DMA-API-HOWTO.txt: standardize document format
Each text file under Documentation follows a different format. Some doesn't even have titles! Change its representation to follow the adopted standard, using ReST markups for it to be parseable by Sphinx: - Mark titles; - Mark literal blocks; - Mark some literals that would otherwise produce warnings; - Mark authorship. Signed-off-by: Mauro Carvalho Chehab <mchehab@s-opensource.com> Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This commit is contained in:
parent
03158a70ad
commit
266921bdb5
1 changed files with 88 additions and 65 deletions
|
@ -1,22 +1,24 @@
|
|||
Dynamic DMA mapping Guide
|
||||
=========================
|
||||
=========================
|
||||
Dynamic DMA mapping Guide
|
||||
=========================
|
||||
|
||||
David S. Miller <davem@redhat.com>
|
||||
Richard Henderson <rth@cygnus.com>
|
||||
Jakub Jelinek <jakub@redhat.com>
|
||||
:Author: David S. Miller <davem@redhat.com>
|
||||
:Author: Richard Henderson <rth@cygnus.com>
|
||||
:Author: Jakub Jelinek <jakub@redhat.com>
|
||||
|
||||
This is a guide to device driver writers on how to use the DMA API
|
||||
with example pseudo-code. For a concise description of the API, see
|
||||
DMA-API.txt.
|
||||
|
||||
CPU and DMA addresses
|
||||
CPU and DMA addresses
|
||||
=====================
|
||||
|
||||
There are several kinds of addresses involved in the DMA API, and it's
|
||||
important to understand the differences.
|
||||
|
||||
The kernel normally uses virtual addresses. Any address returned by
|
||||
kmalloc(), vmalloc(), and similar interfaces is a virtual address and can
|
||||
be stored in a "void *".
|
||||
be stored in a ``void *``.
|
||||
|
||||
The virtual memory system (TLB, page tables, etc.) translates virtual
|
||||
addresses to CPU physical addresses, which are stored as "phys_addr_t" or
|
||||
|
@ -37,7 +39,7 @@ be restricted to a subset of that space. For example, even if a system
|
|||
supports 64-bit addresses for main memory and PCI BARs, it may use an IOMMU
|
||||
so devices only need to use 32-bit DMA addresses.
|
||||
|
||||
Here's a picture and some examples:
|
||||
Here's a picture and some examples::
|
||||
|
||||
CPU CPU Bus
|
||||
Virtual Physical Address
|
||||
|
@ -98,15 +100,16 @@ microprocessor architecture. You should use the DMA API rather than the
|
|||
bus-specific DMA API, i.e., use the dma_map_*() interfaces rather than the
|
||||
pci_map_*() interfaces.
|
||||
|
||||
First of all, you should make sure
|
||||
First of all, you should make sure::
|
||||
|
||||
#include <linux/dma-mapping.h>
|
||||
#include <linux/dma-mapping.h>
|
||||
|
||||
is in your driver, which provides the definition of dma_addr_t. This type
|
||||
can hold any valid DMA address for the platform and should be used
|
||||
everywhere you hold a DMA address returned from the DMA mapping functions.
|
||||
|
||||
What memory is DMA'able?
|
||||
What memory is DMA'able?
|
||||
========================
|
||||
|
||||
The first piece of information you must know is what kernel memory can
|
||||
be used with the DMA mapping facilities. There has been an unwritten
|
||||
|
@ -143,7 +146,8 @@ What about block I/O and networking buffers? The block I/O and
|
|||
networking subsystems make sure that the buffers they use are valid
|
||||
for you to DMA from/to.
|
||||
|
||||
DMA addressing limitations
|
||||
DMA addressing limitations
|
||||
==========================
|
||||
|
||||
Does your device have any DMA addressing limitations? For example, is
|
||||
your device only capable of driving the low order 24-bits of address?
|
||||
|
@ -166,7 +170,7 @@ style to do this even if your device holds the default setting,
|
|||
because this shows that you did think about these issues wrt. your
|
||||
device.
|
||||
|
||||
The query is performed via a call to dma_set_mask_and_coherent():
|
||||
The query is performed via a call to dma_set_mask_and_coherent()::
|
||||
|
||||
int dma_set_mask_and_coherent(struct device *dev, u64 mask);
|
||||
|
||||
|
@ -175,12 +179,12 @@ If you have some special requirements, then the following two separate
|
|||
queries can be used instead:
|
||||
|
||||
The query for streaming mappings is performed via a call to
|
||||
dma_set_mask():
|
||||
dma_set_mask()::
|
||||
|
||||
int dma_set_mask(struct device *dev, u64 mask);
|
||||
|
||||
The query for consistent allocations is performed via a call
|
||||
to dma_set_coherent_mask():
|
||||
to dma_set_coherent_mask()::
|
||||
|
||||
int dma_set_coherent_mask(struct device *dev, u64 mask);
|
||||
|
||||
|
@ -209,7 +213,7 @@ of your driver reports that performance is bad or that the device is not
|
|||
even detected, you can ask them for the kernel messages to find out
|
||||
exactly why.
