ALSA: oxygen: add Xonar DG support

Add experimental support for the Asus Xonar DG sound card.

Signed-off-by: Clemens Ladisch <clemens@ladisch.de>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
This commit is contained in:
Clemens Ladisch 2011-01-10 16:20:29 +01:00 committed by Takashi Iwai
parent 8443d2eb81
commit 66410bfdf1
8 changed files with 735 additions and 6 deletions

View file

@ -1524,8 +1524,9 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed.
Module snd-oxygen
-----------------
Module for sound cards based on the C-Media CMI8787/8788 chip:
Module for sound cards based on the C-Media CMI8786/8787/8788 chip:
* Asound A-8788
* Asus Xonar DG
* AuzenTech X-Meridian
* AuzenTech X-Meridian 2G
* Bgears b-Enspirer

View file

@ -209,7 +209,7 @@ config SND_OXYGEN_LIB
tristate
config SND_OXYGEN
tristate "C-Media 8787, 8788 (Oxygen)"
tristate "C-Media 8786, 8787, 8788 (Oxygen)"
select SND_OXYGEN_LIB
select SND_PCM
select SND_MPU401_UART
@ -217,6 +217,7 @@ config SND_OXYGEN
Say Y here to include support for sound cards based on the
C-Media CMI8788 (Oxygen HD Audio) chip:
* Asound A-8788
* Asus Xonar DG
* AuzenTech X-Meridian
* AuzenTech X-Meridian 2G
* Bgears b-Enspirer

View file

@ -1,5 +1,5 @@
snd-oxygen-lib-objs := oxygen_io.o oxygen_lib.o oxygen_mixer.o oxygen_pcm.o
snd-oxygen-objs := oxygen.o
snd-oxygen-objs := oxygen.o xonar_dg.o
snd-virtuoso-objs := virtuoso.o xonar_lib.o \
xonar_pcm179x.o xonar_cs43xx.o xonar_wm87x6.o xonar_hdmi.o

