slab: Rename nodelists to node

Have a common naming between both slab caches for future changes.

Acked-by: Glauber Costa <glommer@parallels.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
This commit is contained in:
Christoph Lameter 2013-01-10 19:14:19 +00:00 committed by Pekka Enberg
parent 6744f087ba
commit 6a67368c36
2 changed files with 68 additions and 69 deletions

View file

@ -95,7 +95,7 @@ struct kmem_cache {
* pointer for each node since "nodelists" uses the remainder of * pointer for each node since "nodelists" uses the remainder of
* available pointers. * available pointers.
*/ */
struct kmem_cache_node **nodelists; struct kmem_cache_node **node;
struct array_cache *array[NR_CPUS + MAX_NUMNODES]; struct array_cache *array[NR_CPUS + MAX_NUMNODES];
/* /*
* Do not add fields after array[] * Do not add fields after array[]

135
mm/slab.c
View file

@ -347,7 +347,7 @@ static void kmem_list3_init(struct kmem_cache_node *parent)
#define MAKE_LIST(cachep, listp, slab, nodeid) \ #define MAKE_LIST(cachep, listp, slab, nodeid) \
do { \ do { \
INIT_LIST_HEAD(listp); \ INIT_LIST_HEAD(listp); \
list_splice(&(cachep->nodelists[nodeid]->slab), listp); \ list_splice(&(cachep->node[nodeid]->slab), listp); \
} while (0) } while (0)
#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
@ -549,7 +549,7 @@ static void slab_set_lock_classes(struct kmem_cache *cachep,
struct kmem_cache_node *l3; struct kmem_cache_node *l3;
int r; int r;
l3 = cachep->nodelists[q]; l3 = cachep->node[q];
if (!l3) if (!l3)
return; return;
@ -597,7 +597,7 @@ static void init_node_lock_keys(int q)
if (!cache) if (!cache)
continue; continue;
l3 = cache->nodelists[q]; l3 = cache->node[q];
if (!l3 || OFF_SLAB(cache)) if (!l3 || OFF_SLAB(cache))
continue; continue;
@ -608,8 +608,7 @@ static void init_node_lock_keys(int q)
static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q) static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
{ {
if (!cachep->node[q])
if (!cachep->nodelists[q])
return; return;
slab_set_lock_classes(cachep, &on_slab_l3_key, slab_set_lock_classes(cachep, &on_slab_l3_key,
@ -900,7 +899,7 @@ static inline bool is_slab_pfmemalloc(struct slab *slabp)
static void recheck_pfmemalloc_active(struct kmem_cache *cachep, static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
struct array_cache *ac) struct array_cache *ac)
{ {
struct kmem_cache_node *l3 = cachep->nodelists[numa_mem_id()]; struct kmem_cache_node *l3 = cachep->node[numa_mem_id()];
struct slab *slabp; struct slab *slabp;
unsigned long flags; unsigned long flags;
@ -955,7 +954,7 @@ static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
* If there are empty slabs on the slabs_free list and we are * If there are empty slabs on the slabs_free list and we are
* being forced to refill the cache, mark this one !pfmemalloc. * being forced to refill the cache, mark this one !pfmemalloc.
