Merge branch 'hwmon-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jdelvare/staging

* 'hwmon-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jdelvare/staging:
  hwmon: (ltc4245) Clear faults at startup
  hwmon: (ltc4215) Clear faults at startup
  hwmon: (coretemp) Add Lynnfield CPU
  hwmon: (coretemp) Add support for Penryn mobile CPUs
  hwmon: (coretemp) Fix Atom CPUs support
  hwmon: Delete deprecated FSC drivers
  hwmon: (adm1031) Add sysfs files for temperature offsets
This commit is contained in:
Linus Torvalds 2009-09-23 15:20:16 -07:00
commit 3e56d49390
11 changed files with 93 additions and 1560 deletions

View file

@ -354,14 +354,6 @@ Who: Krzysztof Piotr Oledzki <ole@ans.pl>
---------------------------
What: fscher and fscpos drivers
When: June 2009
Why: Deprecated by the new fschmd driver.
Who: Hans de Goede <hdegoede@redhat.com>
Jean Delvare <khali@linux-fr.org>
---------------------------
What: sysfs ui for changing p4-clockmod parameters
When: September 2009
Why: See commits 129f8ae9b1b5be94517da76009ea956e89104ce8 and

View file

@ -4,7 +4,9 @@ Kernel driver coretemp
Supported chips:
* All Intel Core family
Prefix: 'coretemp'
CPUID: family 0x6, models 0xe, 0xf, 0x16, 0x17
CPUID: family 0x6, models 0xe (Pentium M DC), 0xf (Core 2 DC 65nm),
0x16 (Core 2 SC 65nm), 0x17 (Penryn 45nm),
0x1a (Nehalem), 0x1c (Atom), 0x1e (Lynnfield)
Datasheet: Intel 64 and IA-32 Architectures Software Developer's Manual
Volume 3A: System Programming Guide
http://softwarecommunity.intel.com/Wiki/Mobility/720.htm

View file

@ -1,169 +0,0 @@
Kernel driver fscher
====================
Supported chips:
* Fujitsu-Siemens Hermes chip
Prefix: 'fscher'
Addresses scanned: I2C 0x73
Authors:
Reinhard Nissl <rnissl@gmx.de> based on work
from Hermann Jung <hej@odn.de>,
Frodo Looijaard <frodol@dds.nl>,
Philip Edelbrock <phil@netroedge.com>
Description
-----------
This driver implements support for the Fujitsu-Siemens Hermes chip. It is
described in the 'Register Set Specification BMC Hermes based Systemboard'
from Fujitsu-Siemens.
The Hermes chip implements a hardware-based system management, e.g. for
controlling fan speed and core voltage. There is also a watchdog counter on
the chip which can trigger an alarm and even shut the system down.
The chip provides three temperature values (CPU, motherboard and
auxiliary), three voltage values (+12V, +5V and battery) and three fans
(power supply, CPU and auxiliary).
Temperatures are measured in degrees Celsius. The resolution is 1 degree.
Fan rotation speeds are reported in RPM (rotations per minute). The value
can be divided by a programmable divider (1, 2 or 4) which is stored on
the chip.
Voltage sensors (also known as "in" sensors) report their values in volts.
All values are reported as final values from the driver. There is no need
for further calculations.
Detailed description
--------------------
Below you'll find a single line description of all the bit values. With
this information, you're able to decode e. g. alarms, wdog, etc. To make
use of the watchdog, you'll need to set the watchdog time and enable the
watchdog. After that it is necessary to restart the watchdog time within
the specified period of time, or a system reset will occur.
* revision
READING & 0xff = 0x??: HERMES revision identification
* alarms
READING & 0x80 = 0x80: CPU throttling active
READING & 0x80 = 0x00: CPU running at full speed
READING & 0x10 = 0x10: software event (see control:1)
READING & 0x10 = 0x00: no software event
READING & 0x08 = 0x08: watchdog event (see wdog:2)
READING & 0x08 = 0x00: no watchdog event
READING & 0x02 = 0x02: thermal event (see temp*:1)
READING & 0x02 = 0x00: no thermal event
READING & 0x01 = 0x01: fan event (see fan*:1)
READING & 0x01 = 0x00: no fan event
READING & 0x13 ! 0x00: ALERT LED is flashing
* control
READING & 0x01 = 0x01: software event
READING & 0x01 = 0x00: no software event
WRITING & 0x01 = 0x01: set software event
WRITING & 0x01 = 0x00: clear software event
* watchdog_control
READING & 0x80 = 0x80: power off on watchdog event while thermal event
READING & 0x80 = 0x00: watchdog power off disabled (just system reset enabled)
READING & 0x40 = 0x40: watchdog timebase 60 seconds (see also wdog:1)
READING & 0x40 = 0x00: watchdog timebase 2 seconds
READING & 0x10 = 0x10: watchdog enabled
READING & 0x10 = 0x00: watchdog disabled
WRITING & 0x80 = 0x80: enable "power off on watchdog event while thermal event"
WRITING & 0x80 = 0x00: disable "power off on watchdog event while thermal event"
WRITING & 0x40 = 0x40: set watchdog timebase to 60 seconds
WRITING & 0x40 = 0x00: set watchdog timebase to 2 seconds
WRITING & 0x20 = 0x20: disable watchdog
WRITING & 0x10 = 0x10: enable watchdog / restart watchdog time
* watchdog_state
READING & 0x02 = 0x02: watchdog system reset occurred
READING & 0x02 = 0x00: no watchdog system reset occurred
WRITING & 0x02 = 0x02: clear watchdog event
* watchdog_preset
READING & 0xff = 0x??: configured watch dog time in units (see wdog:3 0x40)
WRITING & 0xff = 0x??: configure watch dog time in units
* in* (0: +5V, 1: +12V, 2: onboard 3V battery)
READING: actual voltage value
* temp*_status (1: CPU sensor, 2: onboard sensor, 3: auxiliary sensor)
READING & 0x02 = 0x02: thermal event (overtemperature)
READING & 0x02 = 0x00: no thermal event
READING & 0x01 = 0x01: sensor is working
READING & 0x01 = 0x00: sensor is faulty
WRITING & 0x02 = 0x02: clear thermal event
* temp*_input (1: CPU sensor, 2: onboard sensor, 3: auxiliary sensor)
READING: actual temperature value
* fan*_status (1: power supply fan, 2: CPU fan, 3: auxiliary fan)
READING & 0x04 = 0x04: fan event (fan fault)
READING & 0x04 = 0x00: no fan event
WRITING & 0x04 = 0x04: clear fan event
* fan*_div (1: power supply fan, 2: CPU fan, 3: auxiliary fan)
Divisors 2,4 and 8 are supported, both for reading and writing
* fan*_pwm (1: power supply fan, 2: CPU fan, 3: auxiliary fan)
READING & 0xff = 0x00: fan may be switched off
READING & 0xff = 0x01: fan must run at least at minimum speed (supply: 6V)
READING & 0xff = 0xff: fan must run at maximum speed (supply: 12V)
READING & 0xff = 0x??: fan must run at least at given speed (supply: 6V..12V)
WRITING & 0xff = 0x00: fan may be switched off
WRITING & 0xff = 0x01: fan must run at least at minimum speed (supply: 6V)
WRITING & 0xff = 0xff: fan must run at maximum speed (supply: 12V)
WRITING & 0xff = 0x??: fan must run at least at given speed (supply: 6V..12V)
* fan*_input (1: power supply fan, 2: CPU fan, 3: auxiliary fan)
READING: actual RPM value
Limitations
-----------
* Measuring fan speed
It seems that the chip counts "ripples" (typical fans produce 2 ripples per
rotation while VERAX fans produce 18) in a 9-bit register. This register is
read out every second, then the ripple prescaler (2, 4 or 8) is applied and
the result is stored in the 8 bit output register. Due to the limitation of
the counting register to 9 bits, it is impossible to measure a VERAX fan
properly (even with a prescaler of 8). At its maximum speed of 3500 RPM the
fan produces 1080 ripples per second which causes the counting register to
overflow twice, leading to only 186 RPM.
* Measuring input voltages
in2 ("battery") reports the voltage of the onboard lithium battery and not
+3.3V from the power supply.
* Undocumented features
Fujitsu-Siemens Computers has not documented all features of the chip so
far. Their software, System Guard, shows that there are a still some
features which cannot be controlled by this implementation.

