Merge master.kernel.org:/pub/scm/linux/kernel/git/tglx/mtd-2.6

This commit is contained in:
Linus Torvalds 2005-07-11 10:18:18 -07:00
commit 200d481f28
83 changed files with 3622 additions and 3243 deletions

View file

@ -1,5 +1,5 @@
# drivers/mtd/chips/Kconfig
# $Id: Kconfig,v 1.13 2004/12/01 15:49:10 nico Exp $
# $Id: Kconfig,v 1.15 2005/06/06 23:04:35 tpoynor Exp $
menu "RAM/ROM/Flash chip drivers"
depends on MTD!=n
@ -155,6 +155,31 @@ config MTD_CFI_I8
If your flash chips are interleaved in eights - i.e. you have eight
flash chips addressed by each bus cycle, then say 'Y'.
config MTD_OTP
bool "Protection Registers aka one-time programmable (OTP) bits"
depends on MTD_CFI_ADV_OPTIONS
default n
help
This enables support for reading, writing and locking so called
"Protection Registers" present on some flash chips.
A subset of them are pre-programmed at the factory with a
unique set of values. The rest is user-programmable.
The user-programmable Protection Registers contain one-time
programmable (OTP) bits; when programmed, register bits cannot be
erased. Each Protection Register can be accessed multiple times to
program individual bits, as long as the register remains unlocked.
Each Protection Register has an associated Lock Register bit. When a
Lock Register bit is programmed, the associated Protection Register
can only be read; it can no longer be programmed. Additionally,
because the Lock Register bits themselves are OTP, when programmed,
Lock Register bits cannot be erased. Therefore, when a Protection
Register is locked, it cannot be unlocked.
This feature should therefore be used with extreme care. Any mistake
in the programming of OTP bits will waste them.
config MTD_CFI_INTELEXT
tristate "Support for Intel/Sharp flash chips"
depends on MTD_GEN_PROBE
@ -275,7 +300,7 @@ config MTD_JEDEC
config MTD_XIP
bool "XIP aware MTD support"
depends on !SMP && MTD_CFI_INTELEXT && EXPERIMENTAL
depends on !SMP && (MTD_CFI_INTELEXT || MTD_CFI_AMDSTD) && EXPERIMENTAL
default y if XIP_KERNEL
help
This allows MTD support to work with flash memory which is also

View file

@ -3,7 +3,7 @@
*
* Author: Jonas Holmberg <jonas.holmberg@axis.com>
*
* $Id: amd_flash.c,v 1.26 2004/11/20 12:49:04 dwmw2 Exp $
* $Id: amd_flash.c,v 1.27 2005/02/04 07:43:09 jonashg Exp $
*
* Copyright (c) 2001 Axis Communications AB
*
@ -67,7 +67,6 @@
#define AM29LV160DT 0x22C4
#define AM29LV160DB 0x2249
#define AM29BDS323D 0x22D1
#define AM29BDS643D 0x227E
/* Atmel */
#define AT49xV16x 0x00C0
@ -617,17 +616,6 @@ static struct mtd_info *amd_flash_probe(struct map_info *map)
{ .offset = 0x300000, .erasesize = 0x10000, .numblocks = 15 },
{ .offset = 0x3f0000, .erasesize = 0x02000, .numblocks = 8 },
}
}, {
.mfr_id = MANUFACTURER_AMD,
.dev_id = AM29BDS643D,
.name = "AMD AM29BDS643D",
.size = 0x00800000,
.numeraseregions = 3,
.regions = {
{ .offset = 0x000000, .erasesize = 0x10000, .numblocks = 96 },
{ .offset = 0x600000, .erasesize = 0x10000, .numblocks = 31 },
{ .offset = 0x7f0000, .erasesize = 0x02000, .numblocks = 8 },
}
}, {
.mfr_id = MANUFACTURER_ATMEL,
.dev_id = AT49xV16x,

View file

@ -4,7 +4,7 @@
*
* (C) 2000 Red Hat. GPL'd
*
* $Id: cfi_cmdset_0001.c,v 1.164 2004/11/16 18:29:00 dwmw2 Exp $
* $Id: cfi_cmdset_0001.c,v 1.178 2005/05/19 17:05:43 nico Exp $
*
*
* 10/10/2000 Nicolas Pitre <nico@cam.org>
@ -29,6 +29,7 @@
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/reboot.h>
#include <linux/mtd/xip.h>
#include <linux/mtd/map.h>
#include <linux/mtd/mtd.h>
@ -48,16 +49,25 @@
#define M50LPW080 0x002F
static int cfi_intelext_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
//static int cfi_intelext_read_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
//static int cfi_intelext_read_fact_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
static int cfi_intelext_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
static int cfi_intelext_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
static int cfi_intelext_erase_varsize(struct mtd_info *, struct erase_info *);
static void cfi_intelext_sync (struct mtd_info *);
static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, size_t len);
static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, size_t len);
#ifdef CONFIG_MTD_OTP
static int cfi_intelext_read_fact_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
static int cfi_intelext_read_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
static int cfi_intelext_write_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
static int cfi_intelext_lock_user_prot_reg (struct mtd_info *, loff_t, size_t);
static int cfi_intelext_get_fact_prot_info (struct mtd_info *,
struct otp_info *, size_t);
static int cfi_intelext_get_user_prot_info (struct mtd_info *,
struct otp_info *, size_t);
#endif
static int cfi_intelext_suspend (struct mtd_info *);
static void cfi_intelext_resume (struct mtd_info *);
static int cfi_intelext_reboot (struct notifier_block *, unsigned long, void *);
static void cfi_intelext_destroy(struct mtd_info *);
@ -252,7 +262,8 @@ read_pri_intelext(struct map_info *map, __u16 adr)
int nb_parts, i;
/* Protection Register info */
extra_size += (extp->NumProtectionFields - 1) * (4 + 6);
extra_size += (extp->NumProtectionFields - 1) *
sizeof(struct cfi_intelext_otpinfo);
/* Burst Read info */
extra_size += 6;
@ -324,7 +335,9 @@ struct mtd_info *cfi_cmdset_0001(struct map_info *map, int primary)
mtd->resume = cfi_intelext_resume;
mtd->flags = MTD_CAP_NORFLASH;
mtd->name = map->name;
mtd->reboot_notifier.notifier_call = cfi_intelext_reboot;
if (cfi->cfi_mode == CFI_MODE_CFI) {
/*
* It's a real CFI chip, not one for which the probe
@ -422,9 +435,13 @@ static struct mtd_info *cfi_intelext_setup(struct mtd_info *mtd)
mtd->eraseregions[i].numblocks);
}
#if 0
mtd->read_user_prot_reg = cfi_intelext_read_user_prot_reg;
#ifdef CONFIG_MTD_OTP
mtd->read_fact_prot_reg = cfi_intelext_read_fact_prot_reg;
mtd->read_user_prot_reg = cfi_intelext_read_user_prot_reg;
mtd->write_user_prot_reg = cfi_intelext_write_user_prot_reg;
mtd->lock_user_prot_reg = cfi_intelext_lock_user_prot_reg;
mtd->get_fact_prot_info = cfi_intelext_get_fact_prot_info;
mtd->get_user_prot_info = cfi_intelext_get_user_prot_info;
#endif
/* This function has the potential to distort the reality
@ -433,6 +450,7 @@ static struct mtd_info *cfi_intelext_setup(struct mtd_info *mtd)
goto setup_err;
__module_get(THIS_MODULE);
register_reboot_notifier(&mtd->reboot_notifier);
return mtd;
setup_err:
@ -471,7 +489,8 @@ static int cfi_intelext_partition_fixup(struct mtd_info *mtd,
int offs, numregions, numparts, partshift, numvirtchips, i, j;
/* Protection Register info */
offs = (extp->NumProtectionFields - 1) * (4 + 6);
offs = (extp->NumProtectionFields - 1) *
sizeof(struct cfi_intelext_otpinfo);
/* Burst Read info */
offs += 6;
@ -563,7 +582,7 @@ static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr
resettime:
timeo = jiffies + HZ;
retry:
if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING)) {
if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING || mode == FL_OTP_WRITE)) {
/*
* OK. We have possibility for contension on the write/erase
* operations which are global to the real chip and not per
@ -807,10 +826,6 @@ static void put_chip(struct map_info *map, struct flchip *chip, unsigned long ad
* assembly to make sure inline functions were actually inlined and that gcc
* didn't emit calls to its own support functions). Also configuring MTD CFI
* support to a single buswidth and a single interleave is also recommended.
* Note that not only IRQs are disabled but the preemption count is also
* increased to prevent other locking primitives (namely spin_unlock) from
* decrementing the preempt count to zero and scheduling the CPU away while
* not in array mode.
*/
static void xip_disable(struct map_info *map, struct flchip *chip,
@ -818,7 +833,6 @@ static void xip_disable(struct map_info *map, struct flchip *chip,
{
/* TODO: chips with no XIP use should ignore and return */
(void) map_read(map, adr); /* ensure mmu mapping is up to date */
preempt_disable();
local_irq_disable();
}
@ -831,9 +845,8 @@ static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
chip->state = FL_READY;
}
(void) map_read(map, adr);
asm volatile (".rep 8; nop; .endr"); /* fill instruction prefetch */
xip_iprefetch();
local_irq_enable();
preempt_enable();
}
/*
@ -909,7 +922,7 @@ static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
(void) map_read(map, adr);
asm volatile (".rep 8; nop; .endr");
local_irq_enable();
preempt_enable();
spin_unlock(chip->mutex);
asm volatile (".rep 8; nop; .endr");
cond_resched();
@ -919,15 +932,15 @@ static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
* a suspended erase state. If so let's wait
* until it's done.
*/
preempt_disable();
spin_lock(chip->mutex);
while (chip->state != newstate) {
DECLARE_WAITQUEUE(wait, current);
set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(&chip->wq, &wait);
preempt_enable();
spin_unlock(chip->mutex);
schedule();
remove_wait_queue(&chip->wq, &wait);
preempt_disable();
spin_lock(chip->mutex);
}
/* Disallow XIP again */
local_irq_disable();
@ -956,12 +969,14 @@ static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
* The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
* the flash is actively programming or erasing since we have to poll for
* the operation to complete anyway. We can't do that in a generic way with
* a XIP setup so do it before the actual flash operation in this case.
* a XIP setup so do it before the actual flash operation in this case
* and stub it out from INVALIDATE_CACHE_UDELAY.
*/
#undef INVALIDATE_CACHED_RANGE
#define INVALIDATE_CACHED_RANGE(x...)
#define XIP_INVAL_CACHED_RANGE(map, from, size) \
do { if(map->inval_cache) map->inval_cache(map, from, size); } while(0)
#define XIP_INVAL_CACHED_RANGE(map, from, size) \
INVALIDATE_CACHED_RANGE(map, from, size)
#define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
UDELAY(map, chip, adr, usec)
/*
* Extra notes:
@ -984,11 +999,23 @@ static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
#define xip_disable(map, chip, adr)
#define xip_enable(map, chip, adr)
#define UDELAY(map, chip, adr, usec) cfi_udelay(usec)
#define XIP_INVAL_CACHED_RANGE(x...)
#define UDELAY(map, chip, adr, usec) \
do { \
spin_unlock(chip->mutex); \
cfi_udelay(usec); \
spin_lock(chip->mutex); \
} while (0)
#define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
do { \
spin_unlock(chip->mutex); \
INVALIDATE_CACHED_RANGE(map, adr, len); \
cfi_udelay(usec); \
spin_lock(chip->mutex); \
} while (0)
#endif
static int do_point_onechip (struct map_info *map, struct flchip *chip, loff_t adr, size_t len)
@ -1176,111 +1203,11 @@ static int cfi_intelext_read (struct mtd_info *mtd, loff_t from, size_t len, siz
return ret;
}
#if 0
static int __xipram cfi_intelext_read_prot_reg (struct mtd_info *mtd,
loff_t from, size_t len,
size_t *retlen,
u_char *buf,
int base_offst, int reg_sz)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
struct cfi_pri_intelext *extp = cfi->cmdset_priv;
struct flchip *chip;
int ofs_factor = cfi->interleave * cfi->device_type;
int count = len;
int chip_num, offst;
int ret;
chip_num = ((unsigned int)from/reg_sz);
offst = from - (reg_sz*chip_num)+base_offst;
while (count) {
/* Calculate which chip & protection register offset we need */
if (chip_num >= cfi->numchips)
goto out;
chip = &cfi->chips[chip_num];
spin_lock(chip->mutex);
ret = get_chip(map, chip, chip->start, FL_JEDEC_QUERY);
if (ret) {
spin_unlock(chip->mutex);
return (len-count)?:ret;
}
xip_disable(map, chip, chip->start);
if (chip->state != FL_JEDEC_QUERY) {
map_write(map, CMD(0x90), chip->start);
chip->state = FL_JEDEC_QUERY;
}
while (count && ((offst-base_offst) < reg_sz)) {
*buf = map_read8(map,(chip->start+((extp->ProtRegAddr+1)*ofs_factor)+offst));
buf++;
offst++;
count--;
}
xip_enable(map, chip, chip->start);
put_chip(map, chip, chip->start);
spin_unlock(chip->mutex);
/* Move on to the next chip */
chip_num++;
offst = base_offst;
}
out:
return len-count;
}
static int cfi_intelext_read_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
struct cfi_pri_intelext *extp=cfi->cmdset_priv;
int base_offst,reg_sz;
/* Check that we actually have some protection registers */
if(!extp || !(extp->FeatureSupport&64)){
printk(KERN_WARNING "%s: This flash device has no protection data to read!\n",map->name);
return 0;
}
base_offst=(1<<extp->FactProtRegSize);
reg_sz=(1<<extp->UserProtRegSize);
return cfi_intelext_read_prot_reg(mtd, from, len, retlen, buf, base_offst, reg_sz);
}
static int cfi_intelext_read_fact_prot_reg (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
struct cfi_pri_intelext *extp=cfi->cmdset_priv;
int base_offst,reg_sz;
/* Check that we actually have some protection registers */
if(!extp || !(extp->FeatureSupport&64)){
printk(KERN_WARNING "%s: This flash device has no protection data to read!\n",map->name);
return 0;
}
base_offst=0;
reg_sz=(1<<extp->FactProtRegSize);
return cfi_intelext_read_prot_reg(mtd, from, len, retlen, buf, base_offst, reg_sz);
}
#endif
static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
unsigned long adr, map_word datum)
unsigned long adr, map_word datum, int mode)
{
struct cfi_private *cfi = map->fldrv_priv;
map_word status, status_OK;
map_word status, status_OK, write_cmd;
unsigned long timeo;
int z, ret=0;
@ -1288,9 +1215,14 @@ static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
/* Let's determine this according to the interleave only once */
status_OK = CMD(0x80);
switch (mode) {
case FL_WRITING: write_cmd = CMD(0x40); break;
case FL_OTP_WRITE: write_cmd = CMD(0xc0); break;
default: return -EINVAL;
}
spin_lock(chip->mutex);
ret = get_chip(map, chip, adr, FL_WRITING);
ret = get_chip(map, chip, adr, mode);
if (ret) {
spin_unlock(chip->mutex);
return ret;
@ -1299,19 +1231,18 @@ static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
ENABLE_VPP(map);
xip_disable(map, chip, adr);
map_write(map, CMD(0x40), adr);
map_write(map, write_cmd, adr);
map_write(map, datum, adr);
chip->state = FL_WRITING;
chip->state = mode;
spin_unlock(chip->mutex);
INVALIDATE_CACHED_RANGE(map, adr, map_bankwidth(map));
UDELAY(map, chip, adr, chip->word_write_time);
spin_lock(chip->mutex);
INVALIDATE_CACHE_UDELAY(map, chip,
adr, map_bankwidth(map),
chip->word_write_time);
timeo = jiffies + (HZ/2);
z = 0;
for (;;) {
if (chip->state != FL_WRITING) {
if (chip->state != mode) {
/* Someone's suspended the write. Sleep */
DECLARE_WAITQUEUE(wait, current);
@ -1339,10 +1270,8 @@ static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
}
/* Latency issues. Drop the lock, wait a while and retry */
spin_unlock(chip->mutex);
z++;
UDELAY(map, chip, adr, 1);
spin_lock(chip->mutex);
}
if (!z) {
chip->word_write_time--;
@ -1399,7 +1328,7 @@ static int cfi_intelext_write_words (struct mtd_info *mtd, loff_t to , size_t le
datum = map_word_load_partial(map, datum, buf, gap, n);
ret = do_write_oneword(map, &cfi->chips[chipnum],
bus_ofs, datum);
bus_ofs, datum, FL_WRITING);
if (ret)
return ret;
@ -1420,7 +1349,7 @@ static int cfi_intelext_write_words (struct mtd_info *mtd, loff_t to , size_t le
map_word datum = map_word_load(map, buf);
ret = do_write_oneword(map, &cfi->chips[chipnum],
ofs, datum);
ofs, datum, FL_WRITING);
if (ret)
return ret;
@ -1444,7 +1373,7 @@ static int cfi_intelext_write_words (struct mtd_info *mtd, loff_t to , size_t le
datum = map_word_load_partial(map, datum, buf, 0, len);
ret = do_write_oneword(map, &cfi->chips[chipnum],
ofs, datum);
ofs, datum, FL_WRITING);
if (ret)
return ret;
@ -1506,9 +1435,7 @@ static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
if (map_word_andequal(map, status, status_OK, status_OK))
break;
spin_unlock(chip->mutex);
UDELAY(map, chip, cmd_adr, 1);
spin_lock(chip->mutex);
if (++z > 20) {
/* Argh. Not ready for write to buffer */
@ -1554,10 +1481,9 @@ static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
map_write(map, CMD(0xd0), cmd_adr);
chip->state = FL_WRITING;
spin_unlock(chip->mutex);
INVALIDATE_CACHED_RANGE(map, adr, len);
UDELAY(map, chip, cmd_adr, chip->buffer_write_time);
spin_lock(chip->mutex);
INVALIDATE_CACHE_UDELAY(map, chip,
cmd_adr, len,
chip->buffer_write_time);
timeo = jiffies + (HZ/2);
z = 0;
@ -1589,10 +1515,8 @@ static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
}
/* Latency issues. Drop the lock, wait a while and retry */
spin_unlock(chip->mutex);
UDELAY(map, chip, cmd_adr, 1);
z++;
spin_lock(chip->mutex);
UDELAY(map, chip, cmd_adr, 1);
}
if (!z) {
chip->buffer_write_time--;
@ -1720,10 +1644,9 @@ static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip,
chip->state = FL_ERASING;
chip->erase_suspended = 0;
spin_unlock(chip->mutex);
INVALIDATE_CACHED_RANGE(map, adr, len);
UDELAY(map, chip, adr, chip->erase_time*1000/2);
spin_lock(chip->mutex);
INVALIDATE_CACHE_UDELAY(map, chip,
adr, len,
chip->erase_time*1000/2);
/* FIXME. Use a timer to check this, and return immediately. */
/* Once the state machine's known to be working I'll do that */
@ -1768,9 +1691,7 @@ static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip,
}
/* Latency issues. Drop the lock, wait a while and retry */
spin_unlock(chip->mutex);
UDELAY(map, chip, adr, 1000000/HZ);
spin_lock(chip->mutex);
}
/* We've broken this before. It doesn't hurt to be safe */
@ -1780,44 +1701,34 @@ static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip,
/* check for lock bit */
if (map_word_bitsset(map, status, CMD(0x3a))) {
unsigned char chipstatus;
unsigned long chipstatus;
/* Reset the error bits */
map_write(map, CMD(0x50), adr);
map_write(map, CMD(0x70), adr);
xip_enable(map, chip, adr);
chipstatus = status.x[0];
if (!map_word_equal(map, status, CMD(chipstatus))) {
int i, w;
for (w=0; w<map_words(map); w++) {
for (i = 0; i<cfi_interleave(cfi); i++) {
chipstatus |= status.x[w] >> (cfi->device_type * 8);
}
}
printk(KERN_WARNING "Status is not identical for all chips: 0x%lx. Merging to give 0x%02x\n",
status.x[0], chipstatus);
}
chipstatus = MERGESTATUS(status);
if ((chipstatus & 0x30) == 0x30) {
printk(KERN_NOTICE "Chip reports improper command sequence: status 0x%x\n", chipstatus);
printk(KERN_NOTICE "Chip reports improper command sequence: status 0x%lx\n", chipstatus);
ret = -EIO;
} else if (chipstatus & 0x02) {
/* Protection bit set */
ret = -EROFS;
} else if (chipstatus & 0x8) {
/* Voltage */
printk(KERN_WARNING "Chip reports voltage low on erase: status 0x%x\n", chipstatus);
printk(KERN_WARNING "Chip reports voltage low on erase: status 0x%lx\n", chipstatus);
ret = -EIO;
} else if (chipstatus & 0x20) {
if (retries--) {
printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x. Retrying...\n", adr, chipstatus);
printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%lx. Retrying...\n", adr, chipstatus);
timeo = jiffies + HZ;
put_chip(map, chip, adr);
spin_unlock(chip->mutex);
goto retry;
}
printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x\n", adr, chipstatus);
printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%lx\n", adr, chipstatus);
ret = -EIO;
}
} else {
@ -1882,6 +1793,7 @@ static void cfi_intelext_sync (struct mtd_info *mtd)
if (chip->state == FL_SYNCING) {
chip->state = chip->oldstate;
chip->oldstate = FL_READY;
wake_up(&chip->wq);
}
spin_unlock(chip->mutex);
@ -1897,8 +1809,9 @@ static int __xipram do_printlockstatus_oneblock(struct map_info *map,
struct cfi_private *cfi = map->fldrv_priv;
int status, ofs_factor = cfi->interleave * cfi->device_type;
adr += chip->start;
xip_disable(map, chip, adr+(2*ofs_factor));
cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
map_write(map, CMD(0x90), adr+(2*ofs_factor));
chip->state = FL_JEDEC_QUERY;
status = cfi_read_query(map, adr+(2*ofs_factor));
xip_enable(map, chip, 0);
@ -1915,6 +1828,7 @@ static int __xipram do_xxlock_oneblock(struct map_info *map, struct flchip *chip
unsigned long adr, int len, void *thunk)
{
struct cfi_private *cfi = map->fldrv_priv;
struct cfi_pri_intelext *extp = cfi->cmdset_priv;
map_word status, status_OK;
unsigned long timeo = jiffies + HZ;
int ret;
@ -1944,9 +1858,13 @@ static int __xipram do_xxlock_oneblock(struct map_info *map, struct flchip *chip
} else
BUG();
spin_unlock(chip->mutex);
UDELAY(map, chip, adr, 1000000/HZ);
spin_lock(chip->mutex);
/*
* If Instant Individual Block Locking supported then no need
* to delay.
*/
if (!extp || !(extp->FeatureSupport & (1 << 5)))
UDELAY(map, chip, adr, 1000000/HZ);
/* FIXME. Use a timer to check this, and return immediately. */
/* Once the state machine's known to be working I'll do that */
@ -1973,9 +1891,7 @@ static int __xipram do_xxlock_oneblock(struct map_info *map, struct flchip *chip
}
/* Latency issues. Drop the lock, wait a while and retry */
spin_unlock(chip->mutex);
UDELAY(map, chip, adr, 1);
spin_lock(chip->mutex);
}
/* Done and happy. */
@ -2034,6 +1950,274 @@ static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
return ret;
}
#ifdef CONFIG_MTD_OTP
typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip,
u_long data_offset, u_char *buf, u_int size,
u_long prot_offset, u_int groupno, u_int groupsize);
static int __xipram
do_otp_read(struct map_info *map, struct flchip *chip, u_long offset,
u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
{
struct cfi_private *cfi = map->fldrv_priv;
int ret;
spin_lock(chip->mutex);
ret = get_chip(map, chip, chip->start, FL_JEDEC_QUERY);
if (ret) {
spin_unlock(chip->mutex);
return ret;
}
/* let's ensure we're not reading back cached data from array mode */
INVALIDATE_CACHED_RANGE(map, chip->start + offset, size);
xip_disable(map, chip, chip->start);
if (chip->state != FL_JEDEC_QUERY) {
map_write(map, CMD(0x90), chip->start);
chip->state = FL_JEDEC_QUERY;
}
map_copy_from(map, buf, chip->start + offset, size);
xip_enable(map, chip, chip->start);
/* then ensure we don't keep OTP data in the cache */
INVALIDATE_CACHED_RANGE(map, chip->start + offset, size);
put_chip(map, chip, chip->start);
spin_unlock(chip->mutex);
return 0;
}
static int
do_otp_write(struct map_info *map, struct flchip *chip, u_long offset,
u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
{
int ret;
while (size) {
unsigned long bus_ofs = offset & ~(map_bankwidth(map)-1);
int gap = offset - bus_ofs;
int n = min_t(int, size, map_bankwidth(map)-gap);
map_word datum = map_word_ff(map);
datum = map_word_load_partial(map, datum, buf, gap, n);
ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE);
if (ret)
return ret;
offset += n;
buf += n;
size -= n;
}
return 0;
}
static int
do_otp_lock(struct map_info *map, struct flchip *chip, u_long offset,
u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
{
struct cfi_private *cfi = map->fldrv_priv;
map_word datum;
/* make sure area matches group boundaries */
if (size != grpsz)
return -EXDEV;
datum = map_word_ff(map);
datum = map_word_clr(map, datum, CMD(1 << grpno));
return do_write_oneword(map, chip, prot, datum, FL_OTP_WRITE);
}
static int cfi_intelext_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf,
otp_op_t action, int user_regs)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
struct cfi_pri_intelext *extp = cfi->cmdset_priv;
struct flchip *chip;
struct cfi_intelext_otpinfo *otp;
u_long devsize, reg_prot_offset, data_offset;
u_int chip_num, chip_step, field, reg_fact_size, reg_user_size;
u_int groups, groupno, groupsize, reg_fact_groups, reg_user_groups;
int ret;
*retlen = 0;
/* Check that we actually have some OTP registers */
if (!extp || !(extp->FeatureSupport & 64) || !extp->NumProtectionFields)
return -ENODATA;
/* we need real chips here not virtual ones */
devsize = (1 << cfi->cfiq->DevSize) * cfi->interleave;
chip_step = devsize >> cfi->chipshift;
chip_num = 0;
/* Some chips have OTP located in the _top_ partition only.
For example: Intel 28F256L18T (T means top-parameter device) */
if (cfi->mfr == MANUFACTURER_INTEL) {
switch (cfi->id) {
case 0x880b:
case 0x880c:
case 0x880d:
chip_num = chip_step - 1;
}
}
for ( ; chip_num < cfi->numchips; chip_num += chip_step) {
chip = &cfi->chips[chip_num];
otp = (struct cfi_intelext_otpinfo *)&extp->extra[0];
/* first OTP region */
field = 0;
reg_prot_offset = extp->ProtRegAddr;
reg_fact_groups = 1;
reg_fact_size = 1 << extp->FactProtRegSize;
reg_user_groups = 1;
reg_user_size = 1 << extp->UserProtRegSize;
while (len > 0) {
/* flash geometry fixup */
data_offset = reg_prot_offset + 1;
data_offset *= cfi->interleave * cfi->device_type;
reg_prot_offset *= cfi->interleave * cfi->device_type;
reg_fact_size *= cfi->interleave;
reg_user_size *= cfi->interleave;
if (user_regs) {
groups = reg_user_groups;
groupsize = reg_user_size;
/* skip over factory reg area */
groupno = reg_fact_groups;
data_offset += reg_fact_groups * reg_fact_size;
} else {
groups = reg_fact_groups;
groupsize = reg_fact_size;
groupno = 0;
}
while (len > 0 && groups > 0) {
if (!action) {
/*
* Special case: if action is NULL
* we fill buf with otp_info records.
*/
struct otp_info *otpinfo;
map_word lockword;
len -= sizeof(struct otp_info);
if (len <= 0)
return -ENOSPC;
ret = do_otp_read(map, chip,
reg_prot_offset,
(u_char *)&lockword,
map_bankwidth(map),
0, 0, 0);
if (ret)
return ret;
otpinfo = (struct otp_info *)buf;
otpinfo->start = from;
otpinfo->length = groupsize;
otpinfo->locked =
!map_word_bitsset(map, lockword,
CMD(1 << groupno));
from += groupsize;
buf += sizeof(*otpinfo);
*retlen += sizeof(*otpinfo);
} else if (from >= groupsize) {
from -= groupsize;
data_offset += groupsize;
} else {
int size = groupsize;
data_offset += from;
size -= from;
from = 0;
if (size > len)
size = len;
ret = action(map, chip, data_offset,
buf, size, reg_prot_offset,
groupno, groupsize);
if (ret < 0)
return ret;
buf += size;
len -= size;
*retlen += size;
data_offset += size;
}
groupno++;
groups--;
}
/* next OTP region */
if (++field == extp->NumProtectionFields)
break;
reg_prot_offset = otp->ProtRegAddr;
reg_fact_groups = otp->FactGroups;
reg_fact_size = 1 << otp->FactProtRegSize;
reg_user_groups = otp->UserGroups;
reg_user_size = 1 << otp->UserProtRegSize;
otp++;
}
}
return 0;
}
static int cfi_intelext_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
size_t len, size_t *retlen,
u_char *buf)
{
return cfi_intelext_otp_walk(mtd, from, len, retlen,
buf, do_otp_read, 0);
}
static int cfi_intelext_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
size_t len, size_t *retlen,
u_char *buf)
{
return cfi_intelext_otp_walk(mtd, from, len, retlen,
buf, do_otp_read, 1);
}
static int cfi_intelext_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
size_t len, size_t *retlen,
u_char *buf)
{
return cfi_intelext_otp_walk(mtd, from, len, retlen,
buf, do_otp_write, 1);
}
static int cfi_intelext_lock_user_prot_reg(struct mtd_info *mtd,
loff_t from, size_t len)
{
size_t retlen;
return cfi_intelext_otp_walk(mtd, from, len, &retlen,
NULL, do_otp_lock, 1);
}
static int cfi_intelext_get_fact_prot_info(struct mtd_info *mtd,
struct otp_info *buf, size_t len)
{
size_t retlen;
int ret;
ret = cfi_intelext_otp_walk(mtd, 0, len, &retlen, (u_char *)buf, NULL, 0);
return ret ? : retlen;
}
static int cfi_intelext_get_user_prot_info(struct mtd_info *mtd,
struct otp_info *buf, size_t len)
{
size_t retlen;
int ret;
ret = cfi_intelext_otp_walk(mtd, 0, len, &retlen, (u_char *)buf, NULL, 1);
return ret ? : retlen;
}
#endif
static int cfi_intelext_suspend(struct mtd_info *mtd)
{
struct map_info *map = mtd->priv;
@ -2125,10 +2309,46 @@ static void cfi_intelext_resume(struct mtd_info *mtd)
}
}
static int cfi_intelext_reset(struct mtd_info *mtd)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
int i, ret;
for (i=0; i < cfi->numchips; i++) {
struct flchip *chip = &cfi->chips[i];
/* force the completion of any ongoing operation
and switch to array mode so any bootloader in
flash is accessible for soft reboot. */
spin_lock(chip->mutex);
ret = get_chip(map, chip, chip->start, FL_SYNCING);
if (!ret) {
map_write(map, CMD(0xff), chip->start);
chip->state = FL_READY;
}
spin_unlock(chip->mutex);
}
return 0;
}
static int cfi_intelext_reboot(struct notifier_block *nb, unsigned long val,
void *v)
{
struct mtd_info *mtd;
mtd = container_of(nb, struct mtd_info, reboot_notifier);
cfi_intelext_reset(mtd);
return NOTIFY_DONE;
}
static void cfi_intelext_destroy(struct mtd_info *mtd)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
cfi_intelext_reset(mtd);
unregister_reboot_notifier(&mtd->reboot_notifier);
kfree(cfi->cmdset_priv);
kfree(cfi->cfiq);
kfree(cfi->chips[0].priv);

View file

@ -4,16 +4,20 @@
*
* Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
* Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
* Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
*
* 2_by_8 routines added by Simon Munton
*
* 4_by_16 work by Carolyn J. Smith
*
* XIP support hooks by Vitaly Wool (based on code for Intel flash
* by Nicolas Pitre)
*
* Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
*
* This code is GPL
*
* $Id: cfi_cmdset_0002.c,v 1.114 2004/12/11 15:43:53 dedekind Exp $
* $Id: cfi_cmdset_0002.c,v 1.118 2005/07/04 22:34:29 gleixner Exp $
*
*/
@ -34,6 +38,7 @@
#include <linux/mtd/map.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/cfi.h>
#include <linux/mtd/xip.h>
#define AMD_BOOTLOC_BUG
#define FORCE_WORD_WRITE 0
@ -43,6 +48,7 @@
#define MANUFACTURER_AMD 0x0001
#define MANUFACTURER_SST 0x00BF
#define SST49LF004B 0x0060
#define SST49LF008A 0x005a
static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
@ -191,6 +197,7 @@ static struct cfi_fixup cfi_fixup_table[] = {
};
static struct cfi_fixup jedec_fixup_table[] = {
{ MANUFACTURER_SST, SST49LF004B, fixup_use_fwh_lock, NULL, },
{ MANUFACTURER_SST, SST49LF008A, fixup_use_fwh_lock, NULL, },
{ 0, 0, NULL, NULL }
};
@ -391,7 +398,7 @@ static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
* correctly and is therefore not done (particulary with interleaved chips
* as each chip must be checked independantly of the others).
*/
static int chip_ready(struct map_info *map, unsigned long addr)
static int __xipram chip_ready(struct map_info *map, unsigned long addr)
{
map_word d, t;
@ -401,6 +408,32 @@ static int chip_ready(struct map_info *map, unsigned long addr)
return map_word_equal(map, d, t);
}
/*
* Return true if the chip is ready and has the correct value.
*
* Ready is one of: read mode, query mode, erase-suspend-read mode (in any
* non-suspended sector) and it is indicated by no bits toggling.
*
* Error are indicated by toggling bits or bits held with the wrong value,
* or with bits toggling.
*
* Note that anything more complicated than checking if no bits are toggling
* (including checking DQ5 for an error status) is tricky to get working
* correctly and is therefore not done (particulary with interleaved chips
* as each chip must be checked independantly of the others).
*
*/
static int __xipram chip_good(struct map_info *map, unsigned long addr, map_word expected)
{
map_word oldd, curd;
oldd = map_read(map, addr);
curd = map_read(map, addr);
return map_word_equal(map, oldd, curd) &&
map_word_equal(map, curd, expected);
}
static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
{
DECLARE_WAITQUEUE(wait, current);
@ -420,12 +453,12 @@ static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr
if (time_after(jiffies, timeo)) {
printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
cfi_spin_unlock(chip->mutex);
spin_unlock(chip->mutex);
return -EIO;
}
cfi_spin_unlock(chip->mutex);
spin_unlock(chip->mutex);
cfi_udelay(1);
cfi_spin_lock(chip->mutex);
spin_lock(chip->mutex);
/* Someone else might have been playing with it. */
goto retry;
}
@ -473,15 +506,23 @@ static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr
return -EIO;
}
cfi_spin_unlock(chip->mutex);
spin_unlock(chip->mutex);
cfi_udelay(1);
cfi_spin_lock(chip->mutex);
spin_lock(chip->mutex);
/* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
So we can just loop here. */
}
chip->state = FL_READY;
return 0;
case FL_XIP_WHILE_ERASING:
if (mode != FL_READY && mode != FL_POINT &&
(!cfip || !(cfip->EraseSuspend&2)))
goto sleep;
chip->oldstate = chip->state;
chip->state = FL_READY;
return 0;
case FL_POINT:
/* Only if there's no operation suspended... */
if (mode == FL_READY && chip->oldstate == FL_READY)
@ -491,10 +532,10 @@ static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr
sleep:
set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(&chip->wq, &wait);
cfi_spin_unlock(chip->mutex);
spin_unlock(chip->mutex);
schedule();
remove_wait_queue(&chip->wq, &wait);
cfi_spin_lock(chip->mutex);
spin_lock(chip->mutex);
goto resettime;
}
}
@ -512,6 +553,11 @@ static void put_chip(struct map_info *map, struct flchip *chip, unsigned long ad
chip->state = FL_ERASING;
break;
case FL_XIP_WHILE_ERASING:
chip->state = chip->oldstate;
chip->oldstate = FL_READY;
break;
case FL_READY:
case FL_STATUS:
/* We should really make set_vpp() count, rather than doing this */
@ -523,6 +569,198 @@ static void put_chip(struct map_info *map, struct flchip *chip, unsigned long ad
wake_up(&chip->wq);
}
#ifdef CONFIG_MTD_XIP
/*
* No interrupt what so ever can be serviced while the flash isn't in array
* mode. This is ensured by the xip_disable() and xip_enable() functions
* enclosing any code path where the flash is known not to be in array mode.
* And within a XIP disabled code path, only functions marked with __xipram
* may be called and nothing else (it's a good thing to inspect generated
* assembly to make sure inline functions were actually inlined and that gcc
* didn't emit calls to its own support functions). Also configuring MTD CFI
* support to a single buswidth and a single interleave is also recommended.
*/
static void xip_disable(struct map_info *map, struct flchip *chip,
unsigned long adr)
{
/* TODO: chips with no XIP use should ignore and return */
(void) map_read(map, adr); /* ensure mmu mapping is up to date */
local_irq_disable();
}
static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
unsigned long adr)
{
struct cfi_private *cfi = map->fldrv_priv;
if (chip->state != FL_POINT && chip->state != FL_READY) {
map_write(map, CMD(0xf0), adr);
chip->state = FL_READY;
}
(void) map_read(map, adr);
xip_iprefetch();
local_irq_enable();
}
/*
* When a delay is required for the flash operation to complete, the
* xip_udelay() function is polling for both the given timeout and pending
* (but still masked) hardware interrupts. Whenever there is an interrupt
* pending then the flash erase operation is suspended, array mode restored
* and interrupts unmasked. Task scheduling might also happen at that
* point. The CPU eventually returns from the interrupt or the call to
* schedule() and the suspended flash operation is resumed for the remaining
* of the delay period.
*
* Warning: this function _will_ fool interrupt latency tracing tools.
*/
static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
unsigned long adr, int usec)
{
struct cfi_private *cfi = map->fldrv_priv;
struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
map_word status, OK = CMD(0x80);
unsigned long suspended, start = xip_currtime();
flstate_t oldstate;
do {
cpu_relax();
if (xip_irqpending() && extp &&
((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
(cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
/*
* Let's suspend the erase operation when supported.
* Note that we currently don't try to suspend
* interleaved chips if there is already another
* operation suspended (imagine what happens
* when one chip was already done with the current
* operation while another chip suspended it, then
* we resume the whole thing at once). Yes, it
* can happen!
*/
map_write(map, CMD(0xb0), adr);
usec -= xip_elapsed_since(start);
suspended = xip_currtime();
do {
if (xip_elapsed_since(suspended) > 100000) {
/*
* The chip doesn't want to suspend
* after waiting for 100 msecs.
* This is a critical error but there
* is not much we can do here.
*/
return;
}
status = map_read(map, adr);
} while (!map_word_andequal(map, status, OK, OK));
/* Suspend succeeded */
oldstate = chip->state;
if (!map_word_bitsset(map, status, CMD(0x40)))
break;
chip->state = FL_XIP_WHILE_ERASING;
chip->erase_suspended = 1;
map_write(map, CMD(0xf0), adr);
(void) map_read(map, adr);
asm volatile (".rep 8; nop; .endr");
local_irq_enable();
spin_unlock(chip->mutex);
asm volatile (".rep 8; nop; .endr");
cond_resched();
/*
* We're back. However someone else might have
* decided to go write to the chip if we are in
* a suspended erase state. If so let's wait
* until it's done.
*/
spin_lock(chip->mutex);
while (chip->state != FL_XIP_WHILE_ERASING) {
DECLARE_WAITQUEUE(wait, current);
set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(&chip->wq, &wait);
spin_unlock(chip->mutex);
schedule();
remove_wait_queue(&chip->wq, &wait);
spin_lock(chip->mutex);
}
/* Disallow XIP again */
local_irq_disable();
/* Resume the write or erase operation */
map_write(map, CMD(0x30), adr);
chip->state = oldstate;
start = xip_currtime();
} else if (usec >= 1000000/HZ) {
/*
* Try to save on CPU power when waiting delay
* is at least a system timer tick period.
* No need to be extremely accurate here.
*/
xip_cpu_idle();
}
status = map_read(map, adr);
} while (!map_word_andequal(map, status, OK, OK)
&& xip_elapsed_since(start) < usec);
}
#define UDELAY(map, chip, adr, usec) xip_udelay(map, chip, adr, usec)
/*
* The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
* the flash is actively programming or erasing since we have to poll for
* the operation to complete anyway. We can't do that in a generic way with
* a XIP setup so do it before the actual flash operation in this case
* and stub it out from INVALIDATE_CACHE_UDELAY.
*/
#define XIP_INVAL_CACHED_RANGE(map, from, size) \
INVALIDATE_CACHED_RANGE(map, from, size)
#define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
UDELAY(map, chip, adr, usec)
/*
* Extra notes:
*
* Activating this XIP support changes the way the code works a bit. For
* example the code to suspend the current process when concurrent access
* happens is never executed because xip_udelay() will always return with the
* same chip state as it was entered with. This is why there is no care for
* the presence of add_wait_queue() or schedule() calls from within a couple
* xip_disable()'d areas of code, like in do_erase_oneblock for example.
* The queueing and scheduling are always happening within xip_udelay().
*
* Similarly, get_chip() and put_chip() just happen to always be executed
* with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
* is in array mode, therefore never executing many cases therein and not
* causing any problem with XIP.
*/
#else
#define xip_disable(map, chip, adr)
#define xip_enable(map, chip, adr)
#define XIP_INVAL_CACHED_RANGE(x...)
#define UDELAY(map, chip, adr, usec) \
do { \
spin_unlock(chip->mutex); \
cfi_udelay(usec); \
spin_lock(chip->mutex); \
} while (0)
#define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
do { \
spin_unlock(chip->mutex); \
INVALIDATE_CACHED_RANGE(map, adr, len); \
cfi_udelay(usec); \
spin_lock(chip->mutex); \
} while (0)
#endif
static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
{
@ -535,10 +773,10 @@ static inline int do_read_onechip(struct map_info *map, struct flchip *chip, lof
/* Ensure cmd read/writes are aligned. */
cmd_addr = adr & ~(map_bankwidth(map)-1);
cfi_spin_lock(chip->mutex);
spin_lock(chip->mutex);
ret = get_chip(map, chip, cmd_addr, FL_READY);
if (ret) {
cfi_spin_unlock(chip->mutex);
spin_unlock(chip->mutex);
return ret;
}
@ -551,7 +789,7 @@ static inline int do_read_onechip(struct map_info *map, struct flchip *chip, lof
put_chip(map, chip, cmd_addr);
cfi_spin_unlock(chip->mutex);
spin_unlock(chip->mutex);
return 0;
}
@ -605,7 +843,7 @@ static inline int do_read_secsi_onechip(struct map_info *map, struct flchip *chi
struct cfi_private *cfi = map->fldrv_priv;
retry:
cfi_spin_lock(chip->mutex);
spin_lock(chip->mutex);
if (chip->state != FL_READY){
#if 0
@ -614,7 +852,7 @@ static inline int do_read_secsi_onechip(struct map_info *map, struct flchip *chi
set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(&chip->wq, &wait);
cfi_spin_unlock(chip->mutex);
spin_unlock(chip->mutex);
schedule();
remove_wait_queue(&chip->wq, &wait);
@ -643,7 +881,7 @@ static inline int do_read_secsi_onechip(struct map_info *map, struct flchip *chi
cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
wake_up(&chip->wq);
cfi_spin_unlock(chip->mutex);
spin_unlock(chip->mutex);
return 0;
}
@ -692,7 +930,7 @@ static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len,
}
static int do_write_oneword(struct map_info *map, struct flchip *chip, unsigned long adr, map_word datum)
static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, unsigned long adr, map_word datum)
{
struct cfi_private *cfi = map->fldrv_priv;
unsigned long timeo = jiffies + HZ;
@ -712,10 +950,10 @@ static int do_write_oneword(struct map_info *map, struct flchip *chip, unsigned
adr += chip->start;
cfi_spin_lock(chip->mutex);
spin_lock(chip->mutex);
ret = get_chip(map, chip, adr, FL_WRITING);
if (ret) {
cfi_spin_unlock(chip->mutex);
spin_unlock(chip->mutex);
return ret;
}
@ -735,7 +973,9 @@ static int do_write_oneword(struct map_info *map, struct flchip *chip, unsigned
goto op_done;
}
XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
ENABLE_VPP(map);
xip_disable(map, chip, adr);
retry:
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
@ -743,9 +983,9 @@ static int do_write_oneword(struct map_info *map, struct flchip *chip, unsigned
map_write(map, datum, adr);
chip->state = FL_WRITING;
cfi_spin_unlock(chip->mutex);
cfi_udelay(chip->word_write_time);
cfi_spin_lock(chip->mutex);
INVALIDATE_CACHE_UDELAY(map, chip,
adr, map_bankwidth(map),
chip->word_write_time);
/* See comment above for timeout value. */
timeo = jiffies + uWriteTimeout;
@ -756,39 +996,43 @@ static int do_write_oneword(struct map_info *map, struct flchip *chip, unsigned
set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(&chip->wq, &wait);
cfi_spin_unlock(chip->mutex);
spin_unlock(chip->mutex);
schedule();
remove_wait_queue(&chip->wq, &wait);
timeo = jiffies + (HZ / 2); /* FIXME */
cfi_spin_lock(chip->mutex);
spin_lock(chip->mutex);
continue;
}
if (chip_ready(map, adr))
goto op_done;
break;
if (time_after(jiffies, timeo))
if (time_after(jiffies, timeo)) {
xip_enable(map, chip, adr);
printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
xip_disable(map, chip, adr);
break;
}
/* Latency issues. Drop the lock, wait a while and retry */
cfi_spin_unlock(chip->mutex);
cfi_udelay(1);
cfi_spin_lock(chip->mutex);
UDELAY(map, chip, adr, 1);
}
/* Did we succeed? */
if (!chip_good(map, adr, datum)) {
/* reset on all failures. */
map_write( map, CMD(0xF0), chip->start );
/* FIXME - should have reset delay before continuing */
printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
if (++retry_cnt <= MAX_WORD_RETRIES)
goto retry;
/* reset on all failures. */
map_write( map, CMD(0xF0), chip->start );
/* FIXME - should have reset delay before continuing */
if (++retry_cnt <= MAX_WORD_RETRIES)
goto retry;
ret = -EIO;
ret = -EIO;
}
xip_enable(map, chip, adr);
op_done:
chip->state = FL_READY;
put_chip(map, chip, adr);
cfi_spin_unlock(chip->mutex);
spin_unlock(chip->mutex);
return ret;
}
@ -820,7 +1064,7 @@ static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
map_word tmp_buf;
retry:
cfi_spin_lock(cfi->chips[chipnum].mutex);
spin_lock(cfi->chips[chipnum].mutex);
if (cfi->chips[chipnum].state != FL_READY) {
#if 0
@ -829,7 +1073,7 @@ static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(&cfi->chips[chipnum].wq, &wait);
cfi_spin_unlock(cfi->chips[chipnum].mutex);
spin_unlock(cfi->chips[chipnum].mutex);
schedule();
remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
@ -843,7 +1087,7 @@ static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
/* Load 'tmp_buf' with old contents of flash */
tmp_buf = map_read(map, bus_ofs+chipstart);
cfi_spin_unlock(cfi->chips[chipnum].mutex);
spin_unlock(cfi->chips[chipnum].mutex);
/* Number of bytes to copy from buffer */
n = min_t(int, len, map_bankwidth(map)-i);
@ -898,7 +1142,7 @@ static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
map_word tmp_buf;
retry1:
cfi_spin_lock(cfi->chips[chipnum].mutex);
spin_lock(cfi->chips[chipnum].mutex);
if (cfi->chips[chipnum].state != FL_READY) {
#if 0
@ -907,7 +1151,7 @@ static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(&cfi->chips[chipnum].wq, &wait);
cfi_spin_unlock(cfi->chips[chipnum].mutex);
spin_unlock(cfi->chips[chipnum].mutex);
schedule();
remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
@ -920,7 +1164,7 @@ static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
tmp_buf = map_read(map, ofs + chipstart);
cfi_spin_unlock(cfi->chips[chipnum].mutex);
spin_unlock(cfi->chips[chipnum].mutex);
tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
@ -939,8 +1183,9 @@ static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
/*
* FIXME: interleaved mode not tested, and probably not supported!
*/
static inline int do_write_buffer(struct map_info *map, struct flchip *chip,
unsigned long adr, const u_char *buf, int len)
static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
unsigned long adr, const u_char *buf,
int len)
{
struct cfi_private *cfi = map->fldrv_priv;
unsigned long timeo = jiffies + HZ;
@ -954,10 +1199,10 @@ static inline int do_write_buffer(struct map_info *map, struct flchip *chip,
adr += chip->start;
cmd_adr = adr;
cfi_spin_lock(chip->mutex);
spin_lock(chip->mutex);
ret = get_chip(map, chip, adr, FL_WRITING);
if (ret) {
cfi_spin_unlock(chip->mutex);
spin_unlock(chip->mutex);
return ret;
}
@ -966,7 +1211,10 @@ static inline int do_write_buffer(struct map_info *map, struct flchip *chip,
DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
__func__, adr, datum.x[0] );
XIP_INVAL_CACHED_RANGE(map, adr, len);
ENABLE_VPP(map);
xip_disable(map, chip, cmd_adr);
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
//cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
@ -996,9 +1244,9 @@ static inline int do_write_buffer(struct map_info *map, struct flchip *chip,
map_write(map, CMD(0x29), cmd_adr);
chip->state = FL_WRITING;
cfi_spin_unlock(chip->mutex);
cfi_udelay(chip->buffer_write_time);
cfi_spin_lock(chip->mutex);
INVALIDATE_CACHE_UDELAY(map, chip,
adr, map_bankwidth(map),
chip->word_write_time);
timeo = jiffies + uWriteTimeout;
@ -1009,38 +1257,39 @@ static inline int do_write_buffer(struct map_info *map, struct flchip *chip,
set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(&chip->wq, &wait);
cfi_spin_unlock(chip->mutex);
spin_unlock(chip->mutex);
schedule();
remove_wait_queue(&chip->wq, &wait);
timeo = jiffies + (HZ / 2); /* FIXME */
cfi_spin_lock(chip->mutex);
spin_lock(chip->mutex);
continue;
}
if (chip_ready(map, adr))
if (chip_ready(map, adr)) {
xip_enable(map, chip, adr);
goto op_done;
}
if( time_after(jiffies, timeo))
break;
/* Latency issues. Drop the lock, wait a while and retry */
cfi_spin_unlock(chip->mutex);
cfi_udelay(1);
cfi_spin_lock(chip->mutex);
UDELAY(map, chip, adr, 1);
}
printk(KERN_WARNING "MTD %s(): software timeout\n",
__func__ );
/* reset on all failures. */
map_write( map, CMD(0xF0), chip->start );
xip_enable(map, chip, adr);
/* FIXME - should have reset delay before continuing */
printk(KERN_WARNING "MTD %s(): software timeout\n",
__func__ );
ret = -EIO;
op_done:
chip->state = FL_READY;
put_chip(map, chip, adr);
cfi_spin_unlock(chip->mutex);
spin_unlock(chip->mutex);
return ret;
}
@ -1130,7 +1379,7 @@ static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
* Handle devices with one erase region, that only implement
* the chip erase command.
*/
static inline int do_erase_chip(struct map_info *map, struct flchip *chip)
static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
{
struct cfi_private *cfi = map->fldrv_priv;
unsigned long timeo = jiffies + HZ;
@ -1140,17 +1389,20 @@ static inline int do_erase_chip(struct map_info *map, struct flchip *chip)
adr = cfi->addr_unlock1;
cfi_spin_lock(chip->mutex);
spin_lock(chip->mutex);
ret = get_chip(map, chip, adr, FL_WRITING);
if (ret) {
cfi_spin_unlock(chip->mutex);
spin_unlock(chip->mutex);
return ret;
}
DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n",
__func__, chip->start );
XIP_INVAL_CACHED_RANGE(map, adr, map->size);
ENABLE_VPP(map);
xip_disable(map, chip, adr);
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
@ -1162,9 +1414,9 @@ static inline int do_erase_chip(struct map_info *map, struct flchip *chip)
chip->erase_suspended = 0;
chip->in_progress_block_addr = adr;
cfi_spin_unlock(chip->mutex);
msleep(chip->erase_time/2);
cfi_spin_lock(chip->mutex);
INVALIDATE_CACHE_UDELAY(map, chip,
adr, map->size,
chip->erase_time*500);
timeo = jiffies + (HZ*20);
@ -1173,10 +1425,10 @@ static inline int do_erase_chip(struct map_info *map, struct flchip *chip)
/* Someone's suspended the erase. Sleep */
set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(&chip->wq, &wait);
cfi_spin_unlock(chip->mutex);
spin_unlock(chip->mutex);
schedule();
remove_wait_queue(&chip->wq, &wait);
cfi_spin_lock(chip->mutex);
spin_lock(chip->mutex);
continue;
}
if (chip->erase_suspended) {
@ -1187,36 +1439,36 @@ static inline int do_erase_chip(struct map_info *map, struct flchip *chip)
}
if (chip_ready(map, adr))
goto op_done;
if (time_after(jiffies, timeo))
break;
if (time_after(jiffies, timeo)) {
printk(KERN_WARNING "MTD %s(): software timeout\n",
__func__ );
break;
}
/* Latency issues. Drop the lock, wait a while and retry */
cfi_spin_unlock(chip->mutex);
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(1);
cfi_spin_lock(chip->mutex);
UDELAY(map, chip, adr, 1000000/HZ);
}
/* Did we succeed? */
if (!chip_good(map, adr, map_word_ff(map))) {
/* reset on all failures. */
map_write( map, CMD(0xF0), chip->start );
/* FIXME - should have reset delay before continuing */
ret = -EIO;
}
printk(KERN_WARNING "MTD %s(): software timeout\n",
__func__ );
/* reset on all failures. */
map_write( map, CMD(0xF0), chip->start );
/* FIXME - should have reset delay before continuing */
ret = -EIO;
op_done:
chip->state = FL_READY;
xip_enable(map, chip, adr);
put_chip(map, chip, adr);
cfi_spin_unlock(chip->mutex);
spin_unlock(chip->mutex);
return ret;
}
static inline int do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
{
struct cfi_private *cfi = map->fldrv_priv;
unsigned long timeo = jiffies + HZ;
@ -1225,17 +1477,20 @@ static inline int do_erase_oneblock(struct map_info *map, struct flchip *chip, u
adr += chip->start;
cfi_spin_lock(chip->mutex);
spin_lock(chip->mutex);
ret = get_chip(map, chip, adr, FL_ERASING);
if (ret) {
cfi_spin_unlock(chip->mutex);
spin_unlock(chip->mutex);
return ret;
}
DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n",
__func__, adr );
XIP_INVAL_CACHED_RANGE(map, adr, len);
ENABLE_VPP(map);
xip_disable(map, chip, adr);
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
@ -1246,10 +1501,10 @@ static inline int do_erase_oneblock(struct map_info *map, struct flchip *chip, u
chip->state = FL_ERASING;
chip->erase_suspended = 0;
chip->in_progress_block_addr = adr;
cfi_spin_unlock(chip->mutex);
msleep(chip->erase_time/2);
cfi_spin_lock(chip->mutex);
INVALIDATE_CACHE_UDELAY(map, chip,
adr, len,
chip->erase_time*500);
timeo = jiffies + (HZ*20);
@ -1258,10 +1513,10 @@ static inline int do_erase_oneblock(struct map_info *map, struct flchip *chip, u
/* Someone's suspended the erase. Sleep */
set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(&chip->wq, &wait);
cfi_spin_unlock(chip->mutex);
spin_unlock(chip->mutex);
schedule();
remove_wait_queue(&chip->wq, &wait);
cfi_spin_lock(chip->mutex);
spin_lock(chip->mutex);
continue;
}
if (chip->erase_suspended) {
@ -1271,31 +1526,33 @@ static inline int do_erase_oneblock(struct map_info *map, struct flchip *chip, u
chip->erase_suspended = 0;
}
if (chip_ready(map, adr))
goto op_done;
if (time_after(jiffies, timeo))
if (chip_ready(map, adr)) {
xip_enable(map, chip, adr);
break;
}
if (time_after(jiffies, timeo)) {
xip_enable(map, chip, adr);
printk(KERN_WARNING "MTD %s(): software timeout\n",
__func__ );
break;
}
/* Latency issues. Drop the lock, wait a while and retry */
cfi_spin_unlock(chip->mutex);
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(1);
cfi_spin_lock(chip->mutex);
UDELAY(map, chip, adr, 1000000/HZ);
}
/* Did we succeed? */
if (!chip_good(map, adr, map_word_ff(map))) {
/* reset on all failures. */
map_write( map, CMD(0xF0), chip->start );
/* FIXME - should have reset delay before continuing */
ret = -EIO;
}
printk(KERN_WARNING "MTD %s(): software timeout\n",
__func__ );
/* reset on all failures. */
map_write( map, CMD(0xF0), chip->start );
/* FIXME - should have reset delay before continuing */
ret = -EIO;
op_done:
chip->state = FL_READY;
put_chip(map, chip, adr);
cfi_spin_unlock(chip->mutex);
spin_unlock(chip->mutex);
return ret;
}
@ -1355,7 +1612,7 @@ static void cfi_amdstd_sync (struct mtd_info *mtd)
chip = &cfi->chips[i];
retry:
cfi_spin_lock(chip->mutex);
spin_lock(chip->mutex);
switch(chip->state) {
case FL_READY:
@ -1369,14 +1626,14 @@ static void cfi_amdstd_sync (struct mtd_info *mtd)
* with the chip now anyway.
*/
case FL_SYNCING:
cfi_spin_unlock(chip->mutex);
spin_unlock(chip->mutex);
break;
default:
/* Not an idle state */
add_wait_queue(&chip->wq, &wait);
cfi_spin_unlock(chip->mutex);
spin_unlock(chip->mutex);
schedule();
@ -1391,13 +1648,13 @@ static void cfi_amdstd_sync (struct mtd_info *mtd)
for (i--; i >=0; i--) {
chip = &cfi->chips[i];
cfi_spin_lock(chip->mutex);
spin_lock(chip->mutex);
if (chip->state == FL_SYNCING) {
chip->state = chip->oldstate;
wake_up(&chip->wq);
}
cfi_spin_unlock(chip->mutex);
spin_unlock(chip->mutex);
}
}
@ -1413,7 +1670,7 @@ static int cfi_amdstd_suspend(struct mtd_info *mtd)
for (i=0; !ret && i<cfi->numchips; i++) {
chip = &cfi->chips[i];
cfi_spin_lock(chip->mutex);
spin_lock(chip->mutex);
switch(chip->state) {
case FL_READY:
@ -1433,7 +1690,7 @@ static int cfi_amdstd_suspend(struct mtd_info *mtd)
ret = -EAGAIN;
break;
}
cfi_spin_unlock(chip->mutex);
spin_unlock(chip->mutex);
}
/* Unlock the chips again */
@ -1442,13 +1699,13 @@ static int cfi_amdstd_suspend(struct mtd_info *mtd)
for (i--; i >=0; i--) {
chip = &cfi->chips[i];
cfi_spin_lock(chip->mutex);
spin_lock(chip->mutex);
if (chip->state == FL_PM_SUSPENDED) {
chip->state = chip->oldstate;
wake_up(&chip->wq);
}
cfi_spin_unlock(chip->mutex);
spin_unlock(chip->mutex);
}
}
@ -1467,7 +1724,7 @@ static void cfi_amdstd_resume(struct mtd_info *mtd)
chip = &cfi->chips[i];
cfi_spin_lock(chip->mutex);
spin_lock(chip->mutex);
if (chip->state == FL_PM_SUSPENDED) {
chip->state = FL_READY;
@ -1477,7 +1734,7 @@ static void cfi_amdstd_resume(struct mtd_info *mtd)
else
printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
cfi_spin_unlock(chip->mutex);
spin_unlock(chip->mutex);
}
}

