Merge branch 'x86-numa-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'x86-numa-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: x86, numa: Remove configurable node size support for numa emulation x86, numa: Add fixed node size option for numa emulation x86, numa: Fix numa emulation calculation of big nodes x86, acpi: Map hotadded cpu to correct node.
This commit is contained in:
commit
1eca9acbf9
5 changed files with 133 additions and 152 deletions
|
@ -166,19 +166,13 @@ NUMA
|
|||
|
||||
numa=noacpi Don't parse the SRAT table for NUMA setup
|
||||
|
||||
numa=fake=CMDLINE
|
||||
If a number, fakes CMDLINE nodes and ignores NUMA setup of the
|
||||
actual machine. Otherwise, system memory is configured
|
||||
depending on the sizes and coefficients listed. For example:
|
||||
numa=fake=2*512,1024,4*256,*128
|
||||
gives two 512M nodes, a 1024M node, four 256M nodes, and the
|
||||
rest split into 128M chunks. If the last character of CMDLINE
|
||||
is a *, the remaining memory is divided up equally among its
|
||||
coefficient:
|
||||
numa=fake=2*512,2*
|
||||
gives two 512M nodes and the rest split into two nodes.
|
||||
Otherwise, the remaining system RAM is allocated to an
|
||||
additional node.
|
||||
numa=fake=<size>[MG]
|
||||
If given as a memory unit, fills all system RAM with nodes of
|
||||
size interleaved over physical nodes.
|
||||
|
||||
numa=fake=<N>
|
||||
If given as an integer, fills all system RAM with N fake nodes
|
||||
interleaved over physical nodes.
|
||||
|
||||
ACPI
|
||||
|
||||
|
|
|
@ -39,11 +39,5 @@ static inline __attribute__((pure)) int phys_to_nid(unsigned long addr)
|
|||
#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
|
||||
#define node_end_pfn(nid) (NODE_DATA(nid)->node_start_pfn + \
|
||||
NODE_DATA(nid)->node_spanned_pages)
|
||||
|
||||
#ifdef CONFIG_NUMA_EMU
|
||||
#define FAKE_NODE_MIN_SIZE (64 * 1024 * 1024)
|
||||
#define FAKE_NODE_MIN_HASH_MASK (~(FAKE_NODE_MIN_SIZE - 1UL))
|
||||
#endif
|
||||
|
||||
#endif
|
||||
#endif /* _ASM_X86_MMZONE_64_H */
|
||||
|
|
|
@ -36,6 +36,11 @@ extern void __cpuinit numa_set_node(int cpu, int node);
|
|||
extern void __cpuinit numa_clear_node(int cpu);
|
||||
extern void __cpuinit numa_add_cpu(int cpu);
|
||||
extern void __cpuinit numa_remove_cpu(int cpu);
|
||||
|
||||
#ifdef CONFIG_NUMA_EMU
|
||||
#define FAKE_NODE_MIN_SIZE ((u64)64 << 20)
|
||||
#define FAKE_NODE_MIN_HASH_MASK (~(FAKE_NODE_MIN_SIZE - 1UL))
|
||||
#endif /* CONFIG_NUMA_EMU */
|
||||
#else
|
||||
static inline void init_cpu_to_node(void) { }
|
||||
static inline void numa_set_node(int cpu, int node) { }
|
||||
|
|
|
@ -49,6 +49,7 @@ EXPORT_SYMBOL(acpi_disabled);
|
|||
|
||||
#ifdef CONFIG_X86_64
|
||||
# include <asm/proto.h>
|
||||
# include <asm/numa_64.h>
|
||||
#endif /* X86 */
|
||||
|
||||
#define BAD_MADT_ENTRY(entry, end) ( \
|
||||
|
@ -482,6 +483,25 @@ int acpi_register_gsi(struct device *dev, u32 gsi, int trigger, int polarity)
|
|||
*/
|
||||
#ifdef CONFIG_ACPI_HOTPLUG_CPU
|
||||
|
||||
static void acpi_map_cpu2node(acpi_handle handle, int cpu, int physid)
|
||||
{
|
||||
#ifdef CONFIG_ACPI_NUMA
|
||||
int nid;
|
||||
|
||||
nid = acpi_get_node(handle);
|
||||
if (nid == -1 || !node_online(nid))
|
||||
return;
|
||||
#ifdef CONFIG_X86_64
|
||||
apicid_to_node[physid] = nid;
|
||||
numa_set_node(cpu, nid);
|
||||
#else /* CONFIG_X86_32 */
|
||||
apicid_2_node[physid] = nid;
|
||||
cpu_to_node_map[cpu] = nid;
|
||||
#endif
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
static int __cpuinit _acpi_map_lsapic(acpi_handle handle, int *pcpu)
|
||||
{
|
||||
struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
|
||||
|
@ -540,6 +560,7 @@ static int __cpuinit _acpi_map_lsapic(acpi_handle handle, int *pcpu)
|
|||
}
|
||||
|
||||
cpu = cpumask_first(new_map);
|
||||
acpi_map_cpu2node(handle, cpu, physid);
|
||||
|
||||
*pcpu = cpu;
|
||||
retval = 0;
|
||||
|
|
|
@ -427,7 +427,7 @@ static int __init split_nodes_interleave(u64 addr, u64 max_addr,
|
|||
* Calculate the number of big nodes that can be allocated as a result
|
||||
* of consolidating the remainder.
