crypto: lrw - remove lrw_crypt()

Now that all users of lrw_crypt() have been removed in favor of the LRW
template wrapping an ECB mode algorithm, remove lrw_crypt().  Also
remove crypto/lrw.h as that is no longer needed either; and fold
'struct lrw_table_ctx' into 'struct priv', lrw_init_table() into
setkey(), and lrw_free_table() into exit_tfm().

Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This commit is contained in:
Eric Biggers 2018-02-19 23:48:25 -08:00 committed by Herbert Xu
parent eb66ecd561
commit 217afccf65
3 changed files with 39 additions and 158 deletions

View file

@ -29,7 +29,6 @@
#include <crypto/b128ops.h> #include <crypto/b128ops.h>
#include <crypto/gf128mul.h> #include <crypto/gf128mul.h>
#include <crypto/internal/skcipher.h> #include <crypto/internal/skcipher.h>
#include <crypto/lrw.h>
#include <crypto/xts.h> #include <crypto/xts.h>
#include <asm/crypto/glue_helper.h> #include <asm/crypto/glue_helper.h>

View file

@ -28,13 +28,31 @@
#include <crypto/b128ops.h> #include <crypto/b128ops.h>
#include <crypto/gf128mul.h> #include <crypto/gf128mul.h>
#include <crypto/lrw.h>
#define LRW_BUFFER_SIZE 128u #define LRW_BUFFER_SIZE 128u
#define LRW_BLOCK_SIZE 16
struct priv { struct priv {
struct crypto_skcipher *child; struct crypto_skcipher *child;
struct lrw_table_ctx table;
/*
* optimizes multiplying a random (non incrementing, as at the
* start of a new sector) value with key2, we could also have
* used 4k optimization tables or no optimization at all. In the
* latter case we would have to store key2 here
*/
struct gf128mul_64k *table;
/*
* stores:
* key2*{ 0,0,...0,0,0,0,1 }, key2*{ 0,0,...0,0,0,1,1 },
* key2*{ 0,0,...0,0,1,1,1 }, key2*{ 0,0,...0,1,1,1,1 }
* key2*{ 0,0,...1,1,1,1,1 }, etc
* needed for optimized multiplication of incrementing values
* with key2
*/
be128 mulinc[128];
}; };
struct rctx { struct rctx {
@ -65,11 +83,25 @@ static inline void setbit128_bbe(void *b, int bit)
), b); ), b);
} }
int lrw_init_table(struct lrw_table_ctx *ctx, const u8 *tweak) static int setkey(struct crypto_skcipher *parent, const u8 *key,
unsigned int keylen)
{ {
struct priv *ctx = crypto_skcipher_ctx(parent);
struct crypto_skcipher *child = ctx->child;
int err, bsize = LRW_BLOCK_SIZE;
const u8 *tweak = key + keylen - bsize;
be128 tmp = { 0 }; be128 tmp = { 0 };
int i; int i;
crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) &
CRYPTO_TFM_REQ_MASK);
err = crypto_skcipher_setkey(child, key, keylen - bsize);
crypto_skcipher_set_flags(parent, crypto_skcipher_get_flags(child) &
CRYPTO_TFM_RES_MASK);
if (err)
return err;
if (ctx->table) if (ctx->table)
gf128mul_free_64k(ctx->table); gf128mul_free_64k(ctx->table);
@ -87,34 +119,6 @@ int lrw_init_table(struct lrw_table_ctx *ctx, const u8 *tweak)
return 0; return 0;
} }
EXPORT_SYMBOL_GPL(lrw_init_table);
void lrw_free_table(struct lrw_table_ctx *ctx)
{
if (ctx->table)
gf128mul_free_64k(ctx->table);
}
EXPORT_SYMBOL_GPL(lrw_free_table);
static int setkey(struct crypto_skcipher *parent, const u8 *key,
unsigned int keylen)
{
struct priv *ctx = crypto_skcipher_ctx(parent);
struct crypto_skcipher *child = ctx->child;
int err, bsize = LRW_BLOCK_SIZE;
const u8 *tweak = key + keylen - bsize;
crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) &
CRYPTO_TFM_REQ_MASK);
err = crypto_skcipher_setkey(child, key, keylen - bsize);
crypto_skcipher_set_flags(parent, crypto_skcipher_get_flags(child) &
CRYPTO_TFM_RES_MASK);
if (err)
return err;
return lrw_init_table(&ctx->table, tweak);
}
static inline void inc(be128 *iv) static inline void inc(be128 *iv)
{ {
@ -238,7 +242,7 @@ static int pre_crypt(struct skcipher_request *req)
/* T <- I*Key2, using the optimization /* T <- I*Key2, using the optimization
* discussed in the specification */ * discussed in the specification */
be128_xor(&rctx->t, &rctx->t, be128_xor(&rctx->t, &rctx->t,
&ctx->table.mulinc[get_index128(iv)]); &ctx->mulinc[get_index128(iv)]);
inc(iv); inc(iv);
} while ((avail -= bs) >= bs); } while ((avail -= bs) >= bs);
@ -301,7 +305,7 @@ static int init_crypt(struct skcipher_request *req, crypto_completion_t done)
memcpy(&rctx->t, req->iv, sizeof(rctx->t)); memcpy(&rctx->t, req->iv, sizeof(rctx->t));
/* T <- I*Key2 */ /* T <- I*Key2 */
gf128mul_64k_bbe(&rctx->t, ctx->table.table); gf128mul_64k_bbe(&rctx->t, ctx->table);
return 0; return 0;
} }
@ -416,85 +420,6 @@ static int decrypt(struct skcipher_request *req)
return do_decrypt(req, init_crypt(req, decrypt_done)); return do_decrypt(req, init_crypt(req, decrypt_done));
} }
int lrw_crypt(struct blkcipher_desc *desc, struct scatterlist *sdst,
struct scatterlist *ssrc, unsigned int nbytes,
struct lrw_crypt_req *req)
{
const unsigned int bsize = LRW_BLOCK_SIZE;
const unsigned int max_blks = req->tbuflen / bsize;
struct lrw_table_ctx *ctx = req->table_ctx;
struct blkcipher_walk walk;
unsigned int nblocks;
be128 *iv, *src, *dst, *t;
be128 *t_buf = req->tbuf;
int err, i;
BUG_ON(max_blks < 1);
blkcipher_walk_init(&walk, sdst, ssrc, nbytes);
err = blkcipher_walk_virt(desc, &walk);
nbytes = walk.nbytes;
if (!nbytes)
return err;
nblocks = min(walk.nbytes / bsize, max_blks);
src = (be128 *)walk.src.virt.addr;
dst = (be128 *)walk.dst.virt.addr;
/* calculate first value of T */
iv = (be128 *)walk.iv;
t_buf[0] = *iv;
/* T <- I*Key2 */
gf128mul_64k_bbe(&t_buf[0], ctx->table);
i = 0;
goto first;
for (;;) {
do {
for (i = 0; i < nblocks; i++) {
/* T <- I*Key2, using the optimization
* discussed in the specification */
be128_xor(&t_buf[i], t,
&ctx->mulinc[get_index128(iv)]);
inc(iv);
first:
t = &t_buf[i];
/* PP <- T xor P */
be128_xor(dst + i, t, src + i);
}
/* CC <- E(Key2,PP) */
req->crypt_fn(req->crypt_ctx, (u8 *)dst,
nblocks * bsize);
/* C <- T xor CC */
for (i = 0; i < nblocks; i++)
be128_xor(dst + i, dst + i, &t_buf[i]);
src += nblocks;
dst += nblocks;
nbytes -= nblocks * bsize;
nblocks = min(nbytes / bsize, max_blks);
} while (nblocks > 0);
err = blkcipher_walk_done(desc, &walk, nbytes);
nbytes = walk.nbytes;
if (!nbytes)
break;
nblocks = min(nbytes / bsize, max_blks);
src = (be128 *)walk.src.virt.addr;
dst = (be128 *)walk.dst.virt.addr;
}
return err;
}
EXPORT_SYMBOL_GPL(lrw_crypt);
static int init_tfm(struct crypto_skcipher *tfm) static int init_tfm(struct crypto_skcipher *tfm)
{ {
struct skcipher_instance *inst = skcipher_alg_instance(tfm); struct skcipher_instance *inst = skcipher_alg_instance(tfm);
@ -518,7 +443,8 @@ static void exit_tfm(struct crypto_skcipher *tfm)
{ {
struct priv *ctx = crypto_skcipher_ctx(tfm); struct priv *ctx = crypto_skcipher_ctx(tfm);
lrw_free_table(&ctx->table); if (ctx->table)
gf128mul_free_64k(ctx->table);
crypto_free_skcipher(ctx->child); crypto_free_skcipher(ctx->child);
} }

