static keys: Add docs better explaining the whole 'struct static_key' mechanism
Add better documentation for static keys. Signed-off-by: Jason Baron <jbaron@redhat.com> Cc: rostedt@goodmis.org Cc: mathieu.desnoyers@efficios.com Cc: davem@davemloft.net Cc: ddaney.cavm@gmail.com Cc: a.p.zijlstra@chello.nl Link: http://lkml.kernel.org/r/52570e566e5f1914f27b67e4eafb5781b8f9f9db.1329851692.git.jbaron@redhat.com [ Added a 'Summary' section and rewrote it to explain static keys ] Signed-off-by: Ingo Molnar <mingo@elte.hu>
This commit is contained in:
parent
a746e3cc98
commit
1cfa60dc7d
1 changed files with 286 additions and 0 deletions
286
Documentation/static-keys.txt
Normal file
286
Documentation/static-keys.txt
Normal file
|
@ -0,0 +1,286 @@
|
|||
Static Keys
|
||||
-----------
|
||||
|
||||
By: Jason Baron <jbaron@redhat.com>
|
||||
|
||||
0) Abstract
|
||||
|
||||
Static keys allows the inclusion of seldom used features in
|
||||
performance-sensitive fast-path kernel code, via a GCC feature and a code
|
||||
patching technique. A quick example:
|
||||
|
||||
struct static_key key = STATIC_KEY_INIT_FALSE;
|
||||
|
||||
...
|
||||
|
||||
if (static_key_false(&key))
|
||||
do unlikely code
|
||||
else
|
||||
do likely code
|
||||
|
||||
...
|
||||
static_key_slow_inc();
|
||||
...
|
||||
static_key_slow_inc();
|
||||
...
|
||||
|
||||
The static_key_false() branch will be generated into the code with as little
|
||||
impact to the likely code path as possible.
|
||||
|
||||
|
||||
1) Motivation
|
||||
|
||||
|
||||
Currently, tracepoints are implemented using a conditional branch. The
|
||||
conditional check requires checking a global variable for each tracepoint.
|
||||
Although the overhead of this check is small, it increases when the memory
|
||||
cache comes under pressure (memory cache lines for these global variables may
|
||||
be shared with other memory accesses). As we increase the number of tracepoints
|
||||
in the kernel this overhead may become more of an issue. In addition,
|
||||
tracepoints are often dormant (disabled) and provide no direct kernel
|
||||
functionality. Thus, it is highly desirable to reduce their impact as much as
|
||||
possible. Although tracepoints are the original motivation for this work, other
|
||||
kernel code paths should be able to make use of the static keys facility.
|
||||
|
||||
|
||||
2) Solution
|
||||
|
||||
|
||||
gcc (v4.5) adds a new 'asm goto' statement that allows branching to a label:
|
||||
|
||||
http://gcc.gnu.org/ml/gcc-patches/2009-07/msg01556.html
|
||||
|
||||
Using the 'asm goto', we can create branches that are either taken or not taken
|
||||
by default, without the need to check memory. Then, at run-time, we can patch
|
||||
the branch site to change the branch direction.
|
||||
|
||||
For example, if we have a simple branch that is disabled by default:
|
||||
|
||||
if (static_key_false(&key))
|
||||
printk("I am the true branch\n");
|
||||
|
||||
Thus, by default the 'printk' will not be emitted. And the code generated will
|
||||
consist of a single atomic 'no-op' instruction (5 bytes on x86), in the
|
||||
straight-line code path. When the branch is 'flipped', we will patch the
|
||||
'no-op' in the straight-line codepath with a 'jump' instruction to the
|
||||
out-of-line true branch. Thus, changing branch direction is expensive but
|
||||
branch selection is basically 'free'. That is the basic tradeoff of this
|
||||
optimization.
|
||||
|
||||
This lowlevel patching mechanism is called 'jump label patching', and it gives
|
||||
the basis for the static keys facility.