107
sound/pci/oxygen/cs4245.h Normal file
View file

@ -0,0 +1,107 @@
#define CS4245_CHIP_ID 0x01
#define CS4245_POWER_CTRL 0x02
#define CS4245_DAC_CTRL_1 0x03
#define CS4245_ADC_CTRL 0x04
#define CS4245_MCLK_FREQ 0x05
#define CS4245_SIGNAL_SEL 0x06
#define CS4245_PGA_B_CTRL 0x07
#define CS4245_PGA_A_CTRL 0x08
#define CS4245_ANALOG_IN 0x09
#define CS4245_DAC_A_CTRL 0x0a
#define CS4245_DAC_B_CTRL 0x0b
#define CS4245_DAC_CTRL_2 0x0c
#define CS4245_INT_STATUS 0x0d
#define CS4245_INT_MASK 0x0e
#define CS4245_INT_MODE_MSB 0x0f
#define CS4245_INT_MODE_LSB 0x10
/* Chip ID */
#define CS4245_CHIP_PART_MASK 0xf0
#define CS4245_CHIP_REV_MASK 0x0f
/* Power Control */
#define CS4245_FREEZE 0x80
#define CS4245_PDN_MIC 0x08
#define CS4245_PDN_ADC 0x04
#define CS4245_PDN_DAC 0x02
#define CS4245_PDN 0x01
/* DAC Control */
#define CS4245_DAC_FM_MASK 0xc0
#define CS4245_DAC_FM_SINGLE 0x00
#define CS4245_DAC_FM_DOUBLE 0x40
#define CS4245_DAC_FM_QUAD 0x80
#define CS4245_DAC_DIF_MASK 0x30
#define CS4245_DAC_DIF_LJUST 0x00
#define CS4245_DAC_DIF_I2S 0x10
#define CS4245_DAC_DIF_RJUST_16 0x20
#define CS4245_DAC_DIF_RJUST_24 0x30
#define CS4245_RESERVED_1 0x08
#define CS4245_MUTE_DAC 0x04
#define CS4245_DEEMPH 0x02
#define CS4245_DAC_MASTER 0x01
/* ADC Control */
#define CS4245_ADC_FM_MASK 0xc0
#define CS4245_ADC_FM_SINGLE 0x00
#define CS4245_ADC_FM_DOUBLE 0x40
#define CS4245_ADC_FM_QUAD 0x80
#define CS4245_ADC_DIF_MASK 0x10
#define CS4245_ADC_DIF_LJUST 0x00
#define CS4245_ADC_DIF_I2S 0x10
#define CS4245_MUTE_ADC 0x04
#define CS4245_HPF_FREEZE 0x02
#define CS4245_ADC_MASTER 0x01
/* MCLK Frequency */
#define CS4245_MCLK1_MASK 0x70
#define CS4245_MCLK1_SHIFT 4
#define CS4245_MCLK2_MASK 0x07
#define CS4245_MCLK2_SHIFT 0
#define CS4245_MCLK_1 0
#define CS4245_MCLK_1_5 1
#define CS4245_MCLK_2 2
#define CS4245_MCLK_3 3
#define CS4245_MCLK_4 4
/* Signal Selection */
#define CS4245_A_OUT_SEL_MASK 0x60
#define CS4245_A_OUT_SEL_HIZ 0x00
#define CS4245_A_OUT_SEL_DAC 0x20
#define CS4245_A_OUT_SEL_PGA 0x40
#define CS4245_LOOP 0x02
#define CS4245_ASYNCH 0x01
/* Channel B/A PGA Control */
#define CS4245_PGA_GAIN_MASK 0x3f
/* ADC Input Control */
#define CS4245_PGA_SOFT 0x10
#define CS4245_PGA_ZERO 0x08
#define CS4245_SEL_MASK 0x07
#define CS4245_SEL_MIC 0x00
#define CS4245_SEL_INPUT_1 0x01
#define CS4245_SEL_INPUT_2 0x02
#define CS4245_SEL_INPUT_3 0x03
#define CS4245_SEL_INPUT_4 0x04
#define CS4245_SEL_INPUT_5 0x05
#define CS4245_SEL_INPUT_6 0x06
/* DAC Channel A/B Volume Control */
#define CS4245_VOL_MASK 0xff
/* DAC Control 2 */
#define CS4245_DAC_SOFT 0x80
#define CS4245_DAC_ZERO 0x40
#define CS4245_INVERT_DAC 0x20
#define CS4245_INT_ACTIVE_HIGH 0x01
/* Interrupt Status/Mask/Mode */
#define CS4245_ADC_CLK_ERR 0x08
#define CS4245_DAC_CLK_ERR 0x04
#define CS4245_ADC_OVFL 0x02
#define CS4245_ADC_UNDRFL 0x01
#define CS4245_SPI_ADDRESS (0x9e << 16)
#define CS4245_SPI_WRITE (0 << 16)

View file

@ -53,13 +53,16 @@
#include <sound/pcm_params.h>
#include <sound/tlv.h>
#include "oxygen.h"
#include "xonar_dg.h"
#include "ak4396.h"
#include "wm8785.h"
MODULE_AUTHOR("Clemens Ladisch <clemens@ladisch.de>");
MODULE_DESCRIPTION("C-Media CMI8788 driver");
MODULE_LICENSE("GPL v2");
MODULE_SUPPORTED_DEVICE("{{C-Media,CMI8788}}");
MODULE_SUPPORTED_DEVICE("{{C-Media,CMI8786}"
",{C-Media,CMI8787}"
",{C-Media,CMI8788}}");
static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;
@ -79,6 +82,7 @@ enum {
MODEL_CLARO_HALO,
MODEL_FANTASIA,
MODEL_2CH_OUTPUT,
MODEL_XONAR_DG,
};
static DEFINE_PCI_DEVICE_TABLE(oxygen_ids) = {
@ -92,6 +96,8 @@ static DEFINE_PCI_DEVICE_TABLE(oxygen_ids) = {
{ OXYGEN_PCI_SUBID(0x13f6, 0x8788), .driver_data = MODEL_CMEDIA_REF },
{ OXYGEN_PCI_SUBID(0x147a, 0xa017), .driver_data = MODEL_CMEDIA_REF },
{ OXYGEN_PCI_SUBID(0x1a58, 0x0910), .driver_data = MODEL_CMEDIA_REF },
/* Asus Xonar DG */
{ OXYGEN_PCI_SUBID(0x1043, 0x8467), .driver_data = MODEL_XONAR_DG },
/* PCI 2.0 HD Audio */
{ OXYGEN_PCI_SUBID(0x13f6, 0x8782), .driver_data = MODEL_2CH_OUTPUT },
/* Kuroutoshikou CMI8787-HG2PCI */
@ -655,6 +661,9 @@ static int __devinit get_oxygen_model(struct oxygen *chip,
chip->model.dac_channels_pcm = 2;
chip->model.dac_channels_mixer = 2;
break;
case MODEL_XONAR_DG:
chip->model = model_xonar_dg;
break;
}
if (id->driver_data == MODEL_MERIDIAN ||
id->driver_data == MODEL_CLARO_HALO) {

