Merge branch spi-next from git://git.kernel.org/pub/scm/linux/kernel/git/broonie/misc.git
Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
This commit is contained in:
commit
0d73299ddf
8 changed files with 1457 additions and 648 deletions
|
@ -297,9 +297,20 @@ config SPI_PPC4xx
|
|||
help
|
||||
This selects a driver for the PPC4xx SPI Controller.
|
||||
|
||||
config SPI_PXA2XX_PXADMA
|
||||
bool "PXA2xx SSP legacy PXA DMA API support"
|
||||
depends on SPI_PXA2XX && ARCH_PXA
|
||||
help
|
||||
Enable PXA private legacy DMA API support. Note that this is
|
||||
deprecated in favor of generic DMA engine API.
|
||||
|
||||
config SPI_PXA2XX_DMA
|
||||
def_bool y
|
||||
depends on SPI_PXA2XX && !SPI_PXA2XX_PXADMA
|
||||
|
||||
config SPI_PXA2XX
|
||||
tristate "PXA2xx SSP SPI master"
|
||||
depends on ARCH_PXA || PCI
|
||||
depends on ARCH_PXA || PCI || ACPI
|
||||
select PXA_SSP if ARCH_PXA
|
||||
help
|
||||
This enables using a PXA2xx or Sodaville SSP port as a SPI master
|
||||
|
|
|
@ -47,7 +47,10 @@ obj-$(CONFIG_SPI_OMAP24XX) += spi-omap2-mcspi.o
|
|||
obj-$(CONFIG_SPI_ORION) += spi-orion.o
|
||||
obj-$(CONFIG_SPI_PL022) += spi-pl022.o
|
||||
obj-$(CONFIG_SPI_PPC4xx) += spi-ppc4xx.o
|
||||
obj-$(CONFIG_SPI_PXA2XX) += spi-pxa2xx.o
|
||||
spi-pxa2xx-platform-objs := spi-pxa2xx.o
|
||||
spi-pxa2xx-platform-$(CONFIG_SPI_PXA2XX_PXADMA) += spi-pxa2xx-pxadma.o
|
||||
spi-pxa2xx-platform-$(CONFIG_SPI_PXA2XX_DMA) += spi-pxa2xx-dma.o
|
||||
obj-$(CONFIG_SPI_PXA2XX) += spi-pxa2xx-platform.o
|
||||
obj-$(CONFIG_SPI_PXA2XX_PCI) += spi-pxa2xx-pci.o
|
||||
obj-$(CONFIG_SPI_RSPI) += spi-rspi.o
|
||||
obj-$(CONFIG_SPI_S3C24XX) += spi-s3c24xx-hw.o
|
||||
|
|
392
drivers/spi/spi-pxa2xx-dma.c
Normal file
392
drivers/spi/spi-pxa2xx-dma.c
Normal file
|
@ -0,0 +1,392 @@
|
|||
/*
|
||||
* PXA2xx SPI DMA engine support.
|
||||
*
|
||||
* Copyright (C) 2013, Intel Corporation
|
||||
* Author: Mika Westerberg <mika.westerberg@linux.intel.com>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*/
|
||||
|
||||
#include <linux/init.h>
|
||||
#include <linux/device.h>
|
||||
#include <linux/dma-mapping.h>
|
||||
#include <linux/dmaengine.h>
|
||||
#include <linux/pxa2xx_ssp.h>
|
||||
#include <linux/scatterlist.h>
|
||||
#include <linux/sizes.h>
|
||||
#include <linux/spi/spi.h>
|
||||
#include <linux/spi/pxa2xx_spi.h>
|
||||
|
||||
#include "spi-pxa2xx.h"
|
||||
|
||||
static int pxa2xx_spi_map_dma_buffer(struct driver_data *drv_data,
|
||||
enum dma_data_direction dir)
|
||||
{
|
||||
int i, nents, len = drv_data->len;
|
||||
struct scatterlist *sg;
|
||||
struct device *dmadev;
|
||||
struct sg_table *sgt;
|
||||
void *buf, *pbuf;
|
||||
|
||||
/*
|
||||
* Some DMA controllers have problems transferring buffers that are
|
||||
* not multiple of 4 bytes. So we truncate the transfer so that it
|
||||
* is suitable for such controllers, and handle the trailing bytes
|
||||
* manually after the DMA completes.