|
||||
|
||||
3) Static key label API, usage and examples:
|
||||
|
||||
|
||||
In order to make use of this optimization you must first define a key:
|
||||
|
||||
struct static_key key;
|
||||
|
||||
Which is initialized as:
|
||||
|
||||
struct static_key key = STATIC_KEY_INIT_TRUE;
|
||||
|
||||
or:
|
||||
|
||||
struct static_key key = STATIC_KEY_INIT_FALSE;
|
||||
|
||||
If the key is not initialized, it is default false. The 'struct static_key',
|
||||
must be a 'global'. That is, it can't be allocated on the stack or dynamically
|
||||
allocated at run-time.
|
||||
|
||||
The key is then used in code as:
|
||||
|
||||
if (static_key_false(&key))
|
||||
do unlikely code
|
||||
else
|
||||
do likely code
|
||||
|
||||
Or:
|
||||
|
||||
if (static_key_true(&key))
|
||||
do likely code
|
||||
else
|
||||
do unlikely code
|
||||
|
||||
A key that is initialized via 'STATIC_KEY_INIT_FALSE', must be used in a
|
||||
'static_key_false()' construct. Likewise, a key initialized via
|
||||
'STATIC_KEY_INIT_TRUE' must be used in a 'static_key_true()' construct. A
|
||||
single key can be used in many branches, but all the branches must match the
|
||||
way that the key has been initialized.
|
||||
|
||||
The branch(es) can then be switched via:
|
||||
|
||||
static_key_slow_inc(&key);
|
||||
...
|
||||
static_key_slow_dec(&key);
|
||||
|
||||
Thus, 'static_key_slow_inc()' means 'make the branch true', and
|
||||
'static_key_slow_dec()' means 'make the the branch false' with appropriate
|
||||
reference counting. For example, if the key is initialized true, a
|
||||
static_key_slow_dec(), will switch the branch to false. And a subsequent
|
||||
static_key_slow_inc(), will change the branch back to true. Likewise, if the
|
||||
key is initialized false, a 'static_key_slow_inc()', will change the branch to
|
||||
true. And then a 'static_key_slow_dec()', will again make the branch false.
|
||||
|
||||
An example usage in the kernel is the implementation of tracepoints:
|
||||
|
||||
static inline void trace_##name(proto) \
|
||||
{ \
|
||||
if (static_key_false(&__tracepoint_##name.key)) \
|
||||
__DO_TRACE(&__tracepoint_##name, \
|
||||
TP_PROTO(data_proto), \
|
||||
TP_ARGS(data_args), \
|
||||
TP_CONDITION(cond)); \
|
||||
}
|
||||
|
||||
Tracepoints are disabled by default, and can be placed in performance critical
|
||||
pieces of the kernel. Thus, by using a static key, the tracepoints can have
|
||||
absolutely minimal impact when not in use.
|
||||
|
||||
|
||||
4) Architecture level code patching interface, 'jump labels'
|
||||
|
||||
|
||||
There are a few functions and macros that architectures must implement in order
|
||||
to take advantage of this optimization. If there is no architecture support, we
|
||||
simply fall back to a traditional, load, test, and jump sequence.