|
||||
|
||||
The standard 32-bit addressing device would do something like this:
|
||||
The standard 32-bit addressing device would do something like this::
|
||||
|
||||
if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32))) {
|
||||
dev_warn(dev, "mydev: No suitable DMA available\n");
|
||||
|
@ -225,7 +229,7 @@ than 64-bit addressing. For example, Sparc64 PCI SAC addressing is
|
|||
more efficient than DAC addressing.
|
||||
|
||||
Here is how you would handle a 64-bit capable device which can drive
|
||||
all 64-bits when accessing streaming DMA:
|
||||
all 64-bits when accessing streaming DMA::
|
||||
|
||||
int using_dac;
|
||||
|
||||
|
@ -239,7 +243,7 @@ all 64-bits when accessing streaming DMA:
|
|||
}
|
||||
|
||||
If a card is capable of using 64-bit consistent allocations as well,
|
||||
the case would look like this:
|
||||
the case would look like this::
|
||||
|
||||
int using_dac, consistent_using_dac;
|
||||
|
||||
|
@ -260,7 +264,7 @@ uses consistent allocations, one would have to check the return value from
|
|||
dma_set_coherent_mask().
|
||||
|
||||
Finally, if your device can only drive the low 24-bits of
|
||||
address you might do something like:
|
||||
address you might do something like::
|
||||
|
||||
if (dma_set_mask(dev, DMA_BIT_MASK(24))) {
|
||||
dev_warn(dev, "mydev: 24-bit DMA addressing not available\n");
|
||||
|
@ -280,7 +284,7 @@ only provide the functionality which the machine can handle. It
|
|||
is important that the last call to dma_set_mask() be for the
|
||||
most specific mask.
|
||||
|
||||
Here is pseudo-code showing how this might be done:
|
||||
Here is pseudo-code showing how this might be done::
|
||||
|
||||
#define PLAYBACK_ADDRESS_BITS DMA_BIT_MASK(32)
|
||||
#define RECORD_ADDRESS_BITS DMA_BIT_MASK(24)
|
||||
|
@ -308,7 +312,8 @@ A sound card was used as an example here because this genre of PCI
|
|||
devices seems to be littered with ISA chips given a PCI front end,
|
||||
and thus retaining the 16MB DMA addressing limitations of ISA.
|
||||
|
||||
Types of DMA mappings
|
||||
Types of DMA mappings
|
||||
=====================
|
||||
|
||||
There are two types of DMA mappings:
|
||||
|
||||
|
@ -336,12 +341,14 @@ There are two types of DMA mappings:
|
|||
to memory is immediately visible to the device, and vice
|
||||
versa. Consistent mappings guarantee this.
|
||||
|
||||
IMPORTANT: Consistent DMA memory does not preclude the usage of
|
||||
proper memory barriers. The CPU may reorder stores to
|
||||
.. important::
|
||||
|
||||
Consistent DMA memory does not preclude the usage of
|
||||
proper memory barriers. The CPU may reorder stores to
|
||||
consistent memory just as it may normal memory. Example:
|
||||
if it is important for the device to see the first word
|
||||
of a descriptor updated before the second, you must do
|
||||
something like:
|
||||
something like::
|
||||
|
||||
desc->word0 = address;
|
||||
wmb();
|
||||
|
@ -377,16 +384,17 @@ Also, systems with caches that aren't DMA-coherent will work better
|
|||
when the underlying buffers don't share cache lines with other data.
|
||||
|
||||
|
||||
Using Consistent DMA mappings.
|
||||
Using Consistent DMA mappings
|
||||
=============================
|
||||
|
||||
To allocate and map large (PAGE_SIZE or so) consistent DMA regions,
|
||||
you should do:
|
||||
you should do::
|
||||
|
||||
dma_addr_t dma_handle;
|
||||
|
||||
cpu_addr = dma_alloc_coherent(dev, size, &dma_handle, gfp);
|
||||
|
||||
where device is a struct device *. This may be called in interrupt
|
||||
where device is a ``struct device *``. This may be called in interrupt
|
||||
context with the GFP_ATOMIC flag.