View file

@ -58,10 +58,10 @@ static int fwh_xxlock_oneblock(struct map_info *map, struct flchip *chip,
* to flash memory - that means that we don't have to check status
* and timeout.
*/
cfi_spin_lock(chip->mutex);
spin_lock(chip->mutex);
ret = get_chip(map, chip, adr, FL_LOCKING);
if (ret) {
cfi_spin_unlock(chip->mutex);
spin_unlock(chip->mutex);
return ret;
}
@ -71,7 +71,7 @@ static int fwh_xxlock_oneblock(struct map_info *map, struct flchip *chip,
/* Done and happy. */
chip->state = FL_READY;
put_chip(map, chip, adr);
cfi_spin_unlock(chip->mutex);
spin_unlock(chip->mutex);
return 0;
}

View file

@ -2,7 +2,7 @@
* Routines common to all CFI-type probes.
* (C) 2001-2003 Red Hat, Inc.
* GPL'd
* $Id: gen_probe.c,v 1.21 2004/08/14 15:14:05 dwmw2 Exp $
* $Id: gen_probe.c,v 1.22 2005/01/24 23:49:50 rmk Exp $
*/
#include <linux/kernel.h>
@ -162,7 +162,7 @@ static int genprobe_new_chip(struct map_info *map, struct chip_probe *cp,
int max_chips = map_bankwidth(map); /* And minimum 1 */
int nr_chips, type;
for (nr_chips = min_chips; nr_chips <= max_chips; nr_chips <<= 1) {
for (nr_chips = max_chips; nr_chips >= min_chips; nr_chips >>= 1) {
if (!cfi_interleave_supported(nr_chips))
continue;

View file

@ -1,7 +1,7 @@
/*
Common Flash Interface probe code.
(C) 2000 Red Hat. GPL'd.
$Id: jedec_probe.c,v 1.61 2004/11/19 20:52:16 thayne Exp $
$Id: jedec_probe.c,v 1.63 2005/02/14 16:30:32 bjd Exp $
See JEDEC (http://www.jedec.org/) standard JESD21C (section 3.5)
for the standard this probe goes back to.
@ -142,6 +142,7 @@
#define SST29LE512 0x003d
#define SST39LF800 0x2781
#define SST39LF160 0x2782
#define SST39VF1601 0x234b
#define SST39LF512 0x00D4
#define SST39LF010 0x00D5
#define SST39LF020 0x00D6
@ -1448,6 +1449,21 @@ static const struct amd_flash_info jedec_table[] = {
ERASEINFO(0x1000,256),
ERASEINFO(0x1000,256)
}
}, {
.mfr_id = MANUFACTURER_SST, /* should be CFI */
.dev_id = SST39VF1601,
.name = "SST 39VF1601",
.uaddr = {
[0] = MTD_UADDR_0x5555_0x2AAA, /* x8 */
[1] = MTD_UADDR_0x5555_0x2AAA /* x16 */
},
.DevSize = SIZE_2MiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 2,
.regions = {
ERASEINFO(0x1000,256),
ERASEINFO(0x1000,256)
}
}, {
.mfr_id = MANUFACTURER_ST, /* FIXME - CFI device? */
@ -1856,6 +1872,16 @@ static inline int jedec_match( __u32 base,
case CFI_DEVICETYPE_X8:
mfr = (__u8)finfo->mfr_id;
id = (__u8)finfo->dev_id;
/* bjd: it seems that if we do this, we can end up
* detecting 16bit flashes as an 8bit device, even though
* there aren't.
*/
if (finfo->dev_id > 0xff) {
DEBUG( MTD_DEBUG_LEVEL3, "%s(): ID is not 8bit\n",
__func__);
goto match_done;
}
break;
case CFI_DEVICETYPE_X16:
mfr = (__u16)finfo->mfr_id;

View file

@ -1,5 +1,5 @@
/*
* $Id: cmdlinepart.c,v 1.17 2004/11/26 11:18:47 lavinen Exp $
* $Id: cmdlinepart.c,v 1.18 2005/06/07 15:04:26 joern Exp $
*
* Read flash partition table from command line
*
@ -239,7 +239,8 @@ static int mtdpart_setup_real(char *s)
&num_parts, /* out: number of parts */
0, /* first partition */
(unsigned char**)&this_mtd, /* out: extra mem */
mtd_id_len + 1 + sizeof(*this_mtd));
mtd_id_len + 1 + sizeof(*this_mtd) +
sizeof(void*)-1 /*alignment*/);
if(!parts)
{
/*
@ -252,6 +253,9 @@ static int mtdpart_setup_real(char *s)
return 0;
}
/* align this_mtd */
this_mtd = (struct cmdline_mtd_partition *)
ALIGN((unsigned long)this_mtd, sizeof(void*));
/* enter results */
this_mtd->parts = parts;
this_mtd->num_parts = num_parts;

View file

@ -1,10 +1,9 @@
/*
* $Id: block2mtd.c,v 1.23 2005/01/05 17:05:46 dwmw2 Exp $
* $Id: block2mtd.c,v 1.28 2005/03/19 22:40:44 gleixner Exp $
*
* block2mtd.c - create an mtd from a block device
*
* Copyright (C) 2001,2002 Simon Evans <spse@secret.org.uk>
* Copyright (C) 2004 Gareth Bult <Gareth@Encryptec.net>
* Copyright (C) 2004,2005 Jörn Engel <joern@wh.fh-wedel.de>
*
* Licence: GPL
@ -20,7 +19,7 @@
#include <linux/mtd/mtd.h>
#include <linux/buffer_head.h>
#define VERSION "$Revision: 1.23 $"
#define VERSION "$Revision: 1.28 $"
#define ERROR(fmt, args...) printk(KERN_ERR "block2mtd: " fmt "\n" , ## args)
@ -89,7 +88,6 @@ void cache_readahead(struct address_space *mapping, int index)
static struct page* page_readahead(struct address_space *mapping, int index)
{
filler_t *filler = (filler_t*)mapping->a_ops->readpage;
//do_page_cache_readahead(mapping, index, XXX, 64);
cache_readahead(mapping, index);
return read_cache_page(mapping, index, filler, NULL);
}
@ -157,7 +155,7 @@ static int block2mtd_read(struct mtd_info *mtd, loff_t from, size_t len,
struct block2mtd_dev *dev = mtd->priv;
struct page *page;
int index = from >> PAGE_SHIFT;
int offset = from & (PAGE_SHIFT-1);
int offset = from & (PAGE_SIZE-1);
int cpylen;
if (from > mtd->size)
@ -370,16 +368,16 @@ static int ustrtoul(const char *cp, char **endp, unsigned int base)
}
static int parse_num32(u32 *num32, const char *token)
static int parse_num(size_t *num, const char *token)
{
char *endp;
unsigned long n;
size_t n;
n = ustrtoul(token, &endp, 0);
n = (size_t) ustrtoul(token, &endp, 0);
if (*endp)
return -EINVAL;
*num32 = n;
*num = n;
return 0;
}
@ -422,7 +420,7 @@ static int block2mtd_setup(const char *val, struct kernel_param *kp)
char buf[80+12], *str=buf; /* 80 for device, 12 for erase size */
char *token[2];
char *name;
u32 erase_size = PAGE_SIZE;
size_t erase_size = PAGE_SIZE;
int i, ret;
if (strnlen(val, sizeof(buf)) >= sizeof(buf))
@ -449,7 +447,7 @@ static int block2mtd_setup(const char *val, struct kernel_param *kp)
return 0;
if (token[1]) {
ret = parse_num32(&erase_size, token[1]);
ret = parse_num(&erase_size, token[1]);
if (ret)
parse_err("illegal erase size");
}

View file

@ -6,7 +6,7 @@
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* $Id: ms02-nv.c,v 1.8 2005/01/05 18:05:12 dwmw2 Exp $
* $Id: ms02-nv.c,v 1.10 2005/06/20 12:24:41 macro Exp $
*/
#include <linux/init.h>
@ -99,8 +99,8 @@ static inline uint ms02nv_probe_one(ulong addr)
* The firmware writes MS02NV_ID at MS02NV_MAGIC and also
* a diagnostic status at MS02NV_DIAG.
*/
ms02nv_diagp = (ms02nv_uint *)(KSEG1ADDR(addr + MS02NV_DIAG));
ms02nv_magicp = (ms02nv_uint *)(KSEG1ADDR(addr + MS02NV_MAGIC));
ms02nv_diagp = (ms02nv_uint *)(CKSEG1ADDR(addr + MS02NV_DIAG));
ms02nv_magicp = (ms02nv_uint *)(CKSEG1ADDR(addr + MS02NV_MAGIC));
err = get_dbe(ms02nv_magic, ms02nv_magicp);
if (err)
return 0;
@ -233,7 +233,7 @@ static int __init ms02nv_init_one(ulong addr)
goto err_out_csr_res;
}
printk(KERN_INFO "mtd%d: %s at 0x%08lx, size %uMiB.\n",
printk(KERN_INFO "mtd%d: %s at 0x%08lx, size %zuMiB.\n",
mtd->index, ms02nv_name, addr, size >> 20);
mp->next = root_ms02nv_mtd;

View file

@ -1,9 +1,10 @@
/*
* mtdram - a test mtd device
* $Id: mtdram.c,v 1.35 2005/01/05 18:05:12 dwmw2 Exp $
* $Id: mtdram.c,v 1.37 2005/04/21 03:42:11 joern Exp $
* Author: Alexander Larsson <alex@cendio.se>
*
* Copyright (c) 1999 Alexander Larsson <alex@cendio.se>
* Copyright (c) 2005 Joern Engel <joern@wh.fh-wedel.de>
*
* This code is GPL
*
@ -18,213 +19,140 @@
#include <linux/mtd/compatmac.h>
#include <linux/mtd/mtd.h>
#ifndef CONFIG_MTDRAM_ABS_POS
#define CONFIG_MTDRAM_ABS_POS 0
#endif
#if CONFIG_MTDRAM_ABS_POS > 0
#include <asm/io.h>
#endif
#ifdef MODULE
static unsigned long total_size = CONFIG_MTDRAM_TOTAL_SIZE;
static unsigned long erase_size = CONFIG_MTDRAM_ERASE_SIZE;
module_param(total_size,ulong,0);
MODULE_PARM_DESC(total_size, "Total device size in KiB");
module_param(erase_size,ulong,0);
MODULE_PARM_DESC(erase_size, "Device erase block size in KiB");
#define MTDRAM_TOTAL_SIZE (total_size * 1024)
#define MTDRAM_ERASE_SIZE (erase_size * 1024)
#else
#define MTDRAM_TOTAL_SIZE (CONFIG_MTDRAM_TOTAL_SIZE * 1024)
#define MTDRAM_ERASE_SIZE (CONFIG_MTDRAM_ERASE_SIZE * 1024)
#endif
#ifdef MODULE
module_param(total_size, ulong, 0);
MODULE_PARM_DESC(total_size, "Total device size in KiB");
module_param(erase_size, ulong, 0);
MODULE_PARM_DESC(erase_size, "Device erase block size in KiB");
#endif
// We could store these in the mtd structure, but we only support 1 device..
static struct mtd_info *mtd_info;
static int
ram_erase(struct mtd_info *mtd, struct erase_info *instr)
static int ram_erase(struct mtd_info *mtd, struct erase_info *instr)
{
DEBUG(MTD_DEBUG_LEVEL2, "ram_erase(pos:%ld, len:%ld)\n", (long)instr->addr, (long)instr->len);
if (instr->addr + instr->len > mtd->size) {
DEBUG(MTD_DEBUG_LEVEL1, "ram_erase() out of bounds (%ld > %ld)\n", (long)(instr->addr + instr->len), (long)mtd->size);
return -EINVAL;
}
memset((char *)mtd->priv + instr->addr, 0xff, instr->len);
instr->state = MTD_ERASE_DONE;
mtd_erase_callback(instr);
if (instr->addr + instr->len > mtd->size)
return -EINVAL;
return 0;
memset((char *)mtd->priv + instr->addr, 0xff, instr->len);
instr->state = MTD_ERASE_DONE;
mtd_erase_callback(instr);
return 0;
}
static int ram_point (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char **mtdbuf)
static int ram_point(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char **mtdbuf)
{
if (from + len > mtd->size)
return -EINVAL;
*mtdbuf = mtd->priv + from;
*retlen = len;
return 0;
if (from + len > mtd->size)
return -EINVAL;
*mtdbuf = mtd->priv + from;
*retlen = len;
return 0;
}
static void ram_unpoint (struct mtd_info *mtd, u_char *addr, loff_t from,
size_t len)
static void ram_unpoint(struct mtd_info *mtd, u_char * addr, loff_t from,
size_t len)
{
DEBUG(MTD_DEBUG_LEVEL2, "ram_unpoint\n");
}
static int ram_read(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf)
size_t *retlen, u_char *buf)
{
DEBUG(MTD_DEBUG_LEVEL2, "ram_read(pos:%ld, len:%ld)\n", (long)from, (long)len);
if (from + len > mtd->size) {
DEBUG(MTD_DEBUG_LEVEL1, "ram_read() out of bounds (%ld > %ld)\n", (long)(from + len), (long)mtd->size);
return -EINVAL;
}
if (from + len > mtd->size)
return -EINVAL;
memcpy(buf, mtd->priv + from, len);
memcpy(buf, mtd->priv + from, len);
*retlen=len;
return 0;
*retlen = len;
return 0;
}
static int ram_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
size_t *retlen, const u_char *buf)
{
DEBUG(MTD_DEBUG_LEVEL2, "ram_write(pos:%ld, len:%ld)\n", (long)to, (long)len);
if (to + len > mtd->size) {
DEBUG(MTD_DEBUG_LEVEL1, "ram_write() out of bounds (%ld > %ld)\n", (long)(to + len), (long)mtd->size);
return -EINVAL;
}
if (to + len > mtd->size)
return -EINVAL;
memcpy ((char *)mtd->priv + to, buf, len);
memcpy((char *)mtd->priv + to, buf, len);
*retlen=len;
return 0;
*retlen = len;
return 0;
}
static void __exit cleanup_mtdram(void)
{
if (mtd_info) {
del_mtd_device(mtd_info);
#if CONFIG_MTDRAM_TOTAL_SIZE > 0
if (mtd_info->priv)
#if CONFIG_MTDRAM_ABS_POS > 0
iounmap(mtd_info->priv);
#else
vfree(mtd_info->priv);
#endif
#endif
kfree(mtd_info);
}
if (mtd_info) {
del_mtd_device(mtd_info);
if (mtd_info->priv)
vfree(mtd_info->priv);
kfree(mtd_info);
}
}
int mtdram_init_device(struct mtd_info *mtd, void *mapped_address,
unsigned long size, char *name)
int mtdram_init_device(struct mtd_info *mtd, void *mapped_address,
unsigned long size, char *name)
{
memset(mtd, 0, sizeof(*mtd));
memset(mtd, 0, sizeof(*mtd));
/* Setup the MTD structure */
mtd->name = name;
mtd->type = MTD_RAM;
mtd->flags = MTD_CAP_RAM;
mtd->size = size;
mtd->erasesize = MTDRAM_ERASE_SIZE;
mtd->priv = mapped_address;
/* Setup the MTD structure */
mtd->name = name;
mtd->type = MTD_RAM;
mtd->flags = MTD_CAP_RAM;
mtd->size = size;
mtd->erasesize = MTDRAM_ERASE_SIZE;
mtd->priv = mapped_address;
mtd->owner = THIS_MODULE;
mtd->erase = ram_erase;
mtd->point = ram_point;
mtd->unpoint = ram_unpoint;
mtd->read = ram_read;
mtd->write = ram_write;
mtd->owner = THIS_MODULE;
mtd->erase = ram_erase;
mtd->point = ram_point;
mtd->unpoint = ram_unpoint;
mtd->read = ram_read;
mtd->write = ram_write;
if (add_mtd_device(mtd)) {
return -EIO;
}
return 0;
if (add_mtd_device(mtd)) {
return -EIO;
}
return 0;
}
#if CONFIG_MTDRAM_TOTAL_SIZE > 0
#if CONFIG_MTDRAM_ABS_POS > 0
static int __init init_mtdram(void)
{
void *addr;
int err;
/* Allocate some memory */
mtd_info = kmalloc(sizeof(struct mtd_info), GFP_KERNEL);
if (!mtd_info)
return -ENOMEM;
addr = ioremap(CONFIG_MTDRAM_ABS_POS, MTDRAM_TOTAL_SIZE);
if (!addr) {
DEBUG(MTD_DEBUG_LEVEL1,
"Failed to ioremap) memory region of size %ld at ABS_POS:%ld\n",
(long)MTDRAM_TOTAL_SIZE, (long)CONFIG_MTDRAM_ABS_POS);
kfree(mtd_info);
mtd_info = NULL;
return -ENOMEM;
}
err = mtdram_init_device(mtd_info, addr,
MTDRAM_TOTAL_SIZE, "mtdram test device");
if (err)
{
iounmap(addr);
kfree(mtd_info);
mtd_info = NULL;
return err;
}
memset(mtd_info->priv, 0xff, MTDRAM_TOTAL_SIZE);
return err;
}
#else /* CONFIG_MTDRAM_ABS_POS > 0 */
static int __init init_mtdram(void)
{
void *addr;
int err;
/* Allocate some memory */
mtd_info = kmalloc(sizeof(struct mtd_info), GFP_KERNEL);
if (!mtd_info)
return -ENOMEM;
void *addr;
int err;
addr = vmalloc(MTDRAM_TOTAL_SIZE);
if (!addr) {
DEBUG(MTD_DEBUG_LEVEL1,
"Failed to vmalloc memory region of size %ld\n",
(long)MTDRAM_TOTAL_SIZE);
kfree(mtd_info);
mtd_info = NULL;
return -ENOMEM;
}
err = mtdram_init_device(mtd_info, addr,
MTDRAM_TOTAL_SIZE, "mtdram test device");
if (err)
{
vfree(addr);
kfree(mtd_info);
mtd_info = NULL;
return err;
}
memset(mtd_info->priv, 0xff, MTDRAM_TOTAL_SIZE);
return err;
if (!total_size)
return -EINVAL;
/* Allocate some memory */
mtd_info = kmalloc(sizeof(struct mtd_info), GFP_KERNEL);
if (!mtd_info)
return -ENOMEM;
addr = vmalloc(MTDRAM_TOTAL_SIZE);
if (!addr) {
kfree(mtd_info);
mtd_info = NULL;
return -ENOMEM;
}
err = mtdram_init_device(mtd_info, addr, MTDRAM_TOTAL_SIZE, "mtdram test device");
if (err) {
vfree(addr);
kfree(mtd_info);
mtd_info = NULL;
return err;
}
memset(mtd_info->priv, 0xff, MTDRAM_TOTAL_SIZE);
return err;
}
#endif /* !(CONFIG_MTDRAM_ABS_POS > 0) */
#else /* CONFIG_MTDRAM_TOTAL_SIZE > 0 */
static int __init init_mtdram(void)
{
return 0;
}
#endif /* !(CONFIG_MTDRAM_TOTAL_SIZE > 0) */
module_init(init_mtdram);
module_exit(cleanup_mtdram);
@ -232,4 +160,3 @@ module_exit(cleanup_mtdram);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Alexander Larsson <alexl@redhat.com>");
MODULE_DESCRIPTION("Simulated MTD driver for testing");

View file

@ -1,5 +1,5 @@
/**
* $Id: phram.c,v 1.11 2005/01/05 18:05:13 dwmw2 Exp $
* $Id: phram.c,v 1.14 2005/03/07 21:43:38 joern Exp $
*
* Copyright (c) ???? Jochen Schäuble <psionic@psionic.de>
* Copyright (c) 2003-2004 Jörn Engel <joern@wh.fh-wedel.de>
@ -15,9 +15,7 @@
*
* Example:
* phram=swap,64Mi,128Mi phram=test,900Mi,1Mi
*
*/
#include <asm/io.h>
#include <linux/init.h>
#include <linux/kernel.h>
@ -36,7 +34,6 @@ struct phram_mtd_list {
static LIST_HEAD(phram_list);
static int phram_erase(struct mtd_info *mtd, struct erase_info *instr)
{
u_char *start = mtd->priv;
@ -71,7 +68,8 @@ static int phram_point(struct mtd_info *mtd, loff_t from, size_t len,
return 0;
}
static void phram_unpoint(struct mtd_info *mtd, u_char *addr, loff_t from, size_t len)
static void phram_unpoint(struct mtd_info *mtd, u_char *addr, loff_t from,
size_t len)
{
}
@ -80,8 +78,11 @@ static int phram_read(struct mtd_info *mtd, loff_t from, size_t len,
{
u_char *start = mtd->priv;
if (from + len > mtd->size)
if (from >= mtd->size)
return -EINVAL;
if (len > mtd->size - from)
len = mtd->size - from;
memcpy(buf, start + from, len);
@ -94,8 +95,11 @@ static int phram_write(struct mtd_info *mtd, loff_t to, size_t len,
{
u_char *start = mtd->priv;
if (to + len > mtd->size)
if (to >= mtd->size)
return -EINVAL;
if (len > mtd->size - to)
len = mtd->size - to;
memcpy(start + to, buf, len);
@ -107,9 +111,9 @@ static int phram_write(struct mtd_info *mtd, loff_t to, size_t len,
static void unregister_devices(void)
{
struct phram_mtd_list *this;
struct phram_mtd_list *this, *safe;
list_for_each_entry(this, &phram_list, list) {
list_for_each_entry_safe(this, safe, &phram_list, list) {
del_mtd_device(&this->mtd);
iounmap(this->mtd.priv);
kfree(this);
@ -145,7 +149,7 @@ static int register_device(char *name, unsigned long start, unsigned long len)
new->mtd.write = phram_write;
new->mtd.owner = THIS_MODULE;
new->mtd.type = MTD_RAM;
new->mtd.erasesize = 0;
new->mtd.erasesize = PAGE_SIZE;
ret = -EAGAIN;
if (add_mtd_device(&new->mtd)) {
@ -214,6 +218,15 @@ static int parse_name(char **pname, const char *token)
return 0;
}
static inline void kill_final_newline(char *str)
{
char *newline = strrchr(str, '\n');
if (newline && !newline[1])
*newline = 0;
}
#define parse_err(fmt, args...) do { \
ERROR(fmt , ## args); \
return 0; \
@ -232,6 +245,7 @@ static int phram_setup(const char *val, struct kernel_param *kp)
parse_err("parameter too long\n");
strcpy(str, val);
kill_final_newline(str);
for (i=0; i<3; i++)
token[i] = strsep(&str, ",");

View file

@ -1,6 +1,6 @@
/*======================================================================
$Id: slram.c,v 1.33 2005/01/05 18:05:13 dwmw2 Exp $
$Id: slram.c,v 1.34 2005/01/06 21:16:42 jwboyer Exp $
This driver provides a method to access memory not used by the kernel
itself (i.e. if the kernel commandline mem=xxx is used). To actually
@ -50,6 +50,7 @@
#include <linux/mtd/mtd.h>
#define SLRAM_MAX_DEVICES_PARAMS 6 /* 3 parameters / device */
#define SLRAM_BLK_SZ 0x4000
#define T(fmt, args...) printk(KERN_DEBUG fmt, ## args)
#define E(fmt, args...) printk(KERN_NOTICE fmt, ## args)
@ -108,6 +109,9 @@ static int slram_point(struct mtd_info *mtd, loff_t from, size_t len,
{
slram_priv_t *priv = mtd->priv;
if (from + len > mtd->size)
return -EINVAL;
*mtdbuf = priv->start + from;
*retlen = len;
return(0);
@ -121,7 +125,13 @@ static int slram_read(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf)
{
slram_priv_t *priv = mtd->priv;
if (from > mtd->size)
return -EINVAL;
if (from + len > mtd->size)
len = mtd->size - from;
memcpy(buf, priv->start + from, len);
*retlen = len;
@ -133,6 +143,9 @@ static int slram_write(struct mtd_info *mtd, loff_t to, size_t len,
{
slram_priv_t *priv = mtd->priv;
if (to + len > mtd->size)
return -EINVAL;
memcpy(priv->start + to, buf, len);
*retlen = len;
@ -188,7 +201,7 @@ static int register_device(char *name, unsigned long start, unsigned long length
(*curmtd)->mtdinfo->name = name;
(*curmtd)->mtdinfo->size = length;
(*curmtd)->mtdinfo->flags = MTD_CLEAR_BITS | MTD_SET_BITS |
MTD_WRITEB_WRITEABLE | MTD_VOLATILE;
MTD_WRITEB_WRITEABLE | MTD_VOLATILE | MTD_CAP_RAM;
(*curmtd)->mtdinfo->erase = slram_erase;
(*curmtd)->mtdinfo->point = slram_point;
(*curmtd)->mtdinfo->unpoint = slram_unpoint;
@ -196,7 +209,7 @@ static int register_device(char *name, unsigned long start, unsigned long length
(*curmtd)->mtdinfo->write = slram_write;
(*curmtd)->mtdinfo->owner = THIS_MODULE;
(*curmtd)->mtdinfo->type = MTD_RAM;
(*curmtd)->mtdinfo->erasesize = 0x0;
(*curmtd)->mtdinfo->erasesize = SLRAM_BLK_SZ;
if (add_mtd_device((*curmtd)->mtdinfo)) {
E("slram: Failed to register new device\n");
@ -261,7 +274,7 @@ static int parse_cmdline(char *devname, char *szstart, char *szlength)
}
T("slram: devname=%s, devstart=0x%lx, devlength=0x%lx\n",
devname, devstart, devlength);
if ((devstart < 0) || (devlength < 0)) {
if ((devstart < 0) || (devlength < 0) || (devlength % SLRAM_BLK_SZ != 0)) {
E("slram: Illegal start / length parameter.\n");
return(-EINVAL);
}

View file

@ -1,5 +1,5 @@
/* This version ported to the Linux-MTD system by dwmw2@infradead.org
* $Id: ftl.c,v 1.54 2004/11/16 18:33:15 dwmw2 Exp $
* $Id: ftl.c,v 1.55 2005/01/17 13:47:21 hvr Exp $
*
* Fixes: Arnaldo Carvalho de Melo <acme@conectiva.com.br>
* - fixes some leaks on failure in build_maps and ftl_notify_add, cleanups
@ -357,6 +357,7 @@ static int erase_xfer(partition_t *part,
if (!erase)
return -ENOMEM;
erase->mtd = part->mbd.mtd;
erase->callback = ftl_erase_callback;
erase->addr = xfer->Offset;
erase->len = 1 << part->header.EraseUnitSize;
@ -1096,7 +1097,7 @@ struct mtd_blktrans_ops ftl_tr = {
int init_ftl(void)
{
DEBUG(0, "$Id: ftl.c,v 1.54 2004/11/16 18:33:15 dwmw2 Exp $\n");
DEBUG(0, "$Id: ftl.c,v 1.55 2005/01/17 13:47:21 hvr Exp $\n");
return register_mtd_blktrans(&ftl_tr);
}

View file

@ -1,5 +1,5 @@
# drivers/mtd/maps/Kconfig
# $Id: Kconfig,v 1.42 2005/01/05 16:59:50 dwmw2 Exp $
# $Id: Kconfig,v 1.55 2005/07/02 01:53:24 tpoynor Exp $
menu "Mapping drivers for chip access"
depends on MTD!=n
@ -122,16 +122,6 @@ config MTD_SBC_GXX
More info at
<http://www.arcomcontrols.com/products/icp/pc104/processors/SBC_GX1.htm>.
config MTD_ELAN_104NC
tristate "CFI Flash device mapped on Arcom ELAN-104NC"
depends on X86 && MTD_CFI_INTELEXT && MTD_PARTITIONS && MTD_COMPLEX_MAPPINGS
help
This provides a driver for the on-board flash of the Arcom Control
System's ELAN-104NC development board. By default the flash
is split into 3 partitions which are accessed as separate MTD
devices. This board utilizes Intel StrataFlash. More info at
<http://www.arcomcontrols.com/products/icp/pc104/processors/ELAN104NC.htm>.
config MTD_LUBBOCK
tristate "CFI Flash device mapped on Intel Lubbock XScale eval board"
depends on ARCH_LUBBOCK && MTD_CFI_INTELEXT && MTD_PARTITIONS
@ -139,6 +129,14 @@ config MTD_LUBBOCK
This provides a driver for the on-board flash of the Intel
'Lubbock' XScale evaluation board.
config MTD_MAINSTONE
tristate "CFI Flash device mapped on Intel Mainstone XScale eval board"
depends on MACH_MAINSTONE && MTD_CFI_INTELEXT
select MTD_PARTITIONS
help
This provides a driver for the on-board flash of the Intel
'Mainstone PXA27x evaluation board.
config MTD_OCTAGON
tristate "JEDEC Flash device mapped on Octagon 5066 SBC"
depends on X86 && MTD_JEDEC && MTD_COMPLEX_MAPPINGS
@ -213,74 +211,11 @@ config MTD_NETtel
help
Support for flash chips on NETtel/SecureEdge/SnapGear boards.
config MTD_PB1XXX
tristate "Flash devices on Alchemy PB1xxx boards"
depends on MIPS && ( MIPS_PB1000 || MIPS_PB1100 || MIPS_PB1500 )
config MTD_ALCHEMY
tristate ' AMD Alchemy Pb1xxx/Db1xxx/RDK MTD support'
depends on MIPS && SOC_AU1X00
help
Flash memory access on Alchemy Pb1000/Pb1100/Pb1500 boards
config MTD_PB1XXX_BOOT
bool "PB1x00 boot flash device"
depends on MTD_PB1XXX && ( MIPS_PB1100 || MIPS_PB1500 )
help
Use the first of the two 32MiB flash banks on Pb1100/Pb1500 board.
You can say 'Y' to both this and 'MTD_PB1XXX_USER' below, to use
both banks.
config MTD_PB1XXX_USER
bool "PB1x00 user flash device"
depends on MTD_PB1XXX && ( MIPS_PB1100 || MIPS_PB1500 )
default y if MTD_PB1XX_BOOT = n
help
Use the second of the two 32MiB flash banks on Pb1100/Pb1500 board.
You can say 'Y' to both this and 'MTD_PB1XXX_BOOT' above, to use
both banks.
config MTD_PB1550
tristate "Flash devices on Alchemy PB1550 board"
depends on MIPS && MIPS_PB1550
help
Flash memory access on Alchemy Pb1550 board
config MTD_PB1550_BOOT
bool "PB1550 boot flash device"
depends on MTD_PB1550
help
Use the first of the two 64MiB flash banks on Pb1550 board.
You can say 'Y' to both this and 'MTD_PB1550_USER' below, to use
both banks.
config MTD_PB1550_USER
bool "PB1550 user flash device"
depends on MTD_PB1550
default y if MTD_PB1550_BOOT = n
help
Use the second of the two 64MiB flash banks on Pb1550 board.
You can say 'Y' to both this and 'MTD_PB1550_BOOT' above, to use
both banks.
config MTD_DB1550
tristate "Flash devices on Alchemy DB1550 board"
depends on MIPS && MIPS_DB1550
help
Flash memory access on Alchemy Db1550 board
config MTD_DB1550_BOOT
bool "DB1550 boot flash device"
depends on MTD_DB1550
help
Use the first of the two 64MiB flash banks on Db1550 board.
You can say 'Y' to both this and 'MTD_DB1550_USER' below, to use
both banks.
config MTD_DB1550_USER
bool "DB1550 user flash device"
depends on MTD_DB1550
default y if MTD_DB1550_BOOT = n
help
Use the second of the two 64MiB flash banks on Db1550 board.
You can say 'Y' to both this and 'MTD_DB1550_BOOT' above, to use
both banks.
Flash memory access on AMD Alchemy Pb/Db/RDK Reference Boards
config MTD_DILNETPC
tristate "CFI Flash device mapped on DIL/Net PC"
@ -588,6 +523,15 @@ config MTD_MPC1211
This enables access to the flash chips on the Interface MPC-1211(CTP/PCI/MPC-SH02).
If you have such a board, say 'Y'.
config MTD_OMAP_NOR
tristate "TI OMAP board mappings"
depends on MTD_CFI && ARCH_OMAP
help
This enables access to the NOR flash chips on TI OMAP-based
boards defining flash platform devices and flash platform data.
These boards include the Innovator, H2, H3, OSK, Perseus2, and
more. If you have such a board, say 'Y'.
# This needs CFI or JEDEC, depending on the cards found.
config MTD_PCI
tristate "PCI MTD driver"
@ -647,13 +591,14 @@ config MTD_DMV182
Map driver for Dy-4 SVME/DMV-182 board.
config MTD_BAST
tristate "Map driver for Simtec BAST (EB2410ITX)"
depends on ARCH_BAST
tristate "Map driver for Simtec BAST (EB2410ITX) or Thorcom VR1000"
depends on ARCH_BAST || MACH_VR1000
select MTD_PARTITIONS
select MTD_MAP_BANK_WIDTH_16
select MTD_JEDECPROBE
help
Map driver for NOR flash on the Simtec BAST (EB2410ITX).
Map driver for NOR flash on the Simtec BAST (EB2410ITX), or the
Thorcom VR1000
Note, this driver *cannot* over-ride the WP link on the
board, or currently detect the state of the link.
@ -669,5 +614,15 @@ config MTD_SHARP_SL
help
This enables access to the flash chip on the Sharp SL Series of PDAs.
config MTD_PLATRAM
tristate "Map driver for platform device RAM (mtd-ram)"
depends on MTD
select MTD_RAM
help
Map driver for RAM areas described via the platform device
system.
This selection automatically selects the map_ram driver.
endmenu