|
||||
*
|
||||
* REVISIT: It would be better if this information could be
|
||||
* retrieved directly from the DMA device in a similar way than
|
||||
* ->copy_align etc. is done.
|
||||
*/
|
||||
len = ALIGN(drv_data->len, 4);
|
||||
|
||||
if (dir == DMA_TO_DEVICE) {
|
||||
dmadev = drv_data->tx_chan->device->dev;
|
||||
sgt = &drv_data->tx_sgt;
|
||||
buf = drv_data->tx;
|
||||
drv_data->tx_map_len = len;
|
||||
} else {
|
||||
dmadev = drv_data->rx_chan->device->dev;
|
||||
sgt = &drv_data->rx_sgt;
|
||||
buf = drv_data->rx;
|
||||
drv_data->rx_map_len = len;
|
||||
}
|
||||
|
||||
nents = DIV_ROUND_UP(len, SZ_2K);
|
||||
if (nents != sgt->nents) {
|
||||
int ret;
|
||||
|
||||
sg_free_table(sgt);
|
||||
ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
|
||||
if (ret)
|
||||
return ret;
|
||||
}
|
||||
|
||||
pbuf = buf;
|
||||
for_each_sg(sgt->sgl, sg, sgt->nents, i) {
|
||||
size_t bytes = min_t(size_t, len, SZ_2K);
|
||||
|
||||
if (buf)
|
||||
sg_set_buf(sg, pbuf, bytes);
|
||||
else
|
||||
sg_set_buf(sg, drv_data->dummy, bytes);
|
||||
|
||||
pbuf += bytes;
|
||||
len -= bytes;
|
||||
}
|
||||
|
||||
nents = dma_map_sg(dmadev, sgt->sgl, sgt->nents, dir);
|
||||
if (!nents)
|
||||
return -ENOMEM;
|
||||
|
||||
return nents;
|
||||
}
|
||||
|
||||
static void pxa2xx_spi_unmap_dma_buffer(struct driver_data *drv_data,
|
||||
enum dma_data_direction dir)
|
||||
{
|
||||
struct device *dmadev;
|
||||
struct sg_table *sgt;
|
||||
|
||||
if (dir == DMA_TO_DEVICE) {
|
||||
dmadev = drv_data->tx_chan->device->dev;
|
||||
sgt = &drv_data->tx_sgt;
|
||||
} else {
|
||||
dmadev = drv_data->rx_chan->device->dev;
|
||||
sgt = &drv_data->rx_sgt;
|
||||
}
|
||||
|
||||
dma_unmap_sg(dmadev, sgt->sgl, sgt->nents, dir);
|
||||
}
|
||||
|
||||
static void pxa2xx_spi_unmap_dma_buffers(struct driver_data *drv_data)
|
||||
{
|
||||
if (!drv_data->dma_mapped)
|
||||
return;
|
||||
|
||||
pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_FROM_DEVICE);
|
||||
pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_TO_DEVICE);
|
||||
|
||||
drv_data->dma_mapped = 0;
|
||||
}
|
||||
|
||||
static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data,
|
||||
bool error)
|
||||
{
|
||||
struct spi_message *msg = drv_data->cur_msg;
|
||||
|
||||
/*
|
||||
* It is possible that one CPU is handling ROR interrupt and other
|
||||
* just gets DMA completion. Calling pump_transfers() twice for the
|
||||
* same transfer leads to problems thus we prevent concurrent calls
|
||||
* by using ->dma_running.
|
||||
*/
|
||||
if (atomic_dec_and_test(&drv_data->dma_running)) {
|
||||
void __iomem *reg = drv_data->ioaddr;
|
||||
|
||||
/*
|
||||
* If the other CPU is still handling the ROR interrupt we
|
||||
* might not know about the error yet. So we re-check the
|
||||
* ROR bit here before we clear the status register.