*/ */
l3 = cachep->nodelists[numa_mem_id()]; l3 = cachep->node[numa_mem_id()];
if (!list_empty(&l3->slabs_free) && force_refill) { if (!list_empty(&l3->slabs_free) && force_refill) {
struct slab *slabp = virt_to_slab(objp); struct slab *slabp = virt_to_slab(objp);
ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem)); ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem));
@ -1105,7 +1104,7 @@ static void free_alien_cache(struct array_cache **ac_ptr)
static void __drain_alien_cache(struct kmem_cache *cachep, static void __drain_alien_cache(struct kmem_cache *cachep,
struct array_cache *ac, int node) struct array_cache *ac, int node)
{ {
struct kmem_cache_node *rl3 = cachep->nodelists[node]; struct kmem_cache_node *rl3 = cachep->node[node];
if (ac->avail) { if (ac->avail) {
spin_lock(&rl3->list_lock); spin_lock(&rl3->list_lock);
@ -1174,7 +1173,7 @@ static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
if (likely(slabp->nodeid == node)) if (likely(slabp->nodeid == node))
return 0; return 0;
l3 = cachep->nodelists[node]; l3 = cachep->node[node];
STATS_INC_NODEFREES(cachep); STATS_INC_NODEFREES(cachep);
if (l3->alien && l3->alien[nodeid]) { if (l3->alien && l3->alien[nodeid]) {
alien = l3->alien[nodeid]; alien = l3->alien[nodeid];
@ -1186,24 +1185,24 @@ static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
ac_put_obj(cachep, alien, objp); ac_put_obj(cachep, alien, objp);
spin_unlock(&alien->lock); spin_unlock(&alien->lock);
} else { } else {
spin_lock(&(cachep->nodelists[nodeid])->list_lock); spin_lock(&(cachep->node[nodeid])->list_lock);
free_block(cachep, &objp, 1, nodeid); free_block(cachep, &objp, 1, nodeid);
spin_unlock(&(cachep->nodelists[nodeid])->list_lock); spin_unlock(&(cachep->node[nodeid])->list_lock);
} }
return 1; return 1;
} }
#endif #endif
/* /*
* Allocates and initializes nodelists for a node on each slab cache, used for * Allocates and initializes node for a node on each slab cache, used for
* either memory or cpu hotplug. If memory is being hot-added, the kmem_list3 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
* will be allocated off-node since memory is not yet online for the new node. * will be allocated off-node since memory is not yet online for the new node.
* When hotplugging memory or a cpu, existing nodelists are not replaced if * When hotplugging memory or a cpu, existing node are not replaced if
* already in use. * already in use.
* *
* Must hold slab_mutex. * Must hold slab_mutex.
*/ */
static int init_cache_nodelists_node(int node) static int init_cache_node_node(int node)
{ {
struct kmem_cache *cachep; struct kmem_cache *cachep;
struct kmem_cache_node *l3; struct kmem_cache_node *l3;
@ -1215,7 +1214,7 @@ static int init_cache_nodelists_node(int node)
* begin anything. Make sure some other cpu on this * begin anything. Make sure some other cpu on this
* node has not already allocated this * node has not already allocated this
*/ */
if (!cachep->nodelists[node]) { if (!cachep->node[node]) {
l3 = kmalloc_node(memsize, GFP_KERNEL, node); l3 = kmalloc_node(memsize, GFP_KERNEL, node);
if (!l3) if (!l3)
return -ENOMEM; return -ENOMEM;
@ -1228,14 +1227,14 @@ static int init_cache_nodelists_node(int node)
* go. slab_mutex is sufficient * go. slab_mutex is sufficient
* protection here. * protection here.
*/ */
cachep->nodelists[node] = l3; cachep->node[node] = l3;
} }
spin_lock_irq(&cachep->nodelists[node]->list_lock); spin_lock_irq(&cachep->node[node]->list_lock);
cachep->nodelists[node]->free_limit = cachep->node[node]->free_limit =
(1 + nr_cpus_node(node)) * (1 + nr_cpus_node(node)) *
cachep->batchcount + cachep->num; cachep->batchcount + cachep->num;
spin_unlock_irq(&cachep->nodelists[node]->list_lock); spin_unlock_irq(&cachep->node[node]->list_lock);
} }
return 0; return 0;
} }
@ -1255,7 +1254,7 @@ static void __cpuinit cpuup_canceled(long cpu)
/* cpu is dead; no one can alloc from it. */ /* cpu is dead; no one can alloc from it. */
nc = cachep->array[cpu]; nc = cachep->array[cpu];
cachep->array[cpu] = NULL; cachep->array[cpu] = NULL;
l3 = cachep->nodelists[node]; l3 = cachep->node[node];
if (!l3) if (!l3)
goto free_array_cache; goto free_array_cache;
@ -1298,7 +1297,7 @@ static void __cpuinit cpuup_canceled(long cpu)
* shrink each nodelist to its limit. * shrink each nodelist to its limit.
