sparc64: Improvde documentation and readability of atomic backoff code.
Document what's going on in asm/backoff.h with a large and descriptive comment. Refer to it above the cpu_relax() definition in asm/processor_64.h Rename the pause patching section to have "3insn" in it's name like the other patching sections do. Based upon feedback from Sam Ravnborg. Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
parent
e9b9eb59ff
commit
187818cd6a
5 changed files with 55 additions and 10 deletions
|
@ -1,6 +1,46 @@
|
|||
#ifndef _SPARC64_BACKOFF_H
|
||||
#define _SPARC64_BACKOFF_H
|
||||
|
||||
/* The macros in this file implement an exponential backoff facility
|
||||
* for atomic operations.
|
||||
*
|
||||
* When multiple threads compete on an atomic operation, it is
|
||||
* possible for one thread to be continually denied a successful
|
||||
* completion of the compare-and-swap instruction. Heavily
|
||||
* threaded cpu implementations like Niagara can compound this
|
||||
* problem even further.
|
||||
*
|
||||
* When an atomic operation fails and needs to be retried, we spin a
|
||||
* certain number of times. At each subsequent failure of the same
|
||||
* operation we double the spin count, realizing an exponential
|
||||
* backoff.
|
||||
*
|
||||
* When we spin, we try to use an operation that will cause the
|
||||
* current cpu strand to block, and therefore make the core fully
|
||||
* available to any other other runnable strands. There are two
|
||||
* options, based upon cpu capabilities.
|
||||
*
|
||||
* On all cpus prior to SPARC-T4 we do three dummy reads of the
|
||||
* condition code register. Each read blocks the strand for something
|
||||
* between 40 and 50 cpu cycles.
|
||||
*
|
||||
* For SPARC-T4 and later we have a special "pause" instruction
|
||||
* available. This is implemented using writes to register %asr27.
|
||||
* The cpu will block the number of cycles written into the register,
|
||||
* unless a disrupting trap happens first. SPARC-T4 specifically
|
||||
* implements pause with a granularity of 8 cycles. Each strand has
|
||||
* an internal pause counter which decrements every 8 cycles. So the
|
||||
* chip shifts the %asr27 value down by 3 bits, and writes the result
|
||||
* into the pause counter. If a value smaller than 8 is written, the
|
||||
* chip blocks for 1 cycle.
|
||||
*
|
||||
* To achieve the same amount of backoff as the three %ccr reads give
|
||||
* on earlier chips, we shift the backoff value up by 7 bits. (Three
|
||||
* %ccr reads block for about 128 cycles, 1 << 7 == 128) We write the
|
||||
* whole amount we want to block into the pause register, rather than
|
||||
* loop writing 128 each time.
|
||||
*/
|
||||
|
||||
#define BACKOFF_LIMIT (4 * 1024)
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
|
@ -16,7 +56,7 @@
|
|||
88: rd %ccr, %g0; \
|
||||
rd %ccr, %g0; \
|
||||
rd %ccr, %g0; \
|
||||
.section .pause_patch,"ax"; \
|
||||
.section .pause_3insn_patch,"ax";\
|
||||
.word 88b; \
|
||||
sllx tmp, 7, tmp; \
|
||||
wr tmp, 0, %asr27; \
|
||||
|
|
|
@ -196,11 +196,16 @@ extern unsigned long get_wchan(struct task_struct *task);
|
|||
#define KSTK_EIP(tsk) (task_pt_regs(tsk)->tpc)
|
||||
#define KSTK_ESP(tsk) (task_pt_regs(tsk)->u_regs[UREG_FP])
|
||||
|
||||
/* Please see the commentary in asm/backoff.h for a description of
|
||||
* what these instructions are doing and how they have been choosen.
|
||||
* To make a long story short, we are trying to yield the current cpu
|
||||
* strand during busy loops.
|
||||
*/
|
||||
#define cpu_relax() asm volatile("\n99:\n\t" \
|
||||
"rd %%ccr, %%g0\n\t" \
|
||||
"rd %%ccr, %%g0\n\t" \
|
||||
"rd %%ccr, %%g0\n\t" \
|
||||
".section .pause_patch,\"ax\"\n\t"\
|
||||
".section .pause_3insn_patch,\"ax\"\n\t"\
|
||||
".word 99b\n\t" \
|
||||
"wr %%g0, 128, %%asr27\n\t" \
|
||||
"nop\n\t" \
|
||||
|
|
|
@ -63,8 +63,8 @@ struct pause_patch_entry {
|
|||
unsigned int addr;
|
||||
unsigned int insns[3];
|
||||
};
|
||||
extern struct pause_patch_entry __pause_patch,
|
||||
__pause_patch_end;
|
||||
extern struct pause_patch_entry __pause_3insn_patch,
|
||||
__pause_3insn_patch_end;
|
||||
|
||||
extern void __init per_cpu_patch(void);
|
||||
extern void sun4v_patch_1insn_range(struct sun4v_1insn_patch_entry *,
|
||||
|
|
|
@ -320,8 +320,8 @@ static void __init pause_patch(void)
|
|||
{
|
||||
struct pause_patch_entry *p;
|
||||
|
||||
p = &__pause_patch;
|
||||
while (p < &__pause_patch_end) {
|
||||
p = &__pause_3insn_patch;
|
||||
while (p < &__pause_3insn_patch_end) {
|
||||
unsigned long i, addr = p->addr;
|
||||
|
||||
for (i = 0; i < 3; i++) {
|
||||
|
|
|
@ -132,10 +132,10 @@ SECTIONS
|
|||
*(.popc_6insn_patch)
|
||||
__popc_6insn_patch_end = .;
|
||||
}
|
||||
.pause_patch : {
|
||||
__pause_patch = .;
|
||||
*(.pause_patch)
|
||||
__pause_patch_end = .;
|
||||
.pause_3insn_patch : {
|
||||
__pause_3insn_patch = .;
|
||||
*(.pause_3insn_patch)
|
||||
__pause_3insn_patch_end = .;
|
||||
}
|
||||
PERCPU_SECTION(SMP_CACHE_BYTES)
|
||||
|
||||
|
|
Loading…
Reference in a new issue