|
||||
*/
|
||||
if (!error) {
|
||||
u32 status = read_SSSR(reg) & drv_data->mask_sr;
|
||||
error = status & SSSR_ROR;
|
||||
}
|
||||
|
||||
/* Clear status & disable interrupts */
|
||||
write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
|
||||
write_SSSR_CS(drv_data, drv_data->clear_sr);
|
||||
if (!pxa25x_ssp_comp(drv_data))
|
||||
write_SSTO(0, reg);
|
||||
|
||||
if (!error) {
|
||||
pxa2xx_spi_unmap_dma_buffers(drv_data);
|
||||
|
||||
/* Handle the last bytes of unaligned transfer */
|
||||
drv_data->tx += drv_data->tx_map_len;
|
||||
drv_data->write(drv_data);
|
||||
|
||||
drv_data->rx += drv_data->rx_map_len;
|
||||
drv_data->read(drv_data);
|
||||
|
||||
msg->actual_length += drv_data->len;
|
||||
msg->state = pxa2xx_spi_next_transfer(drv_data);
|
||||
} else {
|
||||
/* In case we got an error we disable the SSP now */
|
||||
write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
|
||||
|
||||
msg->state = ERROR_STATE;
|
||||
}
|
||||
|
||||
tasklet_schedule(&drv_data->pump_transfers);
|
||||
}
|
||||
}
|
||||
|
||||
static void pxa2xx_spi_dma_callback(void *data)
|
||||
{
|
||||
pxa2xx_spi_dma_transfer_complete(data, false);
|
||||
}
|
||||
|
||||
static struct dma_async_tx_descriptor *
|
||||
pxa2xx_spi_dma_prepare_one(struct driver_data *drv_data,
|
||||
enum dma_transfer_direction dir)
|
||||
{
|
||||
struct pxa2xx_spi_master *pdata = drv_data->master_info;
|
||||
struct chip_data *chip = drv_data->cur_chip;
|
||||
enum dma_slave_buswidth width;
|
||||
struct dma_slave_config cfg;
|
||||
struct dma_chan *chan;
|
||||
struct sg_table *sgt;
|
||||
int nents, ret;
|
||||
|
||||
switch (drv_data->n_bytes) {
|
||||
case 1:
|
||||
width = DMA_SLAVE_BUSWIDTH_1_BYTE;
|
||||
break;
|
||||
case 2:
|
||||
width = DMA_SLAVE_BUSWIDTH_2_BYTES;
|
||||
break;
|
||||
default:
|
||||
width = DMA_SLAVE_BUSWIDTH_4_BYTES;
|
||||
break;
|
||||
}
|
||||
|
||||
memset(&cfg, 0, sizeof(cfg));
|
||||
cfg.direction = dir;
|
||||
|
||||
if (dir == DMA_MEM_TO_DEV) {
|
||||
cfg.dst_addr = drv_data->ssdr_physical;
|
||||
cfg.dst_addr_width = width;
|
||||
cfg.dst_maxburst = chip->dma_burst_size;
|
||||
cfg.slave_id = pdata->tx_slave_id;
|
||||
|
||||
sgt = &drv_data->tx_sgt;
|
||||
nents = drv_data->tx_nents;
|
||||
chan = drv_data->tx_chan;
|
||||
} else {
|
||||
cfg.src_addr = drv_data->ssdr_physical;
|
||||
cfg.src_addr_width = width;
|
||||
cfg.src_maxburst = chip->dma_burst_size;
|
||||
cfg.slave_id = pdata->rx_slave_id;
|
||||
|
||||
sgt = &drv_data->rx_sgt;
|
||||
nents = drv_data->rx_nents;
|
||||
chan = drv_data->rx_chan;
|
||||
}
|
||||
|
||||
ret = dmaengine_slave_config(chan, &cfg);
|
||||
if (ret) {
|
||||
dev_warn(&drv_data->pdev->dev, "DMA slave config failed\n");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
return dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir,
|
||||
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
|
||||
}
|
||||
|
||||
static bool pxa2xx_spi_dma_filter(struct dma_chan *chan, void *param)
|
||||
{
|
||||
const struct pxa2xx_spi_master *pdata = param;
|
||||
|
||||