View file

@ -1,7 +1,7 @@
#
# linux/drivers/maps/Makefile
#
# $Id: Makefile.common,v 1.23 2005/01/05 17:06:36 dwmw2 Exp $
# $Id: Makefile.common,v 1.30 2005/07/02 01:53:24 tpoynor Exp $
ifeq ($(CONFIG_MTD_COMPLEX_MAPPINGS),y)
obj-$(CONFIG_MTD) += map_funcs.o
@ -15,7 +15,6 @@ obj-$(CONFIG_MTD_CFI_FLAGADM) += cfi_flagadm.o
obj-$(CONFIG_MTD_CSTM_MIPS_IXX) += cstm_mips_ixx.o
obj-$(CONFIG_MTD_DC21285) += dc21285.o
obj-$(CONFIG_MTD_DILNETPC) += dilnetpc.o
obj-$(CONFIG_MTD_ELAN_104NC) += elan-104nc.o
obj-$(CONFIG_MTD_EPXA10DB) += epxa10db-flash.o
obj-$(CONFIG_MTD_IQ80310) += iq80310.o
obj-$(CONFIG_MTD_L440GX) += l440gx.o
@ -23,6 +22,7 @@ obj-$(CONFIG_MTD_AMD76XROM) += amd76xrom.o
obj-$(CONFIG_MTD_ICHXROM) += ichxrom.o
obj-$(CONFIG_MTD_TSUNAMI) += tsunami_flash.o
obj-$(CONFIG_MTD_LUBBOCK) += lubbock-flash.o
obj-$(CONFIG_MTD_MAINSTONE) += mainstone-flash.o
obj-$(CONFIG_MTD_MBX860) += mbx860.o
obj-$(CONFIG_MTD_CEIVA) += ceiva.o
obj-$(CONFIG_MTD_OCTAGON) += octagon-5066.o
@ -44,10 +44,7 @@ obj-$(CONFIG_MTD_DBOX2) += dbox2-flash.o
obj-$(CONFIG_MTD_OCELOT) += ocelot.o
obj-$(CONFIG_MTD_SOLUTIONENGINE)+= solutionengine.o
obj-$(CONFIG_MTD_PCI) += pci.o
obj-$(CONFIG_MTD_PB1XXX) += pb1xxx-flash.o
obj-$(CONFIG_MTD_DB1X00) += db1x00-flash.o
obj-$(CONFIG_MTD_PB1550) += pb1550-flash.o
obj-$(CONFIG_MTD_DB1550) += db1550-flash.o
obj-$(CONFIG_MTD_ALCHEMY) += alchemy-flash.o
obj-$(CONFIG_MTD_LASAT) += lasat.o
obj-$(CONFIG_MTD_AUTCPU12) += autcpu12-nvram.o
obj-$(CONFIG_MTD_EDB7312) += edb7312.o
@ -71,3 +68,5 @@ obj-$(CONFIG_MTD_IXP2000) += ixp2000.o
obj-$(CONFIG_MTD_WRSBC8260) += wr_sbc82xx_flash.o
obj-$(CONFIG_MTD_DMV182) += dmv182.o
obj-$(CONFIG_MTD_SHARP_SL) += sharpsl-flash.o
obj-$(CONFIG_MTD_PLATRAM) += plat-ram.o
obj-$(CONFIG_MTD_OMAP_NOR) += omap_nor.o

View file

@ -0,0 +1,192 @@
/*
* Flash memory access on AMD Alchemy evaluation boards
*
* $Id: alchemy-flash.c,v 1.1 2005/02/27 21:50:21 ppopov Exp $
*
* (C) 2003, 2004 Pete Popov <ppopov@embeddedalley.com>
*
*/
#include <linux/config.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/map.h>
#include <linux/mtd/partitions.h>
#include <asm/io.h>
#ifdef DEBUG_RW
#define DBG(x...) printk(x)
#else
#define DBG(x...)
#endif
#ifdef CONFIG_MIPS_PB1000
#define BOARD_MAP_NAME "Pb1000 Flash"
#define BOARD_FLASH_SIZE 0x00800000 /* 8MB */
#define BOARD_FLASH_WIDTH 4 /* 32-bits */
#endif
#ifdef CONFIG_MIPS_PB1500
#define BOARD_MAP_NAME "Pb1500 Flash"
#define BOARD_FLASH_SIZE 0x04000000 /* 64MB */
#define BOARD_FLASH_WIDTH 4 /* 32-bits */
#endif
#ifdef CONFIG_MIPS_PB1100
#define BOARD_MAP_NAME "Pb1100 Flash"
#define BOARD_FLASH_SIZE 0x04000000 /* 64MB */
#define BOARD_FLASH_WIDTH 4 /* 32-bits */
#endif
#ifdef CONFIG_MIPS_PB1550
#define BOARD_MAP_NAME "Pb1550 Flash"
#define BOARD_FLASH_SIZE 0x08000000 /* 128MB */
#define BOARD_FLASH_WIDTH 4 /* 32-bits */
#endif
#ifdef CONFIG_MIPS_PB1200
#define BOARD_MAP_NAME "Pb1200 Flash"
#define BOARD_FLASH_SIZE 0x08000000 /* 128MB */
#define BOARD_FLASH_WIDTH 2 /* 16-bits */
#endif
#ifdef CONFIG_MIPS_DB1000
#define BOARD_MAP_NAME "Db1000 Flash"
#define BOARD_FLASH_SIZE 0x02000000 /* 32MB */
#define BOARD_FLASH_WIDTH 4 /* 32-bits */
#endif
#ifdef CONFIG_MIPS_DB1500
#define BOARD_MAP_NAME "Db1500 Flash"
#define BOARD_FLASH_SIZE 0x02000000 /* 32MB */
#define BOARD_FLASH_WIDTH 4 /* 32-bits */
#endif
#ifdef CONFIG_MIPS_DB1100
#define BOARD_MAP_NAME "Db1100 Flash"
#define BOARD_FLASH_SIZE 0x02000000 /* 32MB */
#define BOARD_FLASH_WIDTH 4 /* 32-bits */
#endif
#ifdef CONFIG_MIPS_DB1550
#define BOARD_MAP_NAME "Db1550 Flash"
#define BOARD_FLASH_SIZE 0x08000000 /* 128MB */
#define BOARD_FLASH_WIDTH 4 /* 32-bits */
#endif
#ifdef CONFIG_MIPS_DB1200
#define BOARD_MAP_NAME "Db1200 Flash"
#define BOARD_FLASH_SIZE 0x04000000 /* 64MB */
#define BOARD_FLASH_WIDTH 2 /* 16-bits */
#endif
#ifdef CONFIG_MIPS_HYDROGEN3
#define BOARD_MAP_NAME "Hydrogen3 Flash"
#define BOARD_FLASH_SIZE 0x02000000 /* 32MB */
#define BOARD_FLASH_WIDTH 4 /* 32-bits */
#define USE_LOCAL_ACCESSORS /* why? */
#endif
#ifdef CONFIG_MIPS_BOSPORUS
#define BOARD_MAP_NAME "Bosporus Flash"
#define BOARD_FLASH_SIZE 0x01000000 /* 16MB */
#define BOARD_FLASH_WIDTH 2 /* 16-bits */
#endif
#ifdef CONFIG_MIPS_MIRAGE
#define BOARD_MAP_NAME "Mirage Flash"
#define BOARD_FLASH_SIZE 0x04000000 /* 64MB */
#define BOARD_FLASH_WIDTH 4 /* 32-bits */
#define USE_LOCAL_ACCESSORS /* why? */
#endif
static struct map_info alchemy_map = {
.name = BOARD_MAP_NAME,
};
static struct mtd_partition alchemy_partitions[] = {
{
.name = "User FS",
.size = BOARD_FLASH_SIZE - 0x00400000,
.offset = 0x0000000
},{
.name = "YAMON",
.size = 0x0100000,
.offset = MTDPART_OFS_APPEND,
.mask_flags = MTD_WRITEABLE
},{
.name = "raw kernel",
.size = (0x300000 - 0x40000), /* last 256KB is yamon env */
.offset = MTDPART_OFS_APPEND,
}
};
#define NB_OF(x) (sizeof(x)/sizeof(x[0]))
static struct mtd_info *mymtd;
int __init alchemy_mtd_init(void)
{
struct mtd_partition *parts;
int nb_parts = 0;
unsigned long window_addr;
unsigned long window_size;
/* Default flash buswidth */
alchemy_map.bankwidth = BOARD_FLASH_WIDTH;
window_addr = 0x20000000 - BOARD_FLASH_SIZE;
window_size = BOARD_FLASH_SIZE;
#ifdef CONFIG_MIPS_MIRAGE_WHY
/* Boot ROM flash bank only; no user bank */
window_addr = 0x1C000000;
window_size = 0x04000000;
/* USERFS from 0x1C00 0000 to 0x1FC00000 */
alchemy_partitions[0].size = 0x03C00000;
#endif
/*
* Static partition definition selection
*/
parts = alchemy_partitions;
nb_parts = NB_OF(alchemy_partitions);
alchemy_map.size = window_size;
/*
* Now let's probe for the actual flash. Do it here since
* specific machine settings might have been set above.
*/
printk(KERN_NOTICE BOARD_MAP_NAME ": probing %d-bit flash bus\n",
alchemy_map.bankwidth*8);
alchemy_map.virt = ioremap(window_addr, window_size);
mymtd = do_map_probe("cfi_probe", &alchemy_map);
if (!mymtd) {
iounmap(alchemy_map.virt);
return -ENXIO;
}
mymtd->owner = THIS_MODULE;
add_mtd_partitions(mymtd, parts, nb_parts);
return 0;
}
static void __exit alchemy_mtd_cleanup(void)
{
if (mymtd) {
del_mtd_partitions(mymtd);
map_destroy(mymtd);
iounmap(alchemy_map.virt);
}
}
module_init(alchemy_mtd_init);
module_exit(alchemy_mtd_cleanup);
MODULE_AUTHOR("Embedded Alley Solutions, Inc");
MODULE_DESCRIPTION(BOARD_MAP_NAME " MTD driver");
MODULE_LICENSE("GPL");

View file

@ -2,7 +2,7 @@
* amd76xrom.c
*
* Normal mappings of chips in physical memory
* $Id: amd76xrom.c,v 1.19 2004/11/28 09:40:39 dwmw2 Exp $
* $Id: amd76xrom.c,v 1.20 2005/03/18 14:04:35 gleixner Exp $
*/
#include <linux/module.h>
@ -314,7 +314,7 @@ static int __init init_amd76xrom(void)
}
return -ENXIO;
#if 0
return pci_module_init(&amd76xrom_driver);
return pci_register_driver(&amd76xrom_driver);
#endif
}

View file

@ -1,14 +1,15 @@
/* linux/drivers/mtd/maps/bast_flash.c
*
* Copyright (c) 2004 Simtec Electronics
* Ben Dooks <ben@simtec.co.uk>
* Copyright (c) 2004-2005 Simtec Electronics
* Ben Dooks <ben@simtec.co.uk>
*
* Simtec Bast (EB2410ITX) NOR MTD Mapping driver
*
* Changelog:
* 20-Sep-2004 BJD Initial version
* 17-Jan-2005 BJD Add whole device if no partitions found
*
* $Id: bast-flash.c,v 1.1 2004/09/21 14:29:04 bjd Exp $
* $Id: bast-flash.c,v 1.2 2005/01/18 11:13:47 bjd Exp $
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -46,9 +47,9 @@
#include <asm/arch/bast-cpld.h>
#ifdef CONFIG_MTD_BAST_MAXSIZE
#define AREA_MAXSIZE (CONFIG_MTD_BAST_MAXSIZE * (1024*1024))
#define AREA_MAXSIZE (CONFIG_MTD_BAST_MAXSIZE * SZ_1M)
#else
#define AREA_MAXSIZE (32*1024*1024)
#define AREA_MAXSIZE (32 * SZ_1M)
#endif
#define PFX "bast-flash: "
@ -189,6 +190,8 @@ static int bast_flash_probe(struct device *dev)
err = add_mtd_partitions(info->mtd, info->partitions, err);
if (err)
printk(KERN_ERR PFX "cannot add/parse partitions\n");
} else {
err = add_mtd_device(info->mtd);
}
if (err == 0)

View file

@ -1,187 +0,0 @@
/*
* Flash memory access on Alchemy Db1550 board
*
* $Id: db1550-flash.c,v 1.7 2004/11/04 13:24:14 gleixner Exp $
*
* (C) 2004 Embedded Edge, LLC, based on db1550-flash.c:
* (C) 2003, 2004 Pete Popov <ppopov@embeddedalley.com>
*
*/
#include <linux/config.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/map.h>
#include <linux/mtd/partitions.h>
#include <asm/io.h>
#ifdef DEBUG_RW
#define DBG(x...) printk(x)
#else
#define DBG(x...)
#endif
static unsigned long window_addr;
static unsigned long window_size;
static struct map_info db1550_map = {
.name = "Db1550 flash",
};
static unsigned char flash_bankwidth = 4;
/*
* Support only 64MB NOR Flash parts
*/
#if defined(CONFIG_MTD_DB1550_BOOT) && defined(CONFIG_MTD_DB1550_USER)
#define DB1550_BOTH_BANKS
#elif defined(CONFIG_MTD_DB1550_BOOT) && !defined(CONFIG_MTD_DB1550_USER)
#define DB1550_BOOT_ONLY
#elif !defined(CONFIG_MTD_DB1550_BOOT) && defined(CONFIG_MTD_DB1550_USER)
#define DB1550_USER_ONLY
#endif
#ifdef DB1550_BOTH_BANKS
/* both banks will be used. Combine the first bank and the first
* part of the second bank together into a single jffs/jffs2
* partition.
*/
static struct mtd_partition db1550_partitions[] = {
/* assume boot[2:0]:swap is '0000' or '1000', which translates to:
* 1C00 0000 1FFF FFFF CE0 64MB Boot NOR Flash
* 1800 0000 1BFF FFFF CE0 64MB Param NOR Flash
*/
{
.name = "User FS",
.size = (0x1FC00000 - 0x18000000),
.offset = 0x0000000
},{
.name = "yamon",
.size = 0x0100000,
.offset = MTDPART_OFS_APPEND,
.mask_flags = MTD_WRITEABLE
},{
.name = "raw kernel",
.size = (0x300000 - 0x40000), /* last 256KB is yamon env */
.offset = MTDPART_OFS_APPEND,
}
};
#elif defined(DB1550_BOOT_ONLY)
static struct mtd_partition db1550_partitions[] = {
/* assume boot[2:0]:swap is '0000' or '1000', which translates to:
* 1C00 0000 1FFF FFFF CE0 64MB Boot NOR Flash
*/
{
.name = "User FS",
.size = 0x03c00000,
.offset = 0x0000000
},{
.name = "yamon",
.size = 0x0100000,
.offset = MTDPART_OFS_APPEND,
.mask_flags = MTD_WRITEABLE
},{
.name = "raw kernel",
.size = (0x300000-0x40000), /* last 256KB is yamon env */
.offset = MTDPART_OFS_APPEND,
}
};
#elif defined(DB1550_USER_ONLY)
static struct mtd_partition db1550_partitions[] = {
/* assume boot[2:0]:swap is '0000' or '1000', which translates to:
* 1800 0000 1BFF FFFF CE0 64MB Param NOR Flash
*/
{
.name = "User FS",
.size = (0x4000000 - 0x200000), /* reserve 2MB for raw kernel */
.offset = 0x0000000
},{
.name = "raw kernel",
.size = MTDPART_SIZ_FULL,
.offset = MTDPART_OFS_APPEND,
}
};
#else
#error MTD_DB1550 define combo error /* should never happen */
#endif
#define NB_OF(x) (sizeof(x)/sizeof(x[0]))
static struct mtd_info *mymtd;
/*
* Probe the flash density and setup window address and size
* based on user CONFIG options. There are times when we don't
* want the MTD driver to be probing the boot or user flash,
* so having the option to enable only one bank is important.
*/
int setup_flash_params(void)
{
#if defined(DB1550_BOTH_BANKS)
window_addr = 0x18000000;
window_size = 0x8000000;
#elif defined(DB1550_BOOT_ONLY)
window_addr = 0x1C000000;
window_size = 0x4000000;
#else /* USER ONLY */
window_addr = 0x18000000;
window_size = 0x4000000;
#endif
return 0;
}
int __init db1550_mtd_init(void)
{
struct mtd_partition *parts;
int nb_parts = 0;
/* Default flash bankwidth */
db1550_map.bankwidth = flash_bankwidth;
if (setup_flash_params())
return -ENXIO;
/*
* Static partition definition selection
*/
parts = db1550_partitions;
nb_parts = NB_OF(db1550_partitions);
db1550_map.size = window_size;
/*
* Now let's probe for the actual flash. Do it here since
* specific machine settings might have been set above.
*/
printk(KERN_NOTICE "Db1550 flash: probing %d-bit flash bus\n",
db1550_map.bankwidth*8);
db1550_map.virt = ioremap(window_addr, window_size);
mymtd = do_map_probe("cfi_probe", &db1550_map);
if (!mymtd) return -ENXIO;
mymtd->owner = THIS_MODULE;
add_mtd_partitions(mymtd, parts, nb_parts);
return 0;
}
static void __exit db1550_mtd_cleanup(void)
{
if (mymtd) {
del_mtd_partitions(mymtd);
map_destroy(mymtd);
iounmap((void *) db1550_map.virt);
}
}
module_init(db1550_mtd_init);
module_exit(db1550_mtd_cleanup);
MODULE_AUTHOR("Embedded Edge, LLC");
MODULE_DESCRIPTION("Db1550 mtd map driver");
MODULE_LICENSE("GPL");

View file

@ -1,226 +0,0 @@
/*
* Flash memory access on Alchemy Db1xxx boards
*
* $Id: db1x00-flash.c,v 1.6 2004/11/04 13:24:14 gleixner Exp $
*
* (C) 2003 Pete Popov <ppopov@embeddedalley.com>
*
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/map.h>
#include <linux/mtd/partitions.h>
#include <asm/io.h>
#ifdef DEBUG_RW
#define DBG(x...) printk(x)
#else
#define DBG(x...)
#endif
/* MTD CONFIG OPTIONS */
#if defined(CONFIG_MTD_DB1X00_BOOT) && defined(CONFIG_MTD_DB1X00_USER)
#define DB1X00_BOTH_BANKS
#elif defined(CONFIG_MTD_DB1X00_BOOT) && !defined(CONFIG_MTD_DB1X00_USER)
#define DB1X00_BOOT_ONLY
#elif !defined(CONFIG_MTD_DB1X00_BOOT) && defined(CONFIG_MTD_DB1X00_USER)
#define DB1X00_USER_ONLY
#endif
static unsigned long window_addr;
static unsigned long window_size;
static unsigned long flash_size;
static unsigned short *bcsr = (unsigned short *)0xAE000000;
static unsigned char flash_bankwidth = 4;
/*
* The Db1x boards support different flash densities. We setup
* the mtd_partition structures below for default of 64Mbit
* flash densities, and override the partitions sizes, if
* necessary, after we check the board status register.
*/
#ifdef DB1X00_BOTH_BANKS
/* both banks will be used. Combine the first bank and the first
* part of the second bank together into a single jffs/jffs2
* partition.
*/
static struct mtd_partition db1x00_partitions[] = {
{
.name = "User FS",
.size = 0x1c00000,
.offset = 0x0000000
},{
.name = "yamon",
.size = 0x0100000,
.offset = MTDPART_OFS_APPEND,
.mask_flags = MTD_WRITEABLE
},{
.name = "raw kernel",
.size = (0x300000-0x40000), /* last 256KB is env */
.offset = MTDPART_OFS_APPEND,
}
};
#elif defined(DB1X00_BOOT_ONLY)
static struct mtd_partition db1x00_partitions[] = {
{
.name = "User FS",
.size = 0x00c00000,
.offset = 0x0000000
},{
.name = "yamon",
.size = 0x0100000,
.offset = MTDPART_OFS_APPEND,
.mask_flags = MTD_WRITEABLE
},{
.name = "raw kernel",
.size = (0x300000-0x40000), /* last 256KB is env */
.offset = MTDPART_OFS_APPEND,
}
};
#elif defined(DB1X00_USER_ONLY)
static struct mtd_partition db1x00_partitions[] = {
{
.name = "User FS",
.size = 0x0e00000,
.offset = 0x0000000
},{
.name = "raw kernel",
.size = MTDPART_SIZ_FULL,
.offset = MTDPART_OFS_APPEND,
}
};
#else
#error MTD_DB1X00 define combo error /* should never happen */
#endif
#define NB_OF(x) (sizeof(x)/sizeof(x[0]))
#define NAME "Db1x00 Linux Flash"
static struct map_info db1xxx_mtd_map = {
.name = NAME,
};
static struct mtd_partition *parsed_parts;
static struct mtd_info *db1xxx_mtd;
/*
* Probe the flash density and setup window address and size
* based on user CONFIG options. There are times when we don't
* want the MTD driver to be probing the boot or user flash,
* so having the option to enable only one bank is important.
*/
int setup_flash_params(void)
{
switch ((bcsr[2] >> 14) & 0x3) {
case 0: /* 64Mbit devices */
flash_size = 0x800000; /* 8MB per part */
#if defined(DB1X00_BOTH_BANKS)
window_addr = 0x1E000000;
window_size = 0x2000000;
#elif defined(DB1X00_BOOT_ONLY)
window_addr = 0x1F000000;
window_size = 0x1000000;
#else /* USER ONLY */
window_addr = 0x1E000000;
window_size = 0x1000000;
#endif
break;
case 1:
/* 128 Mbit devices */
flash_size = 0x1000000; /* 16MB per part */
#if defined(DB1X00_BOTH_BANKS)
window_addr = 0x1C000000;
window_size = 0x4000000;
/* USERFS from 0x1C00 0000 to 0x1FC0 0000 */
db1x00_partitions[0].size = 0x3C00000;
#elif defined(DB1X00_BOOT_ONLY)
window_addr = 0x1E000000;
window_size = 0x2000000;
/* USERFS from 0x1E00 0000 to 0x1FC0 0000 */
db1x00_partitions[0].size = 0x1C00000;
#else /* USER ONLY */
window_addr = 0x1C000000;
window_size = 0x2000000;
/* USERFS from 0x1C00 0000 to 0x1DE00000 */
db1x00_partitions[0].size = 0x1DE0000;
#endif
break;
case 2:
/* 256 Mbit devices */
flash_size = 0x4000000; /* 64MB per part */
#if defined(DB1X00_BOTH_BANKS)
return 1;
#elif defined(DB1X00_BOOT_ONLY)
/* Boot ROM flash bank only; no user bank */
window_addr = 0x1C000000;
window_size = 0x4000000;
/* USERFS from 0x1C00 0000 to 0x1FC00000 */
db1x00_partitions[0].size = 0x3C00000;
#else /* USER ONLY */
return 1;
#endif
break;
default:
return 1;
}
db1xxx_mtd_map.size = window_size;
db1xxx_mtd_map.bankwidth = flash_bankwidth;
db1xxx_mtd_map.phys = window_addr;
db1xxx_mtd_map.bankwidth = flash_bankwidth;
return 0;
}
int __init db1x00_mtd_init(void)
{
struct mtd_partition *parts;
int nb_parts = 0;
if (setup_flash_params())
return -ENXIO;
/*
* Static partition definition selection
*/
parts = db1x00_partitions;
nb_parts = NB_OF(db1x00_partitions);
/*
* Now let's probe for the actual flash. Do it here since
* specific machine settings might have been set above.
*/
printk(KERN_NOTICE "Db1xxx flash: probing %d-bit flash bus\n",
db1xxx_mtd_map.bankwidth*8);
db1xxx_mtd_map.virt = ioremap(window_addr, window_size);
db1xxx_mtd = do_map_probe("cfi_probe", &db1xxx_mtd_map);
if (!db1xxx_mtd) return -ENXIO;
db1xxx_mtd->owner = THIS_MODULE;
add_mtd_partitions(db1xxx_mtd, parts, nb_parts);
return 0;
}
static void __exit db1x00_mtd_cleanup(void)
{
if (db1xxx_mtd) {
del_mtd_partitions(db1xxx_mtd);
map_destroy(db1xxx_mtd);
if (parsed_parts)
kfree(parsed_parts);
}
}
module_init(db1x00_mtd_init);
module_exit(db1x00_mtd_cleanup);
MODULE_AUTHOR("Pete Popov");
MODULE_DESCRIPTION("Db1x00 mtd map driver");
MODULE_LICENSE("GPL");

View file

@ -1,228 +0,0 @@
/* elan-104nc.c -- MTD map driver for Arcom Control Systems ELAN-104NC
Copyright (C) 2000 Arcom Control System Ltd
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
$Id: elan-104nc.c,v 1.25 2004/11/28 09:40:39 dwmw2 Exp $
The ELAN-104NC has up to 8 Mibyte of Intel StrataFlash (28F320/28F640) in x16
mode. This drivers uses the CFI probe and Intel Extended Command Set drivers.
The flash is accessed as follows:
32 kbyte memory window at 0xb0000-0xb7fff
16 bit I/O port (0x22) for some sort of paging.
The single flash device is divided into 3 partition which appear as separate
MTD devices.
Linux thinks that the I/O port is used by the PIC and hence check_region() will
always fail. So we don't do it. I just hope it doesn't break anything.
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/ioport.h>
#include <linux/init.h>
#include <asm/io.h>
#include <linux/mtd/map.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#define WINDOW_START 0xb0000
/* Number of bits in offset. */
#define WINDOW_SHIFT 15
#define WINDOW_LENGTH (1 << WINDOW_SHIFT)
/* The bits for the offset into the window. */
#define WINDOW_MASK (WINDOW_LENGTH-1)
#define PAGE_IO 0x22
#define PAGE_IO_SIZE 2
static volatile int page_in_window = -1; // Current page in window.
static void __iomem *iomapadr;
static DEFINE_SPINLOCK(elan_104nc_spin);
/* partition_info gives details on the logical partitions that the split the
* single flash device into. If the size if zero we use up to the end of the
* device. */
static struct mtd_partition partition_info[]={
{ .name = "ELAN-104NC flash boot partition",
.offset = 0,
.size = 640*1024 },
{ .name = "ELAN-104NC flash partition 1",
.offset = 640*1024,
.size = 896*1024 },
{ .name = "ELAN-104NC flash partition 2",
.offset = (640+896)*1024 }
};
#define NUM_PARTITIONS (sizeof(partition_info)/sizeof(partition_info[0]))
/*
* If no idea what is going on here. This is taken from the FlashFX stuff.
*/
#define ROMCS 1
static inline void elan_104nc_setup(void)
{
u16 t;
outw( 0x0023 + ROMCS*2, PAGE_IO );
t=inb( PAGE_IO+1 );
t=(t & 0xf9) | 0x04;
outw( ((0x0023 + ROMCS*2) | (t << 8)), PAGE_IO );
}
static inline void elan_104nc_page(struct map_info *map, unsigned long ofs)
{
unsigned long page = ofs >> WINDOW_SHIFT;
if( page!=page_in_window ) {
int cmd1;
int cmd2;
cmd1=(page & 0x700) + 0x0833 + ROMCS*0x4000;
cmd2=((page & 0xff) << 8) + 0x0032;
outw( cmd1, PAGE_IO );
outw( cmd2, PAGE_IO );
page_in_window = page;
}
}
static map_word elan_104nc_read16(struct map_info *map, unsigned long ofs)
{
map_word ret;
spin_lock(&elan_104nc_spin);
elan_104nc_page(map, ofs);
ret.x[0] = readw(iomapadr + (ofs & WINDOW_MASK));
spin_unlock(&elan_104nc_spin);
return ret;
}
static void elan_104nc_copy_from(struct map_info *map, void *to, unsigned long from, ssize_t len)
{
while (len) {
unsigned long thislen = len;
if (len > (WINDOW_LENGTH - (from & WINDOW_MASK)))
thislen = WINDOW_LENGTH-(from & WINDOW_MASK);
spin_lock(&elan_104nc_spin);
elan_104nc_page(map, from);
memcpy_fromio(to, iomapadr + (from & WINDOW_MASK), thislen);
spin_unlock(&elan_104nc_spin);
to += thislen;
from += thislen;
len -= thislen;
}
}
static void elan_104nc_write16(struct map_info *map, map_word d, unsigned long adr)
{
spin_lock(&elan_104nc_spin);
elan_104nc_page(map, adr);
writew(d.x[0], iomapadr + (adr & WINDOW_MASK));
spin_unlock(&elan_104nc_spin);
}
static void elan_104nc_copy_to(struct map_info *map, unsigned long to, const void *from, ssize_t len)
{
while(len) {
unsigned long thislen = len;
if (len > (WINDOW_LENGTH - (to & WINDOW_MASK)))
thislen = WINDOW_LENGTH-(to & WINDOW_MASK);
spin_lock(&elan_104nc_spin);
elan_104nc_page(map, to);
memcpy_toio(iomapadr + (to & WINDOW_MASK), from, thislen);
spin_unlock(&elan_104nc_spin);
to += thislen;
from += thislen;
len -= thislen;
}
}
static struct map_info elan_104nc_map = {
.name = "ELAN-104NC flash",
.phys = NO_XIP,
.size = 8*1024*1024, /* this must be set to a maximum possible amount
of flash so the cfi probe routines find all
the chips */
.bankwidth = 2,
.read = elan_104nc_read16,
.copy_from = elan_104nc_copy_from,
.write = elan_104nc_write16,
.copy_to = elan_104nc_copy_to
};
/* MTD device for all of the flash. */
static struct mtd_info *all_mtd;
static void cleanup_elan_104nc(void)
{
if( all_mtd ) {
del_mtd_partitions( all_mtd );
map_destroy( all_mtd );
}
iounmap(iomapadr);
}
static int __init init_elan_104nc(void)
{
/* Urg! We use I/O port 0x22 without request_region()ing it,
because it's already allocated to the PIC. */
iomapadr = ioremap(WINDOW_START, WINDOW_LENGTH);
if (!iomapadr) {
printk( KERN_ERR"%s: failed to ioremap memory region\n",
elan_104nc_map.name );
return -EIO;
}
printk( KERN_INFO"%s: IO:0x%x-0x%x MEM:0x%x-0x%x\n",
elan_104nc_map.name,
PAGE_IO, PAGE_IO+PAGE_IO_SIZE-1,
WINDOW_START, WINDOW_START+WINDOW_LENGTH-1 );
elan_104nc_setup();
/* Probe for chip. */
all_mtd = do_map_probe("cfi_probe", &elan_104nc_map );
if( !all_mtd ) {
cleanup_elan_104nc();
return -ENXIO;
}
all_mtd->owner = THIS_MODULE;
/* Create MTD devices for each partition. */
add_mtd_partitions( all_mtd, partition_info, NUM_PARTITIONS );
return 0;
}
module_init(init_elan_104nc);
module_exit(cleanup_elan_104nc);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Arcom Control Systems Ltd.");
MODULE_DESCRIPTION("MTD map driver for Arcom Control Systems ELAN-104NC");

View file

@ -2,7 +2,7 @@
* ichxrom.c
*
* Normal mappings of chips in physical memory
* $Id: ichxrom.c,v 1.16 2004/11/28 09:40:39 dwmw2 Exp $
* $Id: ichxrom.c,v 1.18 2005/07/07 10:26:20 dwmw2 Exp $
*/
#include <linux/module.h>
@ -338,9 +338,9 @@ static struct pci_device_id ichxrom_pci_tbl[] __devinitdata = {
{ 0, },
};
#if 0
MODULE_DEVICE_TABLE(pci, ichxrom_pci_tbl);
#if 0
static struct pci_driver ichxrom_driver = {
.name = MOD_NAME,
.id_table = ichxrom_pci_tbl,
@ -366,7 +366,7 @@ static int __init init_ichxrom(void)
}
return -ENXIO;
#if 0
return pci_module_init(&ichxrom_driver);
return pci_register_driver(&ichxrom_driver);
#endif
}

View file

@ -1,5 +1,5 @@
/*
* $Id: ixp2000.c,v 1.5 2004/11/16 17:15:48 dsaxena Exp $
* $Id: ixp2000.c,v 1.6 2005/03/18 14:07:46 gleixner Exp $
*
* drivers/mtd/maps/ixp2000.c
*
@ -216,11 +216,6 @@ static int ixp2000_flash_probe(struct device *_dev)
goto Error;
}
/*
* Setup read mode for FLASH
*/
*IXP2000_SLOWPORT_FRM = 1;
#if defined(__ARMEB__)
/*
* Enable erratum 44 workaround for NPUs with broken slowport

View file

@ -0,0 +1,178 @@
/*
* $Id: $
*
* Map driver for the Mainstone developer platform.
*
* Author: Nicolas Pitre
* Copyright: (C) 2001 MontaVista Software Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/dma-mapping.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/map.h>
#include <linux/mtd/partitions.h>
#include <asm/io.h>
#include <asm/hardware.h>
#include <asm/arch/pxa-regs.h>
#include <asm/arch/mainstone.h>
#define ROM_ADDR 0x00000000
#define FLASH_ADDR 0x04000000
#define WINDOW_SIZE 0x04000000
static void mainstone_map_inval_cache(struct map_info *map, unsigned long from,
ssize_t len)
{
consistent_sync((char *)map->cached + from, len, DMA_FROM_DEVICE);
}
static struct map_info mainstone_maps[2] = { {
.size = WINDOW_SIZE,
.phys = PXA_CS0_PHYS,
.inval_cache = mainstone_map_inval_cache,
}, {
.size = WINDOW_SIZE,
.phys = PXA_CS1_PHYS,
.inval_cache = mainstone_map_inval_cache,
} };
static struct mtd_partition mainstone_partitions[] = {
{
.name = "Bootloader",
.size = 0x00040000,
.offset = 0,
.mask_flags = MTD_WRITEABLE /* force read-only */
},{
.name = "Kernel",
.size = 0x00400000,
.offset = 0x00040000,
},{
.name = "Filesystem",
.size = MTDPART_SIZ_FULL,
.offset = 0x00440000
}
};
static struct mtd_info *mymtds[2];
static struct mtd_partition *parsed_parts[2];
static int nr_parsed_parts[2];
static const char *probes[] = { "RedBoot", "cmdlinepart", NULL };
static int __init init_mainstone(void)
{
int SW7 = 0; /* FIXME: get from SCR (Mst doc section 3.2.1.1) */
int ret = 0, i;
mainstone_maps[0].bankwidth = (BOOT_DEF & 1) ? 2 : 4;
mainstone_maps[1].bankwidth = 4;
/* Compensate for SW7 which swaps the flash banks */
mainstone_maps[SW7].name = "processor flash";
mainstone_maps[SW7 ^ 1].name = "main board flash";
printk(KERN_NOTICE "Mainstone configured to boot from %s\n",
mainstone_maps[0].name);
for (i = 0; i < 2; i++) {
mainstone_maps[i].virt = ioremap(mainstone_maps[i].phys,
WINDOW_SIZE);
if (!mainstone_maps[i].virt) {
printk(KERN_WARNING "Failed to ioremap %s\n",
mainstone_maps[i].name);
if (!ret)
ret = -ENOMEM;
continue;
}
mainstone_maps[i].cached =
ioremap_cached(mainstone_maps[i].phys, WINDOW_SIZE);
if (!mainstone_maps[i].cached)
printk(KERN_WARNING "Failed to ioremap cached %s\n",
mainstone_maps[i].name);
simple_map_init(&mainstone_maps[i]);
printk(KERN_NOTICE
"Probing %s at physical address 0x%08lx"
" (%d-bit bankwidth)\n",
mainstone_maps[i].name, mainstone_maps[i].phys,
mainstone_maps[i].bankwidth * 8);
mymtds[i] = do_map_probe("cfi_probe", &mainstone_maps[i]);
if (!mymtds[i]) {
iounmap((void *)mainstone_maps[i].virt);
if (mainstone_maps[i].cached)
iounmap(mainstone_maps[i].cached);
if (!ret)
ret = -EIO;
continue;
}
mymtds[i]->owner = THIS_MODULE;
ret = parse_mtd_partitions(mymtds[i], probes,
&parsed_parts[i], 0);
if (ret > 0)
nr_parsed_parts[i] = ret;
}
if (!mymtds[0] && !mymtds[1])
return ret;
for (i = 0; i < 2; i++) {
if (!mymtds[i]) {
printk(KERN_WARNING "%s is absent. Skipping\n",
mainstone_maps[i].name);
} else if (nr_parsed_parts[i]) {
add_mtd_partitions(mymtds[i], parsed_parts[i],
nr_parsed_parts[i]);
} else if (!i) {
printk("Using static partitions on %s\n",
mainstone_maps[i].name);
add_mtd_partitions(mymtds[i], mainstone_partitions,
ARRAY_SIZE(mainstone_partitions));
} else {
printk("Registering %s as whole device\n",
mainstone_maps[i].name);
add_mtd_device(mymtds[i]);
}
}
return 0;
}
static void __exit cleanup_mainstone(void)
{
int i;
for (i = 0; i < 2; i++) {
if (!mymtds[i])
continue;
if (nr_parsed_parts[i] || !i)
del_mtd_partitions(mymtds[i]);
else
del_mtd_device(mymtds[i]);
map_destroy(mymtds[i]);
iounmap((void *)mainstone_maps[i].virt);
if (mainstone_maps[i].cached)
iounmap(mainstone_maps[i].cached);
kfree(parsed_parts[i]);
}
}
module_init(init_mainstone);
module_exit(cleanup_mainstone);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Nicolas Pitre <nico@cam.org>");
MODULE_DESCRIPTION("MTD map driver for Intel Mainstone");

View file

@ -1,5 +1,5 @@
/*
* $Id: map_funcs.c,v 1.9 2004/07/13 22:33:15 dwmw2 Exp $
* $Id: map_funcs.c,v 1.10 2005/06/06 23:04:36 tpoynor Exp $
*
* Out-of-line map I/O functions for simple maps when CONFIG_COMPLEX_MAPPINGS
* is enabled.
@ -9,23 +9,24 @@
#include <linux/module.h>
#include <linux/mtd/map.h>
#include <linux/mtd/xip.h>
static map_word simple_map_read(struct map_info *map, unsigned long ofs)
static map_word __xipram simple_map_read(struct map_info *map, unsigned long ofs)
{
return inline_map_read(map, ofs);
}
static void simple_map_write(struct map_info *map, const map_word datum, unsigned long ofs)
static void __xipram simple_map_write(struct map_info *map, const map_word datum, unsigned long ofs)
{
inline_map_write(map, datum, ofs);
}
static void simple_map_copy_from(struct map_info *map, void *to, unsigned long from, ssize_t len)
static void __xipram simple_map_copy_from(struct map_info *map, void *to, unsigned long from, ssize_t len)
{
inline_map_copy_from(map, to, from, len);
}
static void simple_map_copy_to(struct map_info *map, unsigned long to, const void *from, ssize_t len)
static void __xipram simple_map_copy_to(struct map_info *map, unsigned long to, const void *from, ssize_t len)
{
inline_map_copy_to(map, to, from, len);
}

179
drivers/mtd/maps/omap_nor.c Normal file
View file

@ -0,0 +1,179 @@
/*
* Flash memory support for various TI OMAP boards
*
* Copyright (C) 2001-2002 MontaVista Software Inc.
* Copyright (C) 2003-2004 Texas Instruments
* Copyright (C) 2004 Nokia Corporation
*
* Assembled using driver code copyright the companies above
* and written by David Brownell, Jian Zhang <jzhang@ti.com>,
* Tony Lindgren <tony@atomide.com> and others.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
* NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/device.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/map.h>
#include <linux/mtd/partitions.h>
#include <asm/io.h>
#include <asm/hardware.h>
#include <asm/mach-types.h>
#include <asm/mach/flash.h>
#include <asm/arch/tc.h>
#ifdef CONFIG_MTD_PARTITIONS
static const char *part_probes[] = { /* "RedBoot", */ "cmdlinepart", NULL };
#endif
struct omapflash_info {
struct mtd_partition *parts;
struct mtd_info *mtd;
struct map_info map;
};
static void omap_set_vpp(struct map_info *map, int enable)
{
static int count;
if (enable) {
if (count++ == 0)
OMAP_EMIFS_CONFIG_REG |= OMAP_EMIFS_CONFIG_WP;
} else {
if (count && (--count == 0))
OMAP_EMIFS_CONFIG_REG &= ~OMAP_EMIFS_CONFIG_WP;
}
}
static int __devinit omapflash_probe(struct device *dev)
{
int err;
struct omapflash_info *info;
struct platform_device *pdev = to_platform_device(dev);
struct flash_platform_data *pdata = pdev->dev.platform_data;
struct resource *res = pdev->resource;
unsigned long size = res->end - res->start + 1;
info = kmalloc(sizeof(struct omapflash_info), GFP_KERNEL);
if (!info)
return -ENOMEM;
memset(info, 0, sizeof(struct omapflash_info));
if (!request_mem_region(res->start, size, "flash")) {
err = -EBUSY;
goto out_free_info;
}
info->map.virt = ioremap(res->start, size);
if (!info->map.virt) {
err = -ENOMEM;
goto out_release_mem_region;
}
info->map.name = pdev->dev.bus_id;
info->map.phys = res->start;
info->map.size = size;
info->map.bankwidth = pdata->width;
info->map.set_vpp = omap_set_vpp;
simple_map_init(&info->map);
info->mtd = do_map_probe(pdata->map_name, &info->map);
if (!info->mtd) {
err = -EIO;
goto out_iounmap;
}
info->mtd->owner = THIS_MODULE;
#ifdef CONFIG_MTD_PARTITIONS
err = parse_mtd_partitions(info->mtd, part_probes, &info->parts, 0);
if (err > 0)
add_mtd_partitions(info->mtd, info->parts, err);
else if (err < 0 && pdata->parts)
add_mtd_partitions(info->mtd, pdata->parts, pdata->nr_parts);
else
#endif
add_mtd_device(info->mtd);
dev_set_drvdata(&pdev->dev, info);
return 0;
out_iounmap:
iounmap(info->map.virt);
out_release_mem_region:
release_mem_region(res->start, size);
out_free_info:
kfree(info);
return err;
}
static int __devexit omapflash_remove(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct omapflash_info *info = dev_get_drvdata(&pdev->dev);
dev_set_drvdata(&pdev->dev, NULL);
if (info) {
if (info->parts) {
del_mtd_partitions(info->mtd);
kfree(info->parts);
} else
del_mtd_device(info->mtd);
map_destroy(info->mtd);
release_mem_region(info->map.phys, info->map.size);
iounmap((void __iomem *) info->map.virt);
kfree(info);
}
return 0;
}
static struct device_driver omapflash_driver = {
.name = "omapflash",
.bus = &platform_bus_type,
.probe = omapflash_probe,
.remove = __devexit_p(omapflash_remove),
};
static int __init omapflash_init(void)
{
return driver_register(&omapflash_driver);
}
static void __exit omapflash_exit(void)
{
driver_unregister(&omapflash_driver);
}
module_init(omapflash_init);
module_exit(omapflash_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("MTD NOR map driver for TI OMAP boards");

View file

@ -1,203 +0,0 @@
/*
* Flash memory access on Alchemy Pb1550 board
*
* $Id: pb1550-flash.c,v 1.6 2004/11/04 13:24:15 gleixner Exp $
*
* (C) 2004 Embedded Edge, LLC, based on pb1550-flash.c:
* (C) 2003 Pete Popov <ppopov@pacbell.net>
*
*/
#include <linux/config.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/map.h>
#include <linux/mtd/partitions.h>
#include <asm/io.h>
#include <asm/au1000.h>
#include <asm/pb1550.h>
#ifdef DEBUG_RW
#define DBG(x...) printk(x)
#else
#define DBG(x...)
#endif
static unsigned long window_addr;
static unsigned long window_size;
static struct map_info pb1550_map = {
.name = "Pb1550 flash",
};
static unsigned char flash_bankwidth = 4;
/*
* Support only 64MB NOR Flash parts
*/
#ifdef PB1550_BOTH_BANKS
/* both banks will be used. Combine the first bank and the first
* part of the second bank together into a single jffs/jffs2
* partition.
*/
static struct mtd_partition pb1550_partitions[] = {
/* assume boot[2:0]:swap is '0000' or '1000', which translates to:
* 1C00 0000 1FFF FFFF CE0 64MB Boot NOR Flash
* 1800 0000 1BFF FFFF CE0 64MB Param NOR Flash
*/
{
.name = "User FS",
.size = (0x1FC00000 - 0x18000000),
.offset = 0x0000000
},{
.name = "yamon",
.size = 0x0100000,
.offset = MTDPART_OFS_APPEND,
.mask_flags = MTD_WRITEABLE
},{
.name = "raw kernel",
.size = (0x300000 - 0x40000), /* last 256KB is yamon env */
.offset = MTDPART_OFS_APPEND,
}
};
#elif defined(PB1550_BOOT_ONLY)
static struct mtd_partition pb1550_partitions[] = {
/* assume boot[2:0]:swap is '0000' or '1000', which translates to:
* 1C00 0000 1FFF FFFF CE0 64MB Boot NOR Flash
*/
{
.name = "User FS",
.size = 0x03c00000,
.offset = 0x0000000
},{
.name = "yamon",
.size = 0x0100000,
.offset = MTDPART_OFS_APPEND,
.mask_flags = MTD_WRITEABLE
},{
.name = "raw kernel",
.size = (0x300000-0x40000), /* last 256KB is yamon env */
.offset = MTDPART_OFS_APPEND,
}
};
#elif defined(PB1550_USER_ONLY)
static struct mtd_partition pb1550_partitions[] = {
/* assume boot[2:0]:swap is '0000' or '1000', which translates to:
* 1800 0000 1BFF FFFF CE0 64MB Param NOR Flash
*/
{
.name = "User FS",
.size = (0x4000000 - 0x200000), /* reserve 2MB for raw kernel */
.offset = 0x0000000
},{
.name = "raw kernel",
.size = MTDPART_SIZ_FULL,
.offset = MTDPART_OFS_APPEND,
}
};
#else
#error MTD_PB1550 define combo error /* should never happen */
#endif
#define NB_OF(x) (sizeof(x)/sizeof(x[0]))
static struct mtd_info *mymtd;
/*
* Probe the flash density and setup window address and size
* based on user CONFIG options. There are times when we don't
* want the MTD driver to be probing the boot or user flash,
* so having the option to enable only one bank is important.
*/
int setup_flash_params(void)
{
u16 boot_swapboot;
boot_swapboot = (au_readl(MEM_STSTAT) & (0x7<<1)) |
((bcsr->status >> 6) & 0x1);
printk("Pb1550 MTD: boot:swap %d\n", boot_swapboot);
switch (boot_swapboot) {
case 0: /* 512Mbit devices, both enabled */
case 1:
case 8:
case 9:
#if defined(PB1550_BOTH_BANKS)
window_addr = 0x18000000;
window_size = 0x8000000;
#elif defined(PB1550_BOOT_ONLY)
window_addr = 0x1C000000;
window_size = 0x4000000;
#else /* USER ONLY */
window_addr = 0x1E000000;
window_size = 0x4000000;
#endif
break;
case 0xC:
case 0xD:
case 0xE:
case 0xF:
/* 64 MB Boot NOR Flash is disabled */
/* and the start address is moved to 0x0C00000 */
window_addr = 0x0C000000;
window_size = 0x4000000;
default:
printk("Pb1550 MTD: unsupported boot:swap setting\n");
return 1;
}
return 0;
}
int __init pb1550_mtd_init(void)
{
struct mtd_partition *parts;
int nb_parts = 0;
/* Default flash bankwidth */
pb1550_map.bankwidth = flash_bankwidth;
if (setup_flash_params())
return -ENXIO;
/*
* Static partition definition selection
*/
parts = pb1550_partitions;
nb_parts = NB_OF(pb1550_partitions);
pb1550_map.size = window_size;
/*
* Now let's probe for the actual flash. Do it here since
* specific machine settings might have been set above.
*/
printk(KERN_NOTICE "Pb1550 flash: probing %d-bit flash bus\n",
pb1550_map.bankwidth*8);
pb1550_map.virt = ioremap(window_addr, window_size);
mymtd = do_map_probe("cfi_probe", &pb1550_map);
if (!mymtd) return -ENXIO;
mymtd->owner = THIS_MODULE;
add_mtd_partitions(mymtd, parts, nb_parts);
return 0;
}
static void __exit pb1550_mtd_cleanup(void)
{
if (mymtd) {
del_mtd_partitions(mymtd);
map_destroy(mymtd);
}
}
module_init(pb1550_mtd_init);
module_exit(pb1550_mtd_cleanup);
MODULE_AUTHOR("Embedded Edge, LLC");
MODULE_DESCRIPTION("Pb1550 mtd map driver");
MODULE_LICENSE("GPL");