|
||||
*/
|
||||
big = ((size & ~FAKE_NODE_MIN_HASH_MASK) & nr_nodes) /
|
||||
big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * nr_nodes) /
|
||||
FAKE_NODE_MIN_SIZE;
|
||||
|
||||
size &= FAKE_NODE_MIN_HASH_MASK;
|
||||
|
@ -502,77 +502,99 @@ static int __init split_nodes_interleave(u64 addr, u64 max_addr,
|
|||
}
|
||||
|
||||
/*
|
||||
* Splits num_nodes nodes up equally starting at node_start. The return value
|
||||
* is the number of nodes split up and addr is adjusted to be at the end of the
|
||||
* last node allocated.
|
||||
* Returns the end address of a node so that there is at least `size' amount of
|
||||
* non-reserved memory or `max_addr' is reached.
|
||||
*/
|
||||
static int __init split_nodes_equally(u64 *addr, u64 max_addr, int node_start,
|
||||
int num_nodes)
|
||||
static u64 __init find_end_of_node(u64 start, u64 max_addr, u64 size)
|
||||
{
|
||||
unsigned int big;
|
||||
u64 size;
|
||||
int i;
|
||||
u64 end = start + size;
|
||||
|
||||
if (num_nodes <= 0)
|
||||
return -1;
|
||||
if (num_nodes > MAX_NUMNODES)
|
||||
num_nodes = MAX_NUMNODES;
|
||||
size = (max_addr - *addr - e820_hole_size(*addr, max_addr)) /
|
||||
num_nodes;
|
||||
/*
|
||||
* Calculate the number of big nodes that can be allocated as a result
|
||||
* of consolidating the leftovers.
|
||||
*/
|
||||
big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * num_nodes) /
|
||||
FAKE_NODE_MIN_SIZE;
|
||||
|
||||
/* Round down to nearest FAKE_NODE_MIN_SIZE. */
|
||||
size &= FAKE_NODE_MIN_HASH_MASK;
|
||||
if (!size) {
|
||||
printk(KERN_ERR "Not enough memory for each node. "
|
||||
"NUMA emulation disabled.\n");
|
||||
return -1;
|
||||
}
|
||||
|
||||
for (i = node_start; i < num_nodes + node_start; i++) {
|
||||
u64 end = *addr + size;
|
||||
|
||||
if (i < big)
|
||||
end += FAKE_NODE_MIN_SIZE;
|
||||
/*
|
||||
* The final node can have the remaining system RAM. Other
|
||||
* nodes receive roughly the same amount of available pages.
|
||||
*/
|
||||
if (i == num_nodes + node_start - 1)
|
||||
end = max_addr;
|
||||
else
|
||||
while (end - *addr - e820_hole_size(*addr, end) <
|
||||
size) {
|
||||
while (end - start - e820_hole_size(start, end) < size) {
|
||||
end += FAKE_NODE_MIN_SIZE;
|
||||
if (end > max_addr) {
|
||||
end = max_addr;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (setup_node_range(i, addr, end - *addr, max_addr) < 0)
|
||||
break;
|
||||
}
|
||||
return i - node_start + 1;
|
||||
return end;
|
||||
}
|
||||
|
||||
/*
|
||||
* Splits the remaining system RAM into chunks of size. The remaining memory is
|
||||
* always assigned to a final node and can be asymmetric. Returns the number of
|
||||
* nodes split.