return chan->chan_id == pdata->tx_chan_id ||
|
||||
chan->chan_id == pdata->rx_chan_id;
|
||||
}
|
||||
|
||||
bool pxa2xx_spi_dma_is_possible(size_t len)
|
||||
{
|
||||
return len <= MAX_DMA_LEN;
|
||||
}
|
||||
|
||||
int pxa2xx_spi_map_dma_buffers(struct driver_data *drv_data)
|
||||
{
|
||||
const struct chip_data *chip = drv_data->cur_chip;
|
||||
int ret;
|
||||
|
||||
if (!chip->enable_dma)
|
||||
return 0;
|
||||
|
||||
/* Don't bother with DMA if we can't do even a single burst */
|
||||
if (drv_data->len < chip->dma_burst_size)
|
||||
return 0;
|
||||
|
||||
ret = pxa2xx_spi_map_dma_buffer(drv_data, DMA_TO_DEVICE);
|
||||
if (ret <= 0) {
|
||||
dev_warn(&drv_data->pdev->dev, "failed to DMA map TX\n");
|
||||
return 0;
|
||||
}
|
||||
|
||||
drv_data->tx_nents = ret;
|
||||
|
||||
ret = pxa2xx_spi_map_dma_buffer(drv_data, DMA_FROM_DEVICE);
|
||||
if (ret <= 0) {
|
||||
pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_TO_DEVICE);
|
||||
dev_warn(&drv_data->pdev->dev, "failed to DMA map RX\n");
|
||||
return 0;
|
||||
}
|
||||
|
||||
drv_data->rx_nents = ret;
|
||||
return 1;
|
||||
}
|
||||
|
||||
irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data)
|
||||
{
|
||||
u32 status;
|
||||
|
||||
status = read_SSSR(drv_data->ioaddr) & drv_data->mask_sr;
|
||||
if (status & SSSR_ROR) {
|
||||
dev_err(&drv_data->pdev->dev, "FIFO overrun\n");
|
||||
|
||||
dmaengine_terminate_all(drv_data->rx_chan);
|
||||
dmaengine_terminate_all(drv_data->tx_chan);
|
||||
|
||||
pxa2xx_spi_dma_transfer_complete(drv_data, true);
|
||||
return IRQ_HANDLED;
|
||||
}
|
||||
|
||||
return IRQ_NONE;
|
||||
}
|
||||
|
||||
int pxa2xx_spi_dma_prepare(struct driver_data *drv_data, u32 dma_burst)
|
||||
{
|
||||
struct dma_async_tx_descriptor *tx_desc, *rx_desc;
|
||||
|
||||
tx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_MEM_TO_DEV);
|
||||
if (!tx_desc) {
|
||||
dev_err(&drv_data->pdev->dev,
|
||||
"failed to get DMA TX descriptor\n");
|
||||
return -EBUSY;
|
||||
}
|
||||
|
||||
rx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_DEV_TO_MEM);
|
||||
if (!rx_desc) {
|
||||
dev_err(&drv_data->pdev->dev,
|
||||
"failed to get DMA RX descriptor\n");
|
||||
return -EBUSY;
|
||||
}
|
||||
|
||||
/* We are ready when RX completes */
|
||||
rx_desc->callback = pxa2xx_spi_dma_callback;
|
||||
rx_desc->callback_param = drv_data;
|
||||
|
||||
dmaengine_submit(rx_desc);
|
||||
dmaengine_submit(tx_desc);
|
||||
return 0;
|
||||
}
|
||||
|
||||
void pxa2xx_spi_dma_start(struct driver_data *drv_data)
|
||||
{
|
||||
dma_async_issue_pending(drv_data->rx_chan);
|
||||
dma_async_issue_pending(drv_data->tx_chan);
|
||||
|
||||
atomic_set(&drv_data->dma_running, 1);
|
||||
}
|
||||
|
||||
int pxa2xx_spi_dma_setup(struct driver_data *drv_data)
|
||||
{
|
||||
struct pxa2xx_spi_master *pdata = drv_data->master_info;
|
||||
dma_cap_mask_t mask;
|
||||
|
||||
dma_cap_zero(mask);
|
||||
dma_cap_set(DMA_SLAVE, mask);
|
||||
|
||||
drv_data->dummy = devm_kzalloc(&drv_data->pdev->dev, SZ_2K, GFP_KERNEL);
|
||||
if (!drv_data->dummy)
|
||||
return -ENOMEM;
|
||||
|