View file

@ -1,178 +0,0 @@
/*
* Flash memory access on Alchemy Pb1xxx boards
*
* (C) 2001 Pete Popov <ppopov@mvista.com>
*
* $Id: pb1xxx-flash.c,v 1.14 2004/11/04 13:24:15 gleixner Exp $
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/map.h>
#include <linux/mtd/partitions.h>
#include <asm/io.h>
#ifdef DEBUG_RW
#define DBG(x...) printk(x)
#else
#define DBG(x...)
#endif
#ifdef CONFIG_MIPS_PB1000
#define WINDOW_ADDR 0x1F800000
#define WINDOW_SIZE 0x800000
static struct mtd_partition pb1xxx_partitions[] = {
{
.name = "yamon env",
.size = 0x00020000,
.offset = 0,
.mask_flags = MTD_WRITEABLE},
{
.name = "User FS",
.size = 0x003e0000,
.offset = 0x20000,},
{
.name = "boot code",
.size = 0x100000,
.offset = 0x400000,
.mask_flags = MTD_WRITEABLE},
{
.name = "raw/kernel",
.size = 0x300000,
.offset = 0x500000}
};
#elif defined(CONFIG_MIPS_PB1500) || defined(CONFIG_MIPS_PB1100)
#if defined(CONFIG_MTD_PB1500_BOOT) && defined(CONFIG_MTD_PB1500_USER)
/* both 32MB banks will be used. Combine the first 32MB bank and the
* first 28MB of the second bank together into a single jffs/jffs2
* partition.
*/
#define WINDOW_ADDR 0x1C000000
#define WINDOW_SIZE 0x4000000
static struct mtd_partition pb1xxx_partitions[] = {
{
.name = "User FS",
.size = 0x3c00000,
.offset = 0x0000000
},{
.name = "yamon",
.size = 0x0100000,
.offset = 0x3c00000,
.mask_flags = MTD_WRITEABLE
},{
.name = "raw kernel",
.size = 0x02c0000,
.offset = 0x3d00000
}
};
#elif defined(CONFIG_MTD_PB1500_BOOT) && !defined(CONFIG_MTD_PB1500_USER)
#define WINDOW_ADDR 0x1E000000
#define WINDOW_SIZE 0x2000000
static struct mtd_partition pb1xxx_partitions[] = {
{
.name = "User FS",
.size = 0x1c00000,
.offset = 0x0000000
},{
.name = "yamon",
.size = 0x0100000,
.offset = 0x1c00000,
.mask_flags = MTD_WRITEABLE
},{
.name = "raw kernel",
.size = 0x02c0000,
.offset = 0x1d00000
}
};
#elif !defined(CONFIG_MTD_PB1500_BOOT) && defined(CONFIG_MTD_PB1500_USER)
#define WINDOW_ADDR 0x1C000000
#define WINDOW_SIZE 0x2000000
static struct mtd_partition pb1xxx_partitions[] = {
{
.name = "User FS",
.size = 0x1e00000,
.offset = 0x0000000
},{
.name = "raw kernel",
.size = 0x0200000,
.offset = 0x1e00000,
}
};
#else
#error MTD_PB1500 define combo error /* should never happen */
#endif
#else
#error Unsupported board
#endif
#define NAME "Pb1x00 Linux Flash"
#define PADDR WINDOW_ADDR
#define BUSWIDTH 4
#define SIZE WINDOW_SIZE
#define PARTITIONS 4
static struct map_info pb1xxx_mtd_map = {
.name = NAME,
.size = SIZE,
.bankwidth = BUSWIDTH,
.phys = PADDR,
};
static struct mtd_info *pb1xxx_mtd;
int __init pb1xxx_mtd_init(void)
{
struct mtd_partition *parts;
int nb_parts = 0;
char *part_type;
/*
* Static partition definition selection
*/
part_type = "static";
parts = pb1xxx_partitions;
nb_parts = ARRAY_SIZE(pb1xxx_partitions);
/*
* Now let's probe for the actual flash. Do it here since
* specific machine settings might have been set above.
*/
printk(KERN_NOTICE "Pb1xxx flash: probing %d-bit flash bus\n",
BUSWIDTH*8);
pb1xxx_mtd_map.virt = ioremap(WINDOW_ADDR, WINDOW_SIZE);
simple_map_init(&pb1xxx_mtd_map);
pb1xxx_mtd = do_map_probe("cfi_probe", &pb1xxx_mtd_map);
if (!pb1xxx_mtd) return -ENXIO;
pb1xxx_mtd->owner = THIS_MODULE;
add_mtd_partitions(pb1xxx_mtd, parts, nb_parts);
return 0;
}
static void __exit pb1xxx_mtd_cleanup(void)
{
if (pb1xxx_mtd) {
del_mtd_partitions(pb1xxx_mtd);
map_destroy(pb1xxx_mtd);
iounmap((void *) pb1xxx_mtd_map.virt);
}
}
module_init(pb1xxx_mtd_init);
module_exit(pb1xxx_mtd_cleanup);
MODULE_AUTHOR("Pete Popov");
MODULE_DESCRIPTION("Pb1xxx CFI map driver");
MODULE_LICENSE("GPL");

View file

@ -7,7 +7,7 @@
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* $Id: pci.c,v 1.9 2004/11/28 09:40:40 dwmw2 Exp $
* $Id: pci.c,v 1.10 2005/03/18 14:04:35 gleixner Exp $
*
* Generic PCI memory map driver. We support the following boards:
* - Intel IQ80310 ATU.
@ -370,7 +370,7 @@ static struct pci_driver mtd_pci_driver = {
static int __init mtd_pci_maps_init(void)
{
return pci_module_init(&mtd_pci_driver);
return pci_register_driver(&mtd_pci_driver);
}
static void __exit mtd_pci_maps_exit(void)

278
drivers/mtd/maps/plat-ram.c Normal file
View file

@ -0,0 +1,278 @@
/* drivers/mtd/maps/plat-ram.c
*
* (c) 2004-2005 Simtec Electronics
* http://www.simtec.co.uk/products/SWLINUX/
* Ben Dooks <ben@simtec.co.uk>
*
* Generic platfrom device based RAM map
*
* $Id: plat-ram.c,v 1.3 2005/03/19 22:41:27 gleixner Exp $
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/ioport.h>
#include <linux/device.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/map.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/plat-ram.h>
#include <asm/io.h>
/* private structure for each mtd platform ram device created */
struct platram_info {
struct device *dev;
struct mtd_info *mtd;
struct map_info map;
struct mtd_partition *partitions;
struct resource *area;
struct platdata_mtd_ram *pdata;
};
/* to_platram_info()
*
* device private data to struct platram_info conversion
*/
static inline struct platram_info *to_platram_info(struct device *dev)
{
return (struct platram_info *)dev_get_drvdata(dev);
}
/* platram_setrw
*
* call the platform device's set rw/ro control
*
* to = 0 => read-only
* = 1 => read-write
*/
static inline void platram_setrw(struct platram_info *info, int to)
{
if (info->pdata == NULL)
return;
if (info->pdata->set_rw != NULL)
(info->pdata->set_rw)(info->dev, to);
}
/* platram_remove
*
* called to remove the device from the driver's control
*/
static int platram_remove(struct device *dev)
{
struct platram_info *info = to_platram_info(dev);
dev_set_drvdata(dev, NULL);
dev_dbg(dev, "removing device\n");
if (info == NULL)
return 0;
if (info->mtd) {
#ifdef CONFIG_MTD_PARTITIONS
if (info->partitions) {
del_mtd_partitions(info->mtd);
kfree(info->partitions);
}
#endif
del_mtd_device(info->mtd);
map_destroy(info->mtd);
}
/* ensure ram is left read-only */
platram_setrw(info, PLATRAM_RO);
/* release resources */
if (info->area) {
release_resource(info->area);
kfree(info->area);
}
if (info->map.virt != NULL)
iounmap(info->map.virt);
kfree(info);
return 0;
}
/* platram_probe
*
* called from device drive system when a device matching our
* driver is found.
*/
static int platram_probe(struct device *dev)
{
struct platform_device *pd = to_platform_device(dev);
struct platdata_mtd_ram *pdata;
struct platram_info *info;
struct resource *res;
int err = 0;
dev_dbg(dev, "probe entered\n");
if (dev->platform_data == NULL) {
dev_err(dev, "no platform data supplied\n");
err = -ENOENT;
goto exit_error;
}
pdata = dev->platform_data;
info = kmalloc(sizeof(*info), GFP_KERNEL);
if (info == NULL) {
dev_err(dev, "no memory for flash info\n");
err = -ENOMEM;
goto exit_error;
}
memset(info, 0, sizeof(*info));
dev_set_drvdata(dev, info);
info->dev = dev;
info->pdata = pdata;
/* get the resource for the memory mapping */
res = platform_get_resource(pd, IORESOURCE_MEM, 0);
if (res == NULL) {
dev_err(dev, "no memory resource specified\n");
err = -ENOENT;
goto exit_free;
}
dev_dbg(dev, "got platform resource %p (0x%lx)\n", res, res->start);
/* setup map parameters */
info->map.phys = res->start;
info->map.size = (res->end - res->start) + 1;
info->map.name = pdata->mapname != NULL ? pdata->mapname : pd->name;
info->map.bankwidth = pdata->bankwidth;
/* register our usage of the memory area */
info->area = request_mem_region(res->start, info->map.size, pd->name);
if (info->area == NULL) {
dev_err(dev, "failed to request memory region\n");
err = -EIO;
goto exit_free;
}
/* remap the memory area */
info->map.virt = ioremap(res->start, info->map.size);
dev_dbg(dev, "virt %p, %lu bytes\n", info->map.virt, info->map.size);
if (info->map.virt == NULL) {
dev_err(dev, "failed to ioremap() region\n");
err = -EIO;
goto exit_free;
}
simple_map_init(&info->map);
dev_dbg(dev, "initialised map, probing for mtd\n");
/* probe for the right mtd map driver */
info->mtd = do_map_probe("map_ram" , &info->map);
if (info->mtd == NULL) {
dev_err(dev, "failed to probe for map_ram\n");
err = -ENOMEM;
goto exit_free;
}
info->mtd->owner = THIS_MODULE;
platram_setrw(info, PLATRAM_RW);
/* check to see if there are any available partitions, or wether
* to add this device whole */
#ifdef CONFIG_MTD_PARTITIONS
if (pdata->nr_partitions > 0) {
const char **probes = { NULL };
if (pdata->probes)
probes = (const char **)pdata->probes;
err = parse_mtd_partitions(info->mtd, probes,
&info->partitions, 0);
if (err > 0) {
err = add_mtd_partitions(info->mtd, info->partitions,
err);
}
}
#endif /* CONFIG_MTD_PARTITIONS */
if (add_mtd_device(info->mtd)) {
dev_err(dev, "add_mtd_device() failed\n");
err = -ENOMEM;
}
dev_info(dev, "registered mtd device\n");
return err;
exit_free:
platram_remove(dev);
exit_error:
return err;
}
/* device driver info */
static struct device_driver platram_driver = {
.name = "mtd-ram",
.bus = &platform_bus_type,
.probe = platram_probe,
.remove = platram_remove,
};
/* module init/exit */
static int __init platram_init(void)
{
printk("Generic platform RAM MTD, (c) 2004 Simtec Electronics\n");
return driver_register(&platram_driver);
}
static void __exit platram_exit(void)
{
driver_unregister(&platram_driver);
}
module_init(platram_init);
module_exit(platram_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
MODULE_DESCRIPTION("MTD platform RAM map driver");

View file

@ -1,6 +1,6 @@
/*
* MTD map driver for BIOS Flash on Intel SCB2 boards
* $Id: scb2_flash.c,v 1.11 2004/11/28 09:40:40 dwmw2 Exp $
* $Id: scb2_flash.c,v 1.12 2005/03/18 14:04:35 gleixner Exp $
* Copyright (C) 2002 Sun Microsystems, Inc.
* Tim Hockin <thockin@sun.com>
*
@ -238,7 +238,7 @@ static struct pci_driver scb2_flash_driver = {
static int __init
scb2_flash_init(void)
{
return pci_module_init(&scb2_flash_driver);
return pci_register_driver(&scb2_flash_driver);
}
static void __exit

View file

@ -4,7 +4,7 @@
* Copyright (C) 2001 Lineo Japan, Inc.
* Copyright (C) 2002 SHARP
*
* $Id: sharpsl-flash.c,v 1.2 2004/11/24 20:38:06 rpurdie Exp $
* $Id: sharpsl-flash.c,v 1.5 2005/03/21 08:42:11 rpurdie Exp $
*
* based on rpxlite.c,v 1.15 2001/10/02 15:05:14 dwmw2 Exp
* Handle mapping of the flash on the RPX Lite and CLLF boards
@ -24,13 +24,14 @@
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <asm/io.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/map.h>
#include <linux/mtd/partitions.h>
#include <asm/io.h>
#include <asm/mach-types.h>
#define WINDOW_ADDR 0x00000000
#define WINDOW_SIZE 0x01000000
#define WINDOW_SIZE 0x00800000
#define BANK_WIDTH 2
static struct mtd_info *mymtd;
@ -44,9 +45,7 @@ struct map_info sharpsl_map = {
static struct mtd_partition sharpsl_partitions[1] = {
{
name: "Filesystem",
size: 0x006d0000,
offset: 0x00120000
name: "Boot PROM Filesystem",
}
};
@ -58,12 +57,16 @@ int __init init_sharpsl(void)
int nb_parts = 0;
char *part_type = "static";
printk(KERN_NOTICE "Sharp SL series flash device: %x at %x\n", WINDOW_SIZE, WINDOW_ADDR);
printk(KERN_NOTICE "Sharp SL series flash device: %x at %x\n",
WINDOW_SIZE, WINDOW_ADDR);
sharpsl_map.virt = ioremap(WINDOW_ADDR, WINDOW_SIZE);
if (!sharpsl_map.virt) {
printk("Failed to ioremap\n");
return -EIO;
}
simple_map_init(&sharpsl_map);
mymtd = do_map_probe("map_rom", &sharpsl_map);
if (!mymtd) {
iounmap(sharpsl_map.virt);
@ -72,6 +75,22 @@ int __init init_sharpsl(void)
mymtd->owner = THIS_MODULE;
if (machine_is_corgi() || machine_is_shepherd() || machine_is_husky()
|| machine_is_poodle()) {
sharpsl_partitions[0].size=0x006d0000;
sharpsl_partitions[0].offset=0x00120000;
} else if (machine_is_tosa()) {
sharpsl_partitions[0].size=0x006a0000;
sharpsl_partitions[0].offset=0x00160000;
} else if (machine_is_spitz()) {
sharpsl_partitions[0].size=0x006b0000;
sharpsl_partitions[0].offset=0x00140000;
} else {
map_destroy(mymtd);
iounmap(sharpsl_map.virt);
return -ENODEV;
}
parts = sharpsl_partitions;
nb_parts = NB_OF(sharpsl_partitions);

View file

@ -1,5 +1,5 @@
/*
* $Id: mtdchar.c,v 1.66 2005/01/05 18:05:11 dwmw2 Exp $
* $Id: mtdchar.c,v 1.73 2005/07/04 17:36:41 gleixner Exp $
*
* Character-device access to raw MTD devices.
*
@ -15,27 +15,30 @@
#include <linux/fs.h>
#include <asm/uaccess.h>
#ifdef CONFIG_DEVFS_FS
#include <linux/devfs_fs_kernel.h>
#include <linux/device.h>
static struct class *mtd_class;
static void mtd_notify_add(struct mtd_info* mtd)
{
if (!mtd)
return;
devfs_mk_cdev(MKDEV(MTD_CHAR_MAJOR, mtd->index*2),
S_IFCHR | S_IRUGO | S_IWUGO, "mtd/%d", mtd->index);
devfs_mk_cdev(MKDEV(MTD_CHAR_MAJOR, mtd->index*2+1),
S_IFCHR | S_IRUGO, "mtd/%dro", mtd->index);
class_device_create(mtd_class, MKDEV(MTD_CHAR_MAJOR, mtd->index*2),
NULL, "mtd%d", mtd->index);
class_device_create(mtd_class,
MKDEV(MTD_CHAR_MAJOR, mtd->index*2+1),
NULL, "mtd%dro", mtd->index);
}
static void mtd_notify_remove(struct mtd_info* mtd)
{
if (!mtd)
return;
devfs_remove("mtd/%d", mtd->index);
devfs_remove("mtd/%dro", mtd->index);
class_device_destroy(mtd_class, MKDEV(MTD_CHAR_MAJOR, mtd->index*2));
class_device_destroy(mtd_class, MKDEV(MTD_CHAR_MAJOR, mtd->index*2+1));
}
static struct mtd_notifier notifier = {
@ -43,25 +46,25 @@ static struct mtd_notifier notifier = {
.remove = mtd_notify_remove,
};
static inline void mtdchar_devfs_init(void)
{
devfs_mk_dir("mtd");
register_mtd_user(&notifier);
}
/*
* We use file->private_data to store a pointer to the MTDdevice.
* Since alighment is at least 32 bits, we have 2 bits free for OTP
* modes as well.
*/
static inline void mtdchar_devfs_exit(void)
{
unregister_mtd_user(&notifier);
devfs_remove("mtd");
}
#else /* !DEVFS */
#define mtdchar_devfs_init() do { } while(0)
#define mtdchar_devfs_exit() do { } while(0)
#endif
#define TO_MTD(file) (struct mtd_info *)((long)((file)->private_data) & ~3L)
#define MTD_MODE_OTP_FACT 1
#define MTD_MODE_OTP_USER 2
#define MTD_MODE(file) ((long)((file)->private_data) & 3)
#define SET_MTD_MODE(file, mode) \
do { long __p = (long)((file)->private_data); \
(file)->private_data = (void *)((__p & ~3L) | mode); } while (0)
static loff_t mtd_lseek (struct file *file, loff_t offset, int orig)
{
struct mtd_info *mtd = file->private_data;
struct mtd_info *mtd = TO_MTD(file);
switch (orig) {
case 0:
@ -134,7 +137,7 @@ static int mtd_close(struct inode *inode, struct file *file)
DEBUG(MTD_DEBUG_LEVEL0, "MTD_close\n");
mtd = file->private_data;
mtd = TO_MTD(file);
if (mtd->sync)
mtd->sync(mtd);
@ -151,7 +154,7 @@ static int mtd_close(struct inode *inode, struct file *file)
static ssize_t mtd_read(struct file *file, char __user *buf, size_t count,loff_t *ppos)
{
struct mtd_info *mtd = file->private_data;
struct mtd_info *mtd = TO_MTD(file);
size_t retlen=0;
size_t total_retlen=0;
int ret=0;
@ -178,7 +181,16 @@ static ssize_t mtd_read(struct file *file, char __user *buf, size_t count,loff_t
if (!kbuf)
return -ENOMEM;
ret = MTD_READ(mtd, *ppos, len, &retlen, kbuf);
switch (MTD_MODE(file)) {
case MTD_MODE_OTP_FACT:
ret = mtd->read_fact_prot_reg(mtd, *ppos, len, &retlen, kbuf);
break;
case MTD_MODE_OTP_USER:
ret = mtd->read_user_prot_reg(mtd, *ppos, len, &retlen, kbuf);
break;
default:
ret = MTD_READ(mtd, *ppos, len, &retlen, kbuf);
}
/* Nand returns -EBADMSG on ecc errors, but it returns
* the data. For our userspace tools it is important
* to dump areas with ecc errors !
@ -196,6 +208,8 @@ static ssize_t mtd_read(struct file *file, char __user *buf, size_t count,loff_t
count -= retlen;
buf += retlen;
if (retlen == 0)
count = 0;
}
else {
kfree(kbuf);
@ -210,7 +224,7 @@ static ssize_t mtd_read(struct file *file, char __user *buf, size_t count,loff_t
static ssize_t mtd_write(struct file *file, const char __user *buf, size_t count,loff_t *ppos)
{
struct mtd_info *mtd = file->private_data;
struct mtd_info *mtd = TO_MTD(file);
char *kbuf;
size_t retlen;
size_t total_retlen=0;
@ -245,7 +259,20 @@ static ssize_t mtd_write(struct file *file, const char __user *buf, size_t count
return -EFAULT;
}
ret = (*(mtd->write))(mtd, *ppos, len, &retlen, kbuf);
switch (MTD_MODE(file)) {
case MTD_MODE_OTP_FACT:
ret = -EROFS;
break;
case MTD_MODE_OTP_USER:
if (!mtd->write_user_prot_reg) {
ret = -EOPNOTSUPP;
break;
}
ret = mtd->write_user_prot_reg(mtd, *ppos, len, &retlen, kbuf);
break;
default:
ret = (*(mtd->write))(mtd, *ppos, len, &retlen, kbuf);
}
if (!ret) {
*ppos += retlen;
total_retlen += retlen;
@ -276,7 +303,7 @@ static void mtdchar_erase_callback (struct erase_info *instr)
static int mtd_ioctl(struct inode *inode, struct file *file,
u_int cmd, u_long arg)
{
struct mtd_info *mtd = file->private_data;
struct mtd_info *mtd = TO_MTD(file);
void __user *argp = (void __user *)arg;
int ret = 0;
u_long size;
@ -518,6 +545,80 @@ static int mtd_ioctl(struct inode *inode, struct file *file,
break;
}
#ifdef CONFIG_MTD_OTP
case OTPSELECT:
{
int mode;
if (copy_from_user(&mode, argp, sizeof(int)))
return -EFAULT;
SET_MTD_MODE(file, 0);
switch (mode) {
case MTD_OTP_FACTORY:
if (!mtd->read_fact_prot_reg)
ret = -EOPNOTSUPP;
else
SET_MTD_MODE(file, MTD_MODE_OTP_FACT);
break;
case MTD_OTP_USER:
if (!mtd->read_fact_prot_reg)
ret = -EOPNOTSUPP;
else
SET_MTD_MODE(file, MTD_MODE_OTP_USER);
break;
default:
ret = -EINVAL;
case MTD_OTP_OFF:
break;
}
file->f_pos = 0;
break;
}
case OTPGETREGIONCOUNT:
case OTPGETREGIONINFO:
{
struct otp_info *buf = kmalloc(4096, GFP_KERNEL);
if (!buf)
return -ENOMEM;
ret = -EOPNOTSUPP;
switch (MTD_MODE(file)) {
case MTD_MODE_OTP_FACT:
if (mtd->get_fact_prot_info)
ret = mtd->get_fact_prot_info(mtd, buf, 4096);
break;
case MTD_MODE_OTP_USER:
if (mtd->get_user_prot_info)
ret = mtd->get_user_prot_info(mtd, buf, 4096);
break;
}
if (ret >= 0) {
if (cmd == OTPGETREGIONCOUNT) {
int nbr = ret / sizeof(struct otp_info);
ret = copy_to_user(argp, &nbr, sizeof(int));
} else
ret = copy_to_user(argp, buf, ret);
if (ret)
ret = -EFAULT;
}
kfree(buf);
break;
}
case OTPLOCK:
{
struct otp_info info;
if (MTD_MODE(file) != MTD_MODE_OTP_USER)
return -EINVAL;
if (copy_from_user(&info, argp, sizeof(info)))
return -EFAULT;
if (!mtd->lock_user_prot_reg)
return -EOPNOTSUPP;
ret = mtd->lock_user_prot_reg(mtd, info.start, info.length);
break;
}
#endif
default:
ret = -ENOTTY;
}
@ -543,13 +644,22 @@ static int __init init_mtdchar(void)
return -EAGAIN;
}
mtdchar_devfs_init();
mtd_class = class_create(THIS_MODULE, "mtd");
if (IS_ERR(mtd_class)) {
printk(KERN_ERR "Error creating mtd class.\n");
unregister_chrdev(MTD_CHAR_MAJOR, "mtd");
return PTR_ERR(mtd_class);
}
register_mtd_user(&notifier);
return 0;
}
static void __exit cleanup_mtdchar(void)
{
mtdchar_devfs_exit();
unregister_mtd_user(&notifier);
class_destroy(mtd_class);
unregister_chrdev(MTD_CHAR_MAJOR, "mtd");
}

View file

@ -1,5 +1,5 @@
/*
* $Id: mtdcore.c,v 1.44 2004/11/16 18:28:59 dwmw2 Exp $
* $Id: mtdcore.c,v 1.45 2005/02/18 14:34:50 dedekind Exp $
*
* Core registration and callback routines for MTD
* drivers and users.
@ -149,8 +149,8 @@ void register_mtd_user (struct mtd_notifier *new)
}
/**
* register_mtd_user - unregister a 'user' of MTD devices.
* @new: pointer to notifier info structure
* unregister_mtd_user - unregister a 'user' of MTD devices.
* @old: pointer to notifier info structure
*
* Removes a callback function pair from the list of 'users' to be
* notified upon addition or removal of MTD devices. Causes the

View file

@ -5,7 +5,7 @@
*
* This code is GPL
*
* $Id: mtdpart.c,v 1.51 2004/11/16 18:28:59 dwmw2 Exp $
* $Id: mtdpart.c,v 1.53 2005/02/08 17:11:13 nico Exp $
*
* 02-21-2002 Thomas Gleixner <gleixner@autronix.de>
* added support for read_oob, write_oob
@ -116,6 +116,13 @@ static int part_read_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t le
len, retlen, buf);
}
static int part_get_user_prot_info (struct mtd_info *mtd,
struct otp_info *buf, size_t len)
{
struct mtd_part *part = PART(mtd);
return part->master->get_user_prot_info (part->master, buf, len);
}
static int part_read_fact_prot_reg (struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf)
{
@ -124,6 +131,13 @@ static int part_read_fact_prot_reg (struct mtd_info *mtd, loff_t from, size_t le
len, retlen, buf);
}
static int part_get_fact_prot_info (struct mtd_info *mtd,
struct otp_info *buf, size_t len)
{
struct mtd_part *part = PART(mtd);
return part->master->get_fact_prot_info (part->master, buf, len);
}
static int part_write (struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
{
@ -182,6 +196,12 @@ static int part_write_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t l
len, retlen, buf);
}
static int part_lock_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len)
{
struct mtd_part *part = PART(mtd);
return part->master->lock_user_prot_reg (part->master, from, len);
}
static int part_writev (struct mtd_info *mtd, const struct kvec *vecs,
unsigned long count, loff_t to, size_t *retlen)
{
@ -409,6 +429,12 @@ int add_mtd_partitions(struct mtd_info *master,
slave->mtd.read_fact_prot_reg = part_read_fact_prot_reg;
if(master->write_user_prot_reg)
slave->mtd.write_user_prot_reg = part_write_user_prot_reg;
if(master->lock_user_prot_reg)
slave->mtd.lock_user_prot_reg = part_lock_user_prot_reg;
if(master->get_user_prot_info)
slave->mtd.get_user_prot_info = part_get_user_prot_info;
if(master->get_fact_prot_info)
slave->mtd.get_fact_prot_info = part_get_fact_prot_info;
if (master->sync)
slave->mtd.sync = part_sync;
if (!i && master->suspend && master->resume) {

View file

@ -1,5 +1,5 @@
# drivers/mtd/nand/Kconfig
# $Id: Kconfig,v 1.26 2005/01/05 12:42:24 dwmw2 Exp $
# $Id: Kconfig,v 1.31 2005/06/20 12:03:21 bjd Exp $
menu "NAND Flash Device Drivers"
depends on MTD!=n
@ -58,20 +58,6 @@ config MTD_NAND_TOTO
config MTD_NAND_IDS
tristate
config MTD_NAND_TX4925NDFMC
tristate "SmartMedia Card on Toshiba RBTX4925 reference board"
depends on TOSHIBA_RBTX4925 && MTD_NAND && TOSHIBA_RBTX4925_MPLEX_NAND
help
This enables the driver for the NAND flash device found on the
Toshiba RBTX4925 reference board, which is a SmartMediaCard.
config MTD_NAND_TX4938NDFMC
tristate "NAND Flash device on Toshiba RBTX4938 reference board"
depends on TOSHIBA_RBTX4938 && MTD_NAND && TOSHIBA_RBTX4938_MPLEX_NAND
help
This enables the driver for the NAND flash device found on the
Toshiba RBTX4938 reference board.
config MTD_NAND_AU1550
tristate "Au1550 NAND support"
depends on SOC_AU1550 && MTD_NAND
@ -95,10 +81,11 @@ config MTD_NAND_PPCHAMELEONEVB
This enables the NAND flash driver on the PPChameleon EVB Board.
config MTD_NAND_S3C2410
tristate "NAND Flash support for S3C2410 SoC"
tristate "NAND Flash support for S3C2410/S3C2440 SoC"
depends on ARCH_S3C2410 && MTD_NAND
help
This enables the NAND flash controller on the S3C2410.
This enables the NAND flash controller on the S3C2410 and S3C2440
SoCs
No board specfic support is done by this driver, each board
must advertise a platform_device for the driver to attach.

View file

@ -10,8 +10,6 @@ obj-$(CONFIG_MTD_NAND_SPIA) += spia.o
obj-$(CONFIG_MTD_NAND_TOTO) += toto.o
obj-$(CONFIG_MTD_NAND_AUTCPU12) += autcpu12.o
obj-$(CONFIG_MTD_NAND_EDB7312) += edb7312.o
obj-$(CONFIG_MTD_NAND_TX4925NDFMC) += tx4925ndfmc.o
obj-$(CONFIG_MTD_NAND_TX4938NDFMC) += tx4938ndfmc.o
obj-$(CONFIG_MTD_NAND_AU1550) += au1550nd.o
obj-$(CONFIG_MTD_NAND_PPCHAMELEONEVB) += ppchameleonevb.o
obj-$(CONFIG_MTD_NAND_S3C2410) += s3c2410.o

View file

@ -16,7 +16,7 @@
*
* Interface to generic NAND code for M-Systems DiskOnChip devices
*
* $Id: diskonchip.c,v 1.45 2005/01/05 18:05:14 dwmw2 Exp $
* $Id: diskonchip.c,v 1.54 2005/04/07 14:22:55 dbrown Exp $
*/
#include <linux/kernel.h>
@ -35,13 +35,13 @@
#include <linux/mtd/inftl.h>
/* Where to look for the devices? */
#ifndef CONFIG_MTD_DISKONCHIP_PROBE_ADDRESS
#define CONFIG_MTD_DISKONCHIP_PROBE_ADDRESS 0
#ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
#define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0
#endif
static unsigned long __initdata doc_locations[] = {
#if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
#ifdef CONFIG_MTD_DISKONCHIP_PROBE_HIGH
#ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH
0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
@ -81,11 +81,6 @@ struct doc_priv {
struct mtd_info *nextdoc;
};
/* Max number of eraseblocks to scan (from start of device) for the (I)NFTL
MediaHeader. The spec says to just keep going, I think, but that's just
silly. */
#define MAX_MEDIAHEADER_SCAN 8
/* This is the syndrome computed by the HW ecc generator upon reading an empty
page, one with all 0xff for data and stored ecc code. */
static u_char empty_read_syndrome[6] = { 0x26, 0xff, 0x6d, 0x47, 0x73, 0x7a };
@ -111,10 +106,11 @@ module_param(try_dword, int, 0);
static int no_ecc_failures=0;
module_param(no_ecc_failures, int, 0);
#ifdef CONFIG_MTD_PARTITIONS
static int no_autopart=0;
module_param(no_autopart, int, 0);
#endif
static int show_firmware_partition=0;
module_param(show_firmware_partition, int, 0);
#ifdef MTD_NAND_DISKONCHIP_BBTWRITE
static int inftl_bbt_write=1;
@ -123,7 +119,7 @@ static int inftl_bbt_write=0;
#endif
module_param(inftl_bbt_write, int, 0);
static unsigned long doc_config_location = CONFIG_MTD_DISKONCHIP_PROBE_ADDRESS;
static unsigned long doc_config_location = CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS;
module_param(doc_config_location, ulong, 0);
MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip");
@ -410,7 +406,12 @@ static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr)
doc200x_hwcontrol(mtd, NAND_CTL_SETALE);
this->write_byte(mtd, 0);
doc200x_hwcontrol(mtd, NAND_CTL_CLRALE);
/* We cant' use dev_ready here, but at least we wait for the
* command to complete
*/
udelay(50);
ret = this->read_byte(mtd) << 8;
ret |= this->read_byte(mtd);
@ -429,6 +430,8 @@ static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr)
doc2000_write_byte(mtd, 0);
doc200x_hwcontrol(mtd, NAND_CTL_CLRALE);
udelay(50);
ident.dword = readl(docptr + DoC_2k_CDSN_IO);
if (((ident.byte[0] << 8) | ident.byte[1]) == ret) {
printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n");
@ -1046,11 +1049,21 @@ static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_
//u_char mydatabuf[528];
/* The strange out-of-order .oobfree list below is a (possibly unneeded)
* attempt to retain compatibility. It used to read:
* .oobfree = { {8, 8} }
* Since that leaves two bytes unusable, it was changed. But the following
* scheme might affect existing jffs2 installs by moving the cleanmarker:
* .oobfree = { {6, 10} }
* jffs2 seems to handle the above gracefully, but the current scheme seems
* safer. The only problem with it is that any code that parses oobfree must
* be able to handle out-of-order segments.
*/
static struct nand_oobinfo doc200x_oobinfo = {
.useecc = MTD_NANDECC_AUTOPLACE,
.eccbytes = 6,
.eccpos = {0, 1, 2, 3, 4, 5},
.oobfree = { {8, 8} }
.oobfree = { {8, 8}, {6, 2} }
};
/* Find the (I)NFTL Media Header, and optionally also the mirror media header.
@ -1064,12 +1077,11 @@ static int __init find_media_headers(struct mtd_info *mtd, u_char *buf,
{
struct nand_chip *this = mtd->priv;
struct doc_priv *doc = this->priv;
unsigned offs, end = (MAX_MEDIAHEADER_SCAN << this->phys_erase_shift);
unsigned offs;
int ret;
size_t retlen;
end = min(end, mtd->size); // paranoia
for (offs = 0; offs < end; offs += mtd->erasesize) {
for (offs = 0; offs < mtd->size; offs += mtd->erasesize) {
ret = mtd->read(mtd, offs, mtd->oobblock, &retlen, buf);
if (retlen != mtd->oobblock) continue;
if (ret) {
@ -1111,6 +1123,7 @@ static inline int __init nftl_partscan(struct mtd_info *mtd,
u_char *buf;
struct NFTLMediaHeader *mh;
const unsigned psize = 1 << this->page_shift;
int numparts = 0;
unsigned blocks, maxblocks;
int offs, numheaders;
@ -1122,8 +1135,10 @@ static inline int __init nftl_partscan(struct mtd_info *mtd,
if (!(numheaders=find_media_headers(mtd, buf, "ANAND", 1))) goto out;
mh = (struct NFTLMediaHeader *) buf;
//#ifdef CONFIG_MTD_DEBUG_VERBOSE
// if (CONFIG_MTD_DEBUG_VERBOSE >= 2)
mh->NumEraseUnits = le16_to_cpu(mh->NumEraseUnits);
mh->FirstPhysicalEUN = le16_to_cpu(mh->FirstPhysicalEUN);
mh->FormattedSize = le32_to_cpu(mh->FormattedSize);
printk(KERN_INFO " DataOrgID = %s\n"
" NumEraseUnits = %d\n"
" FirstPhysicalEUN = %d\n"
@ -1132,7 +1147,6 @@ static inline int __init nftl_partscan(struct mtd_info *mtd,
mh->DataOrgID, mh->NumEraseUnits,
mh->FirstPhysicalEUN, mh->FormattedSize,
mh->UnitSizeFactor);
//#endif
blocks = mtd->size >> this->phys_erase_shift;
maxblocks = min(32768U, mtd->erasesize - psize);
@ -1175,23 +1189,28 @@ static inline int __init nftl_partscan(struct mtd_info *mtd,
offs <<= this->page_shift;
offs += mtd->erasesize;
//parts[0].name = " DiskOnChip Boot / Media Header partition";
//parts[0].offset = 0;
//parts[0].size = offs;
parts[0].name = " DiskOnChip BDTL partition";
parts[0].offset = offs;
parts[0].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift;
offs += parts[0].size;
if (offs < mtd->size) {
parts[1].name = " DiskOnChip Remainder partition";
parts[1].offset = offs;
parts[1].size = mtd->size - offs;
ret = 2;
goto out;
if (show_firmware_partition == 1) {
parts[0].name = " DiskOnChip Firmware / Media Header partition";
parts[0].offset = 0;
parts[0].size = offs;
numparts = 1;
}
ret = 1;
parts[numparts].name = " DiskOnChip BDTL partition";
parts[numparts].offset = offs;
parts[numparts].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift;
offs += parts[numparts].size;
numparts++;
if (offs < mtd->size) {
parts[numparts].name = " DiskOnChip Remainder partition";
parts[numparts].offset = offs;
parts[numparts].size = mtd->size - offs;
numparts++;
}
ret = numparts;
out:
kfree(buf);
return ret;
@ -1233,8 +1252,6 @@ static inline int __init inftl_partscan(struct mtd_info *mtd,
mh->FormatFlags = le32_to_cpu(mh->FormatFlags);
mh->PercentUsed = le32_to_cpu(mh->PercentUsed);
//#ifdef CONFIG_MTD_DEBUG_VERBOSE
// if (CONFIG_MTD_DEBUG_VERBOSE >= 2)
printk(KERN_INFO " bootRecordID = %s\n"
" NoOfBootImageBlocks = %d\n"
" NoOfBinaryPartitions = %d\n"
@ -1252,7 +1269,6 @@ static inline int __init inftl_partscan(struct mtd_info *mtd,
((unsigned char *) &mh->OsakVersion)[2] & 0xf,
((unsigned char *) &mh->OsakVersion)[3] & 0xf,
mh->PercentUsed);
//#endif
vshift = this->phys_erase_shift + mh->BlockMultiplierBits;
@ -1278,8 +1294,6 @@ static inline int __init inftl_partscan(struct mtd_info *mtd,
ip->spareUnits = le32_to_cpu(ip->spareUnits);
ip->Reserved0 = le32_to_cpu(ip->Reserved0);
//#ifdef CONFIG_MTD_DEBUG_VERBOSE
// if (CONFIG_MTD_DEBUG_VERBOSE >= 2)
printk(KERN_INFO " PARTITION[%d] ->\n"
" virtualUnits = %d\n"
" firstUnit = %d\n"
@ -1289,16 +1303,14 @@ static inline int __init inftl_partscan(struct mtd_info *mtd,
i, ip->virtualUnits, ip->firstUnit,
ip->lastUnit, ip->flags,
ip->spareUnits);
//#endif
/*
if ((i == 0) && (ip->firstUnit > 0)) {
if ((show_firmware_partition == 1) &&
(i == 0) && (ip->firstUnit > 0)) {
parts[0].name = " DiskOnChip IPL / Media Header partition";
parts[0].offset = 0;
parts[0].size = mtd->erasesize * ip->firstUnit;
numparts = 1;
}
*/
if (ip->flags & INFTL_BINARY)
parts[numparts].name = " DiskOnChip BDK partition";

