hwmon: Add support for Lineage Compact Power Line PEM devices
This patch adds support for hardware monitoring of Lineage Compact Power Line Power Entry Modules. Reviewed-by: Tom Grennan <tom.grennan@ericsson.com> Signed-off-by: Guenter Roeck <guenter.roeck@ericsson.com>
This commit is contained in:
parent
4e9be65059
commit
502b5a0199
4 changed files with 678 additions and 0 deletions
77
Documentation/hwmon/lineage-pem
Normal file
77
Documentation/hwmon/lineage-pem
Normal file
|
@ -0,0 +1,77 @@
|
|||
Kernel driver lineage-pem
|
||||
=========================
|
||||
|
||||
Supported devices:
|
||||
* Lineage Compact Power Line Power Entry Modules
|
||||
Prefix: 'lineage-pem'
|
||||
Addresses scanned: -
|
||||
Documentation:
|
||||
http://www.lineagepower.com/oem/pdf/CPLI2C.pdf
|
||||
|
||||
Author: Guenter Roeck <guenter.roeck@ericsson.com>
|
||||
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
This driver supports various Lineage Compact Power Line DC/DC and AC/DC
|
||||
converters such as CP1800, CP2000AC, CP2000DC, CP2100DC, and others.
|
||||
|
||||
Lineage CPL power entry modules are nominally PMBus compliant. However, most
|
||||
standard PMBus commands are not supported. Specifically, all hardware monitoring
|
||||
and status reporting commands are non-standard. For this reason, a standard
|
||||
PMBus driver can not be used.
|
||||
|
||||
|
||||
Usage Notes
|
||||
-----------
|
||||
|
||||
This driver does not probe for Lineage CPL devices, since there is no register
|
||||
which can be safely used to identify the chip. You will have to instantiate
|
||||
the devices explicitly.
|
||||
|
||||
Example: the following will load the driver for a Lineage PEM at address 0x40
|
||||
on I2C bus #1:
|
||||
$ modprobe lineage-pem
|
||||
$ echo lineage-pem 0x40 > /sys/bus/i2c/devices/i2c-1/new_device
|
||||
|
||||
All Lineage CPL power entry modules have a built-in I2C bus master selector
|
||||
(PCA9541). To ensure device access, this driver should only be used as client
|
||||
driver to the pca9541 I2C master selector driver.
|
||||
|
||||
|
||||
Sysfs entries
|
||||
-------------
|
||||
|
||||
All Lineage CPL devices report output voltage and device temperature as well as
|
||||
alarms for output voltage, temperature, input voltage, input current, input power,
|
||||
and fan status.
|
||||
|
||||
Input voltage, input current, input power, and fan speed measurement is only
|
||||
supported on newer devices. The driver detects if those attributes are supported,
|
||||
and only creates respective sysfs entries if they are.
|
||||
|
||||
in1_input Output voltage (mV)
|
||||
in1_min_alarm Output undervoltage alarm
|
||||
in1_max_alarm Output overvoltage alarm
|
||||
in1_crit Output voltage critical alarm
|
||||
|
||||
in2_input Input voltage (mV, optional)
|
||||
in2_alarm Input voltage alarm
|
||||
|
||||
curr1_input Input current (mA, optional)
|
||||
curr1_alarm Input overcurrent alarm
|
||||
|
||||
power1_input Input power (uW, optional)
|
||||
power1_alarm Input power alarm
|
||||
|
||||
fan1_input Fan 1 speed (rpm, optional)
|
||||
fan2_input Fan 2 speed (rpm, optional)
|
||||
fan3_input Fan 3 speed (rpm, optional)
|
||||
|
||||
temp1_input
|
||||
temp1_max
|
||||
temp1_crit
|
||||
temp1_alarm
|
||||
temp1_crit_alarm
|
||||
temp1_fault
|
|
@ -467,6 +467,17 @@ config SENSORS_JC42
|
|||
This driver can also be built as a module. If so, the module
|
||||
will be called jc42.