View file

@ -325,34 +325,6 @@ config SENSORS_F75375S
This driver can also be built as a module. If so, the module
will be called f75375s.
config SENSORS_FSCHER
tristate "FSC Hermes (DEPRECATED)"
depends on X86 && I2C
help
This driver is DEPRECATED please use the new merged fschmd
("FSC Poseidon, Scylla, Hermes, Heimdall and Heracles") driver
instead.
If you say yes here you get support for Fujitsu Siemens
Computers Hermes sensor chips.
This driver can also be built as a module. If so, the module
will be called fscher.
config SENSORS_FSCPOS
tristate "FSC Poseidon (DEPRECATED)"
depends on X86 && I2C
help
This driver is DEPRECATED please use the new merged fschmd
("FSC Poseidon, Scylla, Hermes, Heimdall and Heracles") driver
instead.
If you say yes here you get support for Fujitsu Siemens
Computers Poseidon sensor chips.
This driver can also be built as a module. If so, the module
will be called fscpos.
config SENSORS_FSCHMD
tristate "Fujitsu Siemens Computers sensor chips"
depends on X86 && I2C
@ -401,12 +373,12 @@ config SENSORS_GL520SM
will be called gl520sm.
config SENSORS_CORETEMP
tristate "Intel Core (2) Duo/Solo temperature sensor"
tristate "Intel Core/Core2/Atom temperature sensor"
depends on X86 && EXPERIMENTAL
help
If you say yes here you get support for the temperature
sensor inside your CPU. Supported all are all known variants
of Intel Core family.
sensor inside your CPU. Most of the family 6 CPUs
are supported. Check documentation/driver for details.
config SENSORS_IBMAEM
tristate "IBM Active Energy Manager temperature/power sensors and control"

View file

@ -42,9 +42,7 @@ obj-$(CONFIG_SENSORS_DS1621) += ds1621.o
obj-$(CONFIG_SENSORS_F71805F) += f71805f.o
obj-$(CONFIG_SENSORS_F71882FG) += f71882fg.o
obj-$(CONFIG_SENSORS_F75375S) += f75375s.o
obj-$(CONFIG_SENSORS_FSCHER) += fscher.o
obj-$(CONFIG_SENSORS_FSCHMD) += fschmd.o
obj-$(CONFIG_SENSORS_FSCPOS) += fscpos.o
obj-$(CONFIG_SENSORS_G760A) += g760a.o
obj-$(CONFIG_SENSORS_GL518SM) += gl518sm.o
obj-$(CONFIG_SENSORS_GL520SM) += gl520sm.o

View file

@ -37,6 +37,7 @@
#define ADM1031_REG_PWM (0x22)
#define ADM1031_REG_FAN_MIN(nr) (0x10 + (nr))
#define ADM1031_REG_TEMP_OFFSET(nr) (0x0d + (nr))
#define ADM1031_REG_TEMP_MAX(nr) (0x14 + 4 * (nr))
#define ADM1031_REG_TEMP_MIN(nr) (0x15 + 4 * (nr))
#define ADM1031_REG_TEMP_CRIT(nr) (0x16 + 4 * (nr))
@ -93,6 +94,7 @@ struct adm1031_data {
u8 auto_temp_min[3];
u8 auto_temp_off[3];
u8 auto_temp_max[3];
s8 temp_offset[3];
s8 temp_min[3];
s8 temp_max[3];
s8 temp_crit[3];
@ -145,6 +147,10 @@ adm1031_write_value(struct i2c_client *client, u8 reg, unsigned int value)
#define TEMP_FROM_REG_EXT(val, ext) (TEMP_FROM_REG(val) + (ext) * 125)
#define TEMP_OFFSET_TO_REG(val) (TEMP_TO_REG(val) & 0x8f)
#define TEMP_OFFSET_FROM_REG(val) TEMP_FROM_REG((val) < 0 ? \
(val) | 0x70 : (val))
#define FAN_FROM_REG(reg, div) ((reg) ? (11250 * 60) / ((reg) * (div)) : 0)
static int FAN_TO_REG(int reg, int div)
@ -585,6 +591,14 @@ static ssize_t show_temp(struct device *dev,
(((data->ext_temp[nr] >> ((nr - 1) * 3)) & 7));
return sprintf(buf, "%d\n", TEMP_FROM_REG_EXT(data->temp[nr], ext));
}
static ssize_t show_temp_offset(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct adm1031_data *data = adm1031_update_device(dev);
return sprintf(buf, "%d\n",
TEMP_OFFSET_FROM_REG(data->temp_offset[nr]));
}
static ssize_t show_temp_min(struct device *dev,
struct device_attribute *attr, char *buf)
{
@ -606,6 +620,24 @@ static ssize_t show_temp_crit(struct device *dev,
struct adm1031_data *data = adm1031_update_device(dev);
return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_crit[nr]));
}
static ssize_t set_temp_offset(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct adm1031_data *data = i2c_get_clientdata(client);
int nr = to_sensor_dev_attr(attr)->index;
int val;
val = simple_strtol(buf, NULL, 10);
val = SENSORS_LIMIT(val, -15000, 15000);
mutex_lock(&data->update_lock);
data->temp_offset[nr] = TEMP_OFFSET_TO_REG(val);
adm1031_write_value(client, ADM1031_REG_TEMP_OFFSET(nr),
data->temp_offset[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
@ -661,6 +693,8 @@ static ssize_t set_temp_crit(struct device *dev, struct device_attribute *attr,
#define temp_reg(offset) \
static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO, \
show_temp, NULL, offset - 1); \
static SENSOR_DEVICE_ATTR(temp##offset##_offset, S_IRUGO | S_IWUSR, \
show_temp_offset, set_temp_offset, offset - 1); \
static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR, \
show_temp_min, set_temp_min, offset - 1); \
static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR, \
@ -714,6 +748,7 @@ static struct attribute *adm1031_attributes[] = {
&sensor_dev_attr_pwm1.dev_attr.attr,
&sensor_dev_attr_auto_fan1_channel.dev_attr.attr,
&sensor_dev_attr_temp1_input.dev_attr.attr,
&sensor_dev_attr_temp1_offset.dev_attr.attr,
&sensor_dev_attr_temp1_min.dev_attr.attr,
&sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
&sensor_dev_attr_temp1_max.dev_attr.attr,
@ -721,6 +756,7 @@ static struct attribute *adm1031_attributes[] = {
&sensor_dev_attr_temp1_crit.dev_attr.attr,
&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
&sensor_dev_attr_temp2_input.dev_attr.attr,
&sensor_dev_attr_temp2_offset.dev_attr.attr,
&sensor_dev_attr_temp2_min.dev_attr.attr,
&sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
&sensor_dev_attr_temp2_max.dev_attr.attr,
@ -757,6 +793,7 @@ static struct attribute *adm1031_attributes_opt[] = {
&sensor_dev_attr_pwm2.dev_attr.attr,
&sensor_dev_attr_auto_fan2_channel.dev_attr.attr,
&sensor_dev_attr_temp3_input.dev_attr.attr,
&sensor_dev_attr_temp3_offset.dev_attr.attr,
&sensor_dev_attr_temp3_min.dev_attr.attr,
&sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
&sensor_dev_attr_temp3_max.dev_attr.attr,
@ -937,6 +974,9 @@ static struct adm1031_data *adm1031_update_device(struct device *dev)
}
data->temp[chan] = newh;
data->temp_offset[chan] =
adm1031_read_value(client,
ADM1031_REG_TEMP_OFFSET(chan));
data->temp_min[chan] =
adm1031_read_value(client,
ADM1031_REG_TEMP_MIN(chan));

