sticks that are required for a single memory access or
all of the memory sticks spanned by a chip-select row. A single socket
set has two chip-select rows and if double-sided sticks are used these
will occupy those chip-select rows.
* Bank
This term is avoided because it is unclear when needing to distinguish
between chip-select rows and socket sets.
Memory Controllers
------------------

View file

@ -330,114 +330,6 @@ enum scrub_type {
#define OP_RUNNING_POLL_INTR 0x203
#define OP_OFFLINE 0x300
/*
* Concepts used at the EDAC subsystem
*
* There are several things to be aware of that aren't at all obvious:
*
* SOCKETS, SOCKET SETS, BANKS, ROWS, CHIP-SELECT ROWS, CHANNELS, etc..
*
* These are some of the many terms that are thrown about that don't always
* mean what people think they mean (Inconceivable!). In the interest of
* creating a common ground for discussion, terms and their definitions
* will be established.
*
* Memory devices: The individual DRAM chips on a memory stick. These
* devices commonly output 4 and 8 bits each (x4, x8).
* Grouping several of these in parallel provides the
* number of bits that the memory controller expects:
* typically 72 bits, in order to provide 64 bits +
* 8 bits of ECC data.
*
* Memory Stick: A printed circuit board that aggregates multiple
* memory devices in parallel. In general, this is the
* Field Replaceable Unit (FRU) which gets replaced, in
* the case of excessive errors. Most often it is also
* called DIMM (Dual Inline Memory Module).
*
* Memory Socket: A physical connector on the motherboard that accepts
* a single memory stick. Also called as "slot" on several
* datasheets.
*
* Channel: A memory controller channel, responsible to communicate
* with a group of DIMMs. Each channel has its own
* independent control (command) and data bus, and can
* be used independently or grouped with other channels.
*
* Branch: It is typically the highest hierarchy on a
* Fully-Buffered DIMM memory controller.
* Typically, it contains two channels.
* Two channels at the same branch can be used in single
* mode or in lockstep mode.
* When lockstep is enabled, the cacheline is doubled,
* but it generally brings some performance penalty.
* Also, it is generally not possible to point to just one
* memory stick when an error occurs, as the error
* correction code is calculated using two DIMMs instead
* of one. Due to that, it is capable of correcting more
* errors than on single mode.
*
* Single-channel: The data accessed by the memory controller is contained
* into one dimm only. E. g. if the data is 64 bits-wide,
* the data flows to the CPU using one 64 bits parallel
* access.
* Typically used with SDR, DDR, DDR2 and DDR3 memories.
* FB-DIMM and RAMBUS use a different concept for channel,
* so this concept doesn't apply there.
*
* Double-channel: The data size accessed by the memory controller is
* interlaced into two dimms, accessed at the same time.
* E. g. if the DIMM is 64 bits-wide (72 bits with ECC),
* the data flows to the CPU using a 128 bits parallel
* access.
*
* Chip-select row: This is the name of the DRAM signal used to select the
* DRAM ranks to be accessed. Common chip-select rows for
* single channel are 64 bits, for dual channel 128 bits.
* It may not be visible by the memory controller, as some
* DIMM types have a memory buffer that can hide direct
* access to it from the Memory Controller.
*
* Single-Ranked stick: A Single-ranked stick has 1 chip-select row of memory.
* Motherboards commonly drive two chip-select pins to
* a memory stick. A single-ranked stick, will occupy
* only one of those rows. The other will be unused.
*
* Double-Ranked stick: A double-ranked stick has two chip-select rows which
* access different sets of memory devices. The two
* rows cannot be accessed concurrently.
*
* Double-sided stick: DEPRECATED TERM, see Double-Ranked stick.
* A double-sided stick has two chip-select rows which
* access different sets of memory devices. The two
* rows cannot be accessed concurrently. "Double-sided"
* is irrespective of the memory devices being mounted
* on both sides of the memory stick.
*
* Socket set: All of the memory sticks that are required for
* a single memory access or all of the memory sticks
* spanned by a chip-select row. A single socket set
* has two chip-select rows and if double-sided sticks
* are used these will occupy those chip-select rows.
*
* Bank: This term is avoided because it is unclear when
* needing to distinguish between chip-select rows and
* socket sets.
*
* Controller pages:
*
* Physical pages:
*
* Virtual pages:
*
*
* STRUCTURE ORGANIZATION AND CHOICES
*
*
*
* PS - I enjoyed writing all that about as much as you enjoyed reading it.
*/
/**
* enum edac_mc_layer - memory controller hierarchy layer
*