View file

@ -97,6 +97,16 @@ static int dac_mute_put(struct snd_kcontrol *ctl,
return changed;
}
static unsigned int upmix_item_count(struct oxygen *chip)
{
if (chip->model.dac_channels_pcm < 8)
return 2;
else if (chip->model.update_center_lfe_mix)
return 5;
else
return 3;
}
static int upmix_info(struct snd_kcontrol *ctl, struct snd_ctl_elem_info *info)
{
static const char *const names[5] = {
@ -107,7 +117,7 @@ static int upmix_info(struct snd_kcontrol *ctl, struct snd_ctl_elem_info *info)
"Front+Surround+Center/LFE+Back",
};
struct oxygen *chip = ctl->private_data;
unsigned int count = chip->model.update_center_lfe_mix ? 5 : 3;
unsigned int count = upmix_item_count(chip);
info->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
info->count = 1;
@ -188,7 +198,7 @@ void oxygen_update_dac_routing(struct oxygen *chip)
static int upmix_put(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
unsigned int count = chip->model.update_center_lfe_mix ? 5 : 3;
unsigned int count = upmix_item_count(chip);
int changed;
if (value->value.enumerated.item[0] >= count)

593
sound/pci/oxygen/xonar_dg.c Normal file
View file

@ -0,0 +1,593 @@
/*
* card driver for the Xonar DG
*
* Copyright (c) Clemens Ladisch <clemens@ladisch.de>
*
*
* This driver is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2.
*
* This driver is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this driver; if not, see <http://www.gnu.org/licenses/>.
*/
/*
* Xonar DG
* --------
*
* CMI8788:
*
* SPI 0 -> CS4245
*
* GPIO 3 <- ?
* GPIO 4 <- headphone detect
* GPIO 5 -> route input jack to line-in (0) or mic-in (1)
* GPIO 6 -> route input jack to line-in (0) or mic-in (1)
* GPIO 7 -> enable rear headphone amp
* GPIO 8 -> enable output to speakers
*
* CS4245:
*
* input 1 <- aux
* input 2 <- front mic
* input 4 <- line/mic
* aux out -> front panel headphones
*/
#include <linux/pci.h>
#include <sound/control.h>
#include <sound/core.h>
#include <sound/info.h>
#include <sound/pcm.h>
#include <sound/tlv.h>
#include "oxygen.h"
#include "xonar_dg.h"
#include "cs4245.h"
#define GPIO_MAGIC 0x0008
#define GPIO_HP_DETECT 0x0010
#define GPIO_INPUT_ROUTE 0x0060
#define GPIO_HP_REAR 0x0080
#define GPIO_OUTPUT_ENABLE 0x0100
struct dg {
unsigned int output_sel;
s8 input_vol[4][2];
unsigned int input_sel;
u8 hp_vol_att;
u8 cs4245_regs[0x11];
};
static void cs4245_write(struct oxygen *chip, unsigned int reg, u8 value)
{
struct dg *data = chip->model_data;
oxygen_write_spi(chip, OXYGEN_SPI_TRIGGER |
OXYGEN_SPI_DATA_LENGTH_3 |
OXYGEN_SPI_CLOCK_1280 |
(0 << OXYGEN_SPI_CODEC_SHIFT) |
OXYGEN_SPI_CEN_LATCH_CLOCK_HI,
CS4245_SPI_ADDRESS |
CS4245_SPI_WRITE |
(value << 8) | reg);
data->cs4245_regs[reg] = value;
}
static void cs4245_write_cached(struct oxygen *chip, unsigned int reg, u8 value)
{
struct dg *data = chip->model_data;
if (value != data->cs4245_regs[reg])
cs4245_write(chip, reg, value);
}
static void cs4245_registers_init(struct oxygen *chip)
{
struct dg *data = chip->model_data;
cs4245_write(chip, CS4245_POWER_CTRL, CS4245_PDN);
cs4245_write(chip, CS4245_DAC_CTRL_1,
data->cs4245_regs[CS4245_DAC_CTRL_1]);
cs4245_write(chip, CS4245_ADC_CTRL,
data->cs4245_regs[CS4245_ADC_CTRL]);