View file

@ -28,6 +28,24 @@
* among multiple independend devices. Suggestions and initial patch
* from Ben Dooks <ben-mtd@fluff.org>
*
* 12-05-2004 dmarlin: add workaround for Renesas AG-AND chips "disturb" issue.
* Basically, any block not rewritten may lose data when surrounding blocks
* are rewritten many times. JFFS2 ensures this doesn't happen for blocks
* it uses, but the Bad Block Table(s) may not be rewritten. To ensure they
* do not lose data, force them to be rewritten when some of the surrounding
* blocks are erased. Rather than tracking a specific nearby block (which
* could itself go bad), use a page address 'mask' to select several blocks
* in the same area, and rewrite the BBT when any of them are erased.
*
* 01-03-2005 dmarlin: added support for the device recovery command sequence for Renesas
* AG-AND chips. If there was a sudden loss of power during an erase operation,
* a "device recovery" operation must be performed when power is restored
* to ensure correct operation.
*
* 01-20-2005 dmarlin: added support for optional hardware specific callback routine to
* perform extra error status checks on erase and write failures. This required
* adding a wrapper function for nand_read_ecc.
*
* Credits:
* David Woodhouse for adding multichip support
*
@ -41,7 +59,7 @@
* The AG-AND chips have nice features for speed improvement,
* which are not supported yet. Read / program 4 pages in one go.
*
* $Id: nand_base.c,v 1.126 2004/12/13 11:22:25 lavinen Exp $
* $Id: nand_base.c,v 1.146 2005/06/17 15:02:06 gleixner Exp $
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
@ -149,17 +167,21 @@ static void nand_release_device (struct mtd_info *mtd)
/* De-select the NAND device */
this->select_chip(mtd, -1);
/* Do we have a hardware controller ? */
if (this->controller) {
/* Release the controller and the chip */
spin_lock(&this->controller->lock);
this->controller->active = NULL;
this->state = FL_READY;
wake_up(&this->controller->wq);
spin_unlock(&this->controller->lock);
} else {
/* Release the chip */
spin_lock(&this->chip_lock);
this->state = FL_READY;
wake_up(&this->wq);
spin_unlock(&this->chip_lock);
}
/* Release the chip */
spin_lock (&this->chip_lock);
this->state = FL_READY;
wake_up (&this->wq);
spin_unlock (&this->chip_lock);
}
/**
@ -443,7 +465,8 @@ static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
/* Get block number */
block = ((int) ofs) >> this->bbt_erase_shift;
this->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
if (this->bbt)
this->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
/* Do we have a flash based bad block table ? */
if (this->options & NAND_USE_FLASH_BBT)
@ -466,7 +489,7 @@ static int nand_check_wp (struct mtd_info *mtd)
struct nand_chip *this = mtd->priv;
/* Check the WP bit */
this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1);
return (this->read_byte(mtd) & 0x80) ? 0 : 1;
return (this->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
}
/**
@ -490,6 +513,22 @@ static int nand_block_checkbad (struct mtd_info *mtd, loff_t ofs, int getchip, i
return nand_isbad_bbt (mtd, ofs, allowbbt);
}
/*
* Wait for the ready pin, after a command
* The timeout is catched later.
*/
static void nand_wait_ready(struct mtd_info *mtd)
{
struct nand_chip *this = mtd->priv;
unsigned long timeo = jiffies + 2;
/* wait until command is processed or timeout occures */
do {
if (this->dev_ready(mtd))
return;
} while (time_before(jiffies, timeo));
}
/**
* nand_command - [DEFAULT] Send command to NAND device
* @mtd: MTD device structure
@ -571,7 +610,7 @@ static void nand_command (struct mtd_info *mtd, unsigned command, int column, in
this->hwcontrol(mtd, NAND_CTL_SETCLE);
this->write_byte(mtd, NAND_CMD_STATUS);
this->hwcontrol(mtd, NAND_CTL_CLRCLE);
while ( !(this->read_byte(mtd) & 0x40));
while ( !(this->read_byte(mtd) & NAND_STATUS_READY));
return;
/* This applies to read commands */
@ -585,12 +624,11 @@ static void nand_command (struct mtd_info *mtd, unsigned command, int column, in
return;
}
}
/* Apply this short delay always to ensure that we do wait tWB in
* any case on any machine. */
ndelay (100);
/* wait until command is processed */
while (!this->dev_ready(mtd));
nand_wait_ready(mtd);
}
/**
@ -619,7 +657,7 @@ static void nand_command_lp (struct mtd_info *mtd, unsigned command, int column,
/* Begin command latch cycle */
this->hwcontrol(mtd, NAND_CTL_SETCLE);
/* Write out the command to the device. */
this->write_byte(mtd, command);
this->write_byte(mtd, (command & 0xff));
/* End command latch cycle */
this->hwcontrol(mtd, NAND_CTL_CLRCLE);
@ -647,8 +685,8 @@ static void nand_command_lp (struct mtd_info *mtd, unsigned command, int column,
/*
* program and erase have their own busy handlers
* status and sequential in needs no delay
*/
* status, sequential in, and deplete1 need no delay
*/
switch (command) {
case NAND_CMD_CACHEDPROG:
@ -657,8 +695,19 @@ static void nand_command_lp (struct mtd_info *mtd, unsigned command, int column,
case NAND_CMD_ERASE2:
case NAND_CMD_SEQIN:
case NAND_CMD_STATUS:
case NAND_CMD_DEPLETE1:
return;
/*
* read error status commands require only a short delay
*/
case NAND_CMD_STATUS_ERROR:
case NAND_CMD_STATUS_ERROR0:
case NAND_CMD_STATUS_ERROR1:
case NAND_CMD_STATUS_ERROR2:
case NAND_CMD_STATUS_ERROR3:
udelay(this->chip_delay);
return;
case NAND_CMD_RESET:
if (this->dev_ready)
@ -667,7 +716,7 @@ static void nand_command_lp (struct mtd_info *mtd, unsigned command, int column,
this->hwcontrol(mtd, NAND_CTL_SETCLE);
this->write_byte(mtd, NAND_CMD_STATUS);
this->hwcontrol(mtd, NAND_CTL_CLRCLE);
while ( !(this->read_byte(mtd) & 0x40));
while ( !(this->read_byte(mtd) & NAND_STATUS_READY));
return;
case NAND_CMD_READ0:
@ -690,12 +739,12 @@ static void nand_command_lp (struct mtd_info *mtd, unsigned command, int column,
return;
}
}
/* Apply this short delay always to ensure that we do wait tWB in
* any case on any machine. */
ndelay (100);
/* wait until command is processed */
while (!this->dev_ready(mtd));
nand_wait_ready(mtd);
}
/**
@ -708,37 +757,34 @@ static void nand_command_lp (struct mtd_info *mtd, unsigned command, int column,
*/
static void nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state)
{
struct nand_chip *active = this;
struct nand_chip *active;
spinlock_t *lock;
wait_queue_head_t *wq;
DECLARE_WAITQUEUE (wait, current);
/*
* Grab the lock and see if the device is available
*/
lock = (this->controller) ? &this->controller->lock : &this->chip_lock;
wq = (this->controller) ? &this->controller->wq : &this->wq;
retry:
active = this;
spin_lock(lock);
/* Hardware controller shared among independend devices */
if (this->controller) {
spin_lock (&this->controller->lock);
if (this->controller->active)
active = this->controller->active;
else
this->controller->active = this;
spin_unlock (&this->controller->lock);
}
if (active == this) {
spin_lock (&this->chip_lock);
if (this->state == FL_READY) {
this->state = new_state;
spin_unlock (&this->chip_lock);
return;
}
}
set_current_state (TASK_UNINTERRUPTIBLE);
add_wait_queue (&active->wq, &wait);
spin_unlock (&active->chip_lock);
schedule ();
remove_wait_queue (&active->wq, &wait);
if (active == this && this->state == FL_READY) {
this->state = new_state;
spin_unlock(lock);
return;
}
set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(wq, &wait);
spin_unlock(lock);
schedule();
remove_wait_queue(wq, &wait);
goto retry;
}
@ -785,7 +831,7 @@ static int nand_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
if (this->read_byte(mtd) & NAND_STATUS_READY)
break;
}
yield ();
cond_resched();
}
status = (int) this->read_byte(mtd);
return status;
@ -871,8 +917,14 @@ static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this, int pa
if (!cached) {
/* call wait ready function */
status = this->waitfunc (mtd, this, FL_WRITING);
/* See if operation failed and additional status checks are available */
if ((status & NAND_STATUS_FAIL) && (this->errstat)) {
status = this->errstat(mtd, this, FL_WRITING, status, page);
}
/* See if device thinks it succeeded */
if (status & 0x01) {
if (status & NAND_STATUS_FAIL) {
DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write, page 0x%08x, ", __FUNCTION__, page);
return -EIO;
}
@ -975,7 +1027,7 @@ static int nand_verify_pages (struct mtd_info *mtd, struct nand_chip *this, int
if (!this->dev_ready)
udelay (this->chip_delay);
else
while (!this->dev_ready(mtd));
nand_wait_ready(mtd);
/* All done, return happy */
if (!numpages)
@ -997,23 +1049,24 @@ static int nand_verify_pages (struct mtd_info *mtd, struct nand_chip *this, int
#endif
/**
* nand_read - [MTD Interface] MTD compability function for nand_read_ecc
* nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
* @mtd: MTD device structure
* @from: offset to read from
* @len: number of bytes to read
* @retlen: pointer to variable to store the number of read bytes
* @buf: the databuffer to put data
*
* This function simply calls nand_read_ecc with oob buffer and oobsel = NULL
*/
* This function simply calls nand_do_read_ecc with oob buffer and oobsel = NULL
* and flags = 0xff
*/
static int nand_read (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf)
{
return nand_read_ecc (mtd, from, len, retlen, buf, NULL, NULL);
}
return nand_do_read_ecc (mtd, from, len, retlen, buf, NULL, &mtd->oobinfo, 0xff);
}
/**
* nand_read_ecc - [MTD Interface] Read data with ECC
* nand_read_ecc - [MTD Interface] MTD compability function for nand_do_read_ecc
* @mtd: MTD device structure
* @from: offset to read from
* @len: number of bytes to read
@ -1022,11 +1075,39 @@ static int nand_read (struct mtd_info *mtd, loff_t from, size_t len, size_t * re
* @oob_buf: filesystem supplied oob data buffer
* @oobsel: oob selection structure
*
* NAND read with ECC
* This function simply calls nand_do_read_ecc with flags = 0xff
*/
static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
size_t * retlen, u_char * buf, u_char * oob_buf, struct nand_oobinfo *oobsel)
{
/* use userspace supplied oobinfo, if zero */
if (oobsel == NULL)
oobsel = &mtd->oobinfo;
return nand_do_read_ecc(mtd, from, len, retlen, buf, oob_buf, oobsel, 0xff);
}
/**
* nand_do_read_ecc - [MTD Interface] Read data with ECC
* @mtd: MTD device structure
* @from: offset to read from
* @len: number of bytes to read
* @retlen: pointer to variable to store the number of read bytes
* @buf: the databuffer to put data
* @oob_buf: filesystem supplied oob data buffer (can be NULL)
* @oobsel: oob selection structure
* @flags: flag to indicate if nand_get_device/nand_release_device should be preformed
* and how many corrected error bits are acceptable:
* bits 0..7 - number of tolerable errors
* bit 8 - 0 == do not get/release chip, 1 == get/release chip
*
* NAND read with ECC
*/
int nand_do_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
size_t * retlen, u_char * buf, u_char * oob_buf,
struct nand_oobinfo *oobsel, int flags)
{
int i, j, col, realpage, page, end, ecc, chipnr, sndcmd = 1;
int read = 0, oob = 0, ecc_status = 0, ecc_failed = 0;
struct nand_chip *this = mtd->priv;
@ -1051,12 +1132,9 @@ static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
}
/* Grab the lock and see if the device is available */
nand_get_device (this, mtd ,FL_READING);
if (flags & NAND_GET_DEVICE)
nand_get_device (this, mtd, FL_READING);
/* use userspace supplied oobinfo, if zero */
if (oobsel == NULL)
oobsel = &mtd->oobinfo;
/* Autoplace of oob data ? Use the default placement scheme */
if (oobsel->useecc == MTD_NANDECC_AUTOPLACE)
oobsel = this->autooob;
@ -1118,7 +1196,8 @@ static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
}
/* get oob area, if we have no oob buffer from fs-driver */
if (!oob_buf || oobsel->useecc == MTD_NANDECC_AUTOPLACE)
if (!oob_buf || oobsel->useecc == MTD_NANDECC_AUTOPLACE ||
oobsel->useecc == MTD_NANDECC_AUTOPL_USR)
oob_data = &this->data_buf[end];
eccsteps = this->eccsteps;
@ -1155,7 +1234,8 @@ static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
/* We calc error correction directly, it checks the hw
* generator for an error, reads back the syndrome and
* does the error correction on the fly */
if (this->correct_data(mtd, &data_poi[datidx], &oob_data[i], &ecc_code[i]) == -1) {
ecc_status = this->correct_data(mtd, &data_poi[datidx], &oob_data[i], &ecc_code[i]);
if ((ecc_status == -1) || (ecc_status > (flags && 0xff))) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: "
"Failed ECC read, page 0x%08x on chip %d\n", page, chipnr);
ecc_failed++;
@ -1194,7 +1274,7 @@ static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
p[i] = ecc_status;
}
if (ecc_status == -1) {
if ((ecc_status == -1) || (ecc_status > (flags && 0xff))) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: " "Failed ECC read, page 0x%08x\n", page);
ecc_failed++;
}
@ -1206,14 +1286,14 @@ static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
/* without autoplace. Legacy mode used by YAFFS1 */
switch(oobsel->useecc) {
case MTD_NANDECC_AUTOPLACE:
case MTD_NANDECC_AUTOPL_USR:
/* Walk through the autoplace chunks */
for (i = 0, j = 0; j < mtd->oobavail; i++) {
for (i = 0; oobsel->oobfree[i][1]; i++) {
int from = oobsel->oobfree[i][0];
int num = oobsel->oobfree[i][1];
memcpy(&oob_buf[oob], &oob_data[from], num);
j+= num;
oob += num;
}
oob += mtd->oobavail;
break;
case MTD_NANDECC_PLACE:
/* YAFFS1 legacy mode */
@ -1239,7 +1319,7 @@ static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
if (!this->dev_ready)
udelay (this->chip_delay);
else
while (!this->dev_ready(mtd));
nand_wait_ready(mtd);
if (read == len)
break;
@ -1264,7 +1344,8 @@ static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
}
/* Deselect and wake up anyone waiting on the device */
nand_release_device(mtd);
if (flags & NAND_GET_DEVICE)
nand_release_device(mtd);
/*
* Return success, if no ECC failures, else -EBADMSG
@ -1337,7 +1418,7 @@ static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t
if (!this->dev_ready)
udelay (this->chip_delay);
else
while (!this->dev_ready(mtd));
nand_wait_ready(mtd);
/* Read more ? */
if (i < len) {
@ -1417,7 +1498,7 @@ int nand_read_raw (struct mtd_info *mtd, uint8_t *buf, loff_t from, size_t len,
if (!this->dev_ready)
udelay (this->chip_delay);
else
while (!this->dev_ready(mtd));
nand_wait_ready(mtd);
/* Check, if the chip supports auto page increment */
if (!NAND_CANAUTOINCR(this) || !(page & blockcheck))
@ -1567,6 +1648,8 @@ static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
oobsel = this->autooob;
autoplace = 1;
}
if (oobsel->useecc == MTD_NANDECC_AUTOPL_USR)
autoplace = 1;
/* Setup variables and oob buffer */
totalpages = len >> this->page_shift;
@ -1733,7 +1816,7 @@ static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len, size_t *
status = this->waitfunc (mtd, this, FL_WRITING);
/* See if device thinks it succeeded */
if (status & 0x01) {
if (status & NAND_STATUS_FAIL) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write, page 0x%08x\n", page);
ret = -EIO;
goto out;
@ -1841,6 +1924,8 @@ static int nand_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs, unsig
oobsel = this->autooob;
autoplace = 1;
}
if (oobsel->useecc == MTD_NANDECC_AUTOPL_USR)
autoplace = 1;
/* Setup start page */
page = (int) (to >> this->page_shift);
@ -1987,6 +2072,7 @@ static int nand_erase (struct mtd_info *mtd, struct erase_info *instr)
return nand_erase_nand (mtd, instr, 0);
}
#define BBT_PAGE_MASK 0xffffff3f
/**
* nand_erase_intern - [NAND Interface] erase block(s)
* @mtd: MTD device structure
@ -1999,6 +2085,10 @@ int nand_erase_nand (struct mtd_info *mtd, struct erase_info *instr, int allowbb
{
int page, len, status, pages_per_block, ret, chipnr;
struct nand_chip *this = mtd->priv;
int rewrite_bbt[NAND_MAX_CHIPS]={0}; /* flags to indicate the page, if bbt needs to be rewritten. */
unsigned int bbt_masked_page; /* bbt mask to compare to page being erased. */
/* It is used to see if the current page is in the same */
/* 256 block group and the same bank as the bbt. */
DEBUG (MTD_DEBUG_LEVEL3,
"nand_erase: start = 0x%08x, len = %i\n", (unsigned int) instr->addr, (unsigned int) instr->len);
@ -2044,6 +2134,13 @@ int nand_erase_nand (struct mtd_info *mtd, struct erase_info *instr, int allowbb
goto erase_exit;
}
/* if BBT requires refresh, set the BBT page mask to see if the BBT should be rewritten */
if (this->options & BBT_AUTO_REFRESH) {
bbt_masked_page = this->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
} else {
bbt_masked_page = 0xffffffff; /* should not match anything */
}
/* Loop through the pages */
len = instr->len;
@ -2066,13 +2163,26 @@ int nand_erase_nand (struct mtd_info *mtd, struct erase_info *instr, int allowbb
status = this->waitfunc (mtd, this, FL_ERASING);
/* See if operation failed and additional status checks are available */
if ((status & NAND_STATUS_FAIL) && (this->errstat)) {
status = this->errstat(mtd, this, FL_ERASING, status, page);
}
/* See if block erase succeeded */
if (status & 0x01) {
if (status & NAND_STATUS_FAIL) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: " "Failed erase, page 0x%08x\n", page);
instr->state = MTD_ERASE_FAILED;
instr->fail_addr = (page << this->page_shift);
goto erase_exit;
}
/* if BBT requires refresh, set the BBT rewrite flag to the page being erased */
if (this->options & BBT_AUTO_REFRESH) {
if (((page & BBT_PAGE_MASK) == bbt_masked_page) &&
(page != this->bbt_td->pages[chipnr])) {
rewrite_bbt[chipnr] = (page << this->page_shift);
}
}
/* Increment page address and decrement length */
len -= (1 << this->phys_erase_shift);
@ -2083,6 +2193,13 @@ int nand_erase_nand (struct mtd_info *mtd, struct erase_info *instr, int allowbb
chipnr++;
this->select_chip(mtd, -1);
this->select_chip(mtd, chipnr);
/* if BBT requires refresh and BBT-PERCHIP,
* set the BBT page mask to see if this BBT should be rewritten */
if ((this->options & BBT_AUTO_REFRESH) && (this->bbt_td->options & NAND_BBT_PERCHIP)) {
bbt_masked_page = this->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
}
}
}
instr->state = MTD_ERASE_DONE;
@ -2097,6 +2214,18 @@ int nand_erase_nand (struct mtd_info *mtd, struct erase_info *instr, int allowbb
/* Deselect and wake up anyone waiting on the device */
nand_release_device(mtd);
/* if BBT requires refresh and erase was successful, rewrite any selected bad block tables */
if ((this->options & BBT_AUTO_REFRESH) && (!ret)) {
for (chipnr = 0; chipnr < this->numchips; chipnr++) {
if (rewrite_bbt[chipnr]) {
/* update the BBT for chip */
DEBUG (MTD_DEBUG_LEVEL0, "nand_erase_nand: nand_update_bbt (%d:0x%0x 0x%0x)\n",
chipnr, rewrite_bbt[chipnr], this->bbt_td->pages[chipnr]);
nand_update_bbt (mtd, rewrite_bbt[chipnr]);
}
}
}
/* Return more or less happy */
return ret;
}
@ -2168,7 +2297,7 @@ static int nand_block_markbad (struct mtd_info *mtd, loff_t ofs)
*/
int nand_scan (struct mtd_info *mtd, int maxchips)
{
int i, j, nand_maf_id, nand_dev_id, busw;
int i, nand_maf_id, nand_dev_id, busw, maf_id;
struct nand_chip *this = mtd->priv;
/* Get buswidth to select the correct functions*/
@ -2256,12 +2385,18 @@ int nand_scan (struct mtd_info *mtd, int maxchips)
busw = nand_flash_ids[i].options & NAND_BUSWIDTH_16;
}
/* Try to identify manufacturer */
for (maf_id = 0; nand_manuf_ids[maf_id].id != 0x0; maf_id++) {
if (nand_manuf_ids[maf_id].id == nand_maf_id)
break;
}
/* Check, if buswidth is correct. Hardware drivers should set
* this correct ! */
if (busw != (this->options & NAND_BUSWIDTH_16)) {
printk (KERN_INFO "NAND device: Manufacturer ID:"
" 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id, nand_dev_id,
nand_manuf_ids[i].name , mtd->name);
nand_manuf_ids[maf_id].name , mtd->name);
printk (KERN_WARNING
"NAND bus width %d instead %d bit\n",
(this->options & NAND_BUSWIDTH_16) ? 16 : 8,
@ -2300,14 +2435,9 @@ int nand_scan (struct mtd_info *mtd, int maxchips)
if (mtd->oobblock > 512 && this->cmdfunc == nand_command)
this->cmdfunc = nand_command_lp;
/* Try to identify manufacturer */
for (j = 0; nand_manuf_ids[j].id != 0x0; j++) {
if (nand_manuf_ids[j].id == nand_maf_id)
break;
}
printk (KERN_INFO "NAND device: Manufacturer ID:"
" 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id, nand_dev_id,
nand_manuf_ids[j].name , nand_flash_ids[i].name);
nand_manuf_ids[maf_id].name , nand_flash_ids[i].name);
break;
}
@ -2388,12 +2518,9 @@ int nand_scan (struct mtd_info *mtd, int maxchips)
/* The number of bytes available for the filesystem to place fs dependend
* oob data */
if (this->options & NAND_BUSWIDTH_16) {
mtd->oobavail = mtd->oobsize - (this->autooob->eccbytes + 2);
if (this->autooob->eccbytes & 0x01)
mtd->oobavail--;
} else
mtd->oobavail = mtd->oobsize - (this->autooob->eccbytes + 1);
mtd->oobavail = 0;
for (i = 0; this->autooob->oobfree[i][1]; i++)
mtd->oobavail += this->autooob->oobfree[i][1];
/*
* check ECC mode, default to software
@ -2524,6 +2651,10 @@ int nand_scan (struct mtd_info *mtd, int maxchips)
memcpy(&mtd->oobinfo, this->autooob, sizeof(mtd->oobinfo));
mtd->owner = THIS_MODULE;
/* Check, if we should skip the bad block table scan */
if (this->options & NAND_SKIP_BBTSCAN)
return 0;
/* Build bad block table */
return this->scan_bbt (mtd);
@ -2555,8 +2686,8 @@ void nand_release (struct mtd_info *mtd)
kfree (this->data_buf);
}
EXPORT_SYMBOL (nand_scan);
EXPORT_SYMBOL (nand_release);
EXPORT_SYMBOL_GPL (nand_scan);
EXPORT_SYMBOL_GPL (nand_release);
MODULE_LICENSE ("GPL");
MODULE_AUTHOR ("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>");

View file

@ -6,7 +6,7 @@
*
* Copyright (C) 2004 Thomas Gleixner (tglx@linutronix.de)
*
* $Id: nand_bbt.c,v 1.28 2004/11/13 10:19:09 gleixner Exp $
* $Id: nand_bbt.c,v 1.33 2005/06/14 15:47:56 gleixner Exp $
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
@ -77,7 +77,7 @@
*/
static int check_pattern (uint8_t *buf, int len, int paglen, struct nand_bbt_descr *td)
{
int i, end;
int i, end = 0;
uint8_t *p = buf;
end = paglen + td->offs;
@ -95,9 +95,9 @@ static int check_pattern (uint8_t *buf, int len, int paglen, struct nand_bbt_des
return -1;
}
p += td->len;
end += td->len;
if (td->options & NAND_BBT_SCANEMPTY) {
p += td->len;
end += td->len;
for (i = end; i < len; i++) {
if (*p++ != 0xff)
return -1;
@ -106,6 +106,32 @@ static int check_pattern (uint8_t *buf, int len, int paglen, struct nand_bbt_des
return 0;
}
/**
* check_short_pattern - [GENERIC] check if a pattern is in the buffer
* @buf: the buffer to search
* @len: the length of buffer to search
* @paglen: the pagelength
* @td: search pattern descriptor
*
* Check for a pattern at the given place. Used to search bad block
* tables and good / bad block identifiers. Same as check_pattern, but
* no optional empty check and the pattern is expected to start
* at offset 0.
*
*/
static int check_short_pattern (uint8_t *buf, int len, int paglen, struct nand_bbt_descr *td)
{
int i;
uint8_t *p = buf;
/* Compare the pattern */
for (i = 0; i < td->len; i++) {
if (p[i] != td->pattern[i])
return -1;
}
return 0;
}
/**
* read_bbt - [GENERIC] Read the bad block table starting from page
* @mtd: MTD device structure
@ -252,7 +278,7 @@ static int read_abs_bbts (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_de
* Create a bad block table by scanning the device
* for the given good/bad block identify pattern
*/
static void create_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd, int chip)
static int create_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd, int chip)
{
struct nand_chip *this = mtd->priv;
int i, j, numblocks, len, scanlen;
@ -270,9 +296,17 @@ static void create_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_desc
else
len = 1;
}
scanlen = mtd->oobblock + mtd->oobsize;
readlen = len * mtd->oobblock;
ooblen = len * mtd->oobsize;
if (!(bd->options & NAND_BBT_SCANEMPTY)) {
/* We need only read few bytes from the OOB area */
scanlen = ooblen = 0;
readlen = bd->len;
} else {
/* Full page content should be read */
scanlen = mtd->oobblock + mtd->oobsize;
readlen = len * mtd->oobblock;
ooblen = len * mtd->oobsize;
}
if (chip == -1) {
/* Note that numblocks is 2 * (real numblocks) here, see i+=2 below as it
@ -284,7 +318,7 @@ static void create_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_desc
if (chip >= this->numchips) {
printk (KERN_WARNING "create_bbt(): chipnr (%d) > available chips (%d)\n",
chip + 1, this->numchips);
return;
return -EINVAL;
}
numblocks = this->chipsize >> (this->bbt_erase_shift - 1);
startblock = chip * numblocks;
@ -293,18 +327,41 @@ static void create_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_desc
}
for (i = startblock; i < numblocks;) {
nand_read_raw (mtd, buf, from, readlen, ooblen);
int ret;
if (bd->options & NAND_BBT_SCANEMPTY)
if ((ret = nand_read_raw (mtd, buf, from, readlen, ooblen)))
return ret;
for (j = 0; j < len; j++) {
if (check_pattern (&buf[j * scanlen], scanlen, mtd->oobblock, bd)) {
this->bbt[i >> 3] |= 0x03 << (i & 0x6);
printk (KERN_WARNING "Bad eraseblock %d at 0x%08x\n",
i >> 1, (unsigned int) from);
break;
if (!(bd->options & NAND_BBT_SCANEMPTY)) {
size_t retlen;
/* No need to read pages fully, just read required OOB bytes */
ret = mtd->read_oob(mtd, from + j * mtd->oobblock + bd->offs,
readlen, &retlen, &buf[0]);
if (ret)
return ret;
if (check_short_pattern (&buf[j * scanlen], scanlen, mtd->oobblock, bd)) {
this->bbt[i >> 3] |= 0x03 << (i & 0x6);
printk (KERN_WARNING "Bad eraseblock %d at 0x%08x\n",
i >> 1, (unsigned int) from);
break;
}
} else {
if (check_pattern (&buf[j * scanlen], scanlen, mtd->oobblock, bd)) {
this->bbt[i >> 3] |= 0x03 << (i & 0x6);
printk (KERN_WARNING "Bad eraseblock %d at 0x%08x\n",
i >> 1, (unsigned int) from);
break;
}
}
}
i += 2;
from += (1 << this->bbt_erase_shift);
}
return 0;
}
/**
@ -589,14 +646,12 @@ static int write_bbt (struct mtd_info *mtd, uint8_t *buf,
* The function creates a memory based bbt by scanning the device
* for manufacturer / software marked good / bad blocks
*/
static int nand_memory_bbt (struct mtd_info *mtd, struct nand_bbt_descr *bd)
static inline int nand_memory_bbt (struct mtd_info *mtd, struct nand_bbt_descr *bd)
{
struct nand_chip *this = mtd->priv;
/* Ensure that we only scan for the pattern and nothing else */
bd->options = 0;
create_bbt (mtd, this->data_buf, bd, -1);
return 0;
bd->options &= ~NAND_BBT_SCANEMPTY;
return create_bbt (mtd, this->data_buf, bd, -1);
}
/**
@ -808,8 +863,14 @@ int nand_scan_bbt (struct mtd_info *mtd, struct nand_bbt_descr *bd)
/* If no primary table decriptor is given, scan the device
* to build a memory based bad block table
*/
if (!td)
return nand_memory_bbt(mtd, bd);
if (!td) {
if ((res = nand_memory_bbt(mtd, bd))) {
printk (KERN_ERR "nand_bbt: Can't scan flash and build the RAM-based BBT\n");
kfree (this->bbt);
this->bbt = NULL;
}
return res;
}
/* Allocate a temporary buffer for one eraseblock incl. oob */
len = (1 << this->bbt_erase_shift);
@ -904,14 +965,11 @@ int nand_update_bbt (struct mtd_info *mtd, loff_t offs)
}
/* Define some generic bad / good block scan pattern which are used
* while scanning a device for factory marked good / bad blocks
*
* The memory based patterns just
*/
* while scanning a device for factory marked good / bad blocks. */
static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
static struct nand_bbt_descr smallpage_memorybased = {
.options = 0,
.options = NAND_BBT_SCAN2NDPAGE,
.offs = 5,
.len = 1,
.pattern = scan_ff_pattern
@ -1042,7 +1100,7 @@ int nand_isbad_bbt (struct mtd_info *mtd, loff_t offs, int allowbbt)
res = (this->bbt[block >> 3] >> (block & 0x06)) & 0x03;
DEBUG (MTD_DEBUG_LEVEL2, "nand_isbad_bbt(): bbt info for offs 0x%08x: (block %d) 0x%02x\n",
(unsigned int)offs, res, block >> 1);
(unsigned int)offs, block >> 1, res);
switch ((int)res) {
case 0x00: return 0;

View file

@ -2,8 +2,8 @@
* drivers/mtd/nandids.c
*
* Copyright (C) 2002 Thomas Gleixner (tglx@linutronix.de)
*
* $Id: nand_ids.c,v 1.10 2004/05/26 13:40:12 gleixner Exp $
*
* $Id: nand_ids.c,v 1.14 2005/06/23 09:38:50 gleixner Exp $
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
@ -56,17 +56,24 @@ struct nand_flash_dev nand_flash_ids[] = {
{"NAND 64MiB 3,3V 16-bit", 0x56, 512, 64, 0x4000, NAND_BUSWIDTH_16},
{"NAND 128MiB 1,8V 8-bit", 0x78, 512, 128, 0x4000, 0},
{"NAND 128MiB 1,8V 8-bit", 0x39, 512, 128, 0x4000, 0},
{"NAND 128MiB 3,3V 8-bit", 0x79, 512, 128, 0x4000, 0},
{"NAND 128MiB 1,8V 16-bit", 0x72, 512, 128, 0x4000, NAND_BUSWIDTH_16},
{"NAND 128MiB 1,8V 16-bit", 0x49, 512, 128, 0x4000, NAND_BUSWIDTH_16},
{"NAND 128MiB 3,3V 16-bit", 0x74, 512, 128, 0x4000, NAND_BUSWIDTH_16},
{"NAND 128MiB 3,3V 16-bit", 0x59, 512, 128, 0x4000, NAND_BUSWIDTH_16},
{"NAND 256MiB 3,3V 8-bit", 0x71, 512, 256, 0x4000, 0},
{"NAND 512MiB 3,3V 8-bit", 0xDC, 512, 512, 0x4000, 0},
/* These are the new chips with large page size. The pagesize
* and the erasesize is determined from the extended id bytes
*/
/*512 Megabit */
{"NAND 64MiB 1,8V 8-bit", 0xA2, 0, 64, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
{"NAND 64MiB 3,3V 8-bit", 0xF2, 0, 64, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
{"NAND 64MiB 1,8V 16-bit", 0xB2, 0, 64, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
{"NAND 64MiB 3,3V 16-bit", 0xC2, 0, 64, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
/* 1 Gigabit */
{"NAND 128MiB 1,8V 8-bit", 0xA1, 0, 128, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
{"NAND 128MiB 3,3V 8-bit", 0xF1, 0, 128, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
@ -103,7 +110,7 @@ struct nand_flash_dev nand_flash_ids[] = {
* Anyway JFFS2 would increase the eraseblock size so we chose a combined one which can be erased in one go
* There are more speed improvements for reads and writes possible, but not implemented now
*/
{"AND 128MiB 3,3V 8-bit", 0x01, 2048, 128, 0x4000, NAND_IS_AND | NAND_NO_AUTOINCR | NAND_4PAGE_ARRAY},
{"AND 128MiB 3,3V 8-bit", 0x01, 2048, 128, 0x4000, NAND_IS_AND | NAND_NO_AUTOINCR | NAND_4PAGE_ARRAY | BBT_AUTO_REFRESH},
{NULL,}
};
@ -118,6 +125,7 @@ struct nand_manufacturers nand_manuf_ids[] = {
{NAND_MFR_NATIONAL, "National"},
{NAND_MFR_RENESAS, "Renesas"},
{NAND_MFR_STMICRO, "ST Micro"},
{NAND_MFR_HYNIX, "Hynix"},
{0x0, "Unknown"}
};

View file

@ -22,7 +22,7 @@
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
*
* $Id: nandsim.c,v 1.7 2004/12/06 11:53:06 dedekind Exp $
* $Id: nandsim.c,v 1.8 2005/03/19 15:33:56 dedekind Exp $
*/
#include <linux/config.h>
@ -1483,33 +1483,6 @@ ns_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
}
}
/*
* Having only NAND chip IDs we call nand_scan which detects NAND flash
* parameters and then calls scan_bbt in order to scan/find/build the
* NAND flash bad block table. But since at that moment the NAND flash
* image isn't allocated in the simulator, errors arise. To avoid this
* we redefine the scan_bbt callback and initialize the nandsim structure
* before the flash media scanning.
*/
int ns_scan_bbt(struct mtd_info *mtd)
{
struct nand_chip *chip = (struct nand_chip *)mtd->priv;
struct nandsim *ns = (struct nandsim *)(chip->priv);
int retval;
if (!NS_IS_INITIALIZED(ns))
if ((retval = init_nandsim(mtd)) != 0) {
NS_ERR("scan_bbt: can't initialize the nandsim structure\n");
return retval;
}
if ((retval = nand_default_bbt(mtd)) != 0) {
free_nandsim(ns);
return retval;
}
return 0;
}
/*
* Module initialization function
*/
@ -1544,7 +1517,6 @@ int __init ns_init_module(void)
chip->hwcontrol = ns_hwcontrol;
chip->read_byte = ns_nand_read_byte;
chip->dev_ready = ns_device_ready;
chip->scan_bbt = ns_scan_bbt;
chip->write_byte = ns_nand_write_byte;
chip->write_buf = ns_nand_write_buf;
chip->read_buf = ns_nand_read_buf;
@ -1552,6 +1524,7 @@ int __init ns_init_module(void)
chip->write_word = ns_nand_write_word;
chip->read_word = ns_nand_read_word;
chip->eccmode = NAND_ECC_SOFT;
chip->options |= NAND_SKIP_BBTSCAN;
/*
* Perform minimum nandsim structure initialization to handle
@ -1580,6 +1553,16 @@ int __init ns_init_module(void)
goto error;
}
if ((retval = init_nandsim(nsmtd)) != 0) {
NS_ERR("scan_bbt: can't initialize the nandsim structure\n");
goto error;
}
if ((retval = nand_default_bbt(nsmtd)) != 0) {
free_nandsim(nand);
goto error;
}
/* Register NAND as one big partition */
add_mtd_partitions(nsmtd, &nand->part, 1);

View file

@ -6,7 +6,7 @@
* Derived from drivers/mtd/nand/spia.c
* Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
*
* $Id: rtc_from4.c,v 1.7 2004/11/04 12:53:10 gleixner Exp $
* $Id: rtc_from4.c,v 1.9 2005/01/24 20:40:11 dmarlin Exp $
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
@ -83,13 +83,18 @@ static struct mtd_info *rtc_from4_mtd = NULL;
#define RTC_FROM4_RS_ECC_CHK (RTC_FROM4_NAND_ADDR_FPGA | 0x00000070)
#define RTC_FROM4_RS_ECC_CHK_ERROR (1 << 7)
#define ERR_STAT_ECC_AVAILABLE 0x20
/* Undefine for software ECC */
#define RTC_FROM4_HWECC 1
/* Define as 1 for no virtual erase blocks (in JFFS2) */
#define RTC_FROM4_NO_VIRTBLOCKS 0
/*
* Module stuff
*/
static void __iomem *rtc_from4_fio_base = P2SEGADDR(RTC_FROM4_FIO_BASE);
static void __iomem *rtc_from4_fio_base = (void *)P2SEGADDR(RTC_FROM4_FIO_BASE);
const static struct mtd_partition partition_info[] = {
{
@ -267,7 +272,6 @@ static void rtc_from4_nand_select_chip(struct mtd_info *mtd, int chip)
}
/*
* rtc_from4_nand_device_ready - hardware specific ready/busy check
* @mtd: MTD device structure
@ -286,6 +290,40 @@ static int rtc_from4_nand_device_ready(struct mtd_info *mtd)
}
/*
* deplete - code to perform device recovery in case there was a power loss
* @mtd: MTD device structure
* @chip: Chip to select (0 == slot 3, 1 == slot 4)
*
* If there was a sudden loss of power during an erase operation, a
* "device recovery" operation must be performed when power is restored
* to ensure correct operation. This routine performs the required steps
* for the requested chip.
*
* See page 86 of the data sheet for details.
*
*/
static void deplete(struct mtd_info *mtd, int chip)
{
struct nand_chip *this = mtd->priv;
/* wait until device is ready */
while (!this->dev_ready(mtd));
this->select_chip(mtd, chip);
/* Send the commands for device recovery, phase 1 */
this->cmdfunc (mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0000);
this->cmdfunc (mtd, NAND_CMD_DEPLETE2, -1, -1);
/* Send the commands for device recovery, phase 2 */
this->cmdfunc (mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0004);
this->cmdfunc (mtd, NAND_CMD_DEPLETE2, -1, -1);
}
#ifdef RTC_FROM4_HWECC
/*
* rtc_from4_enable_hwecc - hardware specific hardware ECC enable function
@ -329,6 +367,7 @@ static void rtc_from4_enable_hwecc(struct mtd_info *mtd, int mode)
}
/*
* rtc_from4_calculate_ecc - hardware specific code to read ECC code
* @mtd: MTD device structure
@ -356,6 +395,7 @@ static void rtc_from4_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_c
ecc_code[7] |= 0x0f; /* set the last four bits (not used) */
}
/*
* rtc_from4_correct_data - hardware specific code to correct data using ECC code
* @mtd: MTD device structure
@ -365,16 +405,14 @@ static void rtc_from4_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_c
*
* The FPGA tells us fast, if there's an error or not. If no, we go back happy
* else we read the ecc results from the fpga and call the rs library to decode
* and hopefully correct the error
* and hopefully correct the error.
*
* For now I use the code, which we read from the FLASH to use the RS lib,
* as the syndrom conversion has a unresolved issue.
*/
static int rtc_from4_correct_data(struct mtd_info *mtd, const u_char *buf, u_char *ecc1, u_char *ecc2)
{
int i, j, res;
unsigned short status;
uint16_t par[6], syn[6], tmp;
uint16_t par[6], syn[6];
uint8_t ecc[8];
volatile unsigned short *rs_ecc;
@ -416,15 +454,86 @@ static int rtc_from4_correct_data(struct mtd_info *mtd, const u_char *buf, u_cha
}
/* Let the library code do its magic.*/
res = decode_rs8(rs_decoder, buf, par, 512, syn, 0, NULL, 0xff, NULL);
res = decode_rs8(rs_decoder, (uint8_t *)buf, par, 512, syn, 0, NULL, 0xff, NULL);
if (res > 0) {
DEBUG (MTD_DEBUG_LEVEL0, "rtc_from4_correct_data: "
"ECC corrected %d errors on read\n", res);
}
return res;
}
/**
* rtc_from4_errstat - perform additional error status checks
* @mtd: MTD device structure
* @this: NAND chip structure
* @state: state or the operation
* @status: status code returned from read status
* @page: startpage inside the chip, must be called with (page & this->pagemask)
*
* Perform additional error status checks on erase and write failures
* to determine if errors are correctable. For this device, correctable
* 1-bit errors on erase and write are considered acceptable.
*
* note: see pages 34..37 of data sheet for details.
*
*/
static int rtc_from4_errstat(struct mtd_info *mtd, struct nand_chip *this, int state, int status, int page)
{
int er_stat=0;
int rtn, retlen;
size_t len;
uint8_t *buf;
int i;
this->cmdfunc (mtd, NAND_CMD_STATUS_CLEAR, -1, -1);
if (state == FL_ERASING) {
for (i=0; i<4; i++) {
if (status & 1<<(i+1)) {
this->cmdfunc (mtd, (NAND_CMD_STATUS_ERROR + i + 1), -1, -1);
rtn = this->read_byte(mtd);
this->cmdfunc (mtd, NAND_CMD_STATUS_RESET, -1, -1);
if (!(rtn & ERR_STAT_ECC_AVAILABLE)) {
er_stat |= 1<<(i+1); /* err_ecc_not_avail */
}
}
}
} else if (state == FL_WRITING) {
/* single bank write logic */
this->cmdfunc (mtd, NAND_CMD_STATUS_ERROR, -1, -1);
rtn = this->read_byte(mtd);
this->cmdfunc (mtd, NAND_CMD_STATUS_RESET, -1, -1);
if (!(rtn & ERR_STAT_ECC_AVAILABLE)) {
er_stat |= 1<<1; /* err_ecc_not_avail */
} else {
len = mtd->oobblock;
buf = kmalloc (len, GFP_KERNEL);
if (!buf) {
printk (KERN_ERR "rtc_from4_errstat: Out of memory!\n");
er_stat = 1; /* if we can't check, assume failed */
} else {
/* recovery read */
/* page read */
rtn = nand_do_read_ecc (mtd, page, len, &retlen, buf, NULL, this->autooob, 1);
if (rtn) { /* if read failed or > 1-bit error corrected */
er_stat |= 1<<1; /* ECC read failed */
}
kfree(buf);
}
}
}
rtn = status;
if (er_stat == 0) { /* if ECC is available */
rtn = (status & ~NAND_STATUS_FAIL); /* clear the error bit */
}
return rtn;
}
#endif
/*
* Main initialization routine
*/
@ -432,6 +541,7 @@ int __init rtc_from4_init (void)
{
struct nand_chip *this;
unsigned short bcr1, bcr2, wcr2;
int i;
/* Allocate memory for MTD device structure and private data */
rtc_from4_mtd = kmalloc(sizeof(struct mtd_info) + sizeof (struct nand_chip),
@ -483,6 +593,8 @@ int __init rtc_from4_init (void)
this->eccmode = NAND_ECC_HW8_512;
this->options |= NAND_HWECC_SYNDROME;
/* return the status of extra status and ECC checks */
this->errstat = rtc_from4_errstat;
/* set the nand_oobinfo to support FPGA H/W error detection */
this->autooob = &rtc_from4_nand_oobinfo;
this->enable_hwecc = rtc_from4_enable_hwecc;
@ -504,6 +616,18 @@ int __init rtc_from4_init (void)
return -ENXIO;
}
/* Perform 'device recovery' for each chip in case there was a power loss. */
for (i=0; i < this->numchips; i++) {
deplete(rtc_from4_mtd, i);
}
#if RTC_FROM4_NO_VIRTBLOCKS
/* use a smaller erase block to minimize wasted space when a block is bad */
/* note: this uses eight times as much RAM as using the default and makes */
/* mounts take four times as long. */
rtc_from4_mtd->flags |= MTD_NO_VIRTBLOCKS;
#endif
/* Register the partitions */
add_mtd_partitions(rtc_from4_mtd, partition_info, NUM_PARTITIONS);

View file

@ -1,17 +1,24 @@
/* linux/drivers/mtd/nand/s3c2410.c
*
* Copyright (c) 2004 Simtec Electronics
* Ben Dooks <ben@simtec.co.uk>
* Copyright (c) 2004,2005 Simtec Electronics
* http://www.simtec.co.uk/products/SWLINUX/
* Ben Dooks <ben@simtec.co.uk>
*
* Samsung S3C2410 NAND driver
* Samsung S3C2410/S3C240 NAND driver
*
* Changelog:
* 21-Sep-2004 BJD Initial version
* 23-Sep-2004 BJD Mulitple device support
* 28-Sep-2004 BJD Fixed ECC placement for Hardware mode
* 12-Oct-2004 BJD Fixed errors in use of platform data
* 18-Feb-2005 BJD Fix sparse errors
* 14-Mar-2005 BJD Applied tglx's code reduction patch
* 02-May-2005 BJD Fixed s3c2440 support
* 02-May-2005 BJD Reduced hwcontrol decode
* 20-Jun-2005 BJD Updated s3c2440 support, fixed timing bug
* 08-Jul-2005 BJD Fix OOPS when no platform data supplied
*
* $Id: s3c2410.c,v 1.7 2005/01/05 18:05:14 dwmw2 Exp $
* $Id: s3c2410.c,v 1.14 2005/07/06 20:05:06 bjd Exp $
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -69,10 +76,10 @@ static int hardware_ecc = 0;
*/
static struct nand_oobinfo nand_hw_eccoob = {
.useecc = MTD_NANDECC_AUTOPLACE,
.eccbytes = 3,
.eccpos = {0, 1, 2 },
.oobfree = { {8, 8} }
.useecc = MTD_NANDECC_AUTOPLACE,
.eccbytes = 3,
.eccpos = {0, 1, 2 },
.oobfree = { {8, 8} }
};
/* controller and mtd information */
@ -99,8 +106,10 @@ struct s3c2410_nand_info {
struct device *device;
struct resource *area;
struct clk *clk;
void *regs;
void __iomem *regs;
int mtd_count;
unsigned char is_s3c2440;
};
/* conversion functions */
@ -165,12 +174,12 @@ static int s3c2410_nand_inithw(struct s3c2410_nand_info *info,
/* calculate the timing information for the controller */
if (plat != NULL) {
tacls = s3c2410_nand_calc_rate(plat->tacls, clkrate, 8);
tacls = s3c2410_nand_calc_rate(plat->tacls, clkrate, 4);
twrph0 = s3c2410_nand_calc_rate(plat->twrph0, clkrate, 8);
twrph1 = s3c2410_nand_calc_rate(plat->twrph1, clkrate, 8);
} else {
/* default timings */
tacls = 8;
tacls = 4;
twrph0 = 8;
twrph1 = 8;
}
@ -185,10 +194,16 @@ static int s3c2410_nand_inithw(struct s3c2410_nand_info *info,
to_ns(twrph0, clkrate),
to_ns(twrph1, clkrate));
cfg = S3C2410_NFCONF_EN;
cfg |= S3C2410_NFCONF_TACLS(tacls-1);
cfg |= S3C2410_NFCONF_TWRPH0(twrph0-1);
cfg |= S3C2410_NFCONF_TWRPH1(twrph1-1);
if (!info->is_s3c2440) {
cfg = S3C2410_NFCONF_EN;
cfg |= S3C2410_NFCONF_TACLS(tacls-1);
cfg |= S3C2410_NFCONF_TWRPH0(twrph0-1);
cfg |= S3C2410_NFCONF_TWRPH1(twrph1-1);
} else {
cfg = S3C2440_NFCONF_TACLS(tacls-1);
cfg |= S3C2440_NFCONF_TWRPH0(twrph0-1);
cfg |= S3C2440_NFCONF_TWRPH1(twrph1-1);
}
pr_debug(PFX "NF_CONF is 0x%lx\n", cfg);
@ -203,17 +218,22 @@ static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip)
struct s3c2410_nand_info *info;
struct s3c2410_nand_mtd *nmtd;
struct nand_chip *this = mtd->priv;
void __iomem *reg;
unsigned long cur;
unsigned long bit;
nmtd = this->priv;
info = nmtd->info;
cur = readl(info->regs + S3C2410_NFCONF);
bit = (info->is_s3c2440) ? S3C2440_NFCONT_nFCE : S3C2410_NFCONF_nFCE;
reg = info->regs+((info->is_s3c2440) ? S3C2440_NFCONT:S3C2410_NFCONF);
cur = readl(reg);
if (chip == -1) {
cur |= S3C2410_NFCONF_nFCE;
cur |= bit;
} else {
if (chip > nmtd->set->nr_chips) {
if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
printk(KERN_ERR PFX "chip %d out of range\n", chip);
return;
}
@ -223,143 +243,76 @@ static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip)
(info->platform->select_chip)(nmtd->set, chip);
}
cur &= ~S3C2410_NFCONF_nFCE;
cur &= ~bit;
}
writel(cur, info->regs + S3C2410_NFCONF);
writel(cur, reg);
}
/* command and control functions */
/* command and control functions
*
* Note, these all use tglx's method of changing the IO_ADDR_W field
* to make the code simpler, and use the nand layer's code to issue the
* command and address sequences via the proper IO ports.
*
*/
static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd)
{
struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
unsigned long cur;
struct nand_chip *chip = mtd->priv;
switch (cmd) {
case NAND_CTL_SETNCE:
cur = readl(info->regs + S3C2410_NFCONF);
cur &= ~S3C2410_NFCONF_nFCE;
writel(cur, info->regs + S3C2410_NFCONF);
break;
case NAND_CTL_CLRNCE:
cur = readl(info->regs + S3C2410_NFCONF);
cur |= S3C2410_NFCONF_nFCE;
writel(cur, info->regs + S3C2410_NFCONF);
printk(KERN_ERR "%s: called for NCE\n", __FUNCTION__);
break;
/* we don't need to implement these */
case NAND_CTL_SETCLE:
case NAND_CTL_CLRCLE:
chip->IO_ADDR_W = info->regs + S3C2410_NFCMD;
break;
case NAND_CTL_SETALE:
case NAND_CTL_CLRALE:
pr_debug(PFX "s3c2410_nand_hwcontrol(%d) unusedn", cmd);
chip->IO_ADDR_W = info->regs + S3C2410_NFADDR;
break;
/* NAND_CTL_CLRCLE: */
/* NAND_CTL_CLRALE: */
default:
chip->IO_ADDR_W = info->regs + S3C2410_NFDATA;
break;
}
}
/* s3c2410_nand_command
*
* This function implements sending commands and the relevant address
* information to the chip, via the hardware controller. Since the
* S3C2410 generates the correct ALE/CLE signaling automatically, we
* do not need to use hwcontrol.
*/
/* command and control functions */
static void s3c2410_nand_command (struct mtd_info *mtd, unsigned command,
int column, int page_addr)
static void s3c2440_nand_hwcontrol(struct mtd_info *mtd, int cmd)
{
register struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
register struct nand_chip *this = mtd->priv;
struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
struct nand_chip *chip = mtd->priv;
/*
* Write out the command to the device.
*/
if (command == NAND_CMD_SEQIN) {
int readcmd;
switch (cmd) {
case NAND_CTL_SETNCE:
case NAND_CTL_CLRNCE:
printk(KERN_ERR "%s: called for NCE\n", __FUNCTION__);
break;
if (column >= mtd->oobblock) {
/* OOB area */
column -= mtd->oobblock;
readcmd = NAND_CMD_READOOB;
} else if (column < 256) {
/* First 256 bytes --> READ0 */
readcmd = NAND_CMD_READ0;
} else {
column -= 256;
readcmd = NAND_CMD_READ1;
}
writeb(readcmd, info->regs + S3C2410_NFCMD);
}
writeb(command, info->regs + S3C2410_NFCMD);
case NAND_CTL_SETCLE:
chip->IO_ADDR_W = info->regs + S3C2440_NFCMD;
break;
/* Set ALE and clear CLE to start address cycle */
case NAND_CTL_SETALE:
chip->IO_ADDR_W = info->regs + S3C2440_NFADDR;
break;
if (column != -1 || page_addr != -1) {
/* Serially input address */
if (column != -1) {
/* Adjust columns for 16 bit buswidth */
if (this->options & NAND_BUSWIDTH_16)
column >>= 1;
writeb(column, info->regs + S3C2410_NFADDR);
}
if (page_addr != -1) {
writeb((unsigned char) (page_addr), info->regs + S3C2410_NFADDR);
writeb((unsigned char) (page_addr >> 8), info->regs + S3C2410_NFADDR);
/* One more address cycle for higher density devices */
if (this->chipsize & 0x0c000000)
writeb((unsigned char) ((page_addr >> 16) & 0x0f),
info->regs + S3C2410_NFADDR);
}
/* Latch in address */
}
/*
* program and erase have their own busy handlers
* status and sequential in needs no delay
*/
switch (command) {
case NAND_CMD_PAGEPROG:
case NAND_CMD_ERASE1:
case NAND_CMD_ERASE2:
case NAND_CMD_SEQIN:
case NAND_CMD_STATUS:
return;
case NAND_CMD_RESET:
if (this->dev_ready)
break;
udelay(this->chip_delay);
writeb(NAND_CMD_STATUS, info->regs + S3C2410_NFCMD);
while ( !(this->read_byte(mtd) & 0x40));
return;
/* This applies to read commands */
/* NAND_CTL_CLRCLE: */
/* NAND_CTL_CLRALE: */
default:
/*
* If we don't have access to the busy pin, we apply the given
* command delay
*/
if (!this->dev_ready) {
udelay (this->chip_delay);
return;
}
chip->IO_ADDR_W = info->regs + S3C2440_NFDATA;
break;
}
/* Apply this short delay always to ensure that we do wait tWB in
* any case on any machine. */
ndelay (100);
/* wait until command is processed */
while (!this->dev_ready(mtd));
}
/* s3c2410_nand_devready()
*
* returns 0 if the nand is busy, 1 if it is ready
@ -369,9 +322,12 @@ static int s3c2410_nand_devready(struct mtd_info *mtd)
{
struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
if (info->is_s3c2440)
return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
}
/* ECC handling functions */
static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat,
@ -394,6 +350,12 @@ static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat,
return -1;
}
/* ECC functions
*
* These allow the s3c2410 and s3c2440 to use the controller's ECC
* generator block to ECC the data as it passes through]
*/
static void s3c2410_nand_enable_hwecc(struct mtd_info *mtd, int mode)
{
struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
@ -404,6 +366,15 @@ static void s3c2410_nand_enable_hwecc(struct mtd_info *mtd, int mode)
writel(ctrl, info->regs + S3C2410_NFCONF);
}
static void s3c2440_nand_enable_hwecc(struct mtd_info *mtd, int mode)
{
struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
unsigned long ctrl;
ctrl = readl(info->regs + S3C2440_NFCONT);
writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
}
static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd,
const u_char *dat, u_char *ecc_code)
{
@ -420,7 +391,26 @@ static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd,
}
/* over-ride the standard functions for a little more speed? */
static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd,
const u_char *dat, u_char *ecc_code)
{
struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
ecc_code[0] = ecc;
ecc_code[1] = ecc >> 8;
ecc_code[2] = ecc >> 16;
pr_debug("calculate_ecc: returning ecc %02x,%02x,%02x\n",
ecc_code[0], ecc_code[1], ecc_code[2]);
return 0;
}
/* over-ride the standard functions for a little more speed. We can
* use read/write block to move the data buffers to/from the controller
*/
static void s3c2410_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
{
@ -523,11 +513,10 @@ static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
{
struct nand_chip *chip = &nmtd->chip;
chip->IO_ADDR_R = (char *)info->regs + S3C2410_NFDATA;
chip->IO_ADDR_W = (char *)info->regs + S3C2410_NFDATA;
chip->IO_ADDR_R = info->regs + S3C2410_NFDATA;
chip->IO_ADDR_W = info->regs + S3C2410_NFDATA;
chip->hwcontrol = s3c2410_nand_hwcontrol;
chip->dev_ready = s3c2410_nand_devready;
chip->cmdfunc = s3c2410_nand_command;
chip->write_buf = s3c2410_nand_write_buf;
chip->read_buf = s3c2410_nand_read_buf;
chip->select_chip = s3c2410_nand_select_chip;
@ -536,6 +525,12 @@ static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
chip->options = 0;
chip->controller = &info->controller;
if (info->is_s3c2440) {
chip->IO_ADDR_R = info->regs + S3C2440_NFDATA;
chip->IO_ADDR_W = info->regs + S3C2440_NFDATA;
chip->hwcontrol = s3c2440_nand_hwcontrol;
}
nmtd->info = info;
nmtd->mtd.priv = chip;
nmtd->set = set;
@ -546,6 +541,11 @@ static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
chip->calculate_ecc = s3c2410_nand_calculate_ecc;
chip->eccmode = NAND_ECC_HW3_512;
chip->autooob = &nand_hw_eccoob;
if (info->is_s3c2440) {
chip->enable_hwecc = s3c2440_nand_enable_hwecc;
chip->calculate_ecc = s3c2440_nand_calculate_ecc;
}
} else {
chip->eccmode = NAND_ECC_SOFT;
}
@ -559,7 +559,7 @@ static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
* nand layer to look for devices
*/
static int s3c2410_nand_probe(struct device *dev)
static int s3c24xx_nand_probe(struct device *dev, int is_s3c2440)
{
struct platform_device *pdev = to_platform_device(dev);
struct s3c2410_platform_nand *plat = to_nand_plat(dev);
@ -585,6 +585,7 @@ static int s3c2410_nand_probe(struct device *dev)
dev_set_drvdata(dev, info);
spin_lock_init(&info->controller.lock);
init_waitqueue_head(&info->controller.wq);
/* get the clock source and enable it */
@ -600,7 +601,8 @@ static int s3c2410_nand_probe(struct device *dev)
/* allocate and map the resource */
res = pdev->resource; /* assume that the flash has one resource */
/* currently we assume we have the one resource */
res = pdev->resource;
size = res->end - res->start + 1;
info->area = request_mem_region(res->start, size, pdev->name);
@ -611,9 +613,10 @@ static int s3c2410_nand_probe(struct device *dev)
goto exit_error;
}
info->device = dev;
info->platform = plat;
info->regs = ioremap(res->start, size);
info->device = dev;
info->platform = plat;
info->regs = ioremap(res->start, size);
info->is_s3c2440 = is_s3c2440;
if (info->regs == NULL) {
printk(KERN_ERR PFX "cannot reserve register region\n");
@ -678,6 +681,18 @@ static int s3c2410_nand_probe(struct device *dev)
return err;
}
/* driver device registration */
static int s3c2410_nand_probe(struct device *dev)
{
return s3c24xx_nand_probe(dev, 0);
}
static int s3c2440_nand_probe(struct device *dev)
{
return s3c24xx_nand_probe(dev, 1);
}
static struct device_driver s3c2410_nand_driver = {
.name = "s3c2410-nand",
.bus = &platform_bus_type,
@ -685,14 +700,24 @@ static struct device_driver s3c2410_nand_driver = {
.remove = s3c2410_nand_remove,
};
static struct device_driver s3c2440_nand_driver = {
.name = "s3c2440-nand",
.bus = &platform_bus_type,
.probe = s3c2440_nand_probe,
.remove = s3c2410_nand_remove,
};
static int __init s3c2410_nand_init(void)
{
printk("S3C2410 NAND Driver, (c) 2004 Simtec Electronics\n");
printk("S3C24XX NAND Driver, (c) 2004 Simtec Electronics\n");
driver_register(&s3c2440_nand_driver);
return driver_register(&s3c2410_nand_driver);
}
static void __exit s3c2410_nand_exit(void)
{
driver_unregister(&s3c2440_nand_driver);
driver_unregister(&s3c2410_nand_driver);
}
@ -701,4 +726,4 @@ module_exit(s3c2410_nand_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
MODULE_DESCRIPTION("S3C2410 MTD NAND driver");
MODULE_DESCRIPTION("S3C24XX MTD NAND driver");