*/ */
list_for_each_entry(cachep, &slab_caches, list) { list_for_each_entry(cachep, &slab_caches, list) {
l3 = cachep->nodelists[node]; l3 = cachep->node[node];
if (!l3) if (!l3)
continue; continue;
drain_freelist(cachep, l3, l3->free_objects); drain_freelist(cachep, l3, l3->free_objects);
@ -1318,7 +1317,7 @@ static int __cpuinit cpuup_prepare(long cpu)
* kmalloc_node allows us to add the slab to the right * kmalloc_node allows us to add the slab to the right
* kmem_list3 and not this cpu's kmem_list3 * kmem_list3 and not this cpu's kmem_list3
*/ */
err = init_cache_nodelists_node(node); err = init_cache_node_node(node);
if (err < 0) if (err < 0)
goto bad; goto bad;
@ -1353,7 +1352,7 @@ static int __cpuinit cpuup_prepare(long cpu)
} }
} }
cachep->array[cpu] = nc; cachep->array[cpu] = nc;
l3 = cachep->nodelists[node]; l3 = cachep->node[node];
BUG_ON(!l3); BUG_ON(!l3);
spin_lock_irq(&l3->list_lock); spin_lock_irq(&l3->list_lock);
@ -1456,7 +1455,7 @@ static struct notifier_block __cpuinitdata cpucache_notifier = {
* *
* Must hold slab_mutex. * Must hold slab_mutex.
*/ */
static int __meminit drain_cache_nodelists_node(int node) static int __meminit drain_cache_node_node(int node)
{ {
struct kmem_cache *cachep; struct kmem_cache *cachep;
int ret = 0; int ret = 0;
@ -1464,7 +1463,7 @@ static int __meminit drain_cache_nodelists_node(int node)
list_for_each_entry(cachep, &slab_caches, list) { list_for_each_entry(cachep, &slab_caches, list) {
struct kmem_cache_node *l3; struct kmem_cache_node *l3;
l3 = cachep->nodelists[node]; l3 = cachep->node[node];
if (!l3) if (!l3)
continue; continue;
@ -1493,12 +1492,12 @@ static int __meminit slab_memory_callback(struct notifier_block *self,
switch (action) { switch (action) {
case MEM_GOING_ONLINE: case MEM_GOING_ONLINE:
mutex_lock(&slab_mutex); mutex_lock(&slab_mutex);
ret = init_cache_nodelists_node(nid); ret = init_cache_node_node(nid);
mutex_unlock(&slab_mutex); mutex_unlock(&slab_mutex);
break; break;
case MEM_GOING_OFFLINE: case MEM_GOING_OFFLINE:
mutex_lock(&slab_mutex); mutex_lock(&slab_mutex);
ret = drain_cache_nodelists_node(nid); ret = drain_cache_node_node(nid);
mutex_unlock(&slab_mutex); mutex_unlock(&slab_mutex);
break; break;
case MEM_ONLINE: case MEM_ONLINE:
@ -1530,7 +1529,7 @@ static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *
spin_lock_init(&ptr->list_lock); spin_lock_init(&ptr->list_lock);
MAKE_ALL_LISTS(cachep, ptr, nodeid); MAKE_ALL_LISTS(cachep, ptr, nodeid);
cachep->nodelists[nodeid] = ptr; cachep->node[nodeid] = ptr;
} }
/* /*
@ -1542,8 +1541,8 @@ static void __init set_up_list3s(struct kmem_cache *cachep, int index)
int node; int node;
for_each_online_node(node) { for_each_online_node(node) {
cachep->nodelists[node] = &initkmem_list3[index + node]; cachep->node[node] = &initkmem_list3[index + node];
cachep->nodelists[node]->next_reap = jiffies + cachep->node[node]->next_reap = jiffies +
REAPTIMEOUT_LIST3 + REAPTIMEOUT_LIST3 +
((unsigned long)cachep) % REAPTIMEOUT_LIST3; ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
} }
@ -1551,11 +1550,11 @@ static void __init set_up_list3s(struct kmem_cache *cachep, int index)
/* /*
* The memory after the last cpu cache pointer is used for the * The memory after the last cpu cache pointer is used for the
* the nodelists pointer. * the node pointer.