||||
drv_data->tx_chan = dma_request_channel(mask, pxa2xx_spi_dma_filter,
|
||||
pdata);
|
||||
if (!drv_data->tx_chan)
|
||||
return -ENODEV;
|
||||
|
||||
drv_data->rx_chan = dma_request_channel(mask, pxa2xx_spi_dma_filter,
|
||||
pdata);
|
||||
if (!drv_data->rx_chan) {
|
||||
dma_release_channel(drv_data->tx_chan);
|
||||
drv_data->tx_chan = NULL;
|
||||
return -ENODEV;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
void pxa2xx_spi_dma_release(struct driver_data *drv_data)
|
||||
{
|
||||
if (drv_data->rx_chan) {
|
||||
dmaengine_terminate_all(drv_data->rx_chan);
|
||||
dma_release_channel(drv_data->rx_chan);
|
||||
sg_free_table(&drv_data->rx_sgt);
|
||||
drv_data->rx_chan = NULL;
|
||||
}
|
||||
if (drv_data->tx_chan) {
|
||||
dmaengine_terminate_all(drv_data->tx_chan);
|
||||
dma_release_channel(drv_data->tx_chan);
|
||||
sg_free_table(&drv_data->tx_sgt);
|
||||
drv_data->tx_chan = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
void pxa2xx_spi_dma_resume(struct driver_data *drv_data)
|
||||
{
|
||||
}
|
||||
|
||||
int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip,
|
||||
struct spi_device *spi,
|
||||
u8 bits_per_word, u32 *burst_code,
|
||||
u32 *threshold)
|
||||
{
|
||||
struct pxa2xx_spi_chip *chip_info = spi->controller_data;
|
||||
|
||||
/*
|
||||
* If the DMA burst size is given in chip_info we use that,
|
||||
* otherwise we use the default. Also we use the default FIFO
|
||||
* thresholds for now.
|
||||
*/
|
||||
*burst_code = chip_info ? chip_info->dma_burst_size : 16;
|
||||
*threshold = SSCR1_RxTresh(RX_THRESH_DFLT)
|
||||
| SSCR1_TxTresh(TX_THRESH_DFLT);
|
||||
|
||||
return 0;
|
||||
}
|
490
drivers/spi/spi-pxa2xx-pxadma.c
Normal file
490
drivers/spi/spi-pxa2xx-pxadma.c
Normal file
|
@ -0,0 +1,490 @@
|
|||
/*
|
||||
* PXA2xx SPI private DMA support.
|
||||
*
|
||||
* Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
||||
*/
|
||||
|
||||
#include <linux/init.h>
|
||||
#include <linux/delay.h>
|
||||
#include <linux/device.h>
|
||||
#include <linux/dma-mapping.h>
|
||||
#include <linux/pxa2xx_ssp.h>
|
||||
#include <linux/spi/spi.h>
|
||||
#include <linux/spi/pxa2xx_spi.h>
|
||||
|
||||
#include "spi-pxa2xx.h"
|
||||
|
||||
#define DMA_INT_MASK (DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR)
|
||||
#define RESET_DMA_CHANNEL (DCSR_NODESC | DMA_INT_MASK)
|
||||
|
||||
bool pxa2xx_spi_dma_is_possible(size_t len)
|
||||
{
|
||||
/* Try to map dma buffer and do a dma transfer if successful, but
|
||||
* only if the length is non-zero and less than MAX_DMA_LEN.
|
||||
*
|
||||
* Zero-length non-descriptor DMA is illegal on PXA2xx; force use
|
||||
* of PIO instead. Care is needed above because the transfer may
|
||||
* have have been passed with buffers that are already dma mapped.
|
||||
* A zero-length transfer in PIO mode will not try to write/read
|
||||
* to/from the buffers
|
||||
*
|
||||
* REVISIT large transfers are exactly where we most want to be
|
||||
* using DMA. If this happens much, split those transfers into
|
||||
* multiple DMA segments rather than forcing PIO.