4
drivers/mtd/nand/sharpsl.c Executable file → Normal file
View file

@ -3,7 +3,7 @@
*
* Copyright (C) 2004 Richard Purdie
*
* $Id: sharpsl.c,v 1.3 2005/01/03 14:53:50 rpurdie Exp $
* $Id: sharpsl.c,v 1.4 2005/01/23 11:09:19 rpurdie Exp $
*
* Based on Sharp's NAND driver sharp_sl.c
*
@ -216,7 +216,7 @@ sharpsl_nand_init(void)
nr_partitions = DEFAULT_NUM_PARTITIONS;
sharpsl_partition_info = sharpsl_nand_default_partition_info;
if (machine_is_poodle()) {
sharpsl_partition_info[1].size=22 * 1024 * 1024;
sharpsl_partition_info[1].size=30 * 1024 * 1024;
} else if (machine_is_corgi() || machine_is_shepherd()) {
sharpsl_partition_info[1].size=25 * 1024 * 1024;
} else if (machine_is_husky()) {

View file

@ -1,416 +0,0 @@
/*
* drivers/mtd/tx4925ndfmc.c
*
* Overview:
* This is a device driver for the NAND flash device found on the
* Toshiba RBTX4925 reference board, which is a SmartMediaCard. It supports
* 16MiB, 32MiB and 64MiB cards.
*
* Author: MontaVista Software, Inc. source@mvista.com
*
* Derived from drivers/mtd/autcpu12.c
* Copyright (c) 2001 Thomas Gleixner (gleixner@autronix.de)
*
* $Id: tx4925ndfmc.c,v 1.5 2004/10/05 13:50:20 gleixner Exp $
*
* Copyright (C) 2001 Toshiba Corporation
*
* 2003 (c) MontaVista Software, Inc. This file is licensed under
* the terms of the GNU General Public License version 2. This program
* is licensed "as is" without any warranty of any kind, whether express
* or implied.
*
*/
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
#include <linux/delay.h>
#include <asm/io.h>
#include <asm/tx4925/tx4925_nand.h>
extern struct nand_oobinfo jffs2_oobinfo;
/*
* MTD structure for RBTX4925 board
*/
static struct mtd_info *tx4925ndfmc_mtd = NULL;
/*
* Define partitions for flash devices
*/
static struct mtd_partition partition_info16k[] = {
{ .name = "RBTX4925 flash partition 1",
.offset = 0,
.size = 8 * 0x00100000 },
{ .name = "RBTX4925 flash partition 2",
.offset = 8 * 0x00100000,
.size = 8 * 0x00100000 },
};
static struct mtd_partition partition_info32k[] = {
{ .name = "RBTX4925 flash partition 1",
.offset = 0,
.size = 8 * 0x00100000 },
{ .name = "RBTX4925 flash partition 2",
.offset = 8 * 0x00100000,
.size = 24 * 0x00100000 },
};
static struct mtd_partition partition_info64k[] = {
{ .name = "User FS",
.offset = 0,
.size = 16 * 0x00100000 },
{ .name = "RBTX4925 flash partition 2",
.offset = 16 * 0x00100000,
.size = 48 * 0x00100000},
};
static struct mtd_partition partition_info128k[] = {
{ .name = "Skip bad section",
.offset = 0,
.size = 16 * 0x00100000 },
{ .name = "User FS",
.offset = 16 * 0x00100000,
.size = 112 * 0x00100000 },
};
#define NUM_PARTITIONS16K 2
#define NUM_PARTITIONS32K 2
#define NUM_PARTITIONS64K 2
#define NUM_PARTITIONS128K 2
/*
* hardware specific access to control-lines
*/
static void tx4925ndfmc_hwcontrol(struct mtd_info *mtd, int cmd)
{
switch(cmd){
case NAND_CTL_SETCLE:
tx4925_ndfmcptr->mcr |= TX4925_NDFMCR_CLE;
break;
case NAND_CTL_CLRCLE:
tx4925_ndfmcptr->mcr &= ~TX4925_NDFMCR_CLE;
break;
case NAND_CTL_SETALE:
tx4925_ndfmcptr->mcr |= TX4925_NDFMCR_ALE;
break;
case NAND_CTL_CLRALE:
tx4925_ndfmcptr->mcr &= ~TX4925_NDFMCR_ALE;
break;
case NAND_CTL_SETNCE:
tx4925_ndfmcptr->mcr |= TX4925_NDFMCR_CE;
break;
case NAND_CTL_CLRNCE:
tx4925_ndfmcptr->mcr &= ~TX4925_NDFMCR_CE;
break;
case NAND_CTL_SETWP:
tx4925_ndfmcptr->mcr |= TX4925_NDFMCR_WE;
break;
case NAND_CTL_CLRWP:
tx4925_ndfmcptr->mcr &= ~TX4925_NDFMCR_WE;
break;
}
}
/*
* read device ready pin
*/
static int tx4925ndfmc_device_ready(struct mtd_info *mtd)
{
int ready;
ready = (tx4925_ndfmcptr->sr & TX4925_NDSFR_BUSY) ? 0 : 1;
return ready;
}
void tx4925ndfmc_enable_hwecc(struct mtd_info *mtd, int mode)
{
/* reset first */
tx4925_ndfmcptr->mcr |= TX4925_NDFMCR_ECC_CNTL_MASK;
tx4925_ndfmcptr->mcr &= ~TX4925_NDFMCR_ECC_CNTL_MASK;
tx4925_ndfmcptr->mcr |= TX4925_NDFMCR_ECC_CNTL_ENAB;
}
static void tx4925ndfmc_disable_ecc(void)
{
tx4925_ndfmcptr->mcr &= ~TX4925_NDFMCR_ECC_CNTL_MASK;
}
static void tx4925ndfmc_enable_read_ecc(void)
{
tx4925_ndfmcptr->mcr &= ~TX4925_NDFMCR_ECC_CNTL_MASK;
tx4925_ndfmcptr->mcr |= TX4925_NDFMCR_ECC_CNTL_READ;
}
void tx4925ndfmc_readecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code){
int i;
u_char *ecc = ecc_code;
tx4925ndfmc_enable_read_ecc();
for (i = 0;i < 6;i++,ecc++)
*ecc = tx4925_read_nfmc(&(tx4925_ndfmcptr->dtr));
tx4925ndfmc_disable_ecc();
}
void tx4925ndfmc_device_setup(void)
{
*(unsigned char *)0xbb005000 &= ~0x08;
/* reset NDFMC */
tx4925_ndfmcptr->rstr |= TX4925_NDFRSTR_RST;
while (tx4925_ndfmcptr->rstr & TX4925_NDFRSTR_RST);
/* setup BusSeparete, Hold Time, Strobe Pulse Width */
tx4925_ndfmcptr->mcr = TX4925_BSPRT ? TX4925_NDFMCR_BSPRT : 0;
tx4925_ndfmcptr->spr = TX4925_HOLD << 4 | TX4925_SPW;
}
static u_char tx4925ndfmc_nand_read_byte(struct mtd_info *mtd)
{
struct nand_chip *this = mtd->priv;
return tx4925_read_nfmc(this->IO_ADDR_R);
}
static void tx4925ndfmc_nand_write_byte(struct mtd_info *mtd, u_char byte)
{
struct nand_chip *this = mtd->priv;
tx4925_write_nfmc(byte, this->IO_ADDR_W);
}
static void tx4925ndfmc_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
{
int i;
struct nand_chip *this = mtd->priv;
for (i=0; i<len; i++)
tx4925_write_nfmc(buf[i], this->IO_ADDR_W);
}
static void tx4925ndfmc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
{
int i;
struct nand_chip *this = mtd->priv;
for (i=0; i<len; i++)
buf[i] = tx4925_read_nfmc(this->IO_ADDR_R);
}
static int tx4925ndfmc_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
{
int i;
struct nand_chip *this = mtd->priv;
for (i=0; i<len; i++)
if (buf[i] != tx4925_read_nfmc(this->IO_ADDR_R))
return -EFAULT;
return 0;
}
/*
* Send command to NAND device
*/
static void tx4925ndfmc_nand_command (struct mtd_info *mtd, unsigned command, int column, int page_addr)
{
register struct nand_chip *this = mtd->priv;
/* Begin command latch cycle */
this->hwcontrol(mtd, NAND_CTL_SETCLE);
/*
* Write out the command to the device.
*/
if (command == NAND_CMD_SEQIN) {
int readcmd;
if (column >= mtd->oobblock) {
/* OOB area */
column -= mtd->oobblock;
readcmd = NAND_CMD_READOOB;
} else if (column < 256) {
/* First 256 bytes --> READ0 */
readcmd = NAND_CMD_READ0;
} else {
column -= 256;
readcmd = NAND_CMD_READ1;
}
this->write_byte(mtd, readcmd);
}
this->write_byte(mtd, command);
/* Set ALE and clear CLE to start address cycle */
this->hwcontrol(mtd, NAND_CTL_CLRCLE);
if (column != -1 || page_addr != -1) {
this->hwcontrol(mtd, NAND_CTL_SETALE);
/* Serially input address */
if (column != -1)
this->write_byte(mtd, column);
if (page_addr != -1) {
this->write_byte(mtd, (unsigned char) (page_addr & 0xff));
this->write_byte(mtd, (unsigned char) ((page_addr >> 8) & 0xff));
/* One more address cycle for higher density devices */
if (mtd->size & 0x0c000000)
this->write_byte(mtd, (unsigned char) ((page_addr >> 16) & 0x0f));
}
/* Latch in address */
this->hwcontrol(mtd, NAND_CTL_CLRALE);
}
/*
* program and erase have their own busy handlers
* status and sequential in needs no delay
*/
switch (command) {
case NAND_CMD_PAGEPROG:
/* Turn off WE */
this->hwcontrol (mtd, NAND_CTL_CLRWP);
return;
case NAND_CMD_SEQIN:
/* Turn on WE */
this->hwcontrol (mtd, NAND_CTL_SETWP);
return;
case NAND_CMD_ERASE1:
case NAND_CMD_ERASE2:
case NAND_CMD_STATUS:
return;
case NAND_CMD_RESET:
if (this->dev_ready)
break;
this->hwcontrol(mtd, NAND_CTL_SETCLE);
this->write_byte(mtd, NAND_CMD_STATUS);
this->hwcontrol(mtd, NAND_CTL_CLRCLE);
while ( !(this->read_byte(mtd) & 0x40));
return;
/* This applies to read commands */
default:
/*
* If we don't have access to the busy pin, we apply the given
* command delay
*/
if (!this->dev_ready) {
udelay (this->chip_delay);
return;
}
}
/* wait until command is processed */
while (!this->dev_ready(mtd));
}
#ifdef CONFIG_MTD_CMDLINE_PARTS
extern int parse_cmdline_partitions(struct mtd_info *master, struct mtd_partitio
n **pparts, char *);
#endif
/*
* Main initialization routine
*/
extern int nand_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc);
int __init tx4925ndfmc_init (void)
{
struct nand_chip *this;
int err = 0;
/* Allocate memory for MTD device structure and private data */
tx4925ndfmc_mtd = kmalloc (sizeof(struct mtd_info) + sizeof (struct nand_chip),
GFP_KERNEL);
if (!tx4925ndfmc_mtd) {
printk ("Unable to allocate RBTX4925 NAND MTD device structure.\n");
err = -ENOMEM;
goto out;
}
tx4925ndfmc_device_setup();
/* io is indirect via a register so don't need to ioremap address */
/* Get pointer to private data */
this = (struct nand_chip *) (&tx4925ndfmc_mtd[1]);
/* Initialize structures */
memset((char *) tx4925ndfmc_mtd, 0, sizeof(struct mtd_info));
memset((char *) this, 0, sizeof(struct nand_chip));
/* Link the private data with the MTD structure */
tx4925ndfmc_mtd->priv = this;
/* Set address of NAND IO lines */
this->IO_ADDR_R = (void __iomem *)&(tx4925_ndfmcptr->dtr);
this->IO_ADDR_W = (void __iomem *)&(tx4925_ndfmcptr->dtr);
this->hwcontrol = tx4925ndfmc_hwcontrol;
this->enable_hwecc = tx4925ndfmc_enable_hwecc;
this->calculate_ecc = tx4925ndfmc_readecc;
this->correct_data = nand_correct_data;
this->eccmode = NAND_ECC_HW6_512;
this->dev_ready = tx4925ndfmc_device_ready;
/* 20 us command delay time */
this->chip_delay = 20;
this->read_byte = tx4925ndfmc_nand_read_byte;
this->write_byte = tx4925ndfmc_nand_write_byte;
this->cmdfunc = tx4925ndfmc_nand_command;
this->write_buf = tx4925ndfmc_nand_write_buf;
this->read_buf = tx4925ndfmc_nand_read_buf;
this->verify_buf = tx4925ndfmc_nand_verify_buf;
/* Scan to find existance of the device */
if (nand_scan (tx4925ndfmc_mtd, 1)) {
err = -ENXIO;
goto out_ior;
}
/* Register the partitions */
#ifdef CONFIG_MTD_CMDLINE_PARTS
{
int mtd_parts_nb = 0;
struct mtd_partition *mtd_parts = 0;
mtd_parts_nb = parse_cmdline_partitions(tx4925ndfmc_mtd, &mtd_parts, "tx4925ndfmc");
if (mtd_parts_nb > 0)
add_mtd_partitions(tx4925ndfmc_mtd, mtd_parts, mtd_parts_nb);
else
add_mtd_device(tx4925ndfmc_mtd);
}
#else /* ifdef CONFIG_MTD_CMDLINE_PARTS */
switch(tx4925ndfmc_mtd->size){
case 0x01000000: add_mtd_partitions(tx4925ndfmc_mtd, partition_info16k, NUM_PARTITIONS16K); break;
case 0x02000000: add_mtd_partitions(tx4925ndfmc_mtd, partition_info32k, NUM_PARTITIONS32K); break;
case 0x04000000: add_mtd_partitions(tx4925ndfmc_mtd, partition_info64k, NUM_PARTITIONS64K); break;
case 0x08000000: add_mtd_partitions(tx4925ndfmc_mtd, partition_info128k, NUM_PARTITIONS128K); break;
default: {
printk ("Unsupported SmartMedia device\n");
err = -ENXIO;
goto out_ior;
}
}
#endif /* ifdef CONFIG_MTD_CMDLINE_PARTS */
goto out;
out_ior:
out:
return err;
}
module_init(tx4925ndfmc_init);
/*
* Clean up routine
*/
#ifdef MODULE
static void __exit tx4925ndfmc_cleanup (void)
{
/* Release resources, unregister device */
nand_release (tx4925ndfmc_mtd);
/* Free the MTD device structure */
kfree (tx4925ndfmc_mtd);
}
module_exit(tx4925ndfmc_cleanup);
#endif
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Alice Hennessy <ahennessy@mvista.com>");
MODULE_DESCRIPTION("Glue layer for SmartMediaCard on Toshiba RBTX4925");

View file

@ -1,406 +0,0 @@
/*
* drivers/mtd/nand/tx4938ndfmc.c
*
* Overview:
* This is a device driver for the NAND flash device connected to
* TX4938 internal NAND Memory Controller.
* TX4938 NDFMC is almost same as TX4925 NDFMC, but register size are 64 bit.
*
* Author: source@mvista.com
*
* Based on spia.c by Steven J. Hill
*
* $Id: tx4938ndfmc.c,v 1.4 2004/10/05 13:50:20 gleixner Exp $
*
* Copyright (C) 2000-2001 Toshiba Corporation
*
* 2003 (c) MontaVista Software, Inc. This file is licensed under the
* terms of the GNU General Public License version 2. This program is
* licensed "as is" without any warranty of any kind, whether express
* or implied.
*/
#include <linux/config.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/nand_ecc.h>
#include <linux/mtd/partitions.h>
#include <asm/io.h>
#include <asm/bootinfo.h>
#include <linux/delay.h>
#include <asm/tx4938/rbtx4938.h>
extern struct nand_oobinfo jffs2_oobinfo;
/*
* MTD structure for TX4938 NDFMC
*/
static struct mtd_info *tx4938ndfmc_mtd;
/*
* Define partitions for flash device
*/
#define flush_wb() (void)tx4938_ndfmcptr->mcr;
#define NUM_PARTITIONS 3
#define NUMBER_OF_CIS_BLOCKS 24
#define SIZE_OF_BLOCK 0x00004000
#define NUMBER_OF_BLOCK_PER_ZONE 1024
#define SIZE_OF_ZONE (NUMBER_OF_BLOCK_PER_ZONE * SIZE_OF_BLOCK)
#ifndef CONFIG_MTD_CMDLINE_PARTS
/*
* You can use the following sample of MTD partitions
* on the NAND Flash Memory 32MB or more.
*
* The following figure shows the image of the sample partition on
* the 32MB NAND Flash Memory.
*
* Block No.
* 0 +-----------------------------+ ------
* | CIS | ^
* 24 +-----------------------------+ |
* | kernel image | | Zone 0
* | | |
* +-----------------------------+ |
* 1023 | unused area | v
* +-----------------------------+ ------
* 1024 | JFFS2 | ^
* | | |
* | | | Zone 1
* | | |
* | | |
* | | v
* 2047 +-----------------------------+ ------
*
*/
static struct mtd_partition partition_info[NUM_PARTITIONS] = {
{
.name = "RBTX4938 CIS Area",
.offset = 0,
.size = (NUMBER_OF_CIS_BLOCKS * SIZE_OF_BLOCK),
.mask_flags = MTD_WRITEABLE /* This partition is NOT writable */
},
{
.name = "RBTX4938 kernel image",
.offset = MTDPART_OFS_APPEND,
.size = 8 * 0x00100000, /* 8MB (Depends on size of kernel image) */
.mask_flags = MTD_WRITEABLE /* This partition is NOT writable */
},
{
.name = "Root FS (JFFS2)",
.offset = (0 + SIZE_OF_ZONE), /* start address of next zone */
.size = MTDPART_SIZ_FULL
},
};
#endif
static void tx4938ndfmc_hwcontrol(struct mtd_info *mtd, int cmd)
{
switch (cmd) {
case NAND_CTL_SETCLE:
tx4938_ndfmcptr->mcr |= TX4938_NDFMCR_CLE;
break;
case NAND_CTL_CLRCLE:
tx4938_ndfmcptr->mcr &= ~TX4938_NDFMCR_CLE;
break;
case NAND_CTL_SETALE:
tx4938_ndfmcptr->mcr |= TX4938_NDFMCR_ALE;
break;
case NAND_CTL_CLRALE:
tx4938_ndfmcptr->mcr &= ~TX4938_NDFMCR_ALE;
break;
/* TX4938_NDFMCR_CE bit is 0:high 1:low */
case NAND_CTL_SETNCE:
tx4938_ndfmcptr->mcr |= TX4938_NDFMCR_CE;
break;
case NAND_CTL_CLRNCE:
tx4938_ndfmcptr->mcr &= ~TX4938_NDFMCR_CE;
break;
case NAND_CTL_SETWP:
tx4938_ndfmcptr->mcr |= TX4938_NDFMCR_WE;
break;
case NAND_CTL_CLRWP:
tx4938_ndfmcptr->mcr &= ~TX4938_NDFMCR_WE;
break;
}
}
static int tx4938ndfmc_dev_ready(struct mtd_info *mtd)
{
flush_wb();
return !(tx4938_ndfmcptr->sr & TX4938_NDFSR_BUSY);
}
static void tx4938ndfmc_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
{
u32 mcr = tx4938_ndfmcptr->mcr;
mcr &= ~TX4938_NDFMCR_ECC_ALL;
tx4938_ndfmcptr->mcr = mcr | TX4938_NDFMCR_ECC_OFF;
tx4938_ndfmcptr->mcr = mcr | TX4938_NDFMCR_ECC_READ;
ecc_code[1] = tx4938_ndfmcptr->dtr;
ecc_code[0] = tx4938_ndfmcptr->dtr;
ecc_code[2] = tx4938_ndfmcptr->dtr;
tx4938_ndfmcptr->mcr = mcr | TX4938_NDFMCR_ECC_OFF;
}
static void tx4938ndfmc_enable_hwecc(struct mtd_info *mtd, int mode)
{
u32 mcr = tx4938_ndfmcptr->mcr;
mcr &= ~TX4938_NDFMCR_ECC_ALL;
tx4938_ndfmcptr->mcr = mcr | TX4938_NDFMCR_ECC_RESET;
tx4938_ndfmcptr->mcr = mcr | TX4938_NDFMCR_ECC_OFF;
tx4938_ndfmcptr->mcr = mcr | TX4938_NDFMCR_ECC_ON;
}
static u_char tx4938ndfmc_nand_read_byte(struct mtd_info *mtd)
{
struct nand_chip *this = mtd->priv;
return tx4938_read_nfmc(this->IO_ADDR_R);
}
static void tx4938ndfmc_nand_write_byte(struct mtd_info *mtd, u_char byte)
{
struct nand_chip *this = mtd->priv;
tx4938_write_nfmc(byte, this->IO_ADDR_W);
}
static void tx4938ndfmc_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
{
int i;
struct nand_chip *this = mtd->priv;
for (i=0; i<len; i++)
tx4938_write_nfmc(buf[i], this->IO_ADDR_W);
}
static void tx4938ndfmc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
{
int i;
struct nand_chip *this = mtd->priv;
for (i=0; i<len; i++)
buf[i] = tx4938_read_nfmc(this->IO_ADDR_R);
}
static int tx4938ndfmc_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
{
int i;
struct nand_chip *this = mtd->priv;
for (i=0; i<len; i++)
if (buf[i] != tx4938_read_nfmc(this->IO_ADDR_R))
return -EFAULT;
return 0;
}
/*
* Send command to NAND device
*/
static void tx4938ndfmc_nand_command (struct mtd_info *mtd, unsigned command, int column, int page_addr)
{
register struct nand_chip *this = mtd->priv;
/* Begin command latch cycle */
this->hwcontrol(mtd, NAND_CTL_SETCLE);
/*
* Write out the command to the device.
*/
if (command == NAND_CMD_SEQIN) {
int readcmd;
if (column >= mtd->oobblock) {
/* OOB area */
column -= mtd->oobblock;
readcmd = NAND_CMD_READOOB;
} else if (column < 256) {
/* First 256 bytes --> READ0 */
readcmd = NAND_CMD_READ0;
} else {
column -= 256;
readcmd = NAND_CMD_READ1;
}
this->write_byte(mtd, readcmd);
}
this->write_byte(mtd, command);
/* Set ALE and clear CLE to start address cycle */
this->hwcontrol(mtd, NAND_CTL_CLRCLE);
if (column != -1 || page_addr != -1) {
this->hwcontrol(mtd, NAND_CTL_SETALE);
/* Serially input address */
if (column != -1)
this->write_byte(mtd, column);
if (page_addr != -1) {
this->write_byte(mtd, (unsigned char) (page_addr & 0xff));
this->write_byte(mtd, (unsigned char) ((page_addr >> 8) & 0xff));
/* One more address cycle for higher density devices */
if (mtd->size & 0x0c000000)
this->write_byte(mtd, (unsigned char) ((page_addr >> 16) & 0x0f));
}
/* Latch in address */
this->hwcontrol(mtd, NAND_CTL_CLRALE);
}
/*
* program and erase have their own busy handlers
* status and sequential in needs no delay
*/
switch (command) {
case NAND_CMD_PAGEPROG:
/* Turn off WE */
this->hwcontrol (mtd, NAND_CTL_CLRWP);
return;
case NAND_CMD_SEQIN:
/* Turn on WE */
this->hwcontrol (mtd, NAND_CTL_SETWP);
return;
case NAND_CMD_ERASE1:
case NAND_CMD_ERASE2:
case NAND_CMD_STATUS:
return;
case NAND_CMD_RESET:
if (this->dev_ready)
break;
this->hwcontrol(mtd, NAND_CTL_SETCLE);
this->write_byte(mtd, NAND_CMD_STATUS);
this->hwcontrol(mtd, NAND_CTL_CLRCLE);
while ( !(this->read_byte(mtd) & 0x40));
return;
/* This applies to read commands */
default:
/*
* If we don't have access to the busy pin, we apply the given
* command delay
*/
if (!this->dev_ready) {
udelay (this->chip_delay);
return;
}
}
/* wait until command is processed */
while (!this->dev_ready(mtd));
}
#ifdef CONFIG_MTD_CMDLINE_PARTS
extern int parse_cmdline_partitions(struct mtd_info *master, struct mtd_partition **pparts, char *);
#endif
/*
* Main initialization routine
*/
int __init tx4938ndfmc_init (void)
{
struct nand_chip *this;
int bsprt = 0, hold = 0xf, spw = 0xf;
int protected = 0;
if ((*rbtx4938_piosel_ptr & 0x0c) != 0x08) {
printk("TX4938 NDFMC: disabled by IOC PIOSEL\n");
return -ENODEV;
}
bsprt = 1;
hold = 2;
spw = 9 - 1; /* 8 GBUSCLK = 80ns (@ GBUSCLK 100MHz) */
if ((tx4938_ccfgptr->pcfg &
(TX4938_PCFG_ATA_SEL|TX4938_PCFG_ISA_SEL|TX4938_PCFG_NDF_SEL))
!= TX4938_PCFG_NDF_SEL) {
printk("TX4938 NDFMC: disabled by PCFG.\n");
return -ENODEV;
}
/* reset NDFMC */
tx4938_ndfmcptr->rstr |= TX4938_NDFRSTR_RST;
while (tx4938_ndfmcptr->rstr & TX4938_NDFRSTR_RST)
;
/* setup BusSeparete, Hold Time, Strobe Pulse Width */
tx4938_ndfmcptr->mcr = bsprt ? TX4938_NDFMCR_BSPRT : 0;
tx4938_ndfmcptr->spr = hold << 4 | spw;
/* Allocate memory for MTD device structure and private data */
tx4938ndfmc_mtd = kmalloc (sizeof(struct mtd_info) + sizeof (struct nand_chip),
GFP_KERNEL);
if (!tx4938ndfmc_mtd) {
printk ("Unable to allocate TX4938 NDFMC MTD device structure.\n");
return -ENOMEM;
}
/* Get pointer to private data */
this = (struct nand_chip *) (&tx4938ndfmc_mtd[1]);
/* Initialize structures */
memset((char *) tx4938ndfmc_mtd, 0, sizeof(struct mtd_info));
memset((char *) this, 0, sizeof(struct nand_chip));
/* Link the private data with the MTD structure */
tx4938ndfmc_mtd->priv = this;
/* Set address of NAND IO lines */
this->IO_ADDR_R = (unsigned long)&tx4938_ndfmcptr->dtr;
this->IO_ADDR_W = (unsigned long)&tx4938_ndfmcptr->dtr;
this->hwcontrol = tx4938ndfmc_hwcontrol;
this->dev_ready = tx4938ndfmc_dev_ready;
this->calculate_ecc = tx4938ndfmc_calculate_ecc;
this->correct_data = nand_correct_data;
this->enable_hwecc = tx4938ndfmc_enable_hwecc;
this->eccmode = NAND_ECC_HW3_256;
this->chip_delay = 100;
this->read_byte = tx4938ndfmc_nand_read_byte;
this->write_byte = tx4938ndfmc_nand_write_byte;
this->cmdfunc = tx4938ndfmc_nand_command;
this->write_buf = tx4938ndfmc_nand_write_buf;
this->read_buf = tx4938ndfmc_nand_read_buf;
this->verify_buf = tx4938ndfmc_nand_verify_buf;
/* Scan to find existance of the device */
if (nand_scan (tx4938ndfmc_mtd, 1)) {
kfree (tx4938ndfmc_mtd);
return -ENXIO;
}
if (protected) {
printk(KERN_INFO "TX4938 NDFMC: write protected.\n");
tx4938ndfmc_mtd->flags &= ~(MTD_WRITEABLE | MTD_ERASEABLE);
}
#ifdef CONFIG_MTD_CMDLINE_PARTS
{
int mtd_parts_nb = 0;
struct mtd_partition *mtd_parts = 0;
mtd_parts_nb = parse_cmdline_partitions(tx4938ndfmc_mtd, &mtd_parts, "tx4938ndfmc");
if (mtd_parts_nb > 0)
add_mtd_partitions(tx4938ndfmc_mtd, mtd_parts, mtd_parts_nb);
else
add_mtd_device(tx4938ndfmc_mtd);
}
#else
add_mtd_partitions(tx4938ndfmc_mtd, partition_info, NUM_PARTITIONS );
#endif
return 0;
}
module_init(tx4938ndfmc_init);
/*
* Clean up routine
*/
static void __exit tx4938ndfmc_cleanup (void)
{
/* Release resources, unregister device */
nand_release (tx4938ndfmc_mtd);
/* Free the MTD device structure */
kfree (tx4938ndfmc_mtd);
}
module_exit(tx4938ndfmc_cleanup);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Alice Hennessy <ahennessy@mvista.com>");
MODULE_DESCRIPTION("Board-specific glue layer for NAND flash on TX4938 NDFMC");

View file

@ -1039,26 +1039,18 @@ config JFFS2_FS_DEBUG
If reporting bugs, please try to have available a full dump of the
messages at debug level 1 while the misbehaviour was occurring.
config JFFS2_FS_NAND
bool "JFFS2 support for NAND flash"
config JFFS2_FS_WRITEBUFFER
bool "JFFS2 write-buffering support"
depends on JFFS2_FS
default n
default y
help
This enables the support for NAND flash in JFFS2. NAND is a newer
type of flash chip design than the traditional NOR flash, with
higher density but a handful of characteristics which make it more
interesting for the file system to use.
This enables the write-buffering support in JFFS2.
Say 'N' unless you have NAND flash.
config JFFS2_FS_NOR_ECC
bool "JFFS2 support for ECC'd NOR flash (EXPERIMENTAL)"
depends on JFFS2_FS && EXPERIMENTAL
default n
help
This enables the experimental support for NOR flash with transparent
ECC for JFFS2. This type of flash chip is not common, however it is
available from ST Microelectronics.
This functionality is required to support JFFS2 on the following
types of flash devices:
- NAND flash
- NOR flash with transparent ECC
- DataFlash
config JFFS2_COMPRESSION_OPTIONS
bool "Advanced compression options for JFFS2"

View file

@ -1,7 +1,7 @@
#
# Makefile for the Linux Journalling Flash File System v2 (JFFS2)
#
# $Id: Makefile.common,v 1.7 2004/11/03 12:57:38 jwboyer Exp $
# $Id: Makefile.common,v 1.9 2005/02/09 09:23:53 pavlov Exp $
#
obj-$(CONFIG_JFFS2_FS) += jffs2.o
@ -11,8 +11,7 @@ jffs2-y += read.o nodemgmt.o readinode.o write.o scan.o gc.o
jffs2-y += symlink.o build.o erase.o background.o fs.o writev.o
jffs2-y += super.o
jffs2-$(CONFIG_JFFS2_FS_NAND) += wbuf.o
jffs2-$(CONFIG_JFFS2_FS_NOR_ECC) += wbuf.o
jffs2-$(CONFIG_JFFS2_FS_WRITEBUFFER) += wbuf.o
jffs2-$(CONFIG_JFFS2_RUBIN) += compr_rubin.o
jffs2-$(CONFIG_JFFS2_RTIME) += compr_rtime.o
jffs2-$(CONFIG_JFFS2_ZLIB) += compr_zlib.o

View file

@ -1,4 +1,4 @@
$Id: README.Locking,v 1.9 2004/11/20 10:35:40 dwmw2 Exp $
$Id: README.Locking,v 1.12 2005/04/13 13:22:35 dwmw2 Exp $
JFFS2 LOCKING DOCUMENTATION
---------------------------
@ -108,6 +108,10 @@ in-core jffs2_inode_cache objects (each inode in JFFS2 has the
correspondent jffs2_inode_cache object). So, the inocache_lock
has to be locked while walking the c->inocache_list hash buckets.
This spinlock also covers allocation of new inode numbers, which is
currently just '++->highest_ino++', but might one day get more complicated
if we need to deal with wrapping after 4 milliard inode numbers are used.
Note, the f->sem guarantees that the correspondent jffs2_inode_cache
will not be removed. So, it is allowed to access it without locking
the inocache_lock spinlock.

View file

@ -7,7 +7,7 @@
*
* For licensing information, see the file 'LICENCE' in this directory.
*
* $Id: background.c,v 1.50 2004/11/16 20:36:10 dwmw2 Exp $
* $Id: background.c,v 1.54 2005/05/20 21:37:12 gleixner Exp $
*
*/
@ -37,7 +37,7 @@ int jffs2_start_garbage_collect_thread(struct jffs2_sb_info *c)
if (c->gc_task)
BUG();
init_MUTEX_LOCKED(&c->gc_thread_start);
init_completion(&c->gc_thread_start);
init_completion(&c->gc_thread_exit);
pid = kernel_thread(jffs2_garbage_collect_thread, c, CLONE_FS|CLONE_FILES);
@ -48,7 +48,7 @@ int jffs2_start_garbage_collect_thread(struct jffs2_sb_info *c)
} else {
/* Wait for it... */
D1(printk(KERN_DEBUG "JFFS2: Garbage collect thread is pid %d\n", pid));
down(&c->gc_thread_start);
wait_for_completion(&c->gc_thread_start);
}
return ret;
@ -56,13 +56,16 @@ int jffs2_start_garbage_collect_thread(struct jffs2_sb_info *c)
void jffs2_stop_garbage_collect_thread(struct jffs2_sb_info *c)
{
int wait = 0;
spin_lock(&c->erase_completion_lock);
if (c->gc_task) {
D1(printk(KERN_DEBUG "jffs2: Killing GC task %d\n", c->gc_task->pid));
send_sig(SIGKILL, c->gc_task, 1);
wait = 1;
}
spin_unlock(&c->erase_completion_lock);
wait_for_completion(&c->gc_thread_exit);
if (wait)
wait_for_completion(&c->gc_thread_exit);
}
static int jffs2_garbage_collect_thread(void *_c)
@ -75,7 +78,7 @@ static int jffs2_garbage_collect_thread(void *_c)
allow_signal(SIGCONT);
c->gc_task = current;
up(&c->gc_thread_start);
complete(&c->gc_thread_start);
set_user_nice(current, 10);

View file

@ -7,7 +7,7 @@
*
* For licensing information, see the file 'LICENCE' in this directory.
*
* $Id: build.c,v 1.69 2004/12/16 20:22:18 dmarlin Exp $
* $Id: build.c,v 1.70 2005/02/28 08:21:05 dedekind Exp $
*
*/
@ -97,14 +97,16 @@ static int jffs2_build_filesystem(struct jffs2_sb_info *c)
/* First, scan the medium and build all the inode caches with
lists of physical nodes */
c->flags |= JFFS2_SB_FLAG_MOUNTING;
c->flags |= JFFS2_SB_FLAG_SCANNING;
ret = jffs2_scan_medium(c);
c->flags &= ~JFFS2_SB_FLAG_SCANNING;
if (ret)
goto exit;
D1(printk(KERN_DEBUG "Scanned flash completely\n"));
D2(jffs2_dump_block_lists(c));
c->flags |= JFFS2_SB_FLAG_BUILDING;
/* Now scan the directory tree, increasing nlink according to every dirent found. */
for_each_inode(i, c, ic) {
D1(printk(KERN_DEBUG "Pass 1: ino #%u\n", ic->ino));
@ -116,7 +118,6 @@ static int jffs2_build_filesystem(struct jffs2_sb_info *c)
cond_resched();
}
}
c->flags &= ~JFFS2_SB_FLAG_MOUNTING;
D1(printk(KERN_DEBUG "Pass 1 complete\n"));
@ -164,6 +165,8 @@ static int jffs2_build_filesystem(struct jffs2_sb_info *c)
ic->scan_dents = NULL;
cond_resched();
}
c->flags &= ~JFFS2_SB_FLAG_BUILDING;
D1(printk(KERN_DEBUG "Pass 3 complete\n"));
D2(jffs2_dump_block_lists(c));

View file

@ -7,7 +7,7 @@
*
* For licensing information, see the file 'LICENCE' in this directory.
*
* $Id: compr_zlib.c,v 1.29 2004/11/16 20:36:11 dwmw2 Exp $
* $Id: compr_zlib.c,v 1.31 2005/05/20 19:30:06 gleixner Exp $
*
*/
@ -17,10 +17,10 @@
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/zlib.h>
#include <linux/zutil.h>
#include <asm/semaphore.h>
#include "nodelist.h"
#include "compr.h"

View file

@ -7,7 +7,7 @@
*
* For licensing information, see the file 'LICENCE' in this directory.
*
* $Id: dir.c,v 1.84 2004/11/16 20:36:11 dwmw2 Exp $
* $Id: dir.c,v 1.86 2005/07/06 12:13:09 dwmw2 Exp $
*
*/
@ -22,16 +22,6 @@
#include <linux/time.h>
#include "nodelist.h"
/* Urgh. Please tell me there's a nicer way of doing these. */
#include <linux/version.h>
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,48)
typedef int mknod_arg_t;
#define NAMEI_COMPAT(x) ((void *)x)
#else
typedef dev_t mknod_arg_t;
#define NAMEI_COMPAT(x) (x)
#endif
static int jffs2_readdir (struct file *, void *, filldir_t);
static int jffs2_create (struct inode *,struct dentry *,int,
@ -43,7 +33,7 @@ static int jffs2_unlink (struct inode *,struct dentry *);
static int jffs2_symlink (struct inode *,struct dentry *,const char *);
static int jffs2_mkdir (struct inode *,struct dentry *,int);
static int jffs2_rmdir (struct inode *,struct dentry *);
static int jffs2_mknod (struct inode *,struct dentry *,int,mknod_arg_t);
static int jffs2_mknod (struct inode *,struct dentry *,int,dev_t);
static int jffs2_rename (struct inode *, struct dentry *,
struct inode *, struct dentry *);
@ -58,8 +48,8 @@ struct file_operations jffs2_dir_operations =
struct inode_operations jffs2_dir_inode_operations =
{
.create = NAMEI_COMPAT(jffs2_create),
.lookup = NAMEI_COMPAT(jffs2_lookup),
.create = jffs2_create,
.lookup = jffs2_lookup,
.link = jffs2_link,
.unlink = jffs2_unlink,
.symlink = jffs2_symlink,
@ -296,11 +286,11 @@ static int jffs2_symlink (struct inode *dir_i, struct dentry *dentry, const char
struct jffs2_full_dirent *fd;
int namelen;
uint32_t alloclen, phys_ofs;
int ret;
int ret, targetlen = strlen(target);
/* FIXME: If you care. We'd need to use frags for the target
if it grows much more than this */
if (strlen(target) > 254)
if (targetlen > 254)
return -EINVAL;
ri = jffs2_alloc_raw_inode();
@ -314,7 +304,7 @@ static int jffs2_symlink (struct inode *dir_i, struct dentry *dentry, const char
* Just the node will do for now, though
*/
namelen = dentry->d_name.len;
ret = jffs2_reserve_space(c, sizeof(*ri) + strlen(target), &phys_ofs, &alloclen, ALLOC_NORMAL);
ret = jffs2_reserve_space(c, sizeof(*ri) + targetlen, &phys_ofs, &alloclen, ALLOC_NORMAL);
if (ret) {
jffs2_free_raw_inode(ri);
@ -333,16 +323,16 @@ static int jffs2_symlink (struct inode *dir_i, struct dentry *dentry, const char
f = JFFS2_INODE_INFO(inode);
inode->i_size = strlen(target);
inode->i_size = targetlen;
ri->isize = ri->dsize = ri->csize = cpu_to_je32(inode->i_size);
ri->totlen = cpu_to_je32(sizeof(*ri) + inode->i_size);
ri->hdr_crc = cpu_to_je32(crc32(0, ri, sizeof(struct jffs2_unknown_node)-4));
ri->compr = JFFS2_COMPR_NONE;
ri->data_crc = cpu_to_je32(crc32(0, target, strlen(target)));
ri->data_crc = cpu_to_je32(crc32(0, target, targetlen));
ri->node_crc = cpu_to_je32(crc32(0, ri, sizeof(*ri)-8));
fn = jffs2_write_dnode(c, f, ri, target, strlen(target), phys_ofs, ALLOC_NORMAL);
fn = jffs2_write_dnode(c, f, ri, target, targetlen, phys_ofs, ALLOC_NORMAL);
jffs2_free_raw_inode(ri);
@ -353,6 +343,20 @@ static int jffs2_symlink (struct inode *dir_i, struct dentry *dentry, const char
jffs2_clear_inode(inode);
return PTR_ERR(fn);
}
/* We use f->dents field to store the target path. */
f->dents = kmalloc(targetlen + 1, GFP_KERNEL);
if (!f->dents) {
printk(KERN_WARNING "Can't allocate %d bytes of memory\n", targetlen + 1);
up(&f->sem);
jffs2_complete_reservation(c);
jffs2_clear_inode(inode);
return -ENOMEM;
}
memcpy(f->dents, target, targetlen + 1);
D1(printk(KERN_DEBUG "jffs2_symlink: symlink's target '%s' cached\n", (char *)f->dents));
/* No data here. Only a metadata node, which will be
obsoleted by the first data write
*/
@ -564,7 +568,7 @@ static int jffs2_rmdir (struct inode *dir_i, struct dentry *dentry)
return ret;
}
static int jffs2_mknod (struct inode *dir_i, struct dentry *dentry, int mode, mknod_arg_t rdev)
static int jffs2_mknod (struct inode *dir_i, struct dentry *dentry, int mode, dev_t rdev)
{
struct jffs2_inode_info *f, *dir_f;
struct jffs2_sb_info *c;