View file

@ -157,17 +157,26 @@ static int __devinit adjust_tjmax(struct cpuinfo_x86 *c, u32 id, struct device *
/* The 100C is default for both mobile and non mobile CPUs */
int tjmax = 100000;
int ismobile = 1;
int tjmax_ee = 85000;
int usemsr_ee = 1;
int err;
u32 eax, edx;
/* Early chips have no MSR for TjMax */
if ((c->x86_model == 0xf) && (c->x86_mask < 4)) {
ismobile = 0;
usemsr_ee = 0;
}
if ((c->x86_model > 0xe) && (ismobile)) {
/* Atoms seems to have TjMax at 90C */
if (c->x86_model == 0x1c) {
usemsr_ee = 0;
tjmax = 90000;
}
if ((c->x86_model > 0xe) && (usemsr_ee)) {
u8 platform_id;
/* Now we can detect the mobile CPU using Intel provided table
http://softwarecommunity.intel.com/Wiki/Mobility/720.htm
@ -179,13 +188,29 @@ static int __devinit adjust_tjmax(struct cpuinfo_x86 *c, u32 id, struct device *
dev_warn(dev,
"Unable to access MSR 0x17, assuming desktop"
" CPU\n");
ismobile = 0;
} else if (!(eax & 0x10000000)) {
ismobile = 0;
usemsr_ee = 0;
} else if (c->x86_model < 0x17 && !(eax & 0x10000000)) {
/* Trust bit 28 up to Penryn, I could not find any
documentation on that; if you happen to know
someone at Intel please ask */
usemsr_ee = 0;
} else {
/* Platform ID bits 52:50 (EDX starts at bit 32) */
platform_id = (edx >> 18) & 0x7;
/* Mobile Penryn CPU seems to be platform ID 7 or 5
(guesswork) */
if ((c->x86_model == 0x17) &&
((platform_id == 5) || (platform_id == 7))) {
/* If MSR EE bit is set, set it to 90 degrees C,
otherwise 105 degrees C */
tjmax_ee = 90000;
tjmax = 105000;
}
}
}
if (ismobile || c->x86_model == 0x1c) {
if (usemsr_ee) {
err = rdmsr_safe_on_cpu(id, 0xee, &eax, &edx);
if (err) {
@ -193,9 +218,11 @@ static int __devinit adjust_tjmax(struct cpuinfo_x86 *c, u32 id, struct device *
"Unable to access MSR 0xEE, for Tjmax, left"
" at default");
} else if (eax & 0x40000000) {
tjmax = 85000;
tjmax = tjmax_ee;
}
} else {
/* if we dont use msr EE it means we are desktop CPU (with exeception
of Atom) */
} else if (tjmax == 100000) {
dev_warn(dev, "Using relative temperature scale!\n");
}
@ -248,9 +275,9 @@ static int __devinit coretemp_probe(struct platform_device *pdev)
platform_set_drvdata(pdev, data);
/* read the still undocumented IA32_TEMPERATURE_TARGET it exists
on older CPUs but not in this register */
on older CPUs but not in this register, Atoms don't have it either */
if (c->x86_model > 0xe) {
if ((c->x86_model > 0xe) && (c->x86_model != 0x1c)) {
err = rdmsr_safe_on_cpu(data->id, 0x1a2, &eax, &edx);
if (err) {
dev_warn(&pdev->dev, "Unable to read"
@ -413,11 +440,15 @@ static int __init coretemp_init(void)
for_each_online_cpu(i) {
struct cpuinfo_x86 *c = &cpu_data(i);
/* check if family 6, models 0xe, 0xf, 0x16, 0x17, 0x1A */
/* check if family 6, models 0xe (Pentium M DC),
0xf (Core 2 DC 65nm), 0x16 (Core 2 SC 65nm),
0x17 (Penryn 45nm), 0x1a (Nehalem), 0x1c (Atom),
0x1e (Lynnfield) */
if ((c->cpuid_level < 0) || (c->x86 != 0x6) ||
!((c->x86_model == 0xe) || (c->x86_model == 0xf) ||
(c->x86_model == 0x16) || (c->x86_model == 0x17) ||
(c->x86_model == 0x1A) || (c->x86_model == 0x1c))) {
(c->x86_model == 0x1a) || (c->x86_model == 0x1c) ||
(c->x86_model == 0x1e))) {
/* supported CPU not found, but report the unknown
family 6 CPU */