|
||||
*/
|
||||
return len > 0 && len <= MAX_DMA_LEN;
|
||||
}
|
||||
|
||||
int pxa2xx_spi_map_dma_buffers(struct driver_data *drv_data)
|
||||
{
|
||||
struct spi_message *msg = drv_data->cur_msg;
|
||||
struct device *dev = &msg->spi->dev;
|
||||
|
||||
if (!drv_data->cur_chip->enable_dma)
|
||||
return 0;
|
||||
|
||||
if (msg->is_dma_mapped)
|
||||
return drv_data->rx_dma && drv_data->tx_dma;
|
||||
|
||||
if (!IS_DMA_ALIGNED(drv_data->rx) || !IS_DMA_ALIGNED(drv_data->tx))
|
||||
return 0;
|
||||
|
||||
/* Modify setup if rx buffer is null */
|
||||
if (drv_data->rx == NULL) {
|
||||
*drv_data->null_dma_buf = 0;
|
||||
drv_data->rx = drv_data->null_dma_buf;
|
||||
drv_data->rx_map_len = 4;
|
||||
} else
|
||||
drv_data->rx_map_len = drv_data->len;
|
||||
|
||||
|
||||
/* Modify setup if tx buffer is null */
|
||||
if (drv_data->tx == NULL) {
|
||||
*drv_data->null_dma_buf = 0;
|
||||
drv_data->tx = drv_data->null_dma_buf;
|
||||
drv_data->tx_map_len = 4;
|
||||
} else
|
||||
drv_data->tx_map_len = drv_data->len;
|
||||
|
||||
/* Stream map the tx buffer. Always do DMA_TO_DEVICE first
|
||||
* so we flush the cache *before* invalidating it, in case
|
||||
* the tx and rx buffers overlap.
|
||||
*/
|
||||
drv_data->tx_dma = dma_map_single(dev, drv_data->tx,
|
||||
drv_data->tx_map_len, DMA_TO_DEVICE);
|
||||
if (dma_mapping_error(dev, drv_data->tx_dma))
|
||||
return 0;
|
||||
|
||||
/* Stream map the rx buffer */
|
||||
drv_data->rx_dma = dma_map_single(dev, drv_data->rx,
|
||||
drv_data->rx_map_len, DMA_FROM_DEVICE);
|
||||
if (dma_mapping_error(dev, drv_data->rx_dma)) {
|
||||
dma_unmap_single(dev, drv_data->tx_dma,
|
||||
drv_data->tx_map_len, DMA_TO_DEVICE);
|
||||
return 0;
|
||||
}
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
static void pxa2xx_spi_unmap_dma_buffers(struct driver_data *drv_data)
|
||||
{
|
||||
struct device *dev;
|
||||
|
||||
if (!drv_data->dma_mapped)
|
||||
return;
|
||||
|
||||
if (!drv_data->cur_msg->is_dma_mapped) {
|
||||
dev = &drv_data->cur_msg->spi->dev;
|
||||
dma_unmap_single(dev, drv_data->rx_dma,
|
||||
drv_data->rx_map_len, DMA_FROM_DEVICE);
|
||||
dma_unmap_single(dev, drv_data->tx_dma,
|
||||
drv_data->tx_map_len, DMA_TO_DEVICE);
|
||||
}
|
||||
|
||||
drv_data->dma_mapped = 0;
|
||||
}
|
||||
|
||||
static int wait_ssp_rx_stall(void const __iomem *ioaddr)
|
||||
{
|
||||
unsigned long limit = loops_per_jiffy << 1;
|
||||
|
||||
while ((read_SSSR(ioaddr) & SSSR_BSY) && --limit)
|
||||
cpu_relax();
|
||||
|
||||
return limit;
|
||||
}
|
||||
|
||||
static int wait_dma_channel_stop(int channel)
|
||||
{
|
||||
unsigned long limit = loops_per_jiffy << 1;
|
||||
|
||||
while (!(DCSR(channel) & DCSR_STOPSTATE) && --limit)
|
||||
cpu_relax();
|
||||
|
||||
return limit;
|
||||
}
|
||||
|
||||
static void pxa2xx_spi_dma_error_stop(struct driver_data *drv_data,
|
||||
const char *msg)
|
||||
{
|
||||
void __iomem *reg = drv_data->ioaddr;
|
||||
|
||||
/* Stop and reset */
|
||||
DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
|
||||
DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
|
||||
write_SSSR_CS(drv_data, drv_data->clear_sr);
|
||||
write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