View file

@ -7,7 +7,7 @@
*
* For licensing information, see the file 'LICENCE' in this directory.
*
* $Id: erase.c,v 1.66 2004/11/16 20:36:11 dwmw2 Exp $
* $Id: erase.c,v 1.76 2005/05/03 15:11:40 dedekind Exp $
*
*/
@ -48,6 +48,7 @@ static void jffs2_erase_block(struct jffs2_sb_info *c,
#else /* Linux */
struct erase_info *instr;
D1(printk(KERN_DEBUG "jffs2_erase_block(): erase block %#x (range %#x-%#x)\n", jeb->offset, jeb->offset, jeb->offset + c->sector_size));
instr = kmalloc(sizeof(struct erase_info) + sizeof(struct erase_priv_struct), GFP_KERNEL);
if (!instr) {
printk(KERN_WARNING "kmalloc for struct erase_info in jffs2_erase_block failed. Refiling block for later\n");
@ -233,7 +234,7 @@ static inline void jffs2_remove_node_refs_from_ino_list(struct jffs2_sb_info *c,
continue;
}
if (((*prev)->flash_offset & ~(c->sector_size -1)) == jeb->offset) {
if (SECTOR_ADDR((*prev)->flash_offset) == jeb->offset) {
/* It's in the block we're erasing */
struct jffs2_raw_node_ref *this;
@ -277,11 +278,8 @@ static inline void jffs2_remove_node_refs_from_ino_list(struct jffs2_sb_info *c,
printk("\n");
});
if (ic->nodes == (void *)ic) {
D1(printk(KERN_DEBUG "inocache for ino #%u is all gone now. Freeing\n", ic->ino));
if (ic->nodes == (void *)ic && ic->nlink == 0)
jffs2_del_ino_cache(c, ic);
jffs2_free_inode_cache(ic);
}
}
static void jffs2_free_all_node_refs(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
@ -310,7 +308,7 @@ static void jffs2_mark_erased_block(struct jffs2_sb_info *c, struct jffs2_eraseb
int ret;
uint32_t bad_offset;
if (!jffs2_cleanmarker_oob(c)) {
if ((!jffs2_cleanmarker_oob(c)) && (c->cleanmarker_size > 0)) {
marker_ref = jffs2_alloc_raw_node_ref();
if (!marker_ref) {
printk(KERN_WARNING "Failed to allocate raw node ref for clean marker\n");
@ -335,7 +333,8 @@ static void jffs2_mark_erased_block(struct jffs2_sb_info *c, struct jffs2_eraseb
bad_offset = ofs;
ret = jffs2_flash_read(c, ofs, readlen, &retlen, ebuf);
ret = c->mtd->read(c->mtd, ofs, readlen, &retlen, ebuf);
if (ret) {
printk(KERN_WARNING "Read of newly-erased block at 0x%08x failed: %d. Putting on bad_list\n", ofs, ret);
goto bad;
@ -351,7 +350,7 @@ static void jffs2_mark_erased_block(struct jffs2_sb_info *c, struct jffs2_eraseb
bad_offset += i;
printk(KERN_WARNING "Newly-erased block contained word 0x%lx at offset 0x%08x\n", datum, bad_offset);
bad:
if (!jffs2_cleanmarker_oob(c))
if ((!jffs2_cleanmarker_oob(c)) && (c->cleanmarker_size > 0))
jffs2_free_raw_node_ref(marker_ref);
kfree(ebuf);
bad2:
@ -383,6 +382,13 @@ static void jffs2_mark_erased_block(struct jffs2_sb_info *c, struct jffs2_eraseb
jeb->first_node = jeb->last_node = NULL;
jeb->free_size = c->sector_size;
jeb->used_size = 0;
jeb->dirty_size = 0;
jeb->wasted_size = 0;
} else if (c->cleanmarker_size == 0) {
jeb->first_node = jeb->last_node = NULL;
jeb->free_size = c->sector_size;
jeb->used_size = 0;
jeb->dirty_size = 0;

View file

@ -7,11 +7,10 @@
*
* For licensing information, see the file 'LICENCE' in this directory.
*
* $Id: file.c,v 1.99 2004/11/16 20:36:11 dwmw2 Exp $
* $Id: file.c,v 1.102 2005/07/06 12:13:09 dwmw2 Exp $
*
*/
#include <linux/version.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/fs.h>
@ -51,9 +50,7 @@ struct file_operations jffs2_file_operations =
.ioctl = jffs2_ioctl,
.mmap = generic_file_readonly_mmap,
.fsync = jffs2_fsync,
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,29)
.sendfile = generic_file_sendfile
#endif
};
/* jffs2_file_inode_operations */

View file

@ -7,11 +7,10 @@
*
* For licensing information, see the file 'LICENCE' in this directory.
*
* $Id: fs.c,v 1.51 2004/11/28 12:19:37 dedekind Exp $
* $Id: fs.c,v 1.56 2005/07/06 12:13:09 dwmw2 Exp $
*
*/
#include <linux/version.h>
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/sched.h>
@ -450,11 +449,15 @@ int jffs2_do_fill_super(struct super_block *sb, void *data, int silent)
c = JFFS2_SB_INFO(sb);
#ifndef CONFIG_JFFS2_FS_NAND
#ifndef CONFIG_JFFS2_FS_WRITEBUFFER
if (c->mtd->type == MTD_NANDFLASH) {
printk(KERN_ERR "jffs2: Cannot operate on NAND flash unless jffs2 NAND support is compiled in.\n");
return -EINVAL;
}
if (c->mtd->type == MTD_DATAFLASH) {
printk(KERN_ERR "jffs2: Cannot operate on DataFlash unless jffs2 DataFlash support is compiled in.\n");
return -EINVAL;
}
#endif
c->flash_size = c->mtd->size;
@ -522,9 +525,7 @@ int jffs2_do_fill_super(struct super_block *sb, void *data, int silent)
if (!sb->s_root)
goto out_root_i;
#if LINUX_VERSION_CODE >= 0x20403
sb->s_maxbytes = 0xFFFFFFFF;
#endif
sb->s_blocksize = PAGE_CACHE_SIZE;
sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
sb->s_magic = JFFS2_SUPER_MAGIC;
@ -661,6 +662,14 @@ static int jffs2_flash_setup(struct jffs2_sb_info *c) {
if (ret)
return ret;
}
/* and Dataflash */
if (jffs2_dataflash(c)) {
ret = jffs2_dataflash_setup(c);
if (ret)
return ret;
}
return ret;
}
@ -674,4 +683,9 @@ void jffs2_flash_cleanup(struct jffs2_sb_info *c) {
if (jffs2_nor_ecc(c)) {
jffs2_nor_ecc_flash_cleanup(c);
}
/* and DataFlash */
if (jffs2_dataflash(c)) {
jffs2_dataflash_cleanup(c);
}
}

View file

@ -7,7 +7,7 @@
*
* For licensing information, see the file 'LICENCE' in this directory.
*
* $Id: gc.c,v 1.144 2004/12/21 11:18:50 dwmw2 Exp $
* $Id: gc.c,v 1.148 2005/04/09 10:47:00 dedekind Exp $
*
*/
@ -50,6 +50,7 @@ static struct jffs2_eraseblock *jffs2_find_gc_block(struct jffs2_sb_info *c)
put the clever wear-levelling algorithms. Eventually. */
/* We possibly want to favour the dirtier blocks more when the
number of free blocks is low. */
again:
if (!list_empty(&c->bad_used_list) && c->nr_free_blocks > c->resv_blocks_gcbad) {
D1(printk(KERN_DEBUG "Picking block from bad_used_list to GC next\n"));
nextlist = &c->bad_used_list;
@ -79,6 +80,13 @@ static struct jffs2_eraseblock *jffs2_find_gc_block(struct jffs2_sb_info *c)
D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next (clean_list and {very_,}dirty_list were empty)\n"));
nextlist = &c->erasable_list;
} else if (!list_empty(&c->erasable_pending_wbuf_list)) {
/* There are blocks are wating for the wbuf sync */
D1(printk(KERN_DEBUG "Synching wbuf in order to reuse erasable_pending_wbuf_list blocks\n"));
spin_unlock(&c->erase_completion_lock);
jffs2_flush_wbuf_pad(c);
spin_lock(&c->erase_completion_lock);
goto again;
} else {
/* Eep. All were empty */
D1(printk(KERN_NOTICE "jffs2: No clean, dirty _or_ erasable blocks to GC from! Where are they all?\n"));
@ -661,9 +669,10 @@ static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_
{
struct jffs2_full_dnode *new_fn;
struct jffs2_raw_inode ri;
struct jffs2_node_frag *last_frag;
jint16_t dev;
char *mdata = NULL, mdatalen = 0;
uint32_t alloclen, phys_ofs;
uint32_t alloclen, phys_ofs, ilen;
int ret;
if (S_ISBLK(JFFS2_F_I_MODE(f)) ||
@ -699,6 +708,14 @@ static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_
goto out;
}
last_frag = frag_last(&f->fragtree);
if (last_frag)
/* Fetch the inode length from the fragtree rather then
* from i_size since i_size may have not been updated yet */
ilen = last_frag->ofs + last_frag->size;
else
ilen = JFFS2_F_I_SIZE(f);
memset(&ri, 0, sizeof(ri));
ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
@ -710,7 +727,7 @@ static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_
ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
ri.isize = cpu_to_je32(JFFS2_F_I_SIZE(f));
ri.isize = cpu_to_je32(ilen);
ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
@ -816,8 +833,7 @@ static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct
/* Doesn't matter if there's one in the same erase block. We're going to
delete it too at the same time. */
if ((raw->flash_offset & ~(c->sector_size-1)) ==
(fd->raw->flash_offset & ~(c->sector_size-1)))
if (SECTOR_ADDR(raw->flash_offset) == SECTOR_ADDR(fd->raw->flash_offset))
continue;
D1(printk(KERN_DEBUG "Check potential deletion dirent at %08x\n", ref_offset(raw)));
@ -891,7 +907,7 @@ static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eras
struct jffs2_raw_inode ri;
struct jffs2_node_frag *frag;
struct jffs2_full_dnode *new_fn;
uint32_t alloclen, phys_ofs;
uint32_t alloclen, phys_ofs, ilen;
int ret;
D1(printk(KERN_DEBUG "Writing replacement hole node for ino #%u from offset 0x%x to 0x%x\n",
@ -951,10 +967,19 @@ static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eras
ri.csize = cpu_to_je32(0);
ri.compr = JFFS2_COMPR_ZERO;
}
frag = frag_last(&f->fragtree);
if (frag)
/* Fetch the inode length from the fragtree rather then
* from i_size since i_size may have not been updated yet */
ilen = frag->ofs + frag->size;
else
ilen = JFFS2_F_I_SIZE(f);
ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
ri.isize = cpu_to_je32(JFFS2_F_I_SIZE(f));
ri.isize = cpu_to_je32(ilen);
ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
@ -1161,7 +1186,7 @@ static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_era
D1(printk(KERN_DEBUG "Expanded dnode to write from (0x%x-0x%x) to (0x%x-0x%x)\n",
orig_start, orig_end, start, end));
BUG_ON(end > JFFS2_F_I_SIZE(f));
D1(BUG_ON(end > frag_last(&f->fragtree)->ofs + frag_last(&f->fragtree)->size));
BUG_ON(end < orig_end);
BUG_ON(start > orig_start);
}

View file

@ -7,7 +7,7 @@
*
* For licensing information, see the file 'LICENCE' in this directory.
*
* $Id: nodelist.c,v 1.90 2004/12/08 17:59:20 dwmw2 Exp $
* $Id: nodelist.c,v 1.97 2005/07/06 15:18:41 dwmw2 Exp $
*
*/
@ -58,27 +58,60 @@ void jffs2_add_fd_to_list(struct jffs2_sb_info *c, struct jffs2_full_dirent *new
/* Put a new tmp_dnode_info into the list, keeping the list in
order of increasing version
*/
static void jffs2_add_tn_to_list(struct jffs2_tmp_dnode_info *tn, struct jffs2_tmp_dnode_info **list)
static void jffs2_add_tn_to_list(struct jffs2_tmp_dnode_info *tn, struct rb_root *list)
{
struct jffs2_tmp_dnode_info **prev = list;
while ((*prev) && (*prev)->version < tn->version) {
prev = &((*prev)->next);
}
tn->next = (*prev);
*prev = tn;
struct rb_node **p = &list->rb_node;
struct rb_node * parent = NULL;
struct jffs2_tmp_dnode_info *this;
while (*p) {
parent = *p;
this = rb_entry(parent, struct jffs2_tmp_dnode_info, rb);
/* There may actually be a collision here, but it doesn't
actually matter. As long as the two nodes with the same
version are together, it's all fine. */
if (tn->version < this->version)
p = &(*p)->rb_left;
else
p = &(*p)->rb_right;
}
rb_link_node(&tn->rb, parent, p);
rb_insert_color(&tn->rb, list);
}
static void jffs2_free_tmp_dnode_info_list(struct jffs2_tmp_dnode_info *tn)
static void jffs2_free_tmp_dnode_info_list(struct rb_root *list)
{
struct jffs2_tmp_dnode_info *next;
struct rb_node *this;
struct jffs2_tmp_dnode_info *tn;
while (tn) {
next = tn;
tn = tn->next;
jffs2_free_full_dnode(next->fn);
jffs2_free_tmp_dnode_info(next);
this = list->rb_node;
/* Now at bottom of tree */
while (this) {
if (this->rb_left)
this = this->rb_left;
else if (this->rb_right)
this = this->rb_right;
else {
tn = rb_entry(this, struct jffs2_tmp_dnode_info, rb);
jffs2_free_full_dnode(tn->fn);
jffs2_free_tmp_dnode_info(tn);
this = this->rb_parent;
if (!this)
break;
if (this->rb_left == &tn->rb)
this->rb_left = NULL;
else if (this->rb_right == &tn->rb)
this->rb_right = NULL;
else BUG();
}
}
list->rb_node = NULL;
}
static void jffs2_free_full_dirent_list(struct jffs2_full_dirent *fd)
@ -108,12 +141,13 @@ static struct jffs2_raw_node_ref *jffs2_first_valid_node(struct jffs2_raw_node_r
with this ino, returning the former in order of version */
int jffs2_get_inode_nodes(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
struct jffs2_tmp_dnode_info **tnp, struct jffs2_full_dirent **fdp,
struct rb_root *tnp, struct jffs2_full_dirent **fdp,
uint32_t *highest_version, uint32_t *latest_mctime,
uint32_t *mctime_ver)
{
struct jffs2_raw_node_ref *ref, *valid_ref;
struct jffs2_tmp_dnode_info *tn, *ret_tn = NULL;
struct jffs2_tmp_dnode_info *tn;
struct rb_root ret_tn = RB_ROOT;
struct jffs2_full_dirent *fd, *ret_fd = NULL;
union jffs2_node_union node;
size_t retlen;
@ -127,7 +161,7 @@ int jffs2_get_inode_nodes(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
valid_ref = jffs2_first_valid_node(f->inocache->nodes);
if (!valid_ref)
if (!valid_ref && (f->inocache->ino != 1))
printk(KERN_WARNING "Eep. No valid nodes for ino #%u\n", f->inocache->ino);
while (valid_ref) {
@ -450,7 +484,7 @@ int jffs2_get_inode_nodes(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
return 0;
free_out:
jffs2_free_tmp_dnode_info_list(ret_tn);
jffs2_free_tmp_dnode_info_list(&ret_tn);
jffs2_free_full_dirent_list(ret_fd);
return err;
}
@ -489,9 +523,13 @@ struct jffs2_inode_cache *jffs2_get_ino_cache(struct jffs2_sb_info *c, uint32_t
void jffs2_add_ino_cache (struct jffs2_sb_info *c, struct jffs2_inode_cache *new)
{
struct jffs2_inode_cache **prev;
D2(printk(KERN_DEBUG "jffs2_add_ino_cache: Add %p (ino #%u)\n", new, new->ino));
spin_lock(&c->inocache_lock);
if (!new->ino)
new->ino = ++c->highest_ino;
D2(printk(KERN_DEBUG "jffs2_add_ino_cache: Add %p (ino #%u)\n", new, new->ino));
prev = &c->inocache_list[new->ino % INOCACHE_HASHSIZE];
while ((*prev) && (*prev)->ino < new->ino) {
@ -506,7 +544,7 @@ void jffs2_add_ino_cache (struct jffs2_sb_info *c, struct jffs2_inode_cache *new
void jffs2_del_ino_cache(struct jffs2_sb_info *c, struct jffs2_inode_cache *old)
{
struct jffs2_inode_cache **prev;
D2(printk(KERN_DEBUG "jffs2_del_ino_cache: Del %p (ino #%u)\n", old, old->ino));
D1(printk(KERN_DEBUG "jffs2_del_ino_cache: Del %p (ino #%u)\n", old, old->ino));
spin_lock(&c->inocache_lock);
prev = &c->inocache_list[old->ino % INOCACHE_HASHSIZE];
@ -518,6 +556,14 @@ void jffs2_del_ino_cache(struct jffs2_sb_info *c, struct jffs2_inode_cache *old)
*prev = old->next;
}
/* Free it now unless it's in READING or CLEARING state, which
are the transitions upon read_inode() and clear_inode(). The
rest of the time we know nobody else is looking at it, and
if it's held by read_inode() or clear_inode() they'll free it
for themselves. */
if (old->state != INO_STATE_READING && old->state != INO_STATE_CLEARING)
jffs2_free_inode_cache(old);
spin_unlock(&c->inocache_lock);
}
@ -530,7 +576,6 @@ void jffs2_free_ino_caches(struct jffs2_sb_info *c)
this = c->inocache_list[i];
while (this) {
next = this->next;
D2(printk(KERN_DEBUG "jffs2_free_ino_caches: Freeing ino #%u at %p\n", this->ino, this));
jffs2_free_inode_cache(this);
this = next;
}

View file

@ -7,7 +7,7 @@
*
* For licensing information, see the file 'LICENCE' in this directory.
*
* $Id: nodelist.h,v 1.126 2004/11/19 15:06:29 dedekind Exp $
* $Id: nodelist.h,v 1.131 2005/07/05 21:03:07 dwmw2 Exp $
*
*/
@ -135,6 +135,7 @@ struct jffs2_inode_cache {
#define INO_STATE_CHECKEDABSENT 3 /* Checked, cleared again */
#define INO_STATE_GC 4 /* GCing a 'pristine' node */
#define INO_STATE_READING 5 /* In read_inode() */
#define INO_STATE_CLEARING 6 /* In clear_inode() */
#define INOCACHE_HASHSIZE 128
@ -160,7 +161,7 @@ struct jffs2_full_dnode
*/
struct jffs2_tmp_dnode_info
{
struct jffs2_tmp_dnode_info *next;
struct rb_node rb;
struct jffs2_full_dnode *fn;
uint32_t version;
};
@ -362,6 +363,18 @@ static inline struct jffs2_node_frag *frag_first(struct rb_root *root)
node = node->rb_left;
return rb_entry(node, struct jffs2_node_frag, rb);
}
static inline struct jffs2_node_frag *frag_last(struct rb_root *root)
{
struct rb_node *node = root->rb_node;
if (!node)
return NULL;
while(node->rb_right)
node = node->rb_right;
return rb_entry(node, struct jffs2_node_frag, rb);
}
#define rb_parent(rb) ((rb)->rb_parent)
#define frag_next(frag) rb_entry(rb_next(&(frag)->rb), struct jffs2_node_frag, rb)
#define frag_prev(frag) rb_entry(rb_prev(&(frag)->rb), struct jffs2_node_frag, rb)
@ -374,7 +387,7 @@ static inline struct jffs2_node_frag *frag_first(struct rb_root *root)
D2(void jffs2_print_frag_list(struct jffs2_inode_info *f));
void jffs2_add_fd_to_list(struct jffs2_sb_info *c, struct jffs2_full_dirent *new, struct jffs2_full_dirent **list);
int jffs2_get_inode_nodes(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
struct jffs2_tmp_dnode_info **tnp, struct jffs2_full_dirent **fdp,
struct rb_root *tnp, struct jffs2_full_dirent **fdp,
uint32_t *highest_version, uint32_t *latest_mctime,
uint32_t *mctime_ver);
void jffs2_set_inocache_state(struct jffs2_sb_info *c, struct jffs2_inode_cache *ic, int state);
@ -462,7 +475,7 @@ int jffs2_do_mount_fs(struct jffs2_sb_info *c);
/* erase.c */
void jffs2_erase_pending_blocks(struct jffs2_sb_info *c, int count);
#ifdef CONFIG_JFFS2_FS_NAND
#ifdef CONFIG_JFFS2_FS_WRITEBUFFER
/* wbuf.c */
int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino);
int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c);

View file

@ -7,7 +7,7 @@
*
* For licensing information, see the file 'LICENCE' in this directory.
*
* $Id: nodemgmt.c,v 1.115 2004/11/22 11:07:21 dwmw2 Exp $
* $Id: nodemgmt.c,v 1.122 2005/05/06 09:30:27 dedekind Exp $
*
*/
@ -75,7 +75,7 @@ int jffs2_reserve_space(struct jffs2_sb_info *c, uint32_t minsize, uint32_t *ofs
dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size + c->unchecked_size;
if (dirty < c->nospc_dirty_size) {
if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
printk(KERN_NOTICE "jffs2_reserve_space(): Low on dirty space to GC, but it's a deletion. Allowing...\n");
D1(printk(KERN_NOTICE "jffs2_reserve_space(): Low on dirty space to GC, but it's a deletion. Allowing...\n"));
break;
}
D1(printk(KERN_DEBUG "dirty size 0x%08x + unchecked_size 0x%08x < nospc_dirty_size 0x%08x, returning -ENOSPC\n",
@ -98,7 +98,7 @@ int jffs2_reserve_space(struct jffs2_sb_info *c, uint32_t minsize, uint32_t *ofs
avail = c->free_size + c->dirty_size + c->erasing_size + c->unchecked_size;
if ( (avail / c->sector_size) <= blocksneeded) {
if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
printk(KERN_NOTICE "jffs2_reserve_space(): Low on possibly available space, but it's a deletion. Allowing...\n");
D1(printk(KERN_NOTICE "jffs2_reserve_space(): Low on possibly available space, but it's a deletion. Allowing...\n"));
break;
}
@ -308,7 +308,10 @@ int jffs2_add_physical_node_ref(struct jffs2_sb_info *c, struct jffs2_raw_node_r
D1(printk(KERN_DEBUG "jffs2_add_physical_node_ref(): Node at 0x%x(%d), size 0x%x\n", ref_offset(new), ref_flags(new), len));
#if 1
if (jeb != c->nextblock || (ref_offset(new)) != jeb->offset + (c->sector_size - jeb->free_size)) {
/* we could get some obsolete nodes after nextblock was refiled
in wbuf.c */
if ((c->nextblock || !ref_obsolete(new))
&&(jeb != c->nextblock || ref_offset(new) != jeb->offset + (c->sector_size - jeb->free_size))) {
printk(KERN_WARNING "argh. node added in wrong place\n");
jffs2_free_raw_node_ref(new);
return -EINVAL;
@ -332,7 +335,7 @@ int jffs2_add_physical_node_ref(struct jffs2_sb_info *c, struct jffs2_raw_node_r
c->used_size += len;
}
if (!jeb->free_size && !jeb->dirty_size) {
if (!jeb->free_size && !jeb->dirty_size && !ISDIRTY(jeb->wasted_size)) {
/* If it lives on the dirty_list, jffs2_reserve_space will put it there */
D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
@ -400,7 +403,7 @@ void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref
jeb = &c->blocks[blocknr];
if (jffs2_can_mark_obsolete(c) && !jffs2_is_readonly(c) &&
!(c->flags & JFFS2_SB_FLAG_MOUNTING)) {
!(c->flags & (JFFS2_SB_FLAG_SCANNING | JFFS2_SB_FLAG_BUILDING))) {
/* Hm. This may confuse static lock analysis. If any of the above
three conditions is false, we're going to return from this
function without actually obliterating any nodes or freeing
@ -434,7 +437,7 @@ void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref
// Take care, that wasted size is taken into concern
if ((jeb->dirty_size || ISDIRTY(jeb->wasted_size + ref_totlen(c, jeb, ref))) && jeb != c->nextblock) {
D1(printk("Dirtying\n"));
D1(printk(KERN_DEBUG "Dirtying\n"));
addedsize = ref_totlen(c, jeb, ref);
jeb->dirty_size += ref_totlen(c, jeb, ref);
c->dirty_size += ref_totlen(c, jeb, ref);
@ -456,7 +459,7 @@ void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref
}
}
} else {
D1(printk("Wasting\n"));
D1(printk(KERN_DEBUG "Wasting\n"));
addedsize = 0;
jeb->wasted_size += ref_totlen(c, jeb, ref);
c->wasted_size += ref_totlen(c, jeb, ref);
@ -467,8 +470,8 @@ void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref
D1(ACCT_PARANOIA_CHECK(jeb));
if (c->flags & JFFS2_SB_FLAG_MOUNTING) {
/* Mount in progress. Don't muck about with the block
if (c->flags & JFFS2_SB_FLAG_SCANNING) {
/* Flash scanning is in progress. Don't muck about with the block
lists because they're not ready yet, and don't actually
obliterate nodes that look obsolete. If they weren't
marked obsolete on the flash at the time they _became_
@ -527,7 +530,8 @@ void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref
spin_unlock(&c->erase_completion_lock);
if (!jffs2_can_mark_obsolete(c) || jffs2_is_readonly(c)) {
if (!jffs2_can_mark_obsolete(c) || jffs2_is_readonly(c) ||
(c->flags & JFFS2_SB_FLAG_BUILDING)) {
/* We didn't lock the erase_free_sem */
return;
}
@ -590,11 +594,8 @@ void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref
*p = ref->next_in_ino;
ref->next_in_ino = NULL;
if (ic->nodes == (void *)ic) {
D1(printk(KERN_DEBUG "inocache for ino #%u is all gone now. Freeing\n", ic->ino));
if (ic->nodes == (void *)ic && ic->nlink == 0)
jffs2_del_ino_cache(c, ic);
jffs2_free_inode_cache(ic);
}
spin_unlock(&c->erase_completion_lock);
}

View file

@ -7,41 +7,24 @@
*
* For licensing information, see the file 'LICENCE' in this directory.
*
* $Id: os-linux.h,v 1.51 2004/11/16 20:36:11 dwmw2 Exp $
* $Id: os-linux.h,v 1.57 2005/07/06 12:13:09 dwmw2 Exp $
*
*/
#ifndef __JFFS2_OS_LINUX_H__
#define __JFFS2_OS_LINUX_H__
#include <linux/version.h>
/* JFFS2 uses Linux mode bits natively -- no need for conversion */
#define os_to_jffs2_mode(x) (x)
#define jffs2_to_os_mode(x) (x)
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,73)
#define kstatfs statfs
#endif
struct kstatfs;
struct kvec;
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,5,2)
#define JFFS2_INODE_INFO(i) (list_entry(i, struct jffs2_inode_info, vfs_inode))
#define OFNI_EDONI_2SFFJ(f) (&(f)->vfs_inode)
#define JFFS2_SB_INFO(sb) (sb->s_fs_info)
#define OFNI_BS_2SFFJ(c) ((struct super_block *)c->os_priv)
#elif defined(JFFS2_OUT_OF_KERNEL)
#define JFFS2_INODE_INFO(i) ((struct jffs2_inode_info *) &(i)->u)
#define OFNI_EDONI_2SFFJ(f) ((struct inode *) ( ((char *)f) - ((char *)(&((struct inode *)NULL)->u)) ) )
#define JFFS2_SB_INFO(sb) ((struct jffs2_sb_info *) &(sb)->u)
#define OFNI_BS_2SFFJ(c) ((struct super_block *) ( ((char *)c) - ((char *)(&((struct super_block *)NULL)->u)) ) )
#else
#define JFFS2_INODE_INFO(i) (&i->u.jffs2_i)
#define OFNI_EDONI_2SFFJ(f) ((struct inode *) ( ((char *)f) - ((char *)(&((struct inode *)NULL)->u)) ) )
#define JFFS2_SB_INFO(sb) (&sb->u.jffs2_sb)
#define OFNI_BS_2SFFJ(c) ((struct super_block *) ( ((char *)c) - ((char *)(&((struct super_block *)NULL)->u)) ) )
#endif
#define JFFS2_F_I_SIZE(f) (OFNI_EDONI_2SFFJ(f)->i_size)
@ -49,28 +32,14 @@ struct kvec;
#define JFFS2_F_I_UID(f) (OFNI_EDONI_2SFFJ(f)->i_uid)
#define JFFS2_F_I_GID(f) (OFNI_EDONI_2SFFJ(f)->i_gid)
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,5,1)
#define JFFS2_F_I_RDEV_MIN(f) (iminor(OFNI_EDONI_2SFFJ(f)))
#define JFFS2_F_I_RDEV_MAJ(f) (imajor(OFNI_EDONI_2SFFJ(f)))
#else
#define JFFS2_F_I_RDEV_MIN(f) (MINOR(to_kdev_t(OFNI_EDONI_2SFFJ(f)->i_rdev)))
#define JFFS2_F_I_RDEV_MAJ(f) (MAJOR(to_kdev_t(OFNI_EDONI_2SFFJ(f)->i_rdev)))
#endif
/* Urgh. The things we do to keep the 2.4 build working */
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,5,47)
#define ITIME(sec) ((struct timespec){sec, 0})
#define I_SEC(tv) ((tv).tv_sec)
#define JFFS2_F_I_CTIME(f) (OFNI_EDONI_2SFFJ(f)->i_ctime.tv_sec)
#define JFFS2_F_I_MTIME(f) (OFNI_EDONI_2SFFJ(f)->i_mtime.tv_sec)
#define JFFS2_F_I_ATIME(f) (OFNI_EDONI_2SFFJ(f)->i_atime.tv_sec)
#else
#define ITIME(x) (x)
#define I_SEC(x) (x)
#define JFFS2_F_I_CTIME(f) (OFNI_EDONI_2SFFJ(f)->i_ctime)
#define JFFS2_F_I_MTIME(f) (OFNI_EDONI_2SFFJ(f)->i_mtime)
#define JFFS2_F_I_ATIME(f) (OFNI_EDONI_2SFFJ(f)->i_atime)
#endif
#define sleep_on_spinunlock(wq, s) \
do { \
@ -84,23 +53,21 @@ struct kvec;
static inline void jffs2_init_inode_info(struct jffs2_inode_info *f)
{
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,5,2)
f->highest_version = 0;
f->fragtree = RB_ROOT;
f->metadata = NULL;
f->dents = NULL;
f->flags = 0;
f->usercompr = 0;
#else
memset(f, 0, sizeof(*f));
init_MUTEX_LOCKED(&f->sem);
#endif
}
#define jffs2_is_readonly(c) (OFNI_BS_2SFFJ(c)->s_flags & MS_RDONLY)
#if (!defined CONFIG_JFFS2_FS_NAND && !defined CONFIG_JFFS2_FS_NOR_ECC)
#ifndef CONFIG_JFFS2_FS_WRITEBUFFER
#define SECTOR_ADDR(x) ( ((unsigned long)(x) & ~(c->sector_size-1)) )
#define jffs2_can_mark_obsolete(c) (1)
#define jffs2_is_writebuffered(c) (0)
#define jffs2_cleanmarker_oob(c) (0)
#define jffs2_write_nand_cleanmarker(c,jeb) (-EIO)
@ -116,11 +83,14 @@ static inline void jffs2_init_inode_info(struct jffs2_inode_info *f)
#define jffs2_wbuf_timeout NULL
#define jffs2_wbuf_process NULL
#define jffs2_nor_ecc(c) (0)
#define jffs2_dataflash(c) (0)
#define jffs2_nor_ecc_flash_setup(c) (0)
#define jffs2_nor_ecc_flash_cleanup(c) do {} while (0)
#else /* NAND and/or ECC'd NOR support present */
#define jffs2_is_writebuffered(c) (c->wbuf != NULL)
#define SECTOR_ADDR(x) ( ((unsigned long)(x) / (unsigned long)(c->sector_size)) * c->sector_size )
#define jffs2_can_mark_obsolete(c) ((c->mtd->type == MTD_NORFLASH && !(c->mtd->flags & MTD_ECC)) || c->mtd->type == MTD_RAM)
#define jffs2_cleanmarker_oob(c) (c->mtd->type == MTD_NANDFLASH)
@ -142,16 +112,16 @@ int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino);
int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c);
int jffs2_nand_flash_setup(struct jffs2_sb_info *c);
void jffs2_nand_flash_cleanup(struct jffs2_sb_info *c);
#ifdef CONFIG_JFFS2_FS_NOR_ECC
#define jffs2_nor_ecc(c) (c->mtd->type == MTD_NORFLASH && (c->mtd->flags & MTD_ECC))
int jffs2_nor_ecc_flash_setup(struct jffs2_sb_info *c);
void jffs2_nor_ecc_flash_cleanup(struct jffs2_sb_info *c);
#else
#define jffs2_nor_ecc(c) (0)
#define jffs2_nor_ecc_flash_setup(c) (0)
#define jffs2_nor_ecc_flash_cleanup(c) do {} while (0)
#endif /* NOR ECC */
#endif /* NAND */
#define jffs2_dataflash(c) (c->mtd->type == MTD_DATAFLASH)
int jffs2_dataflash_setup(struct jffs2_sb_info *c);
void jffs2_dataflash_cleanup(struct jffs2_sb_info *c);
#endif /* WRITEBUFFER */
/* erase.c */
static inline void jffs2_erase_pending_trigger(struct jffs2_sb_info *c)

View file

@ -7,7 +7,7 @@
*
* For licensing information, see the file 'LICENCE' in this directory.
*
* $Id: read.c,v 1.38 2004/11/16 20:36:12 dwmw2 Exp $
* $Id: read.c,v 1.39 2005/03/01 10:34:03 dedekind Exp $
*
*/
@ -214,33 +214,3 @@ int jffs2_read_inode_range(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
return 0;
}
/* Core function to read symlink target. */
char *jffs2_getlink(struct jffs2_sb_info *c, struct jffs2_inode_info *f)
{
char *buf;
int ret;
down(&f->sem);
if (!f->metadata) {
printk(KERN_NOTICE "No metadata for symlink inode #%u\n", f->inocache->ino);
up(&f->sem);
return ERR_PTR(-EINVAL);
}
buf = kmalloc(f->metadata->size+1, GFP_USER);
if (!buf) {
up(&f->sem);
return ERR_PTR(-ENOMEM);
}
buf[f->metadata->size]=0;
ret = jffs2_read_dnode(c, f, f->metadata, buf, 0, f->metadata->size);
up(&f->sem);
if (ret) {
kfree(buf);
return ERR_PTR(ret);
}
return buf;
}

View file

@ -7,7 +7,7 @@
*
* For licensing information, see the file 'LICENCE' in this directory.
*
* $Id: readinode.c,v 1.117 2004/11/20 18:06:54 dwmw2 Exp $
* $Id: readinode.c,v 1.120 2005/07/05 21:03:07 dwmw2 Exp $
*
*/
@ -500,7 +500,9 @@ static int jffs2_do_read_inode_internal(struct jffs2_sb_info *c,
struct jffs2_inode_info *f,
struct jffs2_raw_inode *latest_node)
{
struct jffs2_tmp_dnode_info *tn_list, *tn;
struct jffs2_tmp_dnode_info *tn = NULL;
struct rb_root tn_list;
struct rb_node *rb, *repl_rb;
struct jffs2_full_dirent *fd_list;
struct jffs2_full_dnode *fn = NULL;
uint32_t crc;
@ -522,9 +524,10 @@ static int jffs2_do_read_inode_internal(struct jffs2_sb_info *c,
}
f->dents = fd_list;
while (tn_list) {
tn = tn_list;
rb = rb_first(&tn_list);
while (rb) {
tn = rb_entry(rb, struct jffs2_tmp_dnode_info, rb);
fn = tn->fn;
if (f->metadata) {
@ -556,7 +559,30 @@ static int jffs2_do_read_inode_internal(struct jffs2_sb_info *c,
mdata_ver = tn->version;
}
next_tn:
tn_list = tn->next;
BUG_ON(rb->rb_left);
repl_rb = NULL;
if (rb->rb_parent && rb->rb_parent->rb_left == rb) {
/* We were then left-hand child of our parent. We need
to move our own right-hand child into our place. */
repl_rb = rb->rb_right;
if (repl_rb)
repl_rb->rb_parent = rb->rb_parent;
} else
repl_rb = NULL;
rb = rb_next(rb);
/* Remove the spent tn from the tree; don't bother rebalancing
but put our right-hand child in our own place. */
if (tn->rb.rb_parent) {
if (tn->rb.rb_parent->rb_left == &tn->rb)
tn->rb.rb_parent->rb_left = repl_rb;
else if (tn->rb.rb_parent->rb_right == &tn->rb)
tn->rb.rb_parent->rb_right = repl_rb;
else BUG();
} else if (tn->rb.rb_right)
tn->rb.rb_right->rb_parent = NULL;
jffs2_free_tmp_dnode_info(tn);
}
D1(jffs2_sanitycheck_fragtree(f));
@ -623,6 +649,40 @@ static int jffs2_do_read_inode_internal(struct jffs2_sb_info *c,
case. */
if (!je32_to_cpu(latest_node->isize))
latest_node->isize = latest_node->dsize;
if (f->inocache->state != INO_STATE_CHECKING) {
/* Symlink's inode data is the target path. Read it and
* keep in RAM to facilitate quick follow symlink operation.
* We use f->dents field to store the target path, which
* is somewhat ugly. */
f->dents = kmalloc(je32_to_cpu(latest_node->csize) + 1, GFP_KERNEL);
if (!f->dents) {
printk(KERN_WARNING "Can't allocate %d bytes of memory "
"for the symlink target path cache\n",
je32_to_cpu(latest_node->csize));
up(&f->sem);
jffs2_do_clear_inode(c, f);
return -ENOMEM;
}
ret = jffs2_flash_read(c, ref_offset(fn->raw) + sizeof(*latest_node),
je32_to_cpu(latest_node->csize), &retlen, (char *)f->dents);
if (ret || retlen != je32_to_cpu(latest_node->csize)) {
if (retlen != je32_to_cpu(latest_node->csize))
ret = -EIO;
kfree(f->dents);
f->dents = NULL;
up(&f->sem);
jffs2_do_clear_inode(c, f);
return -ret;
}
((char *)f->dents)[je32_to_cpu(latest_node->csize)] = '\0';
D1(printk(KERN_DEBUG "jffs2_do_read_inode(): symlink's target '%s' cached\n",
(char *)f->dents));
}
/* fall through... */
case S_IFBLK:
@ -672,6 +732,9 @@ void jffs2_do_clear_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f)
down(&f->sem);
deleted = f->inocache && !f->inocache->nlink;
if (f->inocache && f->inocache->state != INO_STATE_CHECKING)
jffs2_set_inocache_state(c, f->inocache, INO_STATE_CLEARING);
if (f->metadata) {
if (deleted)
jffs2_mark_node_obsolete(c, f->metadata->raw);
@ -680,16 +743,27 @@ void jffs2_do_clear_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f)
jffs2_kill_fragtree(&f->fragtree, deleted?c:NULL);
fds = f->dents;
/* For symlink inodes we us f->dents to store the target path name */
if (S_ISLNK(OFNI_EDONI_2SFFJ(f)->i_mode)) {
if (f->dents) {
kfree(f->dents);
f->dents = NULL;
}
} else {
fds = f->dents;
while(fds) {
fd = fds;
fds = fd->next;
jffs2_free_full_dirent(fd);
while(fds) {
fd = fds;
fds = fd->next;
jffs2_free_full_dirent(fd);
}
}
if (f->inocache && f->inocache->state != INO_STATE_CHECKING)
if (f->inocache && f->inocache->state != INO_STATE_CHECKING) {
jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT);
if (f->inocache->nodes == (void *)f->inocache)
jffs2_del_ino_cache(c, f->inocache);
}
up(&f->sem);
}

View file

@ -7,7 +7,7 @@
*
* For licensing information, see the file 'LICENCE' in this directory.
*
* $Id: scan.c,v 1.115 2004/11/17 12:59:08 dedekind Exp $
* $Id: scan.c,v 1.119 2005/02/17 17:51:13 dedekind Exp $
*
*/
#include <linux/kernel.h>
@ -19,7 +19,7 @@
#include <linux/compiler.h>
#include "nodelist.h"
#define EMPTY_SCAN_SIZE 1024
#define DEFAULT_EMPTY_SCAN_SIZE 1024
#define DIRTY_SPACE(x) do { typeof(x) _x = (x); \
c->free_size -= _x; c->dirty_size += _x; \
@ -68,13 +68,21 @@ static int jffs2_scan_dirent_node(struct jffs2_sb_info *c, struct jffs2_eraseblo
static inline int min_free(struct jffs2_sb_info *c)
{
uint32_t min = 2 * sizeof(struct jffs2_raw_inode);
#if defined CONFIG_JFFS2_FS_NAND || defined CONFIG_JFFS2_FS_NOR_ECC
#ifdef CONFIG_JFFS2_FS_WRITEBUFFER
if (!jffs2_can_mark_obsolete(c) && min < c->wbuf_pagesize)
return c->wbuf_pagesize;
#endif
return min;
}
static inline uint32_t EMPTY_SCAN_SIZE(uint32_t sector_size) {
if (sector_size < DEFAULT_EMPTY_SCAN_SIZE)
return sector_size;
else
return DEFAULT_EMPTY_SCAN_SIZE;
}
int jffs2_scan_medium(struct jffs2_sb_info *c)
{
int i, ret;
@ -220,7 +228,7 @@ int jffs2_scan_medium(struct jffs2_sb_info *c)
c->dirty_size -= c->nextblock->dirty_size;
c->nextblock->dirty_size = 0;
}
#if defined CONFIG_JFFS2_FS_NAND || defined CONFIG_JFFS2_FS_NOR_ECC
#ifdef CONFIG_JFFS2_FS_WRITEBUFFER
if (!jffs2_can_mark_obsolete(c) && c->nextblock && (c->nextblock->free_size & (c->wbuf_pagesize-1))) {
/* If we're going to start writing into a block which already
contains data, and the end of the data isn't page-aligned,
@ -286,7 +294,7 @@ static int jffs2_scan_eraseblock (struct jffs2_sb_info *c, struct jffs2_eraseblo
uint32_t hdr_crc, buf_ofs, buf_len;
int err;
int noise = 0;
#ifdef CONFIG_JFFS2_FS_NAND
#ifdef CONFIG_JFFS2_FS_WRITEBUFFER
int cleanmarkerfound = 0;
#endif
@ -295,7 +303,7 @@ static int jffs2_scan_eraseblock (struct jffs2_sb_info *c, struct jffs2_eraseblo
D1(printk(KERN_DEBUG "jffs2_scan_eraseblock(): Scanning block at 0x%x\n", ofs));
#ifdef CONFIG_JFFS2_FS_NAND
#ifdef CONFIG_JFFS2_FS_WRITEBUFFER
if (jffs2_cleanmarker_oob(c)) {
int ret = jffs2_check_nand_cleanmarker(c, jeb);
D2(printk(KERN_NOTICE "jffs_check_nand_cleanmarker returned %d\n",ret));
@ -316,7 +324,7 @@ static int jffs2_scan_eraseblock (struct jffs2_sb_info *c, struct jffs2_eraseblo
if (!buf_size) {
buf_len = c->sector_size;
} else {
buf_len = EMPTY_SCAN_SIZE;
buf_len = EMPTY_SCAN_SIZE(c->sector_size);
err = jffs2_fill_scan_buf(c, buf, buf_ofs, buf_len);
if (err)
return err;
@ -326,11 +334,11 @@ static int jffs2_scan_eraseblock (struct jffs2_sb_info *c, struct jffs2_eraseblo
ofs = 0;
/* Scan only 4KiB of 0xFF before declaring it's empty */
while(ofs < EMPTY_SCAN_SIZE && *(uint32_t *)(&buf[ofs]) == 0xFFFFFFFF)
while(ofs < EMPTY_SCAN_SIZE(c->sector_size) && *(uint32_t *)(&buf[ofs]) == 0xFFFFFFFF)
ofs += 4;
if (ofs == EMPTY_SCAN_SIZE) {
#ifdef CONFIG_JFFS2_FS_NAND
if (ofs == EMPTY_SCAN_SIZE(c->sector_size)) {
#ifdef CONFIG_JFFS2_FS_WRITEBUFFER
if (jffs2_cleanmarker_oob(c)) {
/* scan oob, take care of cleanmarker */
int ret = jffs2_check_oob_empty(c, jeb, cleanmarkerfound);
@ -343,7 +351,10 @@ static int jffs2_scan_eraseblock (struct jffs2_sb_info *c, struct jffs2_eraseblo
}
#endif
D1(printk(KERN_DEBUG "Block at 0x%08x is empty (erased)\n", jeb->offset));
return BLK_STATE_ALLFF; /* OK to erase if all blocks are like this */
if (c->cleanmarker_size == 0)
return BLK_STATE_CLEANMARKER; /* don't bother with re-erase */
else
return BLK_STATE_ALLFF; /* OK to erase if all blocks are like this */
}
if (ofs) {
D1(printk(KERN_DEBUG "Free space at %08x ends at %08x\n", jeb->offset,
@ -422,8 +433,8 @@ static int jffs2_scan_eraseblock (struct jffs2_sb_info *c, struct jffs2_eraseblo
/* If we're only checking the beginning of a block with a cleanmarker,
bail now */
if (buf_ofs == jeb->offset && jeb->used_size == PAD(c->cleanmarker_size) &&
c->cleanmarker_size && !jeb->dirty_size && !jeb->first_node->next_in_ino) {
D1(printk(KERN_DEBUG "%d bytes at start of block seems clean... assuming all clean\n", EMPTY_SCAN_SIZE));
c->cleanmarker_size && !jeb->dirty_size && !jeb->first_node->next_phys) {
D1(printk(KERN_DEBUG "%d bytes at start of block seems clean... assuming all clean\n", EMPTY_SCAN_SIZE(c->sector_size)));
return BLK_STATE_CLEANMARKER;
}
@ -618,7 +629,7 @@ static int jffs2_scan_eraseblock (struct jffs2_sb_info *c, struct jffs2_eraseblo
}
if ((jeb->used_size + jeb->unchecked_size) == PAD(c->cleanmarker_size) && !jeb->dirty_size
&& (!jeb->first_node || !jeb->first_node->next_in_ino) )
&& (!jeb->first_node || !jeb->first_node->next_phys) )
return BLK_STATE_CLEANMARKER;
/* move blocks with max 4 byte dirty space to cleanlist */