View file

@ -1,44 +0,0 @@
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _CRYPTO_LRW_H
#define _CRYPTO_LRW_H
#include <crypto/b128ops.h>
struct scatterlist;
struct gf128mul_64k;
struct blkcipher_desc;
#define LRW_BLOCK_SIZE 16
struct lrw_table_ctx {
/* optimizes multiplying a random (non incrementing, as at the
* start of a new sector) value with key2, we could also have
* used 4k optimization tables or no optimization at all. In the
* latter case we would have to store key2 here */
struct gf128mul_64k *table;
/* stores:
* key2*{ 0,0,...0,0,0,0,1 }, key2*{ 0,0,...0,0,0,1,1 },
* key2*{ 0,0,...0,0,1,1,1 }, key2*{ 0,0,...0,1,1,1,1 }
* key2*{ 0,0,...1,1,1,1,1 }, etc
* needed for optimized multiplication of incrementing values
* with key2 */
be128 mulinc[128];
};
int lrw_init_table(struct lrw_table_ctx *ctx, const u8 *tweak);
void lrw_free_table(struct lrw_table_ctx *ctx);
struct lrw_crypt_req {
be128 *tbuf;
unsigned int tbuflen;
struct lrw_table_ctx *table_ctx;
void *crypt_ctx;
void (*crypt_fn)(void *ctx, u8 *blks, unsigned int nbytes);
};
int lrw_crypt(struct blkcipher_desc *desc, struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes,
struct lrw_crypt_req *req);
#endif /* _CRYPTO_LRW_H */