*/ */
static void setup_nodelists_pointer(struct kmem_cache *cachep) static void setup_node_pointer(struct kmem_cache *cachep)
{ {
cachep->nodelists = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids]; cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
} }
/* /*
@ -1567,7 +1566,7 @@ void __init kmem_cache_init(void)
int i; int i;
kmem_cache = &kmem_cache_boot; kmem_cache = &kmem_cache_boot;
setup_nodelists_pointer(kmem_cache); setup_node_pointer(kmem_cache);
if (num_possible_nodes() == 1) if (num_possible_nodes() == 1)
use_alien_caches = 0; use_alien_caches = 0;
@ -1756,7 +1755,7 @@ void __init kmem_cache_init_late(void)
#ifdef CONFIG_NUMA #ifdef CONFIG_NUMA
/* /*
* Register a memory hotplug callback that initializes and frees * Register a memory hotplug callback that initializes and frees
* nodelists. * node.
*/ */
hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif #endif
@ -1801,7 +1800,7 @@ slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
unsigned long active_objs = 0, num_objs = 0, free_objects = 0; unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
unsigned long active_slabs = 0, num_slabs = 0; unsigned long active_slabs = 0, num_slabs = 0;
l3 = cachep->nodelists[node]; l3 = cachep->node[node];
if (!l3) if (!l3)
continue; continue;
@ -2277,15 +2276,15 @@ static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
} else { } else {
int node; int node;
for_each_online_node(node) { for_each_online_node(node) {
cachep->nodelists[node] = cachep->node[node] =
kmalloc_node(sizeof(struct kmem_cache_node), kmalloc_node(sizeof(struct kmem_cache_node),
gfp, node); gfp, node);
BUG_ON(!cachep->nodelists[node]); BUG_ON(!cachep->node[node]);
kmem_list3_init(cachep->nodelists[node]); kmem_list3_init(cachep->node[node]);
} }
} }
} }
cachep->nodelists[numa_mem_id()]->next_reap = cachep->node[numa_mem_id()]->next_reap =
jiffies + REAPTIMEOUT_LIST3 + jiffies + REAPTIMEOUT_LIST3 +
((unsigned long)cachep) % REAPTIMEOUT_LIST3; ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
@ -2388,7 +2387,7 @@ __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
else else
gfp = GFP_NOWAIT; gfp = GFP_NOWAIT;
setup_nodelists_pointer(cachep); setup_node_pointer(cachep);
#if DEBUG #if DEBUG
/* /*
@ -2527,7 +2526,7 @@ static void check_spinlock_acquired(struct kmem_cache *cachep)
{ {
#ifdef CONFIG_SMP #ifdef CONFIG_SMP
check_irq_off(); check_irq_off();
assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock); assert_spin_locked(&cachep->node[numa_mem_id()]->list_lock);
#endif #endif
} }
@ -2535,7 +2534,7 @@ static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
{ {
#ifdef CONFIG_SMP #ifdef CONFIG_SMP
check_irq_off(); check_irq_off();
assert_spin_locked(&cachep->nodelists[node]->list_lock); assert_spin_locked(&cachep->node[node]->list_lock);
#endif #endif
} }
@ -2558,9 +2557,9 @@ static void do_drain(void *arg)
check_irq_off(); check_irq_off();
ac = cpu_cache_get(cachep); ac = cpu_cache_get(cachep);
spin_lock(&cachep->nodelists[node]->list_lock); spin_lock(&cachep->node[node]->list_lock);
free_block(cachep, ac->entry, ac->avail, node); free_block(cachep, ac->entry, ac->avail, node);