View file

@ -7,7 +7,7 @@
*
* For licensing information, see the file 'LICENCE' in this directory.
*
* $Id: super.c,v 1.104 2004/11/23 15:37:31 gleixner Exp $
* $Id: super.c,v 1.106 2005/05/18 11:37:25 dedekind Exp $
*
*/
@ -270,8 +270,6 @@ static void jffs2_put_super (struct super_block *sb)
D2(printk(KERN_DEBUG "jffs2: jffs2_put_super()\n"));
if (!(sb->s_flags & MS_RDONLY))
jffs2_stop_garbage_collect_thread(c);
down(&c->alloc_sem);
jffs2_flush_wbuf_pad(c);
up(&c->alloc_sem);
@ -292,6 +290,8 @@ static void jffs2_put_super (struct super_block *sb)
static void jffs2_kill_sb(struct super_block *sb)
{
struct jffs2_sb_info *c = JFFS2_SB_INFO(sb);
if (!(sb->s_flags & MS_RDONLY))
jffs2_stop_garbage_collect_thread(c);
generic_shutdown_super(sb);
put_mtd_device(c->mtd);
kfree(c);
@ -309,7 +309,7 @@ static int __init init_jffs2_fs(void)
int ret;
printk(KERN_INFO "JFFS2 version 2.2."
#ifdef CONFIG_JFFS2_FS_NAND
#ifdef CONFIG_JFFS2_FS_WRITEBUFFER
" (NAND)"
#endif
" (C) 2001-2003 Red Hat, Inc.\n");

View file

@ -7,7 +7,7 @@
*
* For licensing information, see the file 'LICENCE' in this directory.
*
* $Id: symlink.c,v 1.14 2004/11/16 20:36:12 dwmw2 Exp $
* $Id: symlink.c,v 1.16 2005/03/01 10:50:48 dedekind Exp $
*
*/
@ -19,27 +19,45 @@
#include "nodelist.h"
static int jffs2_follow_link(struct dentry *dentry, struct nameidata *nd);
static void jffs2_put_link(struct dentry *dentry, struct nameidata *nd);
struct inode_operations jffs2_symlink_inode_operations =
{
.readlink = generic_readlink,
.follow_link = jffs2_follow_link,
.put_link = jffs2_put_link,
.setattr = jffs2_setattr
};
static int jffs2_follow_link(struct dentry *dentry, struct nameidata *nd)
{
unsigned char *buf;
buf = jffs2_getlink(JFFS2_SB_INFO(dentry->d_inode->i_sb), JFFS2_INODE_INFO(dentry->d_inode));
nd_set_link(nd, buf);
struct jffs2_inode_info *f = JFFS2_INODE_INFO(dentry->d_inode);
/*
* We don't acquire the f->sem mutex here since the only data we
* use is f->dents which in case of the symlink inode points to the
* symlink's target path.
*
* 1. If we are here the inode has already built and f->dents has
* to point to the target path.
* 2. Nobody uses f->dents (if the inode is symlink's inode). The
* exception is inode freeing function which frees f->dents. But
* it can't be called while we are here and before VFS has
* stopped using our f->dents string which we provide by means of
* nd_set_link() call.
*/
if (!f->dents) {
printk(KERN_ERR "jffs2_follow_link(): can't find symlink taerget\n");
return -EIO;
}
D1(printk(KERN_DEBUG "jffs2_follow_link(): target path is '%s'\n", (char *) f->dents));
nd_set_link(nd, (char *)f->dents);
/*
* We unlock the f->sem mutex but VFS will use the f->dents string. This is safe
* since the only way that may cause f->dents to be changed is iput() operation.
* But VFS will not use f->dents after iput() has been called.
*/
return 0;
}
static void jffs2_put_link(struct dentry *dentry, struct nameidata *nd)
{
char *s = nd_get_link(nd);
if (!IS_ERR(s))
kfree(s);
}

View file

@ -9,7 +9,7 @@
*
* For licensing information, see the file 'LICENCE' in this directory.
*
* $Id: wbuf.c,v 1.82 2004/11/20 22:08:31 dwmw2 Exp $
* $Id: wbuf.c,v 1.92 2005/04/05 12:51:54 dedekind Exp $
*
*/
@ -83,7 +83,7 @@ static void jffs2_wbuf_dirties_inode(struct jffs2_sb_info *c, uint32_t ino)
struct jffs2_inodirty *new;
/* Mark the superblock dirty so that kupdated will flush... */
OFNI_BS_2SFFJ(c)->s_dirt = 1;
jffs2_erase_pending_trigger(c);
if (jffs2_wbuf_pending_for_ino(c, ino))
return;
@ -130,7 +130,10 @@ static inline void jffs2_refile_wbuf_blocks(struct jffs2_sb_info *c)
}
}
static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
#define REFILE_NOTEMPTY 0
#define REFILE_ANYWAY 1
static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int allow_empty)
{
D1(printk("About to refile bad block at %08x\n", jeb->offset));
@ -144,7 +147,7 @@ static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock
D1(printk("Refiling block at %08x to bad_used_list\n", jeb->offset));
list_add(&jeb->list, &c->bad_used_list);
} else {
BUG();
BUG_ON(allow_empty == REFILE_NOTEMPTY);
/* It has to have had some nodes or we couldn't be here */
D1(printk("Refiling block at %08x to erase_pending_list\n", jeb->offset));
list_add(&jeb->list, &c->erase_pending_list);
@ -179,7 +182,7 @@ static void jffs2_wbuf_recover(struct jffs2_sb_info *c)
jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
jffs2_block_refile(c, jeb);
jffs2_block_refile(c, jeb, REFILE_NOTEMPTY);
/* Find the first node to be recovered, by skipping over every
node which ends before the wbuf starts, or which is obsolete. */
@ -264,17 +267,16 @@ static void jffs2_wbuf_recover(struct jffs2_sb_info *c)
ret = jffs2_reserve_space_gc(c, end-start, &ofs, &len);
if (ret) {
printk(KERN_WARNING "Failed to allocate space for wbuf recovery. Data loss ensues.\n");
if (buf)
kfree(buf);
kfree(buf);
return;
}
if (end-start >= c->wbuf_pagesize) {
/* Need to do another write immediately. This, btw,
means that we'll be writing from 'buf' and not from
the wbuf. Since if we're writing from the wbuf there
won't be more than a wbuf full of data, now will
there? :) */
/* Need to do another write immediately, but it's possible
that this is just because the wbuf itself is completely
full, and there's nothing earlier read back from the
flash. Hence 'buf' isn't necessarily what we're writing
from. */
unsigned char *rewrite_buf = buf?:c->wbuf;
uint32_t towrite = (end-start) - ((end-start)%c->wbuf_pagesize);
D1(printk(KERN_DEBUG "Write 0x%x bytes at 0x%08x in wbuf recover\n",
@ -292,9 +294,9 @@ static void jffs2_wbuf_recover(struct jffs2_sb_info *c)
#endif
if (jffs2_cleanmarker_oob(c))
ret = c->mtd->write_ecc(c->mtd, ofs, towrite, &retlen,
buf, NULL, c->oobinfo);
rewrite_buf, NULL, c->oobinfo);
else
ret = c->mtd->write(c->mtd, ofs, towrite, &retlen, buf);
ret = c->mtd->write(c->mtd, ofs, towrite, &retlen, rewrite_buf);
if (ret || retlen != towrite) {
/* Argh. We tried. Really we did. */
@ -321,10 +323,10 @@ static void jffs2_wbuf_recover(struct jffs2_sb_info *c)
c->wbuf_len = (end - start) - towrite;
c->wbuf_ofs = ofs + towrite;
memcpy(c->wbuf, buf + towrite, c->wbuf_len);
memmove(c->wbuf, rewrite_buf + towrite, c->wbuf_len);
/* Don't muck about with c->wbuf_inodes. False positives are harmless. */
kfree(buf);
if (buf)
kfree(buf);
} else {
/* OK, now we're left with the dregs in whichever buffer we're using */
if (buf) {
@ -413,9 +415,9 @@ static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad)
int ret;
size_t retlen;
/* Nothing to do if not NAND flash. In particular, we shouldn't
/* Nothing to do if not write-buffering the flash. In particular, we shouldn't
del_timer() the timer we never initialised. */
if (jffs2_can_mark_obsolete(c))
if (!jffs2_is_writebuffered(c))
return 0;
if (!down_trylock(&c->alloc_sem)) {
@ -424,7 +426,7 @@ static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad)
BUG();
}
if(!c->wbuf || !c->wbuf_len)
if (!c->wbuf_len) /* already checked c->wbuf above */
return 0;
/* claim remaining space on the page
@ -433,7 +435,7 @@ static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad)
if we have a switch to next page, we will not have
enough remaining space for this.
*/
if (pad) {
if (pad && !jffs2_dataflash(c)) {
c->wbuf_len = PAD(c->wbuf_len);
/* Pad with JFFS2_DIRTY_BITMASK initially. this helps out ECC'd NOR
@ -484,7 +486,7 @@ static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad)
spin_lock(&c->erase_completion_lock);
/* Adjust free size of the block if we padded. */
if (pad) {
if (pad && !jffs2_dataflash(c)) {
struct jffs2_eraseblock *jeb;
jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
@ -532,6 +534,9 @@ int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino)
D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() called for ino #%u...\n", ino));
if (!c->wbuf)
return 0;
down(&c->alloc_sem);
if (!jffs2_wbuf_pending_for_ino(c, ino)) {
D1(printk(KERN_DEBUG "Ino #%d not pending in wbuf. Returning\n", ino));
@ -547,6 +552,10 @@ int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino)
D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() padding. Not finished checking\n"));
down_write(&c->wbuf_sem);
ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
/* retry flushing wbuf in case jffs2_wbuf_recover
left some data in the wbuf */
if (ret)
ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
up_write(&c->wbuf_sem);
} else while (old_wbuf_len &&
old_wbuf_ofs == c->wbuf_ofs) {
@ -561,6 +570,10 @@ int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino)
down(&c->alloc_sem);
down_write(&c->wbuf_sem);
ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
/* retry flushing wbuf in case jffs2_wbuf_recover
left some data in the wbuf */
if (ret)
ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
up_write(&c->wbuf_sem);
break;
}
@ -578,15 +591,27 @@ int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c)
{
int ret;
if (!c->wbuf)
return 0;
down_write(&c->wbuf_sem);
ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
/* retry - maybe wbuf recover left some data in wbuf. */
if (ret)
ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
up_write(&c->wbuf_sem);
return ret;
}
#ifdef CONFIG_JFFS2_FS_WRITEBUFFER
#define PAGE_DIV(x) ( ((unsigned long)(x) / (unsigned long)(c->wbuf_pagesize)) * (unsigned long)(c->wbuf_pagesize) )
#define PAGE_MOD(x) ( (unsigned long)(x) % (unsigned long)(c->wbuf_pagesize) )
#else
#define PAGE_DIV(x) ( (x) & (~(c->wbuf_pagesize - 1)) )
#define PAGE_MOD(x) ( (x) & (c->wbuf_pagesize - 1) )
#endif
int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs, unsigned long count, loff_t to, size_t *retlen, uint32_t ino)
{
struct kvec outvecs[3];
@ -601,7 +626,7 @@ int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs, unsig
uint32_t outvec_to = to;
/* If not NAND flash, don't bother */
if (!c->wbuf)
if (!jffs2_is_writebuffered(c))
return jffs2_flash_direct_writev(c, invecs, count, to, retlen);
down_write(&c->wbuf_sem);
@ -630,7 +655,7 @@ int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs, unsig
erase block. Anything else, and you die.
New block starts at xxx000c (0-b = block header)
*/
if ( (to & ~(c->sector_size-1)) != (c->wbuf_ofs & ~(c->sector_size-1)) ) {
if (SECTOR_ADDR(to) != SECTOR_ADDR(c->wbuf_ofs)) {
/* It's a write to a new block */
if (c->wbuf_len) {
D1(printk(KERN_DEBUG "jffs2_flash_writev() to 0x%lx causes flush of wbuf at 0x%08x\n", (unsigned long)to, c->wbuf_ofs));
@ -762,9 +787,18 @@ int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs, unsig
if (ret < 0 || wbuf_retlen != PAGE_DIV(totlen)) {
/* At this point we have no problem,
c->wbuf is empty.
c->wbuf is empty. However refile nextblock to avoid
writing again to same address.
*/
*retlen = donelen;
struct jffs2_eraseblock *jeb;
spin_lock(&c->erase_completion_lock);
jeb = &c->blocks[outvec_to / c->sector_size];
jffs2_block_refile(c, jeb, REFILE_ANYWAY);
*retlen = 0;
spin_unlock(&c->erase_completion_lock);
goto exit;
}
@ -819,7 +853,7 @@ int jffs2_flash_write(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *r
{
struct kvec vecs[1];
if (jffs2_can_mark_obsolete(c))
if (!jffs2_is_writebuffered(c))
return c->mtd->write(c->mtd, ofs, len, retlen, buf);
vecs[0].iov_base = (unsigned char *) buf;
@ -835,39 +869,38 @@ int jffs2_flash_read(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *re
loff_t orbf = 0, owbf = 0, lwbf = 0;
int ret;
/* Read flash */
if (!jffs2_can_mark_obsolete(c)) {
down_read(&c->wbuf_sem);
if (jffs2_cleanmarker_oob(c))
ret = c->mtd->read_ecc(c->mtd, ofs, len, retlen, buf, NULL, c->oobinfo);
else
ret = c->mtd->read(c->mtd, ofs, len, retlen, buf);
if ( (ret == -EBADMSG) && (*retlen == len) ) {
printk(KERN_WARNING "mtd->read(0x%zx bytes from 0x%llx) returned ECC error\n",
len, ofs);
/*
* We have the raw data without ECC correction in the buffer, maybe
* we are lucky and all data or parts are correct. We check the node.
* If data are corrupted node check will sort it out.
* We keep this block, it will fail on write or erase and the we
* mark it bad. Or should we do that now? But we should give him a chance.
* Maybe we had a system crash or power loss before the ecc write or
* a erase was completed.
* So we return success. :)
*/
ret = 0;
}
} else
if (!jffs2_is_writebuffered(c))
return c->mtd->read(c->mtd, ofs, len, retlen, buf);
/* Read flash */
down_read(&c->wbuf_sem);
if (jffs2_cleanmarker_oob(c))
ret = c->mtd->read_ecc(c->mtd, ofs, len, retlen, buf, NULL, c->oobinfo);
else
ret = c->mtd->read(c->mtd, ofs, len, retlen, buf);
if ( (ret == -EBADMSG) && (*retlen == len) ) {
printk(KERN_WARNING "mtd->read(0x%zx bytes from 0x%llx) returned ECC error\n",
len, ofs);
/*
* We have the raw data without ECC correction in the buffer, maybe
* we are lucky and all data or parts are correct. We check the node.
* If data are corrupted node check will sort it out.
* We keep this block, it will fail on write or erase and the we
* mark it bad. Or should we do that now? But we should give him a chance.
* Maybe we had a system crash or power loss before the ecc write or
* a erase was completed.
* So we return success. :)
*/
ret = 0;
}
/* if no writebuffer available or write buffer empty, return */
if (!c->wbuf_pagesize || !c->wbuf_len)
goto exit;
/* if we read in a different block, return */
if ( (ofs & ~(c->sector_size-1)) != (c->wbuf_ofs & ~(c->sector_size-1)) )
if (SECTOR_ADDR(ofs) != SECTOR_ADDR(c->wbuf_ofs))
goto exit;
if (ofs >= c->wbuf_ofs) {
@ -1161,7 +1194,27 @@ void jffs2_nand_flash_cleanup(struct jffs2_sb_info *c)
kfree(c->wbuf);
}
#ifdef CONFIG_JFFS2_FS_NOR_ECC
int jffs2_dataflash_setup(struct jffs2_sb_info *c) {
c->cleanmarker_size = 0; /* No cleanmarkers needed */
/* Initialize write buffer */
init_rwsem(&c->wbuf_sem);
c->wbuf_pagesize = c->sector_size;
c->wbuf_ofs = 0xFFFFFFFF;
c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
if (!c->wbuf)
return -ENOMEM;
printk(KERN_INFO "JFFS2 write-buffering enabled (%i)\n", c->wbuf_pagesize);
return 0;
}
void jffs2_dataflash_cleanup(struct jffs2_sb_info *c) {
kfree(c->wbuf);
}
int jffs2_nor_ecc_flash_setup(struct jffs2_sb_info *c) {
/* Cleanmarker is actually larger on the flashes */
c->cleanmarker_size = 16;
@ -1181,4 +1234,3 @@ int jffs2_nor_ecc_flash_setup(struct jffs2_sb_info *c) {
void jffs2_nor_ecc_flash_cleanup(struct jffs2_sb_info *c) {
kfree(c->wbuf);
}
#endif

View file

@ -7,7 +7,7 @@
*
* For licensing information, see the file 'LICENCE' in this directory.
*
* $Id: write.c,v 1.87 2004/11/16 20:36:12 dwmw2 Exp $
* $Id: write.c,v 1.92 2005/04/13 13:22:35 dwmw2 Exp $
*
*/
@ -35,13 +35,12 @@ int jffs2_do_new_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f, uint
f->inocache = ic;
f->inocache->nlink = 1;
f->inocache->nodes = (struct jffs2_raw_node_ref *)f->inocache;
f->inocache->ino = ++c->highest_ino;
f->inocache->state = INO_STATE_PRESENT;
ri->ino = cpu_to_je32(f->inocache->ino);
D1(printk(KERN_DEBUG "jffs2_do_new_inode(): Assigned ino# %d\n", f->inocache->ino));
jffs2_add_ino_cache(c, f->inocache);
D1(printk(KERN_DEBUG "jffs2_do_new_inode(): Assigned ino# %d\n", f->inocache->ino));
ri->ino = cpu_to_je32(f->inocache->ino);
ri->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
ri->nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
@ -136,6 +135,15 @@ struct jffs2_full_dnode *jffs2_write_dnode(struct jffs2_sb_info *c, struct jffs2
raw->__totlen = PAD(sizeof(*ri)+datalen);
raw->next_phys = NULL;
if ((alloc_mode!=ALLOC_GC) && (je32_to_cpu(ri->version) < f->highest_version)) {
BUG_ON(!retried);
D1(printk(KERN_DEBUG "jffs2_write_dnode : dnode_version %d, "
"highest version %d -> updating dnode\n",
je32_to_cpu(ri->version), f->highest_version));
ri->version = cpu_to_je32(++f->highest_version);
ri->node_crc = cpu_to_je32(crc32(0, ri, sizeof(*ri)-8));
}
ret = jffs2_flash_writev(c, vecs, cnt, flash_ofs, &retlen,
(alloc_mode==ALLOC_GC)?0:f->inocache->ino);
@ -280,6 +288,16 @@ struct jffs2_full_dirent *jffs2_write_dirent(struct jffs2_sb_info *c, struct jff
raw->__totlen = PAD(sizeof(*rd)+namelen);
raw->next_phys = NULL;
if ((alloc_mode!=ALLOC_GC) && (je32_to_cpu(rd->version) < f->highest_version)) {
BUG_ON(!retried);
D1(printk(KERN_DEBUG "jffs2_write_dirent : dirent_version %d, "
"highest version %d -> updating dirent\n",
je32_to_cpu(rd->version), f->highest_version));
rd->version = cpu_to_je32(++f->highest_version);
fd->version = je32_to_cpu(rd->version);
rd->node_crc = cpu_to_je32(crc32(0, rd, sizeof(*rd)-8));
}
ret = jffs2_flash_writev(c, vecs, 2, flash_ofs, &retlen,
(alloc_mode==ALLOC_GC)?0:je32_to_cpu(rd->pino));
if (ret || (retlen != sizeof(*rd) + namelen)) {
@ -625,20 +643,23 @@ int jffs2_do_unlink(struct jffs2_sb_info *c, struct jffs2_inode_info *dir_f,
down(&dead_f->sem);
while (dead_f->dents) {
/* There can be only deleted ones */
fd = dead_f->dents;
dead_f->dents = fd->next;
if (fd->ino) {
printk(KERN_WARNING "Deleting inode #%u with active dentry \"%s\"->ino #%u\n",
dead_f->inocache->ino, fd->name, fd->ino);
} else {
D1(printk(KERN_DEBUG "Removing deletion dirent for \"%s\" from dir ino #%u\n", fd->name, dead_f->inocache->ino));
if (S_ISDIR(OFNI_EDONI_2SFFJ(dead_f)->i_mode)) {
while (dead_f->dents) {
/* There can be only deleted ones */
fd = dead_f->dents;
dead_f->dents = fd->next;
if (fd->ino) {
printk(KERN_WARNING "Deleting inode #%u with active dentry \"%s\"->ino #%u\n",
dead_f->inocache->ino, fd->name, fd->ino);
} else {
D1(printk(KERN_DEBUG "Removing deletion dirent for \"%s\" from dir ino #%u\n",
fd->name, dead_f->inocache->ino));
}
jffs2_mark_node_obsolete(c, fd->raw);
jffs2_free_full_dirent(fd);
}
jffs2_mark_node_obsolete(c, fd->raw);
jffs2_free_full_dirent(fd);
}
dead_f->inocache->nlink--;

View file

@ -0,0 +1,37 @@
/*
* MTD primitives for XIP support. Architecture specific functions
*
* Do not include this file directly. It's included from linux/mtd/xip.h
*
* Author: Nicolas Pitre
* Created: Nov 2, 2004
* Copyright: (C) 2004 MontaVista Software, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* $Id: xip.h,v 1.2 2004/12/01 15:49:10 nico Exp $
*/
#ifndef __ARCH_PXA_MTD_XIP_H__
#define __ARCH_PXA_MTD_XIP_H__
#include <asm/arch/pxa-regs.h>
#define xip_irqpending() (ICIP & ICMR)
/* we sample OSCR and convert desired delta to usec (1/4 ~= 1000000/3686400) */
#define xip_currtime() (OSCR)
#define xip_elapsed_since(x) (signed)((OSCR - (x)) / 4)
/*
* xip_cpu_idle() is used when waiting for a delay equal or larger than
* the system timer tick period. This should put the CPU into idle mode
* to save power and to be woken up only when some interrupts are pending.
* As above, this should not rely upon standard kernel code.
*/
#define xip_cpu_idle() asm volatile ("mcr p14, 0, %0, c7, c0, 0" :: "r" (1))
#endif /* __ARCH_PXA_MTD_XIP_H__ */

View file

@ -0,0 +1,26 @@
/*
* MTD primitives for XIP support. Architecture specific functions
*
* Do not include this file directly. It's included from linux/mtd/xip.h
*
* Author: Nicolas Pitre
* Created: Nov 2, 2004
* Copyright: (C) 2004 MontaVista Software, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* $Id: xip.h,v 1.2 2004/12/01 15:49:10 nico Exp $
*/
#ifndef __ARCH_SA1100_MTD_XIP_H__
#define __ARCH_SA1100_MTD_XIP_H__
#define xip_irqpending() (ICIP & ICMR)
/* we sample OSCR and convert desired delta to usec (1/4 ~= 1000000/3686400) */
#define xip_currtime() (OSCR)
#define xip_elapsed_since(x) (signed)((OSCR - (x)) / 4)
#endif /* __ARCH_SA1100_MTD_XIP_H__ */

26
include/asm-arm/mtd-xip.h Normal file
View file

@ -0,0 +1,26 @@
/*
* MTD primitives for XIP support. Architecture specific functions
*
* Do not include this file directly. It's included from linux/mtd/xip.h
*
* Author: Nicolas Pitre
* Created: Nov 2, 2004
* Copyright: (C) 2004 MontaVista Software, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* $Id: xip.h,v 1.2 2004/12/01 15:49:10 nico Exp $
*/
#ifndef __ARM_MTD_XIP_H__
#define __ARM_MTD_XIP_H__
#include <asm/hardware.h>
#include <asm/arch/mtd-xip.h>
/* fill instruction prefetch */
#define xip_iprefetch() do { asm volatile (".rep 8; nop; .endr"); } while (0)
#endif /* __ARM_MTD_XIP_H__ */

View file

@ -1,4 +1,4 @@
/* $Id: jffs2_fs_sb.h,v 1.48 2004/11/20 10:41:12 dwmw2 Exp $ */
/* $Id: jffs2_fs_sb.h,v 1.52 2005/05/19 16:12:17 gleixner Exp $ */
#ifndef _JFFS2_FS_SB
#define _JFFS2_FS_SB
@ -14,7 +14,8 @@
#include <linux/rwsem.h>
#define JFFS2_SB_FLAG_RO 1
#define JFFS2_SB_FLAG_MOUNTING 2
#define JFFS2_SB_FLAG_SCANNING 2 /* Flash scanning is in progress */
#define JFFS2_SB_FLAG_BUILDING 4 /* File system building is in progress */
struct jffs2_inodirty;
@ -31,7 +32,7 @@ struct jffs2_sb_info {
unsigned int flags;
struct task_struct *gc_task; /* GC task struct */
struct semaphore gc_thread_start; /* GC thread start mutex */
struct completion gc_thread_start; /* GC thread start completion */
struct completion gc_thread_exit; /* GC thread exit completion port */
struct semaphore alloc_sem; /* Used to protect all the following
@ -94,7 +95,7 @@ struct jffs2_sb_info {
to an obsoleted node. I don't like this. Alternatives welcomed. */
struct semaphore erase_free_sem;
#if defined CONFIG_JFFS2_FS_NAND || defined CONFIG_JFFS2_FS_NOR_ECC
#ifdef CONFIG_JFFS2_FS_WRITEBUFFER
/* Write-behind buffer for NAND flash */
unsigned char *wbuf;
uint32_t wbuf_ofs;

View file

@ -1,7 +1,7 @@
/* Common Flash Interface structures
* See http://support.intel.com/design/flash/technote/index.htm
* $Id: cfi.h,v 1.50 2004/11/20 12:46:51 dwmw2 Exp $
* $Id: cfi.h,v 1.54 2005/06/06 23:04:36 tpoynor Exp $
*/
#ifndef __MTD_CFI_H__
@ -148,6 +148,14 @@ struct cfi_pri_intelext {
uint8_t extra[0];
} __attribute__((packed));
struct cfi_intelext_otpinfo {
uint32_t ProtRegAddr;
uint16_t FactGroups;
uint8_t FactProtRegSize;
uint16_t UserGroups;
uint8_t UserProtRegSize;
} __attribute__((packed));
struct cfi_intelext_blockinfo {
uint16_t NumIdentBlocks;
uint16_t BlockSize;
@ -244,7 +252,7 @@ static inline uint32_t cfi_build_cmd_addr(uint32_t cmd_ofs, int interleave, int
* It looks too long to be inline, but in the common case it should almost all
* get optimised away.
*/
static inline map_word cfi_build_cmd(u_char cmd, struct map_info *map, struct cfi_private *cfi)
static inline map_word cfi_build_cmd(u_long cmd, struct map_info *map, struct cfi_private *cfi)
{
map_word val = { {0} };
int wordwidth, words_per_bus, chip_mode, chips_per_word;
@ -307,6 +315,69 @@ static inline map_word cfi_build_cmd(u_char cmd, struct map_info *map, struct cf
}
#define CMD(x) cfi_build_cmd((x), map, cfi)
static inline unsigned char cfi_merge_status(map_word val, struct map_info *map,
struct cfi_private *cfi)
{
int wordwidth, words_per_bus, chip_mode, chips_per_word;
unsigned long onestat, res = 0;
int i;
/* We do it this way to give the compiler a fighting chance
of optimising away all the crap for 'bankwidth' larger than
an unsigned long, in the common case where that support is
disabled */
if (map_bankwidth_is_large(map)) {
wordwidth = sizeof(unsigned long);
words_per_bus = (map_bankwidth(map)) / wordwidth; // i.e. normally 1
} else {
wordwidth = map_bankwidth(map);
words_per_bus = 1;
}
chip_mode = map_bankwidth(map) / cfi_interleave(cfi);
chips_per_word = wordwidth * cfi_interleave(cfi) / map_bankwidth(map);
onestat = val.x[0];
/* Or all status words together */
for (i=1; i < words_per_bus; i++) {
onestat |= val.x[i];
}
res = onestat;
switch(chips_per_word) {
default: BUG();
#if BITS_PER_LONG >= 64
case 8:
res |= (onestat >> (chip_mode * 32));
#endif
case 4:
res |= (onestat >> (chip_mode * 16));
case 2:
res |= (onestat >> (chip_mode * 8));
case 1:
;
}
/* Last, determine what the bit-pattern should be for a single
device, according to chip mode and endianness... */
switch (chip_mode) {
case 1:
break;
case 2:
res = cfi16_to_cpu(res);
break;
case 4:
res = cfi32_to_cpu(res);
break;
default: BUG();
}
return res;
}
#define MERGESTATUS(x) cfi_merge_status((x), map, cfi)
/*
* Sends a CFI command to a bank of flash for the given geometry.
*
@ -357,16 +428,6 @@ static inline void cfi_udelay(int us)
}
}
static inline void cfi_spin_lock(spinlock_t *mutex)
{
spin_lock_bh(mutex);
}
static inline void cfi_spin_unlock(spinlock_t *mutex)
{
spin_unlock_bh(mutex);
}
struct cfi_extquery *cfi_read_pri(struct map_info *map, uint16_t adr, uint16_t size,
const char* name);
struct cfi_fixup {

View file

@ -6,7 +6,7 @@
*
* (C) 2000 Red Hat. GPLd.
*
* $Id: flashchip.h,v 1.15 2004/11/05 22:41:06 nico Exp $
* $Id: flashchip.h,v 1.17 2005/03/14 18:27:15 bjd Exp $
*
*/
@ -29,6 +29,7 @@ typedef enum {
FL_ERASE_SUSPENDED,
FL_WRITING,
FL_WRITING_TO_BUFFER,
FL_OTP_WRITE,
FL_WRITE_SUSPENDING,
FL_WRITE_SUSPENDED,
FL_PM_SUSPENDED,
@ -62,8 +63,8 @@ struct flchip {
flstate_t state;
flstate_t oldstate;
int write_suspended:1;
int erase_suspended:1;
unsigned int write_suspended:1;
unsigned int erase_suspended:1;
unsigned long in_progress_block_addr;
spinlock_t *mutex;

View file

@ -3,7 +3,7 @@
*
* (C) Copyright 2002, Greg Ungerer (gerg@snapgear.com)
*
* $Id: inftl.h,v 1.6 2004/06/30 14:49:00 dbrown Exp $
* $Id: inftl.h,v 1.7 2005/06/13 13:08:45 sean Exp $
*/
#ifndef __MTD_INFTL_H__
@ -20,7 +20,7 @@
#include <mtd/inftl-user.h>
#ifndef INFTL_MAJOR
#define INFTL_MAJOR 94
#define INFTL_MAJOR 96
#endif
#define INFTL_PARTN_BITS 4

View file

@ -1,6 +1,6 @@
/* Overhauled routines for dealing with different mmap regions of flash */
/* $Id: map.h,v 1.46 2005/01/05 17:09:44 dwmw2 Exp $ */
/* $Id: map.h,v 1.52 2005/05/25 10:29:41 gleixner Exp $ */
#ifndef __LINUX_MTD_MAP_H__
#define __LINUX_MTD_MAP_H__
@ -263,6 +263,17 @@ static inline map_word map_word_and(struct map_info *map, map_word val1, map_wor
return r;
}
static inline map_word map_word_clr(struct map_info *map, map_word val1, map_word val2)
{
map_word r;
int i;
for (i=0; i<map_words(map); i++) {
r.x[i] = val1.x[i] & ~val2.x[i];
}
return r;
}
static inline map_word map_word_or(struct map_info *map, map_word val1, map_word val2)
{
map_word r;
@ -273,6 +284,7 @@ static inline map_word map_word_or(struct map_info *map, map_word val1, map_word
}
return r;
}
#define map_word_andequal(m, a, b, z) map_word_equal(m, z, map_word_and(m, a, b))
static inline int map_word_bitsset(struct map_info *map, map_word val1, map_word val2)
@ -328,16 +340,27 @@ static inline map_word map_word_load_partial(struct map_info *map, map_word orig
return orig;
}
#if BITS_PER_LONG < 64
#define MAP_FF_LIMIT 4
#else
#define MAP_FF_LIMIT 8
#endif
static inline map_word map_word_ff(struct map_info *map)
{
map_word r;
int i;
for (i=0; i<map_words(map); i++) {
r.x[i] = ~0UL;
if (map_bankwidth(map) < MAP_FF_LIMIT) {
int bw = 8 * map_bankwidth(map);
r.x[0] = (1 << bw) - 1;
} else {
for (i=0; i<map_words(map); i++)
r.x[i] = ~0UL;
}
return r;
}
static inline map_word inline_map_read(struct map_info *map, unsigned long ofs)
{
map_word r;
@ -405,7 +428,7 @@ extern void simple_map_init(struct map_info *);
#define simple_map_init(map) BUG_ON(!map_bankwidth_supported((map)->bankwidth))
#define map_is_linear(map) (1)
#define map_is_linear(map) ({ (void)(map); 1; })
#endif /* !CONFIG_MTD_COMPLEX_MAPPINGS */

View file

@ -1,5 +1,5 @@
/*
* $Id: mtd.h,v 1.56 2004/08/09 18:46:04 dmarlin Exp $
* $Id: mtd.h,v 1.59 2005/04/11 10:19:02 gleixner Exp $
*
* Copyright (C) 1999-2003 David Woodhouse <dwmw2@infradead.org> et al.
*
@ -18,6 +18,7 @@
#include <linux/types.h>
#include <linux/module.h>
#include <linux/uio.h>
#include <linux/notifier.h>
#include <linux/mtd/compatmac.h>
#include <mtd/mtd-abi.h>
@ -69,7 +70,6 @@ struct mtd_info {
u_int32_t oobblock; // Size of OOB blocks (e.g. 512)
u_int32_t oobsize; // Amount of OOB data per block (e.g. 16)
u_int32_t oobavail; // Number of bytes in OOB area available for fs
u_int32_t ecctype;
u_int32_t eccsize;
@ -80,6 +80,7 @@ struct mtd_info {
// oobinfo is a nand_oobinfo structure, which can be set by iotcl (MEMSETOOBINFO)
struct nand_oobinfo oobinfo;
u_int32_t oobavail; // Number of bytes in OOB area available for fs
/* Data for variable erase regions. If numeraseregions is zero,
* it means that the whole device has erasesize as given above.
@ -113,12 +114,12 @@ struct mtd_info {
* flash devices. The user data is one time programmable but the
* factory data is read only.
*/
int (*read_user_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf);
int (*get_fact_prot_info) (struct mtd_info *mtd, struct otp_info *buf, size_t len);
int (*read_fact_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf);
/* This function is not yet implemented */
int (*get_user_prot_info) (struct mtd_info *mtd, struct otp_info *buf, size_t len);
int (*read_user_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf);
int (*write_user_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf);
int (*lock_user_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len);
/* kvec-based read/write methods. We need these especially for NAND flash,
with its limited number of write cycles per erase.
@ -147,6 +148,8 @@ struct mtd_info {
int (*block_isbad) (struct mtd_info *mtd, loff_t ofs);
int (*block_markbad) (struct mtd_info *mtd, loff_t ofs);
struct notifier_block reboot_notifier; /* default mode before reboot */
void *priv;
struct module *owner;

View file

@ -5,7 +5,7 @@
* Steven J. Hill <sjhill@realitydiluted.com>
* Thomas Gleixner <tglx@linutronix.de>
*
* $Id: nand.h,v 1.68 2004/11/12 10:40:37 gleixner Exp $
* $Id: nand.h,v 1.73 2005/05/31 19:39:17 gleixner Exp $
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
@ -48,6 +48,10 @@
* 02-08-2004 tglx added option field to nand structure for chip anomalities
* 05-25-2004 tglx added bad block table support, ST-MICRO manufacturer id
* update of nand_chip structure description
* 01-17-2005 dmarlin added extended commands for AG-AND device and added option
* for BBT_AUTO_REFRESH.
* 01-20-2005 dmarlin added optional pointer to hardware specific callback for
* extra error status checks.
*/
#ifndef __LINUX_MTD_NAND_H
#define __LINUX_MTD_NAND_H
@ -115,6 +119,25 @@ extern int nand_read_raw (struct mtd_info *mtd, uint8_t *buf, loff_t from, size_
#define NAND_CMD_READSTART 0x30
#define NAND_CMD_CACHEDPROG 0x15
/* Extended commands for AG-AND device */
/*
* Note: the command for NAND_CMD_DEPLETE1 is really 0x00 but
* there is no way to distinguish that from NAND_CMD_READ0
* until the remaining sequence of commands has been completed
* so add a high order bit and mask it off in the command.
*/
#define NAND_CMD_DEPLETE1 0x100
#define NAND_CMD_DEPLETE2 0x38
#define NAND_CMD_STATUS_MULTI 0x71
#define NAND_CMD_STATUS_ERROR 0x72
/* multi-bank error status (banks 0-3) */
#define NAND_CMD_STATUS_ERROR0 0x73
#define NAND_CMD_STATUS_ERROR1 0x74
#define NAND_CMD_STATUS_ERROR2 0x75
#define NAND_CMD_STATUS_ERROR3 0x76
#define NAND_CMD_STATUS_RESET 0x7f
#define NAND_CMD_STATUS_CLEAR 0xff
/* Status bits */
#define NAND_STATUS_FAIL 0x01
#define NAND_STATUS_FAIL_N1 0x02
@ -143,7 +166,7 @@ extern int nand_read_raw (struct mtd_info *mtd, uint8_t *buf, loff_t from, size_
/*
* Constants for Hardware ECC
*/
*/
/* Reset Hardware ECC for read */
#define NAND_ECC_READ 0
/* Reset Hardware ECC for write */
@ -151,6 +174,10 @@ extern int nand_read_raw (struct mtd_info *mtd, uint8_t *buf, loff_t from, size_
/* Enable Hardware ECC before syndrom is read back from flash */
#define NAND_ECC_READSYN 2
/* Bit mask for flags passed to do_nand_read_ecc */
#define NAND_GET_DEVICE 0x80
/* Option constants for bizarre disfunctionality and real
* features
*/
@ -170,6 +197,10 @@ extern int nand_read_raw (struct mtd_info *mtd, uint8_t *buf, loff_t from, size_
/* Chip has a array of 4 pages which can be read without
* additional ready /busy waits */
#define NAND_4PAGE_ARRAY 0x00000040
/* Chip requires that BBT is periodically rewritten to prevent
* bits from adjacent blocks from 'leaking' in altering data.
* This happens with the Renesas AG-AND chips, possibly others. */
#define BBT_AUTO_REFRESH 0x00000080
/* Options valid for Samsung large page devices */
#define NAND_SAMSUNG_LP_OPTIONS \
@ -192,7 +223,8 @@ extern int nand_read_raw (struct mtd_info *mtd, uint8_t *buf, loff_t from, size_
* This can only work if we have the ecc bytes directly behind the
* data bytes. Applies for DOC and AG-AND Renesas HW Reed Solomon generators */
#define NAND_HWECC_SYNDROME 0x00020000
/* This option skips the bbt scan during initialization. */
#define NAND_SKIP_BBTSCAN 0x00040000
/* Options set by nand scan */
/* Nand scan has allocated oob_buf */
@ -221,10 +253,13 @@ struct nand_chip;
* struct nand_hw_control - Control structure for hardware controller (e.g ECC generator) shared among independend devices
* @lock: protection lock
* @active: the mtd device which holds the controller currently
* @wq: wait queue to sleep on if a NAND operation is in progress
* used instead of the per chip wait queue when a hw controller is available
*/
struct nand_hw_control {
spinlock_t lock;
struct nand_chip *active;
wait_queue_head_t wq;
};
/**
@ -283,6 +318,8 @@ struct nand_hw_control {
* @badblock_pattern: [REPLACEABLE] bad block scan pattern used for initial bad block scan
* @controller: [OPTIONAL] a pointer to a hardware controller structure which is shared among multiple independend devices
* @priv: [OPTIONAL] pointer to private chip date
* @errstat: [OPTIONAL] hardware specific function to perform additional error status checks
* (determine if errors are correctable)
*/
struct nand_chip {
@ -338,6 +375,7 @@ struct nand_chip {
struct nand_bbt_descr *badblock_pattern;
struct nand_hw_control *controller;
void *priv;
int (*errstat)(struct mtd_info *mtd, struct nand_chip *this, int state, int status, int page);
};
/*
@ -349,6 +387,7 @@ struct nand_chip {
#define NAND_MFR_NATIONAL 0x8f
#define NAND_MFR_RENESAS 0x07
#define NAND_MFR_STMICRO 0x20
#define NAND_MFR_HYNIX 0xad
/**
* struct nand_flash_dev - NAND Flash Device ID Structure
@ -459,6 +498,9 @@ extern int nand_update_bbt (struct mtd_info *mtd, loff_t offs);
extern int nand_default_bbt (struct mtd_info *mtd);
extern int nand_isbad_bbt (struct mtd_info *mtd, loff_t offs, int allowbbt);
extern int nand_erase_nand (struct mtd_info *mtd, struct erase_info *instr, int allowbbt);
extern int nand_do_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
size_t * retlen, u_char * buf, u_char * oob_buf,
struct nand_oobinfo *oobsel, int flags);
/*
* Constants for oob configuration

View file

@ -0,0 +1,35 @@
/* linux/include/mtd/plat-ram.h
*
* (c) 2004 Simtec Electronics
* http://www.simtec.co.uk/products/SWLINUX/
* Ben Dooks <ben@simtec.co.uk>
*
* Generic platform device based RAM map
*
* $Id: plat-ram.h,v 1.2 2005/01/24 00:37:40 bjd Exp $
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
#ifndef __LINUX_MTD_PLATRAM_H
#define __LINUX_MTD_PLATRAM_H __FILE__
#define PLATRAM_RO (0)
#define PLATRAM_RW (1)
struct platdata_mtd_ram {
char *mapname;
char **probes;
struct mtd_partition *partitions;
int nr_partitions;
int bankwidth;
/* control callbacks */
void (*set_rw)(struct device *dev, int to);
};
#endif /* __LINUX_MTD_PLATRAM_H */

View file

@ -58,22 +58,16 @@
* returned value is <= the real elapsed time.
* note 2: this should be able to cope with a few seconds without
* overflowing.
*
* xip_iprefetch()
*
* Macro to fill instruction prefetch
* e.g. a series of nops: asm volatile (".rep 8; nop; .endr");
*/
#if defined(CONFIG_ARCH_SA1100) || defined(CONFIG_ARCH_PXA)
#include <asm/mtd-xip.h>
#include <asm/hardware.h>
#ifdef CONFIG_ARCH_PXA
#include <asm/arch/pxa-regs.h>
#endif
#define xip_irqpending() (ICIP & ICMR)
/* we sample OSCR and convert desired delta to usec (1/4 ~= 1000000/3686400) */
#define xip_currtime() (OSCR)
#define xip_elapsed_since(x) (signed)((OSCR - (x)) / 4)
#else
#ifndef xip_irqpending
#warning "missing IRQ and timer primitives for XIP MTD support"
#warning "some of the XIP MTD support code will be disabled"
@ -85,16 +79,17 @@
#endif
#ifndef xip_iprefetch
#define xip_iprefetch() do { } while (0)
#endif
/*
* xip_cpu_idle() is used when waiting for a delay equal or larger than
* the system timer tick period. This should put the CPU into idle mode
* to save power and to be woken up only when some interrupts are pending.
* As above, this should not rely upon standard kernel code.
* This should not rely upon standard kernel code.
*/
#if defined(CONFIG_CPU_XSCALE)
#define xip_cpu_idle() asm volatile ("mcr p14, 0, %0, c7, c0, 0" :: "r" (1))
#else
#ifndef xip_cpu_idle
#define xip_cpu_idle() do { } while (0)
#endif

View file

@ -1,5 +1,5 @@
/*
* $Id: mtd-abi.h,v 1.7 2004/11/23 15:37:32 gleixner Exp $
* $Id: mtd-abi.h,v 1.11 2005/05/19 16:08:58 gleixner Exp $
*
* Portions of MTD ABI definition which are shared by kernel and user space
*/
@ -29,6 +29,7 @@ struct mtd_oob_buf {
#define MTD_NORFLASH 3
#define MTD_NANDFLASH 4
#define MTD_PEROM 5
#define MTD_DATAFLASH 6
#define MTD_OTHER 14
#define MTD_UNKNOWN 15
@ -60,6 +61,12 @@ struct mtd_oob_buf {
#define MTD_NANDECC_PLACE 1 // Use the given placement in the structure (YAFFS1 legacy mode)
#define MTD_NANDECC_AUTOPLACE 2 // Use the default placement scheme
#define MTD_NANDECC_PLACEONLY 3 // Use the given placement in the structure (Do not store ecc result on read)
#define MTD_NANDECC_AUTOPL_USR 4 // Use the given autoplacement scheme rather than using the default
/* OTP mode selection */
#define MTD_OTP_OFF 0
#define MTD_OTP_FACTORY 1
#define MTD_OTP_USER 2
struct mtd_info_user {
uint8_t type;
@ -80,6 +87,12 @@ struct region_info_user {
uint32_t regionindex;
};
struct otp_info {
uint32_t start;
uint32_t length;
uint32_t locked;
};
#define MEMGETINFO _IOR('M', 1, struct mtd_info_user)
#define MEMERASE _IOW('M', 2, struct erase_info_user)
#define MEMWRITEOOB _IOWR('M', 3, struct mtd_oob_buf)
@ -92,6 +105,10 @@ struct region_info_user {
#define MEMGETOOBSEL _IOR('M', 10, struct nand_oobinfo)
#define MEMGETBADBLOCK _IOW('M', 11, loff_t)
#define MEMSETBADBLOCK _IOW('M', 12, loff_t)
#define OTPSELECT _IOR('M', 13, int)
#define OTPGETREGIONCOUNT _IOW('M', 14, int)
#define OTPGETREGIONINFO _IOW('M', 15, struct otp_info)
#define OTPLOCK _IOR('M', 16, struct otp_info)
struct nand_oobinfo {
uint32_t useecc;