|
||||
|
||||
* select HAVE_ARCH_JUMP_LABEL, see: arch/x86/Kconfig
|
||||
|
||||
* #define JUMP_LABEL_NOP_SIZE, see: arch/x86/include/asm/jump_label.h
|
||||
|
||||
* __always_inline bool arch_static_branch(struct static_key *key), see:
|
||||
arch/x86/include/asm/jump_label.h
|
||||
|
||||
* void arch_jump_label_transform(struct jump_entry *entry, enum jump_label_type type),
|
||||
see: arch/x86/kernel/jump_label.c
|
||||
|
||||
* __init_or_module void arch_jump_label_transform_static(struct jump_entry *entry, enum jump_label_type type),
|
||||
see: arch/x86/kernel/jump_label.c
|
||||
|
||||
|
||||
* struct jump_entry, see: arch/x86/include/asm/jump_label.h
|
||||
|
||||
|
||||
5) Static keys / jump label analysis, results (x86_64):
|
||||
|
||||
|
||||
As an example, let's add the following branch to 'getppid()', such that the
|
||||
system call now looks like:
|
||||
|
||||
SYSCALL_DEFINE0(getppid)
|
||||
{
|
||||
int pid;
|
||||
|
||||
+ if (static_key_false(&key))
|
||||
+ printk("I am the true branch\n");
|
||||
|
||||
rcu_read_lock();
|
||||
pid = task_tgid_vnr(rcu_dereference(current->real_parent));
|
||||
rcu_read_unlock();
|
||||
|
||||
return pid;
|
||||
}
|
||||
|
||||
The resulting instructions with jump labels generated by GCC is:
|
||||
|
||||
ffffffff81044290 <sys_getppid>:
|
||||
ffffffff81044290: 55 push %rbp
|
||||
ffffffff81044291: 48 89 e5 mov %rsp,%rbp
|
||||
ffffffff81044294: e9 00 00 00 00 jmpq ffffffff81044299 <sys_getppid+0x9>
|
||||
ffffffff81044299: 65 48 8b 04 25 c0 b6 mov %gs:0xb6c0,%rax
|
||||
ffffffff810442a0: 00 00
|
||||
ffffffff810442a2: 48 8b 80 80 02 00 00 mov 0x280(%rax),%rax
|
||||
ffffffff810442a9: 48 8b 80 b0 02 00 00 mov 0x2b0(%rax),%rax
|
||||
ffffffff810442b0: 48 8b b8 e8 02 00 00 mov 0x2e8(%rax),%rdi
|
||||
ffffffff810442b7: e8 f4 d9 00 00 callq ffffffff81051cb0 <pid_vnr>
|
||||
ffffffff810442bc: 5d pop %rbp
|
||||
ffffffff810442bd: 48 98 cltq
|
||||
ffffffff810442bf: c3 retq
|
||||
ffffffff810442c0: 48 c7 c7 e3 54 98 81 mov $0xffffffff819854e3,%rdi
|
||||
ffffffff810442c7: 31 c0 xor %eax,%eax
|
||||
ffffffff810442c9: e8 71 13 6d 00 callq ffffffff8171563f <printk>
|
||||
ffffffff810442ce: eb c9 jmp ffffffff81044299 <sys_getppid+0x9>
|
||||
|
||||
Without the jump label optimization it looks like:
|
||||
|
||||
ffffffff810441f0 <sys_getppid>:
|
||||
ffffffff810441f0: 8b 05 8a 52 d8 00 mov 0xd8528a(%rip),%eax # ffffffff81dc9480 <key>
|
||||
ffffffff810441f6: 55 push %rbp
|
||||
ffffffff810441f7: 48 89 e5 mov %rsp,%rbp
|
||||
ffffffff810441fa: 85 c0 test %eax,%eax
|
||||
ffffffff810441fc: 75 27 jne ffffffff81044225 <sys_getppid+0x35>
|
||||
ffffffff810441fe: 65 48 8b 04 25 c0 b6 mov %gs:0xb6c0,%rax
|
||||
ffffffff81044205: 00 00
|
||||
ffffffff81044207: 48 8b 80 80 02 00 00 mov 0x280(%rax),%rax
|
||||
ffffffff8104420e: 48 8b 80 b0 02 00 00 mov 0x2b0(%rax),%rax
|
||||
ffffffff81044215: 48 8b b8 e8 02 00 00 mov 0x2e8(%rax),%rdi
|
||||
ffffffff8104421c: e8 2f da 00 00 callq ffffffff81051c50 <pid_vnr>
|
||||
ffffffff81044221: 5d pop %rbp
|
||||
ffffffff81044222: 48 98 cltq
|
||||
ffffffff81044224: c3 retq
|
||||
ffffffff81044225: 48 c7 c7 13 53 98 81 mov $0xffffffff81985313,%rdi
|
||||
ffffffff8104422c: 31 c0 xor %eax,%eax
|
||||
ffffffff8104422e: e8 60 0f 6d 00 callq ffffffff81715193 <printk>
|
||||
ffffffff81044233: eb c9 jmp ffffffff810441fe <sys_getppid+0xe>
|
||||
ffffffff81044235: 66 66 2e 0f 1f 84 00 data32 nopw %cs:0x0(%rax,%rax,1)
|
||||
ffffffff8104423c: 00 00 00 00
|
||||
|
||||
Thus, the disable jump label case adds a 'mov', 'test' and 'jne' instruction
|
||||
vs. the jump label case just has a 'no-op' or 'jmp 0'. (The jmp 0, is patched
|
||||
to a 5 byte atomic no-op instruction at boot-time.) Thus, the disabled jump
|
||||
label case adds:
|
||||
|
||||
6 (mov) + 2 (test) + 2 (jne) = 10 - 5 (5 byte jump 0) = 5 addition bytes.