spin_unlock(&cachep->nodelists[node]->list_lock); spin_unlock(&cachep->node[node]->list_lock);
ac->avail = 0; ac->avail = 0;
} }
@ -2572,13 +2571,13 @@ static void drain_cpu_caches(struct kmem_cache *cachep)
on_each_cpu(do_drain, cachep, 1); on_each_cpu(do_drain, cachep, 1);
check_irq_on(); check_irq_on();
for_each_online_node(node) { for_each_online_node(node) {
l3 = cachep->nodelists[node]; l3 = cachep->node[node];
if (l3 && l3->alien) if (l3 && l3->alien)
drain_alien_cache(cachep, l3->alien); drain_alien_cache(cachep, l3->alien);
} }
for_each_online_node(node) { for_each_online_node(node) {
l3 = cachep->nodelists[node]; l3 = cachep->node[node];
if (l3) if (l3)
drain_array(cachep, l3, l3->shared, 1, node); drain_array(cachep, l3, l3->shared, 1, node);
} }
@ -2635,7 +2634,7 @@ static int __cache_shrink(struct kmem_cache *cachep)
check_irq_on(); check_irq_on();
for_each_online_node(i) { for_each_online_node(i) {
l3 = cachep->nodelists[i]; l3 = cachep->node[i];
if (!l3) if (!l3)
continue; continue;
@ -2682,7 +2681,7 @@ int __kmem_cache_shutdown(struct kmem_cache *cachep)
/* NUMA: free the list3 structures */ /* NUMA: free the list3 structures */
for_each_online_node(i) { for_each_online_node(i) {
l3 = cachep->nodelists[i]; l3 = cachep->node[i];
if (l3) { if (l3) {
kfree(l3->shared); kfree(l3->shared);
free_alien_cache(l3->alien); free_alien_cache(l3->alien);
@ -2879,7 +2878,7 @@ static int cache_grow(struct kmem_cache *cachep,
/* Take the l3 list lock to change the colour_next on this node */ /* Take the l3 list lock to change the colour_next on this node */
check_irq_off(); check_irq_off();
l3 = cachep->nodelists[nodeid]; l3 = cachep->node[nodeid];
spin_lock(&l3->list_lock); spin_lock(&l3->list_lock);
/* Get colour for the slab, and cal the next value. */ /* Get colour for the slab, and cal the next value. */
@ -3077,7 +3076,7 @@ static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
*/ */
batchcount = BATCHREFILL_LIMIT; batchcount = BATCHREFILL_LIMIT;
} }
l3 = cachep->nodelists[node]; l3 = cachep->node[node];
BUG_ON(ac->avail > 0 || !l3); BUG_ON(ac->avail > 0 || !l3);
spin_lock(&l3->list_lock); spin_lock(&l3->list_lock);
@ -3299,7 +3298,7 @@ static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
/* /*
* Fallback function if there was no memory available and no objects on a * Fallback function if there was no memory available and no objects on a
* certain node and fall back is permitted. First we scan all the * certain node and fall back is permitted. First we scan all the
* available nodelists for available objects. If that fails then we * available node for available objects. If that fails then we
* perform an allocation without specifying a node. This allows the page * perform an allocation without specifying a node. This allows the page
* allocator to do its reclaim / fallback magic. We then insert the * allocator to do its reclaim / fallback magic. We then insert the
* slab into the proper nodelist and then allocate from it. * slab into the proper nodelist and then allocate from it.