|
||||
if (!pxa25x_ssp_comp(drv_data))
|
||||
write_SSTO(0, reg);
|
||||
pxa2xx_spi_flush(drv_data);
|
||||
write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
|
||||
|
||||
pxa2xx_spi_unmap_dma_buffers(drv_data);
|
||||
|
||||
dev_err(&drv_data->pdev->dev, "%s\n", msg);
|
||||
|
||||
drv_data->cur_msg->state = ERROR_STATE;
|
||||
tasklet_schedule(&drv_data->pump_transfers);
|
||||
}
|
||||
|
||||
static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data)
|
||||
{
|
||||
void __iomem *reg = drv_data->ioaddr;
|
||||
struct spi_message *msg = drv_data->cur_msg;
|
||||
|
||||
/* Clear and disable interrupts on SSP and DMA channels*/
|
||||
write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
|
||||
write_SSSR_CS(drv_data, drv_data->clear_sr);
|
||||
DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
|
||||
DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
|
||||
|
||||
if (wait_dma_channel_stop(drv_data->rx_channel) == 0)
|
||||
dev_err(&drv_data->pdev->dev,
|
||||
"dma_handler: dma rx channel stop failed\n");
|
||||
|
||||
if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
|
||||
dev_err(&drv_data->pdev->dev,
|
||||
"dma_transfer: ssp rx stall failed\n");
|
||||
|
||||
pxa2xx_spi_unmap_dma_buffers(drv_data);
|
||||
|
||||
/* update the buffer pointer for the amount completed in dma */
|
||||
drv_data->rx += drv_data->len -
|
||||
(DCMD(drv_data->rx_channel) & DCMD_LENGTH);
|
||||
|
||||
/* read trailing data from fifo, it does not matter how many
|
||||
* bytes are in the fifo just read until buffer is full
|
||||
* or fifo is empty, which ever occurs first */
|
||||
drv_data->read(drv_data);
|
||||
|
||||
/* return count of what was actually read */
|
||||
msg->actual_length += drv_data->len -
|
||||
(drv_data->rx_end - drv_data->rx);
|
||||
|
||||
/* Transfer delays and chip select release are
|
||||
* handled in pump_transfers or giveback
|
||||
*/
|
||||
|
||||
/* Move to next transfer */
|
||||
msg->state = pxa2xx_spi_next_transfer(drv_data);
|
||||
|
||||
/* Schedule transfer tasklet */
|
||||
tasklet_schedule(&drv_data->pump_transfers);
|
||||
}
|
||||
|
||||
void pxa2xx_spi_dma_handler(int channel, void *data)
|
||||
{
|
||||
struct driver_data *drv_data = data;
|
||||
u32 irq_status = DCSR(channel) & DMA_INT_MASK;
|
||||
|
||||
if (irq_status & DCSR_BUSERR) {
|
||||
|
||||
if (channel == drv_data->tx_channel)
|
||||
pxa2xx_spi_dma_error_stop(drv_data,
|
||||
"dma_handler: bad bus address on tx channel");
|
||||
else
|
||||
pxa2xx_spi_dma_error_stop(drv_data,
|
||||
"dma_handler: bad bus address on rx channel");
|
||||
return;
|
||||
}
|
||||
|
||||
/* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */
|
||||
if ((channel == drv_data->tx_channel)
|
||||
&& (irq_status & DCSR_ENDINTR)
|
||||
&& (drv_data->ssp_type == PXA25x_SSP)) {
|
||||
|
||||
/* Wait for rx to stall */
|
||||
if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
|
||||
dev_err(&drv_data->pdev->dev,
|
||||
"dma_handler: ssp rx stall failed\n");
|
||||
|
||||
/* finish this transfer, start the next */
|
||||
pxa2xx_spi_dma_transfer_complete(drv_data);
|
||||
}
|
||||
}
|
||||
|
||||
irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data)
|
||||
{
|
||||
u32 irq_status;
|
||||
void __iomem *reg = drv_data->ioaddr;
|
||||
|
||||
irq_status = read_SSSR(reg) & drv_data->mask_sr;
|
||||
if (irq_status & SSSR_ROR) {
|
||||
pxa2xx_spi_dma_error_stop(drv_data,
|
||||
"dma_transfer: fifo overrun");
|
||||
return IRQ_HANDLED;
|
||||
}
|
||||
|
||||
/* Check for false positive timeout */
|
||||
if ((irq_status & SSSR_TINT)
|
||||
&& (DCSR(drv_data->tx_channel) & DCSR_RUN)) {
|
||||
write_SSSR(SSSR_TINT, reg);
|
||||
return IRQ_HANDLED;
|
||||
}
|
||||
|
||||
if (irq_status & SSSR_TINT || drv_data->rx == drv_data->rx_end) {
|
||||
|
||||
/* Clear and disable timeout interrupt, do the rest in
|
||||
* dma_transfer_complete */
|
||||
if (!pxa25x_ssp_comp(drv_data))
|
||||
write_SSTO(0, reg);
|
||||
|
||||
/* finish this transfer, start the next */
|
||||
pxa2xx_spi_dma_transfer_complete(drv_data);
|
||||
|
||||
return IRQ_HANDLED;
|
||||
}
|
||||
|
||||
/* Opps problem detected */
|
||||
return IRQ_NONE;
|
||||
}
|
||||
|
||||
int pxa2xx_spi_dma_prepare(struct driver_data *drv_data, u32 dma_burst)
|
||||
{
|
||||
u32 dma_width;
|
||||
|
||||
switch (drv_data->n_bytes) {
|
||||
case 1:
|
||||
dma_width = DCMD_WIDTH1;
|
||||
break;
|
||||
case 2:
|
||||
dma_width = DCMD_WIDTH2;
|
||||
break;
|
||||
default:
|
||||
dma_width = DCMD_WIDTH4;
|
||||
break;
|
||||
}
|
||||
|
||||
/* Setup rx DMA Channel */
|
||||
DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
|
||||
DSADR(drv_data->rx_channel) = drv_data->ssdr_physical;
|
||||
DTADR(drv_data->rx_channel) = drv_data->rx_dma;
|
||||
if (drv_data->rx == drv_data->null_dma_buf)
|
||||
/* No target address increment */
|
||||
DCMD(drv_data->rx_channel) = DCMD_FLOWSRC
|
||||
| dma_width
|
||||
| dma_burst
|
||||
| drv_data->len;
|
||||
else
|
||||
DCMD(drv_data->rx_channel) = DCMD_INCTRGADDR
|
||||
| DCMD_FLOWSRC
|
||||
| dma_width
|
||||
| dma_burst
|
||||
| drv_data->len;
|
||||
|
||||
/* Setup tx DMA Channel */
|
||||
DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
|
||||
DSADR(drv_data->tx_channel) = drv_data->tx_dma;
|
||||
DTADR(drv_data->tx_channel) = drv_data->ssdr_physical;
|
||||
if (drv_data->tx == drv_data->null_dma_buf)
|
||||
/* No source address increment */
|
||||
DCMD(drv_data->tx_channel) = DCMD_FLOWTRG
|
||||
| dma_width
|
||||
| dma_burst
|
||||
| drv_data->len;
|
||||
else
|
||||
DCMD(drv_data->tx_channel) = DCMD_INCSRCADDR
|
||||
| DCMD_FLOWTRG
|
||||
| dma_width
|
||||
| dma_burst
|
||||
| drv_data->len;
|
||||
|
||||
/* Enable dma end irqs on SSP to detect end of transfer */
|
||||
if (drv_data->ssp_type == PXA25x_SSP)
|
||||
DCMD(drv_data->tx_channel) |= DCMD_ENDIRQEN;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
void pxa2xx_spi_dma_start(struct driver_data *drv_data)
|
||||
{
|
||||
DCSR(drv_data->rx_channel) |= DCSR_RUN;
|
||||
DCSR(drv_data->tx_channel) |= DCSR_RUN;
|
||||
}
|
||||
|
||||
int pxa2xx_spi_dma_setup(struct driver_data *drv_data)
|
||||
{
|
||||
struct device *dev = &drv_data->pdev->dev;
|
||||
struct ssp_device *ssp = drv_data->ssp;
|
||||
|
||||
/* Get two DMA channels (rx and tx) */
|
||||
drv_data->rx_channel = pxa_request_dma("pxa2xx_spi