|
||||
|
||||
config SENSORS_LINEAGE
|
||||
tristate "Lineage Compact Power Line Power Entry Module"
|
||||
depends on I2C && EXPERIMENTAL
|
||||
help
|
||||
If you say yes here you get support for the Lineage Compact Power Line
|
||||
series of DC/DC and AC/DC converters such as CP1800, CP2000AC,
|
||||
CP2000DC, CP2725, and others.
|
||||
|
||||
This driver can also be built as a module. If so, the module
|
||||
will be called lineage-pem.
|
||||
|
||||
config SENSORS_LM63
|
||||
tristate "National Semiconductor LM63 and LM64"
|
||||
depends on I2C
|
||||
|
|
|
@ -62,6 +62,7 @@ obj-$(CONFIG_SENSORS_JC42) += jc42.o
|
|||
obj-$(CONFIG_SENSORS_JZ4740) += jz4740-hwmon.o
|
||||
obj-$(CONFIG_SENSORS_K8TEMP) += k8temp.o
|
||||
obj-$(CONFIG_SENSORS_K10TEMP) += k10temp.o
|
||||
obj-$(CONFIG_SENSORS_LINEAGE) += lineage-pem.o
|
||||
obj-$(CONFIG_SENSORS_LIS3LV02D) += lis3lv02d.o hp_accel.o
|
||||
obj-$(CONFIG_SENSORS_LIS3_SPI) += lis3lv02d.o lis3lv02d_spi.o
|
||||
obj-$(CONFIG_SENSORS_LIS3_I2C) += lis3lv02d.o lis3lv02d_i2c.o
|
||||
|
|
589
drivers/hwmon/lineage-pem.c
Normal file
589
drivers/hwmon/lineage-pem.c
Normal file
|
@ -0,0 +1,589 @@
|
|||
/*
|
||||
* Driver for Lineage Compact Power Line series of power entry modules.
|
||||
*
|
||||
* Copyright (C) 2010, 2011 Ericsson AB.
|
||||
*
|
||||
* Documentation:
|
||||
* http://www.lineagepower.com/oem/pdf/CPLI2C.pdf
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
||||
*/
|
||||
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/init.h>
|
||||
#include <linux/err.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/i2c.h>
|
||||
#include <linux/hwmon.h>
|
||||
#include <linux/hwmon-sysfs.h>
|
||||
|
||||
/*
|
||||
* This driver supports various Lineage Compact Power Line DC/DC and AC/DC
|
||||
* converters such as CP1800, CP2000AC, CP2000DC, CP2100DC, and others.
|
||||
*
|
||||
* The devices are nominally PMBus compliant. However, most standard PMBus
|
||||
* commands are not supported. Specifically, all hardware monitoring and
|
||||
* status reporting commands are non-standard. For this reason, a standard
|
||||
* PMBus driver can not be used.
|
||||
*
|
||||
* All Lineage CPL devices have a built-in I2C bus master selector (PCA9541).
|
||||
* To ensure device access, this driver should only be used as client driver
|
||||
* to the pca9541 I2C master selector driver.