@ -3333,8 +3332,8 @@ static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
nid = zone_to_nid(zone); nid = zone_to_nid(zone);
if (cpuset_zone_allowed_hardwall(zone, flags) && if (cpuset_zone_allowed_hardwall(zone, flags) &&
cache->nodelists[nid] && cache->node[nid] &&
cache->nodelists[nid]->free_objects) { cache->node[nid]->free_objects) {
obj = ____cache_alloc_node(cache, obj = ____cache_alloc_node(cache,
flags | GFP_THISNODE, nid); flags | GFP_THISNODE, nid);
if (obj) if (obj)
@ -3394,7 +3393,7 @@ static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
void *obj; void *obj;
int x; int x;
l3 = cachep->nodelists[nodeid]; l3 = cachep->node[nodeid];
BUG_ON(!l3); BUG_ON(!l3);
retry: retry:
@ -3479,7 +3478,7 @@ slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
if (nodeid == NUMA_NO_NODE) if (nodeid == NUMA_NO_NODE)
nodeid = slab_node; nodeid = slab_node;
if (unlikely(!cachep->nodelists[nodeid])) { if (unlikely(!cachep->node[nodeid])) {
/* Node not bootstrapped yet */ /* Node not bootstrapped yet */
ptr = fallback_alloc(cachep, flags); ptr = fallback_alloc(cachep, flags);
goto out; goto out;
@ -3595,7 +3594,7 @@ static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
objp = objpp[i]; objp = objpp[i];
slabp = virt_to_slab(objp); slabp = virt_to_slab(objp);
l3 = cachep->nodelists[node]; l3 = cachep->node[node];
list_del(&slabp->list); list_del(&slabp->list);
check_spinlock_acquired_node(cachep, node); check_spinlock_acquired_node(cachep, node);
check_slabp(cachep, slabp); check_slabp(cachep, slabp);
@ -3639,7 +3638,7 @@ static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
BUG_ON(!batchcount || batchcount > ac->avail); BUG_ON(!batchcount || batchcount > ac->avail);
#endif #endif
check_irq_off(); check_irq_off();
l3 = cachep->nodelists[node]; l3 = cachep->node[node];
spin_lock(&l3->list_lock); spin_lock(&l3->list_lock);
if (l3->shared) { if (l3->shared) {
struct array_cache *shared_array = l3->shared; struct array_cache *shared_array = l3->shared;
@ -3946,7 +3945,7 @@ static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
} }
} }
l3 = cachep->nodelists[node]; l3 = cachep->node[node];
if (l3) { if (l3) {
struct array_cache *shared = l3->shared; struct array_cache *shared = l3->shared;
@ -3982,7 +3981,7 @@ static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
l3->alien = new_alien; l3->alien = new_alien;
l3->free_limit = (1 + nr_cpus_node(node)) * l3->free_limit = (1 + nr_cpus_node(node)) *
cachep->batchcount + cachep->num; cachep->batchcount + cachep->num;
cachep->nodelists[node] = l3; cachep->node[node] = l3;
} }
return 0; return 0;
@ -3991,13 +3990,13 @@ static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
/* Cache is not active yet. Roll back what we did */ /* Cache is not active yet. Roll back what we did */
node--; node--;
while (node >= 0) { while (node >= 0) {
if (cachep->nodelists[node]) { if (cachep->node[node]) {
l3 = cachep->nodelists[node]; l3 = cachep->node[node];
kfree(l3->shared); kfree(l3->shared);
free_alien_cache(l3->alien); free_alien_cache(l3->alien);
kfree(l3); kfree(l3);
cachep->nodelists[node] = NULL; cachep->node[node] = NULL;
} }
node--; node--;
} }
@ -4057,9 +4056,9 @@ static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
struct array_cache *ccold = new->new[i]; struct array_cache *ccold = new->new[i];
if (!ccold) if (!ccold)
continue; continue;
spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock); spin_lock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i)); free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock); spin_unlock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
kfree(ccold); kfree(ccold);
} }
kfree(new); kfree(new);
@ -4219,7 +4218,7 @@ static void cache_reap(struct work_struct *w)
* have established with reasonable certainty that * have established with reasonable certainty that
* we can do some work if the lock was obtained. * we can do some work if the lock was obtained.
*/ */
l3 = searchp->nodelists[node]; l3 = searchp->node[node];
reap_alien(searchp, l3); reap_alien(searchp, l3);
@ -4272,7 +4271,7 @@ void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
active_objs = 0; active_objs = 0;
num_slabs = 0; num_slabs = 0;
for_each_online_node(node) { for_each_online_node(node) {
l3 = cachep->nodelists[node]; l3 = cachep->node[node];
if (!l3) if (!l3)
continue; continue;
@ -4497,7 +4496,7 @@ static int leaks_show(struct seq_file *m, void *p)
n[1] = 0; n[1] = 0;
for_each_online_node(node) { for_each_online_node(node) {
l3 = cachep->nodelists[node]; l3 = cachep->node[node];
if (!l3) if (!l3)
continue; continue;