View file

@ -1,680 +0,0 @@
/*
* fscher.c - Part of lm_sensors, Linux kernel modules for hardware
* monitoring
* Copyright (C) 2003, 2004 Reinhard Nissl <rnissl@gmx.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* fujitsu siemens hermes chip,
* module based on fscpos.c
* Copyright (C) 2000 Hermann Jung <hej@odn.de>
* Copyright (C) 1998, 1999 Frodo Looijaard <frodol@dds.nl>
* and Philip Edelbrock <phil@netroedge.com>
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/sysfs.h>
/*
* Addresses to scan
*/
static const unsigned short normal_i2c[] = { 0x73, I2C_CLIENT_END };
/*
* Insmod parameters
*/
I2C_CLIENT_INSMOD_1(fscher);
/*
* The FSCHER registers
*/
/* chip identification */
#define FSCHER_REG_IDENT_0 0x00
#define FSCHER_REG_IDENT_1 0x01
#define FSCHER_REG_IDENT_2 0x02
#define FSCHER_REG_REVISION 0x03
/* global control and status */
#define FSCHER_REG_EVENT_STATE 0x04
#define FSCHER_REG_CONTROL 0x05
/* watchdog */
#define FSCHER_REG_WDOG_PRESET 0x28
#define FSCHER_REG_WDOG_STATE 0x23
#define FSCHER_REG_WDOG_CONTROL 0x21
/* fan 0 */
#define FSCHER_REG_FAN0_MIN 0x55
#define FSCHER_REG_FAN0_ACT 0x0e
#define FSCHER_REG_FAN0_STATE 0x0d
#define FSCHER_REG_FAN0_RIPPLE 0x0f
/* fan 1 */
#define FSCHER_REG_FAN1_MIN 0x65
#define FSCHER_REG_FAN1_ACT 0x6b
#define FSCHER_REG_FAN1_STATE 0x62
#define FSCHER_REG_FAN1_RIPPLE 0x6f
/* fan 2 */
#define FSCHER_REG_FAN2_MIN 0xb5
#define FSCHER_REG_FAN2_ACT 0xbb
#define FSCHER_REG_FAN2_STATE 0xb2
#define FSCHER_REG_FAN2_RIPPLE 0xbf
/* voltage supervision */
#define FSCHER_REG_VOLT_12 0x45
#define FSCHER_REG_VOLT_5 0x42
#define FSCHER_REG_VOLT_BATT 0x48
/* temperature 0 */
#define FSCHER_REG_TEMP0_ACT 0x64
#define FSCHER_REG_TEMP0_STATE 0x71
/* temperature 1 */
#define FSCHER_REG_TEMP1_ACT 0x32
#define FSCHER_REG_TEMP1_STATE 0x81
/* temperature 2 */
#define FSCHER_REG_TEMP2_ACT 0x35
#define FSCHER_REG_TEMP2_STATE 0x91
/*
* Functions declaration
*/
static int fscher_probe(struct i2c_client *client,
const struct i2c_device_id *id);
static int fscher_detect(struct i2c_client *client, int kind,
struct i2c_board_info *info);
static int fscher_remove(struct i2c_client *client);
static struct fscher_data *fscher_update_device(struct device *dev);
static void fscher_init_client(struct i2c_client *client);
static int fscher_read_value(struct i2c_client *client, u8 reg);
static int fscher_write_value(struct i2c_client *client, u8 reg, u8 value);
/*
* Driver data (common to all clients)
*/
static const struct i2c_device_id fscher_id[] = {
{ "fscher", fscher },
{ }
};
static struct i2c_driver fscher_driver = {
.class = I2C_CLASS_HWMON,
.driver = {
.name = "fscher",
},
.probe = fscher_probe,
.remove = fscher_remove,
.id_table = fscher_id,
.detect = fscher_detect,
.address_data = &addr_data,
};
/*
* Client data (each client gets its own)
*/
struct fscher_data {
struct device *hwmon_dev;
struct mutex update_lock;
char valid; /* zero until following fields are valid */
unsigned long last_updated; /* in jiffies */
/* register values */
u8 revision; /* revision of chip */
u8 global_event; /* global event status */
u8 global_control; /* global control register */
u8 watchdog[3]; /* watchdog */
u8 volt[3]; /* 12, 5, battery voltage */
u8 temp_act[3]; /* temperature */
u8 temp_status[3]; /* status of sensor */
u8 fan_act[3]; /* fans revolutions per second */
u8 fan_status[3]; /* fan status */
u8 fan_min[3]; /* fan min value for rps */
u8 fan_ripple[3]; /* divider for rps */
};
/*
* Sysfs stuff
*/
#define sysfs_r(kind, sub, offset, reg) \
static ssize_t show_##kind##sub (struct fscher_data *, char *, int); \
static ssize_t show_##kind##offset##sub (struct device *, struct device_attribute *attr, char *); \
static ssize_t show_##kind##offset##sub (struct device *dev, struct device_attribute *attr, char *buf) \
{ \
struct fscher_data *data = fscher_update_device(dev); \
return show_##kind##sub(data, buf, (offset)); \
}
#define sysfs_w(kind, sub, offset, reg) \
static ssize_t set_##kind##sub (struct i2c_client *, struct fscher_data *, const char *, size_t, int, int); \
static ssize_t set_##kind##offset##sub (struct device *, struct device_attribute *attr, const char *, size_t); \
static ssize_t set_##kind##offset##sub (struct device *dev, struct device_attribute *attr, const char *buf, size_t count) \
{ \
struct i2c_client *client = to_i2c_client(dev); \
struct fscher_data *data = i2c_get_clientdata(client); \
return set_##kind##sub(client, data, buf, count, (offset), reg); \
}
#define sysfs_rw_n(kind, sub, offset, reg) \
sysfs_r(kind, sub, offset, reg) \
sysfs_w(kind, sub, offset, reg) \
static DEVICE_ATTR(kind##offset##sub, S_IRUGO | S_IWUSR, show_##kind##offset##sub, set_##kind##offset##sub);
#define sysfs_rw(kind, sub, reg) \
sysfs_r(kind, sub, 0, reg) \
sysfs_w(kind, sub, 0, reg) \
static DEVICE_ATTR(kind##sub, S_IRUGO | S_IWUSR, show_##kind##0##sub, set_##kind##0##sub);
#define sysfs_ro_n(kind, sub, offset, reg) \
sysfs_r(kind, sub, offset, reg) \
static DEVICE_ATTR(kind##offset##sub, S_IRUGO, show_##kind##offset##sub, NULL);
#define sysfs_ro(kind, sub, reg) \
sysfs_r(kind, sub, 0, reg) \
static DEVICE_ATTR(kind, S_IRUGO, show_##kind##0##sub, NULL);
#define sysfs_fan(offset, reg_status, reg_min, reg_ripple, reg_act) \
sysfs_rw_n(pwm, , offset, reg_min) \
sysfs_rw_n(fan, _status, offset, reg_status) \
sysfs_rw_n(fan, _div , offset, reg_ripple) \
sysfs_ro_n(fan, _input , offset, reg_act)
#define sysfs_temp(offset, reg_status, reg_act) \
sysfs_rw_n(temp, _status, offset, reg_status) \
sysfs_ro_n(temp, _input , offset, reg_act)
#define sysfs_in(offset, reg_act) \
sysfs_ro_n(in, _input, offset, reg_act)
#define sysfs_revision(reg_revision) \
sysfs_ro(revision, , reg_revision)
#define sysfs_alarms(reg_events) \
sysfs_ro(alarms, , reg_events)
#define sysfs_control(reg_control) \
sysfs_rw(control, , reg_control)
#define sysfs_watchdog(reg_control, reg_status, reg_preset) \
sysfs_rw(watchdog, _control, reg_control) \
sysfs_rw(watchdog, _status , reg_status) \
sysfs_rw(watchdog, _preset , reg_preset)
sysfs_fan(1, FSCHER_REG_FAN0_STATE, FSCHER_REG_FAN0_MIN,
FSCHER_REG_FAN0_RIPPLE, FSCHER_REG_FAN0_ACT)
sysfs_fan(2, FSCHER_REG_FAN1_STATE, FSCHER_REG_FAN1_MIN,