|
||||
|
||||
Size is the length of the region you want to allocate, in bytes.
|
||||
|
@ -415,7 +423,7 @@ exists (for example) to guarantee that if you allocate a chunk
|
|||
which is smaller than or equal to 64 kilobytes, the extent of the
|
||||
buffer you receive will not cross a 64K boundary.
|
||||
|
||||
To unmap and free such a DMA region, you call:
|
||||
To unmap and free such a DMA region, you call::
|
||||
|
||||
dma_free_coherent(dev, size, cpu_addr, dma_handle);
|
||||
|
||||
|
@ -430,7 +438,7 @@ a kmem_cache, but it uses dma_alloc_coherent(), not __get_free_pages().
|
|||
Also, it understands common hardware constraints for alignment,
|
||||
like queue heads needing to be aligned on N byte boundaries.
|
||||
|
||||
Create a dma_pool like this:
|
||||
Create a dma_pool like this::
|
||||
|
||||
struct dma_pool *pool;
|
||||
|
||||
|
@ -444,7 +452,7 @@ pass 0 for boundary; passing 4096 says memory allocated from this pool
|
|||
must not cross 4KByte boundaries (but at that time it may be better to
|
||||
use dma_alloc_coherent() directly instead).
|
||||
|
||||
Allocate memory from a DMA pool like this:
|
||||
Allocate memory from a DMA pool like this::
|
||||
|
||||
cpu_addr = dma_pool_alloc(pool, flags, &dma_handle);
|
||||
|
||||
|
@ -452,7 +460,7 @@ flags are GFP_KERNEL if blocking is permitted (not in_interrupt nor
|
|||
holding SMP locks), GFP_ATOMIC otherwise. Like dma_alloc_coherent(),
|
||||
this returns two values, cpu_addr and dma_handle.
|
||||
|
||||
Free memory that was allocated from a dma_pool like this:
|
||||
Free memory that was allocated from a dma_pool like this::
|
||||
|
||||
dma_pool_free(pool, cpu_addr, dma_handle);
|
||||
|
||||
|
@ -460,7 +468,7 @@ where pool is what you passed to dma_pool_alloc(), and cpu_addr and
|
|||
dma_handle are the values dma_pool_alloc() returned. This function
|
||||
may be called in interrupt context.
|
||||
|
||||
Destroy a dma_pool by calling:
|
||||
Destroy a dma_pool by calling::
|
||||
|
||||
dma_pool_destroy(pool);
|
||||
|
||||
|
@ -468,11 +476,12 @@ Make sure you've called dma_pool_free() for all memory allocated
|
|||
from a pool before you destroy the pool. This function may not
|
||||
be called in interrupt context.
|
||||
|
||||
DMA Direction
|
||||
DMA Direction
|
||||
=============
|
||||
|
||||
The interfaces described in subsequent portions of this document
|
||||
take a DMA direction argument, which is an integer and takes on
|
||||
one of the following values:
|
||||
one of the following values::
|
||||
|
||||
DMA_BIDIRECTIONAL
|
||||
DMA_TO_DEVICE
|
||||
|
@ -521,14 +530,15 @@ packets, map/unmap them with the DMA_TO_DEVICE direction
|
|||
specifier. For receive packets, just the opposite, map/unmap them
|
||||
with the DMA_FROM_DEVICE direction specifier.
|
||||
|
||||
Using Streaming DMA mappings
|
||||
Using Streaming DMA mappings
|
||||
============================
|
||||
|
||||
The streaming DMA mapping routines can be called from interrupt
|
||||
context. There are two versions of each map/unmap, one which will
|
||||
map/unmap a single memory region, and one which will map/unmap a
|
||||
scatterlist.
|
||||
|
||||
To map a single region, you do:
|
||||
To map a single region, you do::
|
||||
|
||||
struct device *dev = &my_dev->dev;
|
||||
dma_addr_t dma_handle;
|
||||
|
@ -545,7 +555,7 @@ To map a single region, you do:
|
|||
goto map_error_handling;
|
||||
}
|
||||
|
||||
and to unmap it:
|
||||
and to unmap it::
|
||||
|
||||
dma_unmap_single(dev, dma_handle, size, direction);
|
||||
|
||||
|
@ -563,7 +573,7 @@ Using CPU pointers like this for single mappings has a disadvantage:
|
|||
you cannot reference HIGHMEM memory in this way. Thus, there is a
|
||||
map/unmap interface pair akin to dma_{map,unmap}_single(). These
|
||||
interfaces deal with page/offset pairs instead of CPU pointers.