|
||||
*/
|
||||
|
||||
/* Command codes */
|
||||
#define PEM_OPERATION 0x01
|
||||
#define PEM_CLEAR_INFO_FLAGS 0x03
|
||||
#define PEM_VOUT_COMMAND 0x21
|
||||
#define PEM_VOUT_OV_FAULT_LIMIT 0x40
|
||||
#define PEM_READ_DATA_STRING 0xd0
|
||||
#define PEM_READ_INPUT_STRING 0xdc
|
||||
#define PEM_READ_FIRMWARE_REV 0xdd
|
||||
#define PEM_READ_RUN_TIMER 0xde
|
||||
#define PEM_FAN_HI_SPEED 0xdf
|
||||
#define PEM_FAN_NORMAL_SPEED 0xe0
|
||||
#define PEM_READ_FAN_SPEED 0xe1
|
||||
|
||||
/* offsets in data string */
|
||||
#define PEM_DATA_STATUS_2 0
|
||||
#define PEM_DATA_STATUS_1 1
|
||||
#define PEM_DATA_ALARM_2 2
|
||||
#define PEM_DATA_ALARM_1 3
|
||||
#define PEM_DATA_VOUT_LSB 4
|
||||
#define PEM_DATA_VOUT_MSB 5
|
||||
#define PEM_DATA_CURRENT 6
|
||||
#define PEM_DATA_TEMP 7
|
||||
|
||||
/* Virtual entries, to report constants */
|
||||
#define PEM_DATA_TEMP_MAX 10
|
||||
#define PEM_DATA_TEMP_CRIT 11
|
||||
|
||||
/* offsets in input string */
|
||||
#define PEM_INPUT_VOLTAGE 0
|
||||
#define PEM_INPUT_POWER_LSB 1
|
||||
#define PEM_INPUT_POWER_MSB 2
|
||||
|
||||
/* offsets in fan data */
|
||||
#define PEM_FAN_ADJUSTMENT 0
|
||||
#define PEM_FAN_FAN1 1
|
||||
#define PEM_FAN_FAN2 2
|
||||
#define PEM_FAN_FAN3 3
|
||||
|
||||
/* Status register bits */
|
||||
#define STS1_OUTPUT_ON (1 << 0)
|
||||
#define STS1_LEDS_FLASHING (1 << 1)
|
||||
#define STS1_EXT_FAULT (1 << 2)
|
||||
#define STS1_SERVICE_LED_ON (1 << 3)
|
||||
#define STS1_SHUTDOWN_OCCURRED (1 << 4)
|
||||
#define STS1_INT_FAULT (1 << 5)
|
||||
#define STS1_ISOLATION_TEST_OK (1 << 6)
|
||||
|
||||
#define STS2_ENABLE_PIN_HI (1 << 0)
|
||||
#define STS2_DATA_OUT_RANGE (1 << 1)
|
||||
#define STS2_RESTARTED_OK (1 << 1)
|
||||
#define STS2_ISOLATION_TEST_FAIL (1 << 3)
|
||||
#define STS2_HIGH_POWER_CAP (1 << 4)
|
||||
#define STS2_INVALID_INSTR (1 << 5)
|
||||
#define STS2_WILL_RESTART (1 << 6)
|
||||
#define STS2_PEC_ERR (1 << 7)
|
||||
|
||||
/* Alarm register bits */
|
||||
#define ALRM1_VIN_OUT_LIMIT (1 << 0)
|
||||
#define ALRM1_VOUT_OUT_LIMIT (1 << 1)
|
||||
#define ALRM1_OV_VOLT_SHUTDOWN (1 << 2)
|
||||
#define ALRM1_VIN_OVERCURRENT (1 << 3)
|
||||
#define ALRM1_TEMP_WARNING (1 << 4)
|
||||
#define ALRM1_TEMP_SHUTDOWN (1 << 5)
|
||||
#define ALRM1_PRIMARY_FAULT (1 << 6)
|
||||
#define ALRM1_POWER_LIMIT (1 << 7)
|
||||
|
||||
#define ALRM2_5V_OUT_LIMIT (1 << 1)
|
||||
#define ALRM2_TEMP_FAULT (1 << 2)
|
||||
#define ALRM2_OV_LOW (1 << 3)
|
||||
#define ALRM2_DCDC_TEMP_HIGH (1 << 4)
|
||||
#define ALRM2_PRI_TEMP_HIGH (1 << 5)
|
||||
#define ALRM2_NO_PRIMARY (1 << 6)
|
||||
#define ALRM2_FAN_FAULT (1 << 7)
|
||||
|
||||
#define FIRMWARE_REV_LEN 4
|
||||
#define DATA_STRING_LEN 9
|
||||
#define INPUT_STRING_LEN 5 /* 4 for most devices */
|
||||
#define FAN_SPEED_LEN 5
|
||||
|
||||
struct pem_data {
|
||||
struct device *hwmon_dev;
|
||||
|
||||
struct mutex update_lock;
|
||||
bool valid;
|
||||
bool fans_supported;
|
||||
int input_length;
|
||||
unsigned long last_updated; /* in jiffies */
|
||||
|
||||
u8 firmware_rev[FIRMWARE_REV_LEN];
|
||||
u8 data_string[DATA_STRING_LEN];
|
||||
u8 input_string[INPUT_STRING_LEN];
|
||||
u8 fan_speed[FAN_SPEED_LEN];
|
||||
};
|
||||
|
||||
static int pem_read_block(struct i2c_client *client, u8 command, u8 *data,
|
||||
int data_len)
|
||||
{
|
||||
u8 block_buffer[I2C_SMBUS_BLOCK_MAX];
|
||||
int result;
|
||||
|
||||