|
||||
|
||||
If we then include the padding bytes, the jump label code saves, 16 total bytes
|
||||
of instruction memory for this small fucntion. In this case the non-jump label
|
||||
function is 80 bytes long. Thus, we have have saved 20% of the instruction
|
||||
footprint. We can in fact improve this even further, since the 5-byte no-op
|
||||
really can be a 2-byte no-op since we can reach the branch with a 2-byte jmp.
|
||||
However, we have not yet implemented optimal no-op sizes (they are currently
|
||||
hard-coded).
|
||||
|
||||
Since there are a number of static key API uses in the scheduler paths,
|
||||
'pipe-test' (also known as 'perf bench sched pipe') can be used to show the
|
||||
performance improvement. Testing done on 3.3.0-rc2:
|
||||
|
||||
jump label disabled:
|
||||
|
||||
Performance counter stats for 'bash -c /tmp/pipe-test' (50 runs):
|
||||
|
||||
855.700314 task-clock # 0.534 CPUs utilized ( +- 0.11% )
|
||||
200,003 context-switches # 0.234 M/sec ( +- 0.00% )
|
||||
0 CPU-migrations # 0.000 M/sec ( +- 39.58% )
|
||||
487 page-faults # 0.001 M/sec ( +- 0.02% )
|
||||
1,474,374,262 cycles # 1.723 GHz ( +- 0.17% )
|
||||
<not supported> stalled-cycles-frontend
|
||||
<not supported> stalled-cycles-backend
|
||||
1,178,049,567 instructions # 0.80 insns per cycle ( +- 0.06% )
|
||||
208,368,926 branches # 243.507 M/sec ( +- 0.06% )
|
||||
5,569,188 branch-misses # 2.67% of all branches ( +- 0.54% )
|
||||
|
||||
1.601607384 seconds time elapsed ( +- 0.07% )
|
||||
|
||||
jump label enabled:
|
||||
|
||||
Performance counter stats for 'bash -c /tmp/pipe-test' (50 runs):
|
||||
|
||||
841.043185 task-clock # 0.533 CPUs utilized ( +- 0.12% )
|
||||
200,004 context-switches # 0.238 M/sec ( +- 0.00% )
|
||||
0 CPU-migrations # 0.000 M/sec ( +- 40.87% )
|
||||
487 page-faults # 0.001 M/sec ( +- 0.05% )
|
||||
1,432,559,428 cycles # 1.703 GHz ( +- 0.18% )
|
||||
<not supported> stalled-cycles-frontend
|
||||
<not supported> stalled-cycles-backend
|
||||
1,175,363,994 instructions # 0.82 insns per cycle ( +- 0.04% )
|
||||
206,859,359 branches # 245.956 M/sec ( +- 0.04% )
|
||||
4,884,119 branch-misses # 2.36% of all branches ( +- 0.85% )
|
||||
|
||||
1.579384366 seconds time elapsed
|
||||
|
||||
The percentage of saved branches is .7%, and we've saved 12% on
|
||||
'branch-misses'. This is where we would expect to get the most savings, since
|
||||
this optimization is about reducing the number of branches. In addition, we've
|
||||
saved .2% on instructions, and 2.8% on cycles and 1.4% on elapsed time.
|
Loading…
Reference in a new issue