|
||||
Specifically:
|
||||
Specifically::
|
||||
|
||||
struct device *dev = &my_dev->dev;
|
||||
dma_addr_t dma_handle;
|
||||
|
@ -593,7 +603,7 @@ error as outlined under the dma_map_single() discussion.
|
|||
You should call dma_unmap_page() when the DMA activity is finished, e.g.,
|
||||
from the interrupt which told you that the DMA transfer is done.
|
||||
|
||||
With scatterlists, you map a region gathered from several regions by:
|
||||
With scatterlists, you map a region gathered from several regions by::
|
||||
|
||||
int i, count = dma_map_sg(dev, sglist, nents, direction);
|
||||
struct scatterlist *sg;
|
||||
|
@ -617,16 +627,18 @@ Then you should loop count times (note: this can be less than nents times)
|
|||
and use sg_dma_address() and sg_dma_len() macros where you previously
|
||||
accessed sg->address and sg->length as shown above.
|
||||
|
||||
To unmap a scatterlist, just call:
|
||||
To unmap a scatterlist, just call::
|
||||
|
||||
dma_unmap_sg(dev, sglist, nents, direction);
|
||||
|
||||
Again, make sure DMA activity has already finished.
|
||||
|
||||
PLEASE NOTE: The 'nents' argument to the dma_unmap_sg call must be
|
||||
the _same_ one you passed into the dma_map_sg call,
|
||||
it should _NOT_ be the 'count' value _returned_ from the
|
||||
dma_map_sg call.
|
||||
.. note::
|
||||
|
||||
The 'nents' argument to the dma_unmap_sg call must be
|
||||
the _same_ one you passed into the dma_map_sg call,
|
||||
it should _NOT_ be the 'count' value _returned_ from the
|
||||
dma_map_sg call.
|
||||
|
||||
Every dma_map_{single,sg}() call should have its dma_unmap_{single,sg}()
|
||||
counterpart, because the DMA address space is a shared resource and
|
||||
|
@ -638,11 +650,11 @@ properly in order for the CPU and device to see the most up-to-date and
|
|||
correct copy of the DMA buffer.
|
||||
|
||||
So, firstly, just map it with dma_map_{single,sg}(), and after each DMA
|
||||
transfer call either:
|
||||
transfer call either::
|
||||
|
||||
dma_sync_single_for_cpu(dev, dma_handle, size, direction);
|
||||
|
||||
or:
|
||||
or::
|
||||
|
||||
dma_sync_sg_for_cpu(dev, sglist, nents, direction);
|
||||
|
||||
|
@ -650,17 +662,19 @@ as appropriate.
|
|||
|
||||
Then, if you wish to let the device get at the DMA area again,
|
||||
finish accessing the data with the CPU, and then before actually
|
||||
giving the buffer to the hardware call either:
|
||||
giving the buffer to the hardware call either::
|
||||
|
||||
dma_sync_single_for_device(dev, dma_handle, size, direction);
|
||||
|
||||
or:
|
||||
or::
|
||||
|
||||
dma_sync_sg_for_device(dev, sglist, nents, direction);
|
||||
|
||||
as appropriate.
|
||||
|
||||
PLEASE NOTE: The 'nents' argument to dma_sync_sg_for_cpu() and
|
||||
.. note::
|
||||
|
||||
The 'nents' argument to dma_sync_sg_for_cpu() and
|
||||
dma_sync_sg_for_device() must be the same passed to
|
||||
dma_map_sg(). It is _NOT_ the count returned by
|
||||
dma_map_sg().
|
||||
|
@ -671,7 +685,7 @@ dma_map_*() call till dma_unmap_*(), then you don't have to call the
|
|||
dma_sync_*() routines at all.
|
||||
|
||||
Here is pseudo code which shows a situation in which you would need
|
||||
to use the dma_sync_*() interfaces.
|
||||
to use the dma_sync_*() interfaces::
|
||||
|
||||
my_card_setup_receive_buffer(struct my_card *cp, char *buffer, int len)
|
||||
{
|
||||
|
@ -747,7 +761,8 @@ is planned to completely remove virt_to_bus() and bus_to_virt() as
|
|||
they are entirely deprecated. Some ports already do not provide these
|
||||
as it is impossible to correctly support them.
|
||||
|
||||
Handling Errors
|
||||
Handling Errors
|
||||
===============
|
||||
|
||||
DMA address space is limited on some architectures and an allocation
|
||||
failure can be determined by:
|
||||
|
@ -755,7 +770,7 @@ failure can be determined by:
|
|||
- checking if dma_alloc_coherent() returns NULL or dma_map_sg returns 0
|
||||
|
||||
- checking the dma_addr_t returned from dma_map_single() and dma_map_page()
|
||||
by using dma_mapping_error():
|
||||
by using dma_mapping_error()::
|
||||
|
||||
dma_addr_t dma_handle;
|
||||
|
||||
|
@ -773,7 +788,8 @@ failure can be determined by:
|
|||
of a multiple page mapping attempt. These example are applicable to
|
||||
dma_map_page() as well.