|
||||
* Sets up fake nodes of `size' interleaved over physical nodes ranging from
|
||||
* `addr' to `max_addr'. The return value is the number of nodes allocated.
|
||||
*/
|
||||
static int __init split_nodes_by_size(u64 *addr, u64 max_addr, int node_start,
|
||||
u64 size)
|
||||
static int __init split_nodes_size_interleave(u64 addr, u64 max_addr, u64 size)
|
||||
{
|
||||
int i = node_start;
|
||||
size = (size << 20) & FAKE_NODE_MIN_HASH_MASK;
|
||||
while (!setup_node_range(i++, addr, size, max_addr))
|
||||
;
|
||||
return i - node_start;
|
||||
nodemask_t physnode_mask = NODE_MASK_NONE;
|
||||
u64 min_size;
|
||||
int ret = 0;
|
||||
int i;
|
||||
|
||||
if (!size)
|
||||
return -1;
|
||||
/*
|
||||
* The limit on emulated nodes is MAX_NUMNODES, so the size per node is
|
||||
* increased accordingly if the requested size is too small. This
|
||||
* creates a uniform distribution of node sizes across the entire
|
||||
* machine (but not necessarily over physical nodes).
|
||||
*/
|
||||
min_size = (max_addr - addr - e820_hole_size(addr, max_addr)) /
|
||||
MAX_NUMNODES;
|
||||
min_size = max(min_size, FAKE_NODE_MIN_SIZE);
|
||||
if ((min_size & FAKE_NODE_MIN_HASH_MASK) < min_size)
|
||||
min_size = (min_size + FAKE_NODE_MIN_SIZE) &
|
||||
FAKE_NODE_MIN_HASH_MASK;
|
||||
if (size < min_size) {
|
||||
pr_err("Fake node size %LuMB too small, increasing to %LuMB\n",
|
||||
size >> 20, min_size >> 20);
|
||||
size = min_size;
|
||||
}
|
||||
size &= FAKE_NODE_MIN_HASH_MASK;
|
||||
|
||||
for (i = 0; i < MAX_NUMNODES; i++)
|
||||
if (physnodes[i].start != physnodes[i].end)
|
||||
node_set(i, physnode_mask);
|
||||
/*
|
||||
* Fill physical nodes with fake nodes of size until there is no memory
|
||||
* left on any of them.
|
||||
*/
|
||||
while (nodes_weight(physnode_mask)) {
|
||||
for_each_node_mask(i, physnode_mask) {
|
||||
u64 dma32_end = MAX_DMA32_PFN << PAGE_SHIFT;
|
||||
u64 end;
|
||||
|
||||
end = find_end_of_node(physnodes[i].start,
|
||||
physnodes[i].end, size);
|
||||
/*
|
||||
* If there won't be at least FAKE_NODE_MIN_SIZE of
|
||||
* non-reserved memory in ZONE_DMA32 for the next node,
|
||||
* this one must extend to the boundary.
|
||||
*/
|
||||
if (end < dma32_end && dma32_end - end -
|
||||
e820_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE)
|
||||
end = dma32_end;
|
||||
|
||||
/*
|
||||
* If there won't be enough non-reserved memory for the
|
||||
* next node, this one must extend to the end of the
|
||||
* physical node.
|
||||
*/
|
||||
if (physnodes[i].end - end -
|
||||
e820_hole_size(end, physnodes[i].end) < size)
|
||||
end = physnodes[i].end;
|
||||
|
||||
/*
|
||||
* Setup the fake node that will be allocated as bootmem
|
||||
* later. If setup_node_range() returns non-zero, there
|
||||
* is no more memory available on this physical node.
|
||||
*/
|
||||
if (setup_node_range(ret++, &physnodes[i].start,
|
||||
end - physnodes[i].start,
|
||||
physnodes[i].end) < 0)
|
||||
node_clear(i, physnode_mask);
|
||||
}
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -582,87 +604,32 @@ static int __init split_nodes_by_size(u64 *addr, u64 max_addr, int node_start,
|
|||
static int __init numa_emulation(unsigned long start_pfn,
|
||||
unsigned long last_pfn, int acpi, int k8)
|
||||
{
|
||||
u64 size, addr = start_pfn << PAGE_SHIFT;
|
||||
u64 addr = start_pfn << PAGE_SHIFT;
|
||||
u64 max_addr = last_pfn << PAGE_SHIFT;
|
||||
int num_nodes = 0, num = 0, coeff_flag, coeff = -1, i;
|
||||
int num_phys_nodes;
|
||||
int num_nodes;
|
||||
int i;
|
||||
|
||||
num_phys_nodes = setup_physnodes(addr, max_addr, acpi, k8);
|
||||
/*
|
||||
* If the numa=fake command-line is just a single number N, split the
|
||||
* system RAM into N fake nodes.