result = i2c_smbus_read_block_data(client, command, block_buffer);
|
||||
if (unlikely(result < 0))
|
||||
goto abort;
|
||||
if (unlikely(result == 0xff || result != data_len)) {
|
||||
result = -EIO;
|
||||
goto abort;
|
||||
}
|
||||
memcpy(data, block_buffer, data_len);
|
||||
result = 0;
|
||||
abort:
|
||||
return result;
|
||||
}
|
||||
|
||||
static struct pem_data *pem_update_device(struct device *dev)
|
||||
{
|
||||
struct i2c_client *client = to_i2c_client(dev);
|
||||
struct pem_data *data = i2c_get_clientdata(client);
|
||||
struct pem_data *ret = data;
|
||||
|
||||
mutex_lock(&data->update_lock);
|
||||
|
||||
if (time_after(jiffies, data->last_updated + HZ) || !data->valid) {
|
||||
int result;
|
||||
|
||||
/* Read data string */
|
||||
result = pem_read_block(client, PEM_READ_DATA_STRING,
|
||||
data->data_string,
|
||||
sizeof(data->data_string));
|
||||
if (unlikely(result < 0)) {
|
||||
ret = ERR_PTR(result);
|
||||
goto abort;
|
||||
}
|
||||
|
||||
/* Read input string */
|
||||
if (data->input_length) {
|
||||
result = pem_read_block(client, PEM_READ_INPUT_STRING,
|
||||
data->input_string,
|
||||
data->input_length);
|
||||
if (unlikely(result < 0)) {
|
||||
ret = ERR_PTR(result);
|
||||
goto abort;
|
||||
}
|
||||
}
|
||||
|
||||
/* Read fan speeds */
|
||||
if (data->fans_supported) {
|
||||
result = pem_read_block(client, PEM_READ_FAN_SPEED,
|
||||
data->fan_speed,
|
||||
sizeof(data->fan_speed));
|
||||
if (unlikely(result < 0)) {
|
||||
ret = ERR_PTR(result);
|
||||
goto abort;
|
||||
}
|
||||
}
|
||||
|
||||
i2c_smbus_write_byte(client, PEM_CLEAR_INFO_FLAGS);
|
||||
|
||||
data->last_updated = jiffies;
|
||||
data->valid = 1;
|
||||
}
|
||||
abort:
|
||||
mutex_unlock(&data->update_lock);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static long pem_get_data(u8 *data, int len, int index)
|
||||
{
|
||||
long val;
|
||||
|
||||
switch (index) {
|
||||
case PEM_DATA_VOUT_LSB:
|
||||
val = (data[index] + (data[index+1] << 8)) * 5 / 2;
|
||||
break;
|
||||
case PEM_DATA_CURRENT:
|
||||
val = data[index] * 200;
|
||||
break;
|
||||
case PEM_DATA_TEMP:
|
||||
val = data[index] * 1000;
|
||||
break;
|
||||
case PEM_DATA_TEMP_MAX:
|
||||
val = 97 * 1000; /* 97 degrees C per datasheet */
|
||||
break;
|
||||
case PEM_DATA_TEMP_CRIT:
|
||||
val = 107 * 1000; /* 107 degrees C per datasheet */
|
||||
break;
|
||||
default:
|
||||
WARN_ON_ONCE(1);
|
||||
val = 0;
|
||||
}
|
||||
return val;
|
||||
}
|
||||
|
||||
static long pem_get_input(u8 *data, int len, int index)
|
||||
{
|
||||
long val;
|
||||
|
||||
switch (index) {
|
||||
case PEM_INPUT_VOLTAGE:
|
||||
if (len == INPUT_STRING_LEN)
|
||||
val = (data[index] + (data[index+1] << 8) - 75) * 1000;
|
||||
else
|
||||
val = (data[index] - 75) * 1000;
|
||||
break;
|
||||
case PEM_INPUT_POWER_LSB:
|
||||
if (len == INPUT_STRING_LEN)
|
||||
index++;
|
||||
val = (data[index] + (data[index+1] << 8)) * 1000000L;
|
||||
break;
|
||||
default:
|
||||
WARN_ON_ONCE(1);
|
||||
val = 0;
|
||||
}
|
||||
return val;
|
||||
}
|
||||
|
||||
static long pem_get_fan(u8 *data, int len, int index)
|
||||
{
|
||||
long val;
|
||||
|
||||
switch (index) {
|
||||
case PEM_FAN_FAN1:
|
||||
case PEM_FAN_FAN2:
|
||||
case PEM_FAN_FAN3:
|
||||
val = data[index] * 100;
|
||||
break;
|
||||
default:
|
||||
WARN_ON_ONCE(1);
|
||||
val = 0;
|
||||
}
|
||||
return val;
|
||||
}
|
||||
|
||||
/*
|
||||
* Show boolean, either a fault or an alarm.