|
||||
|
||||
Example 1:
|
||||
Example 1::
|
||||
|
||||
dma_addr_t dma_handle1;
|
||||
dma_addr_t dma_handle2;
|
||||
|
||||
|
@ -802,8 +818,12 @@ Example 1:
|
|||
dma_unmap_single(dma_handle1);
|
||||
map_error_handling1:
|
||||
|
||||
Example 2: (if buffers are allocated in a loop, unmap all mapped buffers when
|
||||
mapping error is detected in the middle)
|
||||
Example 2::
|
||||
|
||||
/*
|
||||
* if buffers are allocated in a loop, unmap all mapped buffers when
|
||||
* mapping error is detected in the middle
|
||||
*/
|
||||
|
||||
dma_addr_t dma_addr;
|
||||
dma_addr_t array[DMA_BUFFERS];
|
||||
|
@ -846,7 +866,8 @@ SCSI drivers must return SCSI_MLQUEUE_HOST_BUSY if the DMA mapping
|
|||
fails in the queuecommand hook. This means that the SCSI subsystem
|
||||
passes the command to the driver again later.
|
||||
|
||||
Optimizing Unmap State Space Consumption
|
||||
Optimizing Unmap State Space Consumption
|
||||
========================================
|
||||
|
||||
On many platforms, dma_unmap_{single,page}() is simply a nop.
|
||||
Therefore, keeping track of the mapping address and length is a waste
|
||||
|
@ -858,7 +879,7 @@ Actually, instead of describing the macros one by one, we'll
|
|||
transform some example code.
|
||||
|
||||
1) Use DEFINE_DMA_UNMAP_{ADDR,LEN} in state saving structures.
|
||||
Example, before:
|
||||
Example, before::
|
||||
|
||||
struct ring_state {
|
||||
struct sk_buff *skb;
|
||||
|
@ -866,7 +887,7 @@ transform some example code.
|
|||
__u32 len;
|
||||
};
|
||||
|
||||
after:
|
||||
after::
|
||||
|
||||
struct ring_state {
|
||||
struct sk_buff *skb;
|
||||
|
@ -875,23 +896,23 @@ transform some example code.
|
|||
};
|
||||
|
||||
2) Use dma_unmap_{addr,len}_set() to set these values.
|
||||
Example, before:
|
||||
Example, before::
|
||||
|
||||
ringp->mapping = FOO;
|
||||
ringp->len = BAR;
|
||||
|
||||
after:
|
||||
after::
|
||||
|
||||
dma_unmap_addr_set(ringp, mapping, FOO);
|
||||
dma_unmap_len_set(ringp, len, BAR);
|
||||
|
||||
3) Use dma_unmap_{addr,len}() to access these values.
|
||||
Example, before:
|
||||
Example, before::
|
||||
|
||||
dma_unmap_single(dev, ringp->mapping, ringp->len,
|
||||
DMA_FROM_DEVICE);
|
||||
|
||||
after:
|
||||
after::
|
||||
|
||||
dma_unmap_single(dev,
|
||||
dma_unmap_addr(ringp, mapping),
|
||||
|
@ -902,7 +923,8 @@ It really should be self-explanatory. We treat the ADDR and LEN
|
|||
separately, because it is possible for an implementation to only
|
||||
need the address in order to perform the unmap operation.
|
||||
|
||||
Platform Issues
|
||||
Platform Issues
|
||||
===============
|
||||
|
||||
If you are just writing drivers for Linux and do not maintain
|
||||
an architecture port for the kernel, you can safely skip down
|
||||
|
@ -928,12 +950,13 @@ to "Closing".
|
|||
alignment constraints (e.g. the alignment constraints about 64-bit
|
||||
objects).
|
||||
|
||||
Closing
|
||||
Closing
|
||||
=======
|
||||
|
||||
This document, and the API itself, would not be in its current
|
||||
form without the feedback and suggestions from numerous individuals.
|
||||
We would like to specifically mention, in no particular order, the
|
||||
following people:
|
||||
following people::
|
||||
|
||||
Russell King <rmk@arm.linux.org.uk>
|
||||
Leo Dagum <dagum@barrel.engr.sgi.com>
|
||||
|
|
Loading…
Reference in a new issue