|
||||
* If the numa=fake command-line contains a 'M' or 'G', it represents
|
||||
* the fixed node size. Otherwise, if it is just a single number N,
|
||||
* split the system RAM into N fake nodes.
|
||||
*/
|
||||
if (!strchr(cmdline, '*') && !strchr(cmdline, ',')) {
|
||||
long n = simple_strtol(cmdline, NULL, 0);
|
||||
if (strchr(cmdline, 'M') || strchr(cmdline, 'G')) {
|
||||
u64 size;
|
||||
|
||||
size = memparse(cmdline, &cmdline);
|
||||
num_nodes = split_nodes_size_interleave(addr, max_addr, size);
|
||||
} else {
|
||||
unsigned long n;
|
||||
|
||||
n = simple_strtoul(cmdline, NULL, 0);
|
||||
num_nodes = split_nodes_interleave(addr, max_addr, num_phys_nodes, n);
|
||||
}
|
||||
|
||||
num_nodes = split_nodes_interleave(addr, max_addr,
|
||||
num_phys_nodes, n);
|
||||
if (num_nodes < 0)
|
||||
return num_nodes;
|
||||
goto out;
|
||||
}
|
||||
|
||||
/* Parse the command line. */
|
||||
for (coeff_flag = 0; ; cmdline++) {
|
||||
if (*cmdline && isdigit(*cmdline)) {
|
||||
num = num * 10 + *cmdline - '0';
|
||||
continue;
|
||||
}
|
||||
if (*cmdline == '*') {
|
||||
if (num > 0)
|
||||
coeff = num;
|
||||
coeff_flag = 1;
|
||||
}
|
||||
if (!*cmdline || *cmdline == ',') {
|
||||
if (!coeff_flag)
|
||||
coeff = 1;
|
||||
/*
|
||||
* Round down to the nearest FAKE_NODE_MIN_SIZE.
|
||||
* Command-line coefficients are in megabytes.
|
||||
*/
|
||||
size = ((u64)num << 20) & FAKE_NODE_MIN_HASH_MASK;
|
||||
if (size)
|
||||
for (i = 0; i < coeff; i++, num_nodes++)
|
||||
if (setup_node_range(num_nodes, &addr,
|
||||
size, max_addr) < 0)
|
||||
goto done;
|
||||
if (!*cmdline)
|
||||
break;
|
||||
coeff_flag = 0;
|
||||
coeff = -1;
|
||||
}
|
||||
num = 0;
|
||||
}
|
||||
done:
|
||||
if (!num_nodes)
|
||||
return -1;
|
||||
/* Fill remainder of system RAM, if appropriate. */
|
||||
if (addr < max_addr) {
|
||||
if (coeff_flag && coeff < 0) {
|
||||
/* Split remaining nodes into num-sized chunks */
|
||||
num_nodes += split_nodes_by_size(&addr, max_addr,
|
||||
num_nodes, num);
|
||||
goto out;
|
||||
}
|
||||
switch (*(cmdline - 1)) {
|
||||
case '*':
|
||||
/* Split remaining nodes into coeff chunks */
|
||||
if (coeff <= 0)
|
||||
break;
|
||||
num_nodes += split_nodes_equally(&addr, max_addr,
|
||||
num_nodes, coeff);
|
||||
break;
|
||||
case ',':
|
||||
/* Do not allocate remaining system RAM */
|
||||
break;
|
||||
default:
|
||||
/* Give one final node */
|
||||
setup_node_range(num_nodes, &addr, max_addr - addr,
|
||||
max_addr);
|
||||
num_nodes++;
|
||||
}
|
||||
}
|
||||
out:
|
||||
memnode_shift = compute_hash_shift(nodes, num_nodes, NULL);
|
||||
if (memnode_shift < 0) {
|
||||
memnode_shift = 0;
|
||||
|
|
Loading…
Reference in a new issue