|
||||
* .nr points to the register, .index is the bit mask to check
|
||||
*/
|
||||
static ssize_t pem_show_bool(struct device *dev,
|
||||
struct device_attribute *da, char *buf)
|
||||
{
|
||||
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(da);
|
||||
struct pem_data *data = pem_update_device(dev);
|
||||
u8 status;
|
||||
|
||||
if (IS_ERR(data))
|
||||
return PTR_ERR(data);
|
||||
|
||||
status = data->data_string[attr->nr] & attr->index;
|
||||
return snprintf(buf, PAGE_SIZE, "%d\n", !!status);
|
||||
}
|
||||
|
||||
static ssize_t pem_show_data(struct device *dev, struct device_attribute *da,
|
||||
char *buf)
|
||||
{
|
||||
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
|
||||
struct pem_data *data = pem_update_device(dev);
|
||||
long value;
|
||||
|
||||
if (IS_ERR(data))
|
||||
return PTR_ERR(data);
|
||||
|
||||
value = pem_get_data(data->data_string, sizeof(data->data_string),
|
||||
attr->index);
|
||||
|
||||
return snprintf(buf, PAGE_SIZE, "%ld\n", value);
|
||||
}
|
||||
|
||||
static ssize_t pem_show_input(struct device *dev, struct device_attribute *da,
|
||||
char *buf)
|
||||
{
|
||||
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
|
||||
struct pem_data *data = pem_update_device(dev);
|
||||
long value;
|
||||
|
||||
if (IS_ERR(data))
|
||||
return PTR_ERR(data);
|
||||
|
||||
value = pem_get_input(data->input_string, sizeof(data->input_string),
|
||||
attr->index);
|
||||
|
||||
return snprintf(buf, PAGE_SIZE, "%ld\n", value);
|
||||
}
|
||||
|
||||
static ssize_t pem_show_fan(struct device *dev, struct device_attribute *da,
|
||||
char *buf)
|
||||
{
|
||||
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
|
||||
struct pem_data *data = pem_update_device(dev);
|
||||
long value;
|
||||
|
||||
if (IS_ERR(data))
|
||||
return PTR_ERR(data);
|
||||
|
||||
value = pem_get_fan(data->fan_speed, sizeof(data->fan_speed),
|
||||
attr->index);
|
||||
|
||||
return snprintf(buf, PAGE_SIZE, "%ld\n", value);
|
||||
}
|
||||
|
||||
/* Voltages */
|
||||
static SENSOR_DEVICE_ATTR(in1_input, S_IRUGO, pem_show_data, NULL,
|
||||
PEM_DATA_VOUT_LSB);
|
||||
static SENSOR_DEVICE_ATTR_2(in1_min_alarm, S_IRUGO, pem_show_bool, NULL,
|
||||
PEM_DATA_ALARM_2, ALRM2_OV_LOW);
|
||||
static SENSOR_DEVICE_ATTR_2(in1_max_alarm, S_IRUGO, pem_show_bool, NULL,
|
||||
PEM_DATA_ALARM_1, ALRM1_VOUT_OUT_LIMIT);
|
||||
static SENSOR_DEVICE_ATTR_2(in1_crit_alarm, S_IRUGO, pem_show_bool, NULL,
|
||||
PEM_DATA_ALARM_1, ALRM1_OV_VOLT_SHUTDOWN);
|