FSCHER_REG_FAN1_RIPPLE, FSCHER_REG_FAN1_ACT)
sysfs_fan(3, FSCHER_REG_FAN2_STATE, FSCHER_REG_FAN2_MIN,
FSCHER_REG_FAN2_RIPPLE, FSCHER_REG_FAN2_ACT)
sysfs_temp(1, FSCHER_REG_TEMP0_STATE, FSCHER_REG_TEMP0_ACT)
sysfs_temp(2, FSCHER_REG_TEMP1_STATE, FSCHER_REG_TEMP1_ACT)
sysfs_temp(3, FSCHER_REG_TEMP2_STATE, FSCHER_REG_TEMP2_ACT)
sysfs_in(0, FSCHER_REG_VOLT_12)
sysfs_in(1, FSCHER_REG_VOLT_5)
sysfs_in(2, FSCHER_REG_VOLT_BATT)
sysfs_revision(FSCHER_REG_REVISION)
sysfs_alarms(FSCHER_REG_EVENTS)
sysfs_control(FSCHER_REG_CONTROL)
sysfs_watchdog(FSCHER_REG_WDOG_CONTROL, FSCHER_REG_WDOG_STATE, FSCHER_REG_WDOG_PRESET)
static struct attribute *fscher_attributes[] = {
&dev_attr_revision.attr,
&dev_attr_alarms.attr,
&dev_attr_control.attr,
&dev_attr_watchdog_status.attr,
&dev_attr_watchdog_control.attr,
&dev_attr_watchdog_preset.attr,
&dev_attr_in0_input.attr,
&dev_attr_in1_input.attr,
&dev_attr_in2_input.attr,
&dev_attr_fan1_status.attr,
&dev_attr_fan1_div.attr,
&dev_attr_fan1_input.attr,
&dev_attr_pwm1.attr,
&dev_attr_fan2_status.attr,
&dev_attr_fan2_div.attr,
&dev_attr_fan2_input.attr,
&dev_attr_pwm2.attr,
&dev_attr_fan3_status.attr,
&dev_attr_fan3_div.attr,
&dev_attr_fan3_input.attr,
&dev_attr_pwm3.attr,
&dev_attr_temp1_status.attr,
&dev_attr_temp1_input.attr,
&dev_attr_temp2_status.attr,
&dev_attr_temp2_input.attr,
&dev_attr_temp3_status.attr,
&dev_attr_temp3_input.attr,
NULL
};
static const struct attribute_group fscher_group = {
.attrs = fscher_attributes,
};
/*
* Real code
*/
/* Return 0 if detection is successful, -ENODEV otherwise */
static int fscher_detect(struct i2c_client *new_client, int kind,
struct i2c_board_info *info)
{
struct i2c_adapter *adapter = new_client->adapter;
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
return -ENODEV;
/* Do the remaining detection unless force or force_fscher parameter */
if (kind < 0) {
if ((i2c_smbus_read_byte_data(new_client,
FSCHER_REG_IDENT_0) != 0x48) /* 'H' */
|| (i2c_smbus_read_byte_data(new_client,
FSCHER_REG_IDENT_1) != 0x45) /* 'E' */
|| (i2c_smbus_read_byte_data(new_client,
FSCHER_REG_IDENT_2) != 0x52)) /* 'R' */
return -ENODEV;
}
strlcpy(info->type, "fscher", I2C_NAME_SIZE);
return 0;
}
static int fscher_probe(struct i2c_client *new_client,
const struct i2c_device_id *id)
{
struct fscher_data *data;
int err;
data = kzalloc(sizeof(struct fscher_data), GFP_KERNEL);
if (!data) {
err = -ENOMEM;
goto exit;
}
i2c_set_clientdata(new_client, data);
data->valid = 0;
mutex_init(&data->update_lock);
fscher_init_client(new_client);
/* Register sysfs hooks */
if ((err = sysfs_create_group(&new_client->dev.kobj, &fscher_group)))
goto exit_free;
data->hwmon_dev = hwmon_device_register(&new_client->dev);
if (IS_ERR(data->hwmon_dev)) {
err = PTR_ERR(data->hwmon_dev);
goto exit_remove_files;
}
return 0;
exit_remove_files:
sysfs_remove_group(&new_client->dev.kobj, &fscher_group);
exit_free:
kfree(data);
exit:
return err;
}
static int fscher_remove(struct i2c_client *client)
{
struct fscher_data *data = i2c_get_clientdata(client);
hwmon_device_unregister(data->hwmon_dev);
sysfs_remove_group(&client->dev.kobj, &fscher_group);
kfree(data);
return 0;
}
static int fscher_read_value(struct i2c_client *client, u8 reg)
{
dev_dbg(&client->dev, "read reg 0x%02x\n", reg);
return i2c_smbus_read_byte_data(client, reg);
}
static int fscher_write_value(struct i2c_client *client, u8 reg, u8 value)
{
dev_dbg(&client->dev, "write reg 0x%02x, val 0x%02x\n",
reg, value);
return i2c_smbus_write_byte_data(client, reg, value);
}
/* Called when we have found a new FSC Hermes. */
static void fscher_init_client(struct i2c_client *client)
{
struct fscher_data *data = i2c_get_clientdata(client);
/* Read revision from chip */
data->revision = fscher_read_value(client, FSCHER_REG_REVISION);
}
static struct fscher_data *fscher_update_device(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct fscher_data *data = i2c_get_clientdata(client);
mutex_lock(&data->update_lock);
if (time_after(jiffies, data->last_updated + 2 * HZ) || !data->valid) {
dev_dbg(&client->dev, "Starting fscher update\n");
data->temp_act[0] = fscher_read_value(client, FSCHER_REG_TEMP0_ACT);
data->temp_act[1] = fscher_read_value(client, FSCHER_REG_TEMP1_ACT);
data->temp_act[2] = fscher_read_value(client, FSCHER_REG_TEMP2_ACT);
data->temp_status[0] = fscher_read_value(client, FSCHER_REG_TEMP0_STATE);
data->temp_status[1] = fscher_read_value(client, FSCHER_REG_TEMP1_STATE);
data->temp_status[2] = fscher_read_value(client, FSCHER_REG_TEMP2_STATE);
data->volt[0] = fscher_read_value(client, FSCHER_REG_VOLT_12);
data->volt[1] = fscher_read_value(client, FSCHER_REG_VOLT_5);
data->volt[2] = fscher_read_value(client, FSCHER_REG_VOLT_BATT);
data->fan_act[0] = fscher_read_value(client, FSCHER_REG_FAN0_ACT);
data->fan_act[1] = fscher_read_value(client, FSCHER_REG_FAN1_ACT);
data->fan_act[2] = fscher_read_value(client, FSCHER_REG_FAN2_ACT);
data->fan_status[0] = fscher_read_value(client, FSCHER_REG_FAN0_STATE);
data->fan_status[1] = fscher_read_value(client, FSCHER_REG_FAN1_STATE);
data->fan_status[2] = fscher_read_value(client, FSCHER_REG_FAN2_STATE);
data->fan_min[0] = fscher_read_value(client, FSCHER_REG_FAN0_MIN);
data->fan_min[1] = fscher_read_value(client, FSCHER_REG_FAN1_MIN);
data->fan_min[2] = fscher_read_value(client, FSCHER_REG_FAN2_MIN);
data->fan_ripple[0] = fscher_read_value(client, FSCHER_REG_FAN0_RIPPLE);
data->fan_ripple[1] = fscher_read_value(client, FSCHER_REG_FAN1_RIPPLE);
data->fan_ripple[2] = fscher_read_value(client, FSCHER_REG_FAN2_RIPPLE);
data->watchdog[0] = fscher_read_value(client, FSCHER_REG_WDOG_PRESET);
data->watchdog[1] = fscher_read_value(client, FSCHER_REG_WDOG_STATE);
data->watchdog[2] = fscher_read_value(client, FSCHER_REG_WDOG_CONTROL);
data->global_event = fscher_read_value(client, FSCHER_REG_EVENT_STATE);
data->global_control = fscher_read_value(client,
FSCHER_REG_CONTROL);
data->last_updated = jiffies;
data->valid = 1;
}
mutex_unlock(&data->update_lock);
return data;
}
#define FAN_INDEX_FROM_NUM(nr) ((nr) - 1)
static ssize_t set_fan_status(struct i2c_client *client, struct fscher_data *data,
const char *buf, size_t count, int nr, int reg)
{
/* bits 0..1, 3..7 reserved => mask with 0x04 */