cs4245_write(chip, CS4245_SIGNAL_SEL,
data->cs4245_regs[CS4245_SIGNAL_SEL]);
cs4245_write(chip, CS4245_PGA_B_CTRL,
data->cs4245_regs[CS4245_PGA_B_CTRL]);
cs4245_write(chip, CS4245_PGA_A_CTRL,
data->cs4245_regs[CS4245_PGA_A_CTRL]);
cs4245_write(chip, CS4245_ANALOG_IN,
data->cs4245_regs[CS4245_ANALOG_IN]);
cs4245_write(chip, CS4245_DAC_A_CTRL,
data->cs4245_regs[CS4245_DAC_A_CTRL]);
cs4245_write(chip, CS4245_DAC_B_CTRL,
data->cs4245_regs[CS4245_DAC_B_CTRL]);
cs4245_write(chip, CS4245_DAC_CTRL_2,
CS4245_DAC_SOFT | CS4245_DAC_ZERO | CS4245_INVERT_DAC);
cs4245_write(chip, CS4245_INT_MASK, 0);
cs4245_write(chip, CS4245_POWER_CTRL, 0);
}
static void cs4245_init(struct oxygen *chip)
{
struct dg *data = chip->model_data;
data->cs4245_regs[CS4245_DAC_CTRL_1] =
CS4245_DAC_FM_SINGLE | CS4245_DAC_DIF_LJUST;
data->cs4245_regs[CS4245_ADC_CTRL] =
CS4245_ADC_FM_SINGLE | CS4245_ADC_DIF_LJUST;
data->cs4245_regs[CS4245_SIGNAL_SEL] =
CS4245_A_OUT_SEL_HIZ | CS4245_ASYNCH;
data->cs4245_regs[CS4245_PGA_B_CTRL] = 0;
data->cs4245_regs[CS4245_PGA_A_CTRL] = 0;
data->cs4245_regs[CS4245_ANALOG_IN] =
CS4245_PGA_SOFT | CS4245_PGA_ZERO | CS4245_SEL_INPUT_4;
data->cs4245_regs[CS4245_DAC_A_CTRL] = 0;
data->cs4245_regs[CS4245_DAC_B_CTRL] = 0;
cs4245_registers_init(chip);
snd_component_add(chip->card, "CS4245");
}
static void dg_output_enable(struct oxygen *chip)
{
msleep(2500);
oxygen_set_bits16(chip, OXYGEN_GPIO_DATA, GPIO_OUTPUT_ENABLE);
}
static void dg_init(struct oxygen *chip)
{
struct dg *data = chip->model_data;
data->output_sel = 0;
data->input_sel = 3;
data->hp_vol_att = 2 * 16;
cs4245_init(chip);
oxygen_clear_bits16(chip, OXYGEN_GPIO_CONTROL,
GPIO_MAGIC | GPIO_HP_DETECT);
oxygen_set_bits16(chip, OXYGEN_GPIO_CONTROL,
GPIO_INPUT_ROUTE | GPIO_HP_REAR | GPIO_OUTPUT_ENABLE);
oxygen_clear_bits16(chip, OXYGEN_GPIO_DATA,
GPIO_INPUT_ROUTE | GPIO_HP_REAR);
dg_output_enable(chip);
}
static void dg_cleanup(struct oxygen *chip)
{
oxygen_clear_bits16(chip, OXYGEN_GPIO_DATA, GPIO_OUTPUT_ENABLE);
}
static void dg_suspend(struct oxygen *chip)
{
dg_cleanup(chip);
}
static void dg_resume(struct oxygen *chip)
{
cs4245_registers_init(chip);
dg_output_enable(chip);
}
static void set_cs4245_dac_params(struct oxygen *chip,
struct snd_pcm_hw_params *params)
{
struct dg *data = chip->model_data;
u8 value;
value = data->cs4245_regs[CS4245_DAC_CTRL_1] & ~CS4245_DAC_FM_MASK;
if (params_rate(params) <= 50000)
value |= CS4245_DAC_FM_SINGLE;
else if (params_rate(params) <= 100000)
value |= CS4245_DAC_FM_DOUBLE;
else
value |= CS4245_DAC_FM_QUAD;
cs4245_write_cached(chip, CS4245_DAC_CTRL_1, value);
}
static void set_cs4245_adc_params(struct oxygen *chip,
struct snd_pcm_hw_params *params)
{
struct dg *data = chip->model_data;
u8 value;
value = data->cs4245_regs[CS4245_ADC_CTRL] & ~CS4245_ADC_FM_MASK;
if (params_rate(params) <= 50000)
value |= CS4245_ADC_FM_SINGLE;
else if (params_rate(params) <= 100000)
value |= CS4245_ADC_FM_DOUBLE;
else
value |= CS4245_ADC_FM_QUAD;
cs4245_write_cached(chip, CS4245_ADC_CTRL, value);
}
static int output_switch_info(struct snd_kcontrol *ctl,
struct snd_ctl_elem_info *info)
{
static const char *const names[3] = {
"Speakers", "Headphones", "FP Headphones"
};