||||
static SENSOR_DEVICE_ATTR(in2_input, S_IRUGO, pem_show_input, NULL,
|
||||
PEM_INPUT_VOLTAGE);
|
||||
static SENSOR_DEVICE_ATTR_2(in2_alarm, S_IRUGO, pem_show_bool, NULL,
|
||||
PEM_DATA_ALARM_1,
|
||||
ALRM1_VIN_OUT_LIMIT | ALRM1_PRIMARY_FAULT);
|
||||
|
||||
/* Currents */
|
||||
static SENSOR_DEVICE_ATTR(curr1_input, S_IRUGO, pem_show_data, NULL,
|
||||
PEM_DATA_CURRENT);
|
||||
static SENSOR_DEVICE_ATTR_2(curr1_alarm, S_IRUGO, pem_show_bool, NULL,
|
||||
PEM_DATA_ALARM_1, ALRM1_VIN_OVERCURRENT);
|
||||
|
||||
/* Power */
|
||||
static SENSOR_DEVICE_ATTR(power1_input, S_IRUGO, pem_show_input, NULL,
|
||||
PEM_INPUT_POWER_LSB);
|
||||
static SENSOR_DEVICE_ATTR_2(power1_alarm, S_IRUGO, pem_show_bool, NULL,
|
||||
PEM_DATA_ALARM_1, ALRM1_POWER_LIMIT);
|
||||
|
||||
/* Fans */
|
||||
static SENSOR_DEVICE_ATTR(fan1_input, S_IRUGO, pem_show_fan, NULL,
|
||||
PEM_FAN_FAN1);
|
||||
static SENSOR_DEVICE_ATTR(fan2_input, S_IRUGO, pem_show_fan, NULL,
|
||||
PEM_FAN_FAN2);
|
||||
static SENSOR_DEVICE_ATTR(fan3_input, S_IRUGO, pem_show_fan, NULL,
|
||||
PEM_FAN_FAN3);
|
||||
static SENSOR_DEVICE_ATTR_2(fan1_alarm, S_IRUGO, pem_show_bool, NULL,
|
||||
PEM_DATA_ALARM_2, ALRM2_FAN_FAULT);
|
||||
|
||||
/* Temperatures */
|
||||
static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, pem_show_data, NULL,
|
||||
PEM_DATA_TEMP);
|
||||
static SENSOR_DEVICE_ATTR(temp1_max, S_IRUGO, pem_show_data, NULL,
|
||||
PEM_DATA_TEMP_MAX);
|
||||
static SENSOR_DEVICE_ATTR(temp1_crit, S_IRUGO, pem_show_data, NULL,
|
||||
PEM_DATA_TEMP_CRIT);
|
||||
static SENSOR_DEVICE_ATTR_2(temp1_alarm, S_IRUGO, pem_show_bool, NULL,
|
||||
PEM_DATA_ALARM_1, ALRM1_TEMP_WARNING);
|
||||
static SENSOR_DEVICE_ATTR_2(temp1_crit_alarm, S_IRUGO, pem_show_bool, NULL,
|
||||
PEM_DATA_ALARM_1, ALRM1_TEMP_SHUTDOWN);
|
||||
static SENSOR_DEVICE_ATTR_2(temp1_fault, S_IRUGO, pem_show_bool, NULL,
|
||||
PEM_DATA_ALARM_2, ALRM2_TEMP_FAULT);
|
||||
|
||||
static struct attribute *pem_attributes[] = {
|
||||
&sensor_dev_attr_in1_input.dev_attr.attr,
|
||||
&sensor_dev_attr_in1_min_alarm.dev_attr.attr,
|
||||
&sensor_dev_attr_in1_max_alarm.dev_attr.attr,
|
||||
&sensor_dev_attr_in1_crit_alarm.dev_attr.attr,
|
||||
&sensor_dev_attr_in2_alarm.dev_attr.attr,
|
||||
|
||||
&sensor_dev_attr_curr1_alarm.dev_attr.attr,
|
||||
|
||||
&sensor_dev_attr_power1_alarm.dev_attr.attr,
|
||||
|
||||
&sensor_dev_attr_fan1_alarm.dev_attr.attr,
|
||||
|
||||
&sensor_dev_attr_temp1_input.dev_attr.attr,
|
||||
&sensor_dev_attr_temp1_max.dev_attr.attr,
|
||||
&sensor_dev_attr_temp1_crit.dev_attr.attr,
|
||||
&sensor_dev_attr_temp1_alarm.dev_attr.attr,
|
||||
&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
|
||||
&sensor_dev_attr_temp1_fault.dev_attr.attr,
|
||||
|
||||
NULL,
|
||||
};
|
||||
|
||||
static const struct attribute_group pem_group = {
|
||||
.attrs = pem_attributes,
|
||||
};
|
||||
|
||||
static struct attribute *pem_input_attributes[] = {
|
||||
&sensor_dev_attr_in2_input.dev_attr.attr,
|
||||
&sensor_dev_attr_curr1_input.dev_attr.attr,
|
||||
&sensor_dev_attr_power1_input.dev_attr.attr,
|
||||
};
|
||||
|
||||
static const struct attribute_group pem_input_group = {
|
||||
.attrs = pem_input_attributes,
|
||||
};
|
||||
|
||||
static struct attribute *pem_fan_attributes[] = {
|
||||
&sensor_dev_attr_fan1_input.dev_attr.attr,
|
||||
&sensor_dev_attr_fan2_input.dev_attr.attr,
|
||||
&sensor_dev_attr_fan3_input.dev_attr.attr,
|
||||
};
|
||||
|
||||
static const struct attribute_group pem_fan_group = {
|
||||
.attrs = pem_fan_attributes,
|
||||
};
|
||||
|
||||
static int pem_probe(struct i2c_client *client,
|
||||
const struct i2c_device_id *id)
|
||||
{
|
||||
struct i2c_adapter *adapter = client->adapter;
|
||||
struct pem_data *data;
|
||||
int ret;
|
||||
|
||||
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BLOCK_DATA
|
||||
| I2C_FUNC_SMBUS_WRITE_BYTE))
|
||||
return -ENODEV;
|
||||
|
||||
data = kzalloc(sizeof(*data), GFP_KERNEL);
|
||||
if (!data)
|
||||
return -ENOMEM;
|
||||
|
||||
i2c_set_clientdata(client, data);
|
||||
mutex_init(&data->update_lock);
|
||||
|
||||
/*
|
||||
* We use the next two commands to determine if the device is really
|
||||
* there.
|
||||
*/
|
||||
ret = pem_read_block(client, PEM_READ_FIRMWARE_REV,
|
||||
data->firmware_rev, sizeof(data->firmware_rev));
|
||||
if (ret < 0)
|
||||
goto out_kfree;
|
||||
|
||||
ret = i2c_smbus_write_byte(client, PEM_CLEAR_INFO_FLAGS);
|
||||
if (ret < 0)
|
||||
goto out_kfree;
|
||||
|
||||
dev_info(&client->dev, "Firmware revision %d.%d.%d\n",
|
||||
data->firmware_rev[0], data->firmware_rev[1],
|
||||
data->firmware_rev[2]);
|
||||
|
||||
/* Register sysfs hooks */
|
||||
ret = sysfs_create_group(&client->dev.kobj, &pem_group);
|
||||
if (ret)
|
||||
goto out_kfree;
|
||||
|
||||
/*
|
||||
* Check if input readings are supported.
|
||||
* This is the case if we can read input data,
|
||||
* and if the returned data is not all zeros.
|
||||
* Note that input alarms are always supported.
|
||||
*/
|
||||
ret = pem_read_block(client, PEM_READ_INPUT_STRING,
|
||||
data->input_string,
|
||||
sizeof(data->input_string) - 1);
|
||||
if (!ret && (data->input_string[0] || data->input_string[1] ||
|
||||
data->input_string[2]))
|
||||
data->input_length = sizeof(data->input_string) - 1;
|
||||
else if (ret < 0) {
|
||||
/* Input string is one byte longer for some devices */
|
||||
ret = pem_read_block(client, PEM_READ_INPUT_STRING,
|
||||
data->input_string,
|
||||
sizeof(data->input_string));
|
||||
if (!ret && (data->input_string[0] || data->input_string[1] ||
|
||||
data->input_string[2] || data->input_string[3]))
|
||||
data->input_length = sizeof(data->input_string);
|
||||
}
|
||||
ret = 0;
|
||||
if (data->input_length) {
|
||||
ret = sysfs_create_group(&client->dev.kobj, &pem_input_group);
|
||||
if (ret)
|
||||
goto out_remove_groups;
|
||||
}
|
||||
|
||||
/*
|
||||
* Check if fan speed readings are supported.
|
||||
* This is the case if we can read fan speed data,
|
||||
* and if the returned data is not all zeros.
|
||||
* Note that the fan alarm is always supported.
|
||||
*/
|
||||
ret = pem_read_block(client, PEM_READ_FAN_SPEED,
|
||||
data->fan_speed,
|
||||
sizeof(data->fan_speed));
|
||||
if (!ret && (data->fan_speed[0] || data->fan_speed[1] ||
|
||||
data->fan_speed[2] || data->fan_speed[3])) {
|
||||
data->fans_supported = true;
|
||||
ret = sysfs_create_group(&client->dev.kobj, &pem_fan_group);
|
||||
if (ret)
|
||||
goto out_remove_groups;
|
||||
}
|
||||
|
||||
data->hwmon_dev = hwmon_device_register(&client->dev);
|
||||
if (IS_ERR(data->hwmon_dev)) {
|
||||
ret = PTR_ERR(data->hwmon_dev);
|
||||
goto out_remove_groups;
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
out_remove_groups:
|
||||
sysfs_remove_group(&client->dev.kobj, &pem_input_group);
|
||||
sysfs_remove_group(&client->dev.kobj, &pem_fan_group);
|
||||
sysfs_remove_group(&client->dev.kobj, &pem_group);
|
||||
out_kfree:
|
||||
kfree(data);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int pem_remove(struct i2c_client *client)
|
||||
{
|
||||
struct pem_data *data = i2c_get_clientdata(client);
|
||||
|
||||
hwmon_device_unregister(data->hwmon_dev);
|
||||
|
||||
sysfs_remove_group(&client->dev.kobj, &pem_input_group);
|
||||
sysfs_remove_group(&client->dev.kobj, &pem_fan_group);
|
||||
sysfs_remove_group(&client->dev.kobj, &pem_group);
|
||||
|
||||
kfree(data);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static const struct i2c_device_id pem_id[] = {
|
||||
{"lineage_pem", 0},
|
||||
{}
|
||||
};
|
||||
MODULE_DEVICE_TABLE(i2c, pem_id);
|
||||
|
||||
static struct i2c_driver pem_driver = {
|
||||
.driver = {
|
||||
.name = "lineage_pem",
|
||||
},
|
||||
.probe = pem_probe,
|
||||
.remove = pem_remove,
|
||||
.id_table = pem_id,
|
||||
};
|
||||
|
||||
static int __init pem_init(void)
|
||||
{
|
||||
return i2c_add_driver(&pem_driver);
|
||||
}
|
||||
|
||||
static void __exit pem_exit(void)
|
||||
{
|
||||
i2c_del_driver(&pem_driver);
|
||||
}
|
||||
|
||||
MODULE_AUTHOR("Guenter Roeck <guenter.roeck@ericsson.com>");
|
||||
MODULE_DESCRIPTION("Lineage CPL PEM hardware monitoring driver");
|
||||
MODULE_LICENSE("GPL");
|
||||
|
||||
module_init(pem_init);
|
||||
module_exit(pem_exit);
|
Loading…
Reference in a new issue