unsigned long v = simple_strtoul(buf, NULL, 10) & 0x04;
mutex_lock(&data->update_lock);
data->fan_status[FAN_INDEX_FROM_NUM(nr)] &= ~v;
fscher_write_value(client, reg, v);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_fan_status(struct fscher_data *data, char *buf, int nr)
{
/* bits 0..1, 3..7 reserved => mask with 0x04 */
return sprintf(buf, "%u\n", data->fan_status[FAN_INDEX_FROM_NUM(nr)] & 0x04);
}
static ssize_t set_pwm(struct i2c_client *client, struct fscher_data *data,
const char *buf, size_t count, int nr, int reg)
{
unsigned long v = simple_strtoul(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->fan_min[FAN_INDEX_FROM_NUM(nr)] = v > 0xff ? 0xff : v;
fscher_write_value(client, reg, data->fan_min[FAN_INDEX_FROM_NUM(nr)]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_pwm(struct fscher_data *data, char *buf, int nr)
{
return sprintf(buf, "%u\n", data->fan_min[FAN_INDEX_FROM_NUM(nr)]);
}
static ssize_t set_fan_div(struct i2c_client *client, struct fscher_data *data,
const char *buf, size_t count, int nr, int reg)
{
/* supported values: 2, 4, 8 */
unsigned long v = simple_strtoul(buf, NULL, 10);
switch (v) {
case 2: v = 1; break;
case 4: v = 2; break;
case 8: v = 3; break;
default:
dev_err(&client->dev, "fan_div value %ld not "
"supported. Choose one of 2, 4 or 8!\n", v);
return -EINVAL;
}
mutex_lock(&data->update_lock);
/* bits 2..7 reserved => mask with 0x03 */
data->fan_ripple[FAN_INDEX_FROM_NUM(nr)] &= ~0x03;
data->fan_ripple[FAN_INDEX_FROM_NUM(nr)] |= v;
fscher_write_value(client, reg, data->fan_ripple[FAN_INDEX_FROM_NUM(nr)]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_fan_div(struct fscher_data *data, char *buf, int nr)
{
/* bits 2..7 reserved => mask with 0x03 */
return sprintf(buf, "%u\n", 1 << (data->fan_ripple[FAN_INDEX_FROM_NUM(nr)] & 0x03));
}
#define RPM_FROM_REG(val) (val*60)
static ssize_t show_fan_input (struct fscher_data *data, char *buf, int nr)
{
return sprintf(buf, "%u\n", RPM_FROM_REG(data->fan_act[FAN_INDEX_FROM_NUM(nr)]));
}
#define TEMP_INDEX_FROM_NUM(nr) ((nr) - 1)
static ssize_t set_temp_status(struct i2c_client *client, struct fscher_data *data,
const char *buf, size_t count, int nr, int reg)
{
/* bits 2..7 reserved, 0 read only => mask with 0x02 */
unsigned long v = simple_strtoul(buf, NULL, 10) & 0x02;
mutex_lock(&data->update_lock);
data->temp_status[TEMP_INDEX_FROM_NUM(nr)] &= ~v;
fscher_write_value(client, reg, v);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_temp_status(struct fscher_data *data, char *buf, int nr)
{
/* bits 2..7 reserved => mask with 0x03 */
return sprintf(buf, "%u\n", data->temp_status[TEMP_INDEX_FROM_NUM(nr)] & 0x03);
}
#define TEMP_FROM_REG(val) (((val) - 128) * 1000)
static ssize_t show_temp_input(struct fscher_data *data, char *buf, int nr)
{
return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_act[TEMP_INDEX_FROM_NUM(nr)]));
}
/*
* The final conversion is specified in sensors.conf, as it depends on
* mainboard specific values. We export the registers contents as
* pseudo-hundredths-of-Volts (range 0V - 2.55V). Not that it makes much
* sense per se, but it minimizes the conversions count and keeps the
* values within a usual range.
*/
#define VOLT_FROM_REG(val) ((val) * 10)
static ssize_t show_in_input(struct fscher_data *data, char *buf, int nr)
{
return sprintf(buf, "%u\n", VOLT_FROM_REG(data->volt[nr]));
}
static ssize_t show_revision(struct fscher_data *data, char *buf, int nr)
{
return sprintf(buf, "%u\n", data->revision);
}
static ssize_t show_alarms(struct fscher_data *data, char *buf, int nr)
{
/* bits 2, 5..6 reserved => mask with 0x9b */
return sprintf(buf, "%u\n", data->global_event & 0x9b);
}
static ssize_t set_control(struct i2c_client *client, struct fscher_data *data,
const char *buf, size_t count, int nr, int reg)
{
/* bits 1..7 reserved => mask with 0x01 */
unsigned long v = simple_strtoul(buf, NULL, 10) & 0x01;
mutex_lock(&data->update_lock);
data->global_control = v;
fscher_write_value(client, reg, v);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_control(struct fscher_data *data, char *buf, int nr)
{
/* bits 1..7 reserved => mask with 0x01 */
return sprintf(buf, "%u\n", data->global_control & 0x01);
}
static ssize_t set_watchdog_control(struct i2c_client *client, struct
fscher_data *data, const char *buf, size_t count,
int nr, int reg)
{
/* bits 0..3 reserved => mask with 0xf0 */
unsigned long v = simple_strtoul(buf, NULL, 10) & 0xf0;
mutex_lock(&data->update_lock);
data->watchdog[2] &= ~0xf0;
data->watchdog[2] |= v;
fscher_write_value(client, reg, data->watchdog[2]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_watchdog_control(struct fscher_data *data, char *buf, int nr)
{
/* bits 0..3 reserved, bit 5 write only => mask with 0xd0 */
return sprintf(buf, "%u\n", data->watchdog[2] & 0xd0);
}
static ssize_t set_watchdog_status(struct i2c_client *client, struct fscher_data *data,
const char *buf, size_t count, int nr, int reg)
{
/* bits 0, 2..7 reserved => mask with 0x02 */
unsigned long v = simple_strtoul(buf, NULL, 10) & 0x02;
mutex_lock(&data->update_lock);
data->watchdog[1] &= ~v;
fscher_write_value(client, reg, v);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_watchdog_status(struct fscher_data *data, char *buf, int nr)
{
/* bits 0, 2..7 reserved => mask with 0x02 */
return sprintf(buf, "%u\n", data->watchdog[1] & 0x02);
}
static ssize_t set_watchdog_preset(struct i2c_client *client, struct fscher_data *data,
const char *buf, size_t count, int nr, int reg)
{
unsigned long v = simple_strtoul(buf, NULL, 10) & 0xff;
mutex_lock(&data->update_lock);
data->watchdog[0] = v;
fscher_write_value(client, reg, data->watchdog[0]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_watchdog_preset(struct fscher_data *data, char *buf, int nr)
{
return sprintf(buf, "%u\n", data->watchdog[0]);
}
static int __init sensors_fscher_init(void)
{
return i2c_add_driver(&fscher_driver);
}
static void __exit sensors_fscher_exit(void)
{
i2c_del_driver(&fscher_driver);
}
MODULE_AUTHOR("Reinhard Nissl <rnissl@gmx.de>");
MODULE_DESCRIPTION("FSC Hermes driver");
MODULE_LICENSE("GPL");
module_init(sensors_fscher_init);
module_exit(sensors_fscher_exit);