info->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
info->count = 1;
info->value.enumerated.items = 3;
if (info->value.enumerated.item >= 3)
info->value.enumerated.item = 2;
strcpy(info->value.enumerated.name, names[info->value.enumerated.item]);
return 0;
}
static int output_switch_get(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
struct dg *data = chip->model_data;
mutex_lock(&chip->mutex);
value->value.enumerated.item[0] = data->output_sel;
mutex_unlock(&chip->mutex);
return 0;
}
static int output_switch_put(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
struct dg *data = chip->model_data;
u8 reg;
int changed;
if (value->value.enumerated.item[0] > 2)
return -EINVAL;
mutex_lock(&chip->mutex);
changed = value->value.enumerated.item[0] != data->output_sel;
if (changed) {
data->output_sel = value->value.enumerated.item[0];
reg = data->cs4245_regs[CS4245_SIGNAL_SEL] &
~CS4245_A_OUT_SEL_MASK;
reg |= data->output_sel == 2 ?
CS4245_A_OUT_SEL_DAC : CS4245_A_OUT_SEL_HIZ;
cs4245_write_cached(chip, CS4245_SIGNAL_SEL, reg);
cs4245_write_cached(chip, CS4245_DAC_A_CTRL,
data->output_sel ? data->hp_vol_att : 0);
cs4245_write_cached(chip, CS4245_DAC_B_CTRL,
data->output_sel ? data->hp_vol_att : 0);
oxygen_write16_masked(chip, OXYGEN_GPIO_DATA,
data->output_sel == 1 ? GPIO_HP_REAR : 0,
GPIO_HP_REAR);
}
mutex_unlock(&chip->mutex);
return changed;
}
static int hp_volume_offset_info(struct snd_kcontrol *ctl,
struct snd_ctl_elem_info *info)
{
static const char *const names[3] = {
"< 64 ohms", "64-150 ohms", "150-300 ohms"
};
info->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
info->count = 1;
info->value.enumerated.items = 3;
if (info->value.enumerated.item >= 3)
info->value.enumerated.item = 2;
strcpy(info->value.enumerated.name, names[info->value.enumerated.item]);
return 0;
}
static int hp_volume_offset_get(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
struct dg *data = chip->model_data;
mutex_lock(&chip->mutex);
if (data->hp_vol_att > 2 * 7)
value->value.enumerated.item[0] = 0;
else if (data->hp_vol_att > 0)
value->value.enumerated.item[0] = 1;
else
value->value.enumerated.item[0] = 2;
mutex_unlock(&chip->mutex);
return 0;
}
static int hp_volume_offset_put(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
static const s8 atts[3] = { 2 * 16, 2 * 7, 0 };
struct oxygen *chip = ctl->private_data;
struct dg *data = chip->model_data;
s8 att;
int changed;
if (value->value.enumerated.item[0] > 2)
return -EINVAL;
att = atts[value->value.enumerated.item[0]];
mutex_lock(&chip->mutex);
changed = att != data->hp_vol_att;
if (changed) {
data->hp_vol_att = att;
if (data->output_sel) {
cs4245_write_cached(chip, CS4245_DAC_A_CTRL, att);
cs4245_write_cached(chip, CS4245_DAC_B_CTRL, att);
}
}
mutex_unlock(&chip->mutex);
return changed;
}
static int input_vol_info(struct snd_kcontrol *ctl,
struct snd_ctl_elem_info *info)
{
info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
info->count = 2;
info->value.integer.min = 2 * -12;
info->value.integer.max = 2 * 12;
return 0;
}
static int input_vol_get(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
struct dg *data = chip->model_data;
unsigned int idx = ctl->private_value;