View file

@ -1,654 +0,0 @@
/*
fscpos.c - Kernel module for hardware monitoring with FSC Poseidon chips
Copyright (C) 2004, 2005 Stefan Ott <stefan@desire.ch>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
fujitsu siemens poseidon chip,
module based on the old fscpos module by Hermann Jung <hej@odn.de> and
the fscher module by Reinhard Nissl <rnissl@gmx.de>
original module based on lm80.c
Copyright (C) 1998, 1999 Frodo Looijaard <frodol@dds.nl>
and Philip Edelbrock <phil@netroedge.com>
Thanks to Jean Delvare for reviewing my code and suggesting a lot of
improvements.
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <linux/i2c.h>
#include <linux/init.h>
#include <linux/hwmon.h>
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/sysfs.h>
/*
* Addresses to scan
*/
static const unsigned short normal_i2c[] = { 0x73, I2C_CLIENT_END };
/*
* Insmod parameters
*/
I2C_CLIENT_INSMOD_1(fscpos);
/*
* The FSCPOS registers
*/
/* chip identification */
#define FSCPOS_REG_IDENT_0 0x00
#define FSCPOS_REG_IDENT_1 0x01
#define FSCPOS_REG_IDENT_2 0x02
#define FSCPOS_REG_REVISION 0x03
/* global control and status */
#define FSCPOS_REG_EVENT_STATE 0x04
#define FSCPOS_REG_CONTROL 0x05
/* watchdog */
#define FSCPOS_REG_WDOG_PRESET 0x28
#define FSCPOS_REG_WDOG_STATE 0x23
#define FSCPOS_REG_WDOG_CONTROL 0x21
/* voltages */
#define FSCPOS_REG_VOLT_12 0x45
#define FSCPOS_REG_VOLT_5 0x42
#define FSCPOS_REG_VOLT_BATT 0x48
/* fans - the chip does not support minimum speed for fan2 */
static u8 FSCPOS_REG_PWM[] = { 0x55, 0x65 };
static u8 FSCPOS_REG_FAN_ACT[] = { 0x0e, 0x6b, 0xab };
static u8 FSCPOS_REG_FAN_STATE[] = { 0x0d, 0x62, 0xa2 };
static u8 FSCPOS_REG_FAN_RIPPLE[] = { 0x0f, 0x6f, 0xaf };
/* temperatures */
static u8 FSCPOS_REG_TEMP_ACT[] = { 0x64, 0x32, 0x35 };
static u8 FSCPOS_REG_TEMP_STATE[] = { 0x71, 0x81, 0x91 };
/*
* Functions declaration
*/
static int fscpos_probe(struct i2c_client *client,
const struct i2c_device_id *id);
static int fscpos_detect(struct i2c_client *client, int kind,
struct i2c_board_info *info);
static int fscpos_remove(struct i2c_client *client);
static int fscpos_read_value(struct i2c_client *client, u8 reg);
static int fscpos_write_value(struct i2c_client *client, u8 reg, u8 value);
static struct fscpos_data *fscpos_update_device(struct device *dev);
static void fscpos_init_client(struct i2c_client *client);
static void reset_fan_alarm(struct i2c_client *client, int nr);
/*
* Driver data (common to all clients)
*/
static const struct i2c_device_id fscpos_id[] = {
{ "fscpos", fscpos },
{ }
};
static struct i2c_driver fscpos_driver = {
.class = I2C_CLASS_HWMON,
.driver = {
.name = "fscpos",
},
.probe = fscpos_probe,
.remove = fscpos_remove,
.id_table = fscpos_id,
.detect = fscpos_detect,
.address_data = &addr_data,
};
/*
* Client data (each client gets its own)
*/
struct fscpos_data {
struct device *hwmon_dev;
struct mutex update_lock;
char valid; /* 0 until following fields are valid */
unsigned long last_updated; /* In jiffies */
/* register values */
u8 revision; /* revision of chip */
u8 global_event; /* global event status */
u8 global_control; /* global control register */
u8 wdog_control; /* watchdog control */
u8 wdog_state; /* watchdog status */
u8 wdog_preset; /* watchdog preset */
u8 volt[3]; /* 12, 5, battery current */
u8 temp_act[3]; /* temperature */
u8 temp_status[3]; /* status of sensor */
u8 fan_act[3]; /* fans revolutions per second */
u8 fan_status[3]; /* fan status */
u8 pwm[2]; /* fan min value for rps */
u8 fan_ripple[3]; /* divider for rps */
};
/* Temperature */
#define TEMP_FROM_REG(val) (((val) - 128) * 1000)
static ssize_t show_temp_input(struct fscpos_data *data, char *buf, int nr)
{
return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_act[nr - 1]));
}
static ssize_t show_temp_status(struct fscpos_data *data, char *buf, int nr)
{
/* bits 2..7 reserved => mask with 0x03 */
return sprintf(buf, "%u\n", data->temp_status[nr - 1] & 0x03);
}
static ssize_t show_temp_reset(struct fscpos_data *data, char *buf, int nr)
{
return sprintf(buf, "1\n");
}
static ssize_t set_temp_reset(struct i2c_client *client, struct fscpos_data
*data, const char *buf, size_t count, int nr, int reg)
{
unsigned long v = simple_strtoul(buf, NULL, 10);
if (v != 1) {
dev_err(&client->dev, "temp_reset value %ld not supported. "
"Use 1 to reset the alarm!\n", v);
return -EINVAL;
}
dev_info(&client->dev, "You used the temp_reset feature which has not "
"been proplerly tested. Please report your "
"experience to the module author.\n");
/* Supported value: 2 (clears the status) */
fscpos_write_value(client, FSCPOS_REG_TEMP_STATE[nr - 1], 2);
return count;
}
/* Fans */
#define RPM_FROM_REG(val) ((val) * 60)
static ssize_t show_fan_status(struct fscpos_data *data, char *buf, int nr)
{
/* bits 0..1, 3..7 reserved => mask with 0x04 */
return sprintf(buf, "%u\n", data->fan_status[nr - 1] & 0x04);
}
static ssize_t show_fan_input(struct fscpos_data *data, char *buf, int nr)
{
return sprintf(buf, "%u\n", RPM_FROM_REG(data->fan_act[nr - 1]));
}
static ssize_t show_fan_ripple(struct fscpos_data *data, char *buf, int nr)
{
/* bits 2..7 reserved => mask with 0x03 */
return sprintf(buf, "%u\n", data->fan_ripple[nr - 1] & 0x03);
}
static ssize_t set_fan_ripple(struct i2c_client *client, struct fscpos_data
*data, const char *buf, size_t count, int nr, int reg)
{
/* supported values: 2, 4, 8 */
unsigned long v = simple_strtoul(buf, NULL, 10);
switch (v) {
case 2: v = 1; break;
case 4: v = 2; break;
case 8: v = 3; break;
default:
dev_err(&client->dev, "fan_ripple value %ld not supported. "
"Must be one of 2, 4 or 8!\n", v);
return -EINVAL;
}
mutex_lock(&data->update_lock);
/* bits 2..7 reserved => mask with 0x03 */
data->fan_ripple[nr - 1] &= ~0x03;
data->fan_ripple[nr - 1] |= v;
fscpos_write_value(client, reg, data->fan_ripple[nr - 1]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_pwm(struct fscpos_data *data, char *buf, int nr)
{
return sprintf(buf, "%u\n", data->pwm[nr - 1]);
}
static ssize_t set_pwm(struct i2c_client *client, struct fscpos_data *data,
const char *buf, size_t count, int nr, int reg)
{
unsigned long v = simple_strtoul(buf, NULL, 10);
/* Range: 0..255 */
if (v < 0) v = 0;
if (v > 255) v = 255;
mutex_lock(&data->update_lock);
data->pwm[nr - 1] = v;
fscpos_write_value(client, reg, data->pwm[nr - 1]);
mutex_unlock(&data->update_lock);
return count;
}
static void reset_fan_alarm(struct i2c_client *client, int nr)
{
fscpos_write_value(client, FSCPOS_REG_FAN_STATE[nr], 4);
}
/* Volts */
#define VOLT_FROM_REG(val, mult) ((val) * (mult) / 255)
static ssize_t show_volt_12(struct device *dev, struct device_attribute *attr, char *buf)
{
struct fscpos_data *data = fscpos_update_device(dev);
return sprintf(buf, "%u\n", VOLT_FROM_REG(data->volt[0], 14200));
}
static ssize_t show_volt_5(struct device *dev, struct device_attribute *attr, char *buf)
{
struct fscpos_data *data = fscpos_update_device(dev);
return sprintf(buf, "%u\n", VOLT_FROM_REG(data->volt[1], 6600));
}
static ssize_t show_volt_batt(struct device *dev, struct device_attribute *attr, char *buf)
{
struct fscpos_data *data = fscpos_update_device(dev);
return sprintf(buf, "%u\n", VOLT_FROM_REG(data->volt[2], 3300));
}
/* Watchdog */
static ssize_t show_wdog_control(struct fscpos_data *data, char *buf)
{
/* bits 0..3 reserved, bit 6 write only => mask with 0xb0 */
return sprintf(buf, "%u\n", data->wdog_control & 0xb0);
}
static ssize_t set_wdog_control(struct i2c_client *client, struct fscpos_data
*data, const char *buf, size_t count, int reg)
{
/* bits 0..3 reserved => mask with 0xf0 */
unsigned long v = simple_strtoul(buf, NULL, 10) & 0xf0;
mutex_lock(&data->update_lock);
data->wdog_control &= ~0xf0;
data->wdog_control |= v;
fscpos_write_value(client, reg, data->wdog_control);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_wdog_state(struct fscpos_data *data, char *buf)
{
/* bits 0, 2..7 reserved => mask with 0x02 */
return sprintf(buf, "%u\n", data->wdog_state & 0x02);
}
static ssize_t set_wdog_state(struct i2c_client *client, struct fscpos_data
*data, const char *buf, size_t count, int reg)
{
unsigned long v = simple_strtoul(buf, NULL, 10) & 0x02;
/* Valid values: 2 (clear) */
if (v != 2) {
dev_err(&client->dev, "wdog_state value %ld not supported. "
"Must be 2 to clear the state!\n", v);
return -EINVAL;
}
mutex_lock(&data->update_lock);
data->wdog_state &= ~v;
fscpos_write_value(client, reg, v);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_wdog_preset(struct fscpos_data *data, char *buf)
{
return sprintf(buf, "%u\n", data->wdog_preset);
}
static ssize_t set_wdog_preset(struct i2c_client *client, struct fscpos_data
*data, const char *buf, size_t count, int reg)
{
unsigned long v = simple_strtoul(buf, NULL, 10) & 0xff;
mutex_lock(&data->update_lock);
data->wdog_preset = v;
fscpos_write_value(client, reg, data->wdog_preset);
mutex_unlock(&data->update_lock);
return count;
}
/* Event */
static ssize_t show_event(struct device *dev, struct device_attribute *attr, char *buf)
{
/* bits 5..7 reserved => mask with 0x1f */
struct fscpos_data *data = fscpos_update_device(dev);
return sprintf(buf, "%u\n", data->global_event & 0x9b);
}
/*
* Sysfs stuff
*/
#define create_getter(kind, sub) \
static ssize_t sysfs_show_##kind##sub(struct device *dev, struct device_attribute *attr, char *buf) \
{ \
struct fscpos_data *data = fscpos_update_device(dev); \
return show_##kind##sub(data, buf); \
}
#define create_getter_n(kind, offset, sub) \
static ssize_t sysfs_show_##kind##offset##sub(struct device *dev, struct device_attribute *attr, char\
*buf) \
{ \
struct fscpos_data *data = fscpos_update_device(dev); \
return show_##kind##sub(data, buf, offset); \
}
#define create_setter(kind, sub, reg) \
static ssize_t sysfs_set_##kind##sub (struct device *dev, struct device_attribute *attr, const char \
*buf, size_t count) \
{ \
struct i2c_client *client = to_i2c_client(dev); \
struct fscpos_data *data = i2c_get_clientdata(client); \
return set_##kind##sub(client, data, buf, count, reg); \
}
#define create_setter_n(kind, offset, sub, reg) \
static ssize_t sysfs_set_##kind##offset##sub (struct device *dev, struct device_attribute *attr, \
const char *buf, size_t count) \
{ \
struct i2c_client *client = to_i2c_client(dev); \
struct fscpos_data *data = i2c_get_clientdata(client); \
return set_##kind##sub(client, data, buf, count, offset, reg);\
}
#define create_sysfs_device_ro(kind, sub, offset) \
static DEVICE_ATTR(kind##offset##sub, S_IRUGO, \
sysfs_show_##kind##offset##sub, NULL);
#define create_sysfs_device_rw(kind, sub, offset) \
static DEVICE_ATTR(kind##offset##sub, S_IRUGO | S_IWUSR, \
sysfs_show_##kind##offset##sub, sysfs_set_##kind##offset##sub);
#define sysfs_ro_n(kind, sub, offset) \
create_getter_n(kind, offset, sub); \
create_sysfs_device_ro(kind, sub, offset);
#define sysfs_rw_n(kind, sub, offset, reg) \
create_getter_n(kind, offset, sub); \
create_setter_n(kind, offset, sub, reg); \
create_sysfs_device_rw(kind, sub, offset);
#define sysfs_rw(kind, sub, reg) \
create_getter(kind, sub); \
create_setter(kind, sub, reg); \
create_sysfs_device_rw(kind, sub,);
#define sysfs_fan_with_min(offset, reg_status, reg_ripple, reg_min) \
sysfs_fan(offset, reg_status, reg_ripple); \
sysfs_rw_n(pwm,, offset, reg_min);
#define sysfs_fan(offset, reg_status, reg_ripple) \
sysfs_ro_n(fan, _input, offset); \
sysfs_ro_n(fan, _status, offset); \
sysfs_rw_n(fan, _ripple, offset, reg_ripple);
#define sysfs_temp(offset, reg_status) \
sysfs_ro_n(temp, _input, offset); \
sysfs_ro_n(temp, _status, offset); \
sysfs_rw_n(temp, _reset, offset, reg_status);
#define sysfs_watchdog(reg_wdog_preset, reg_wdog_state, reg_wdog_control) \
sysfs_rw(wdog, _control, reg_wdog_control); \
sysfs_rw(wdog, _preset, reg_wdog_preset); \
sysfs_rw(wdog, _state, reg_wdog_state);
sysfs_fan_with_min(1, FSCPOS_REG_FAN_STATE[0], FSCPOS_REG_FAN_RIPPLE[0],
FSCPOS_REG_PWM[0]);
sysfs_fan_with_min(2, FSCPOS_REG_FAN_STATE[1], FSCPOS_REG_FAN_RIPPLE[1],
FSCPOS_REG_PWM[1]);
sysfs_fan(3, FSCPOS_REG_FAN_STATE[2], FSCPOS_REG_FAN_RIPPLE[2]);
sysfs_temp(1, FSCPOS_REG_TEMP_STATE[0]);
sysfs_temp(2, FSCPOS_REG_TEMP_STATE[1]);
sysfs_temp(3, FSCPOS_REG_TEMP_STATE[2]);
sysfs_watchdog(FSCPOS_REG_WDOG_PRESET, FSCPOS_REG_WDOG_STATE,
FSCPOS_REG_WDOG_CONTROL);
static DEVICE_ATTR(event, S_IRUGO, show_event, NULL);
static DEVICE_ATTR(in0_input, S_IRUGO, show_volt_12, NULL);
static DEVICE_ATTR(in1_input, S_IRUGO, show_volt_5, NULL);
static DEVICE_ATTR(in2_input, S_IRUGO, show_volt_batt, NULL);
static struct attribute *fscpos_attributes[] = {
&dev_attr_event.attr,
&dev_attr_in0_input.attr,
&dev_attr_in1_input.attr,
&dev_attr_in2_input.attr,
&dev_attr_wdog_control.attr,
&dev_attr_wdog_preset.attr,
&dev_attr_wdog_state.attr,
&dev_attr_temp1_input.attr,
&dev_attr_temp1_status.attr,
&dev_attr_temp1_reset.attr,
&dev_attr_temp2_input.attr,
&dev_attr_temp2_status.attr,
&dev_attr_temp2_reset.attr,
&dev_attr_temp3_input.attr,
&dev_attr_temp3_status.attr,
&dev_attr_temp3_reset.attr,
&dev_attr_fan1_input.attr,
&dev_attr_fan1_status.attr,
&dev_attr_fan1_ripple.attr,
&dev_attr_pwm1.attr,
&dev_attr_fan2_input.attr,
&dev_attr_fan2_status.attr,
&dev_attr_fan2_ripple.attr,
&dev_attr_pwm2.attr,
&dev_attr_fan3_input.attr,
&dev_attr_fan3_status.attr,
&dev_attr_fan3_ripple.attr,
NULL
};
static const struct attribute_group fscpos_group = {
.attrs = fscpos_attributes,
};
/* Return 0 if detection is successful, -ENODEV otherwise */
static int fscpos_detect(struct i2c_client *new_client, int kind,
struct i2c_board_info *info)
{
struct i2c_adapter *adapter = new_client->adapter;
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
return -ENODEV;
/* Do the remaining detection unless force or force_fscpos parameter */
if (kind < 0) {
if ((fscpos_read_value(new_client, FSCPOS_REG_IDENT_0)
!= 0x50) /* 'P' */
|| (fscpos_read_value(new_client, FSCPOS_REG_IDENT_1)
!= 0x45) /* 'E' */
|| (fscpos_read_value(new_client, FSCPOS_REG_IDENT_2)
!= 0x47))/* 'G' */
return -ENODEV;
}
strlcpy(info->type, "fscpos", I2C_NAME_SIZE);
return 0;
}
static int fscpos_probe(struct i2c_client *new_client,
const struct i2c_device_id *id)
{
struct fscpos_data *data;
int err;
data = kzalloc(sizeof(struct fscpos_data), GFP_KERNEL);
if (!data) {
err = -ENOMEM;
goto exit;
}
i2c_set_clientdata(new_client, data);
data->valid = 0;
mutex_init(&data->update_lock);
/* Inizialize the fscpos chip */
fscpos_init_client(new_client);
/* Announce that the chip was found */
dev_info(&new_client->dev, "Found fscpos chip, rev %u\n", data->revision);
/* Register sysfs hooks */
if ((err = sysfs_create_group(&new_client->dev.kobj, &fscpos_group)))
goto exit_free;
data->hwmon_dev = hwmon_device_register(&new_client->dev);
if (IS_ERR(data->hwmon_dev)) {
err = PTR_ERR(data->hwmon_dev);
goto exit_remove_files;
}
return 0;
exit_remove_files:
sysfs_remove_group(&new_client->dev.kobj, &fscpos_group);
exit_free:
kfree(data);
exit:
return err;
}
static int fscpos_remove(struct i2c_client *client)
{
struct fscpos_data *data = i2c_get_clientdata(client);
hwmon_device_unregister(data->hwmon_dev);
sysfs_remove_group(&client->dev.kobj, &fscpos_group);
kfree(data);
return 0;
}
static int fscpos_read_value(struct i2c_client *client, u8 reg)
{
dev_dbg(&client->dev, "Read reg 0x%02x\n", reg);
return i2c_smbus_read_byte_data(client, reg);
}
static int fscpos_write_value(struct i2c_client *client, u8 reg, u8 value)
{
dev_dbg(&client->dev, "Write reg 0x%02x, val 0x%02x\n", reg, value);
return i2c_smbus_write_byte_data(client, reg, value);
}
/* Called when we have found a new FSCPOS chip */
static void fscpos_init_client(struct i2c_client *client)
{
struct fscpos_data *data = i2c_get_clientdata(client);
/* read revision from chip */
data->revision = fscpos_read_value(client, FSCPOS_REG_REVISION);
}
static struct fscpos_data *fscpos_update_device(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct fscpos_data *data = i2c_get_clientdata(client);
mutex_lock(&data->update_lock);
if (time_after(jiffies, data->last_updated + 2 * HZ) || !data->valid) {
int i;
dev_dbg(&client->dev, "Starting fscpos update\n");
for (i = 0; i < 3; i++) {
data->temp_act[i] = fscpos_read_value(client,
FSCPOS_REG_TEMP_ACT[i]);
data->temp_status[i] = fscpos_read_value(client,
FSCPOS_REG_TEMP_STATE[i]);
data->fan_act[i] = fscpos_read_value(client,
FSCPOS_REG_FAN_ACT[i]);
data->fan_status[i] = fscpos_read_value(client,
FSCPOS_REG_FAN_STATE[i]);
data->fan_ripple[i] = fscpos_read_value(client,
FSCPOS_REG_FAN_RIPPLE[i]);
if (i < 2) {
/* fan2_min is not supported by the chip */
data->pwm[i] = fscpos_read_value(client,
FSCPOS_REG_PWM[i]);
}
/* reset fan status if speed is back to > 0 */
if (data->fan_status[i] != 0 && data->fan_act[i] > 0) {
reset_fan_alarm(client, i);
}
}
data->volt[0] = fscpos_read_value(client, FSCPOS_REG_VOLT_12);
data->volt[1] = fscpos_read_value(client, FSCPOS_REG_VOLT_5);
data->volt[2] = fscpos_read_value(client, FSCPOS_REG_VOLT_BATT);
data->wdog_preset = fscpos_read_value(client,
FSCPOS_REG_WDOG_PRESET);
data->wdog_state = fscpos_read_value(client,
FSCPOS_REG_WDOG_STATE);
data->wdog_control = fscpos_read_value(client,
FSCPOS_REG_WDOG_CONTROL);
data->global_event = fscpos_read_value(client,
FSCPOS_REG_EVENT_STATE);
data->last_updated = jiffies;
data->valid = 1;
}
mutex_unlock(&data->update_lock);
return data;
}
static int __init sm_fscpos_init(void)
{
return i2c_add_driver(&fscpos_driver);
}
static void __exit sm_fscpos_exit(void)
{
i2c_del_driver(&fscpos_driver);
}
MODULE_AUTHOR("Stefan Ott <stefan@desire.ch> based on work from Hermann Jung "
"<hej@odn.de>, Frodo Looijaard <frodol@dds.nl>"
" and Philip Edelbrock <phil@netroedge.com>");
MODULE_DESCRIPTION("fujitsu siemens poseidon chip driver");
MODULE_LICENSE("GPL");
module_init(sm_fscpos_init);
module_exit(sm_fscpos_exit);

View file

@ -259,7 +259,7 @@ static int ltc4215_probe(struct i2c_client *client,
mutex_init(&data->update_lock);
/* Initialize the LTC4215 chip */
/* TODO */
i2c_smbus_write_byte_data(client, LTC4215_FAULT, 0x00);
/* Register sysfs hooks */
ret = sysfs_create_group(&client->dev.kobj, &ltc4215_group);

View file

@ -382,7 +382,8 @@ static int ltc4245_probe(struct i2c_client *client,
mutex_init(&data->update_lock);
/* Initialize the LTC4245 chip */
/* TODO */
i2c_smbus_write_byte_data(client, LTC4245_FAULT1, 0x00);
i2c_smbus_write_byte_data(client, LTC4245_FAULT2, 0x00);
/* Register sysfs hooks */
ret = sysfs_create_group(&client->dev.kobj, &ltc4245_group);