mutex_lock(&chip->mutex);
value->value.integer.value[0] = data->input_vol[idx][0];
value->value.integer.value[1] = data->input_vol[idx][1];
mutex_unlock(&chip->mutex);
return 0;
}
static int input_vol_put(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
struct dg *data = chip->model_data;
unsigned int idx = ctl->private_value;
int changed = 0;
if (value->value.integer.value[0] < 2 * -12 ||
value->value.integer.value[0] > 2 * 12 ||
value->value.integer.value[1] < 2 * -12 ||
value->value.integer.value[1] > 2 * 12)
return -EINVAL;
mutex_lock(&chip->mutex);
changed = data->input_vol[idx][0] != value->value.integer.value[0] ||
data->input_vol[idx][1] != value->value.integer.value[1];
if (changed) {
data->input_vol[idx][0] = value->value.integer.value[0];
data->input_vol[idx][1] = value->value.integer.value[1];
if (idx == data->input_sel) {
cs4245_write_cached(chip, CS4245_PGA_A_CTRL,
data->input_vol[idx][0]);
cs4245_write_cached(chip, CS4245_PGA_B_CTRL,
data->input_vol[idx][1]);
}
}
mutex_unlock(&chip->mutex);
return changed;
}
static DECLARE_TLV_DB_SCALE(cs4245_pga_db_scale, -1200, 50, 0);
static int input_sel_info(struct snd_kcontrol *ctl,
struct snd_ctl_elem_info *info)
{
static const char *const names[4] = {
"Mic", "Aux", "Front Mic", "Line"
};
info->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
info->count = 1;
info->value.enumerated.items = 4;
info->value.enumerated.item &= 3;
strcpy(info->value.enumerated.name, names[info->value.enumerated.item]);
return 0;
}
static int input_sel_get(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
struct dg *data = chip->model_data;
mutex_lock(&chip->mutex);
value->value.enumerated.item[0] = data->input_sel;
mutex_unlock(&chip->mutex);
return 0;
}
static int input_sel_put(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
static const u8 sel_values[4] = {
CS4245_SEL_MIC,
CS4245_SEL_INPUT_1,
CS4245_SEL_INPUT_2,
CS4245_SEL_INPUT_4
};
struct oxygen *chip = ctl->private_data;
struct dg *data = chip->model_data;
int changed;
if (value->value.enumerated.item[0] > 3)
return -EINVAL;
mutex_lock(&chip->mutex);
changed = value->value.enumerated.item[0] != data->input_sel;
if (changed) {
data->input_sel = value->value.enumerated.item[0];
cs4245_write(chip, CS4245_ANALOG_IN,
(data->cs4245_regs[CS4245_ANALOG_IN] &
~CS4245_SEL_MASK) |
sel_values[data->input_sel]);
cs4245_write_cached(chip, CS4245_PGA_A_CTRL,
data->input_vol[data->input_sel][0]);
cs4245_write_cached(chip, CS4245_PGA_B_CTRL,
data->input_vol[data->input_sel][1]);
oxygen_write16_masked(chip, OXYGEN_GPIO_DATA,
data->input_sel ? 0 : GPIO_INPUT_ROUTE,
GPIO_INPUT_ROUTE);
}
mutex_unlock(&chip->mutex);
return changed;
}
static int hpf_info(struct snd_kcontrol *ctl, struct snd_ctl_elem_info *info)
{
static const char *const names[2] = { "Active", "Frozen" };
info->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
info->count = 1;
info->value.enumerated.items = 2;
info->value.enumerated.item &= 1;
strcpy(info->value.enumerated.name, names[info->value.enumerated.item]);
return 0;
}
static int hpf_get(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
struct dg *data = chip->model_data;
value->value.enumerated.item[0] =
!!(data->cs4245_regs[CS4245_ADC_CTRL] & CS4245_HPF_FREEZE);
return 0;
}
static int hpf_put(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
struct dg *data = chip->model_data;
u8 reg;
int changed;
mutex_lock(&chip->mutex);
reg = data->cs4245_regs[CS4245_ADC_CTRL] & ~CS4245_HPF_FREEZE;
if (value->value.enumerated.item[0])
reg |= CS4245_HPF_FREEZE;
changed = reg != data->cs4245_regs[CS4245_ADC_CTRL];
if (changed)
cs4245_write(chip, CS4245_ADC_CTRL, reg);
mutex_unlock(&chip->mutex);
return changed;
}
#define INPUT_VOLUME(xname, index) { \
.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
.name = xname, \
.info = input_vol_info, \
.get = input_vol_get, \
.put = input_vol_put, \
.tlv = { .p = cs4245_pga_db_scale }, \
.private_value = index, \
}
static const struct snd_kcontrol_new dg_controls[] = {
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Analog Output Playback Enum",
.info = output_switch_info,
.get = output_switch_get,
.put = output_switch_put,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Headphones Impedance Playback Enum",
.info = hp_volume_offset_info,
.get = hp_volume_offset_get,
.put = hp_volume_offset_put,
},
INPUT_VOLUME("Mic Capture Volume", 0),
INPUT_VOLUME("Aux Capture Volume", 1),
INPUT_VOLUME("Front Mic Capture Volume", 2),
INPUT_VOLUME("Line Capture Volume", 3),
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Capture Source",
.info = input_sel_info,
.get = input_sel_get,
.put = input_sel_put,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "ADC High-pass Filter Capture Enum",
.info = hpf_info,
.get = hpf_get,
.put = hpf_put,
},
};
static int dg_control_filter(struct snd_kcontrol_new *template)
{
if (!strncmp(template->name, "Master Playback ", 16))
return 1;
return 0;
}
static int dg_mixer_init(struct oxygen *chip)
{
unsigned int i;
int err;
for (i = 0; i < ARRAY_SIZE(dg_controls); ++i) {
err = snd_ctl_add(chip->card,
snd_ctl_new1(&dg_controls[i], chip));
if (err < 0)
return err;
}
return 0;
}
static void dump_cs4245_registers(struct oxygen *chip,
struct snd_info_buffer *buffer)
{
struct dg *data = chip->model_data;
unsigned int i;
snd_iprintf(buffer, "\nCS4245:");
for (i = 1; i <= 0x10; ++i)
snd_iprintf(buffer, " %02x", data->cs4245_regs[i]);
snd_iprintf(buffer, "\n");
}
struct oxygen_model model_xonar_dg = {
.shortname = "Xonar DG",
.longname = "C-Media Oxygen HD Audio",
.chip = "CMI8786",
.init = dg_init,
.control_filter = dg_control_filter,
.mixer_init = dg_mixer_init,
.cleanup = dg_cleanup,
.suspend = dg_suspend,
.resume = dg_resume,
.set_dac_params = set_cs4245_dac_params,
.set_adc_params = set_cs4245_adc_params,
.dump_registers = dump_cs4245_registers,
.model_data_size = sizeof(struct dg),
.device_config = PLAYBACK_0_TO_I2S |
PLAYBACK_1_TO_SPDIF |
CAPTURE_0_FROM_I2S_1,
.dac_channels_pcm = 6,
.dac_channels_mixer = 0,
.function_flags = OXYGEN_FUNCTION_SPI,
.dac_mclks = OXYGEN_MCLKS(256, 128, 128),
.adc_mclks = OXYGEN_MCLKS(256, 128, 128),
.dac_i2s_format = OXYGEN_I2S_FORMAT_LJUST,
.adc_i2s_format = OXYGEN_I2S_FORMAT_LJUST,
};

View file

@ -0,0 +1,8 @@
#ifndef XONAR_DG_H_INCLUDED
#define XONAR_DG_H_INCLUDED
#include "oxygen.h"
extern struct oxygen_model model_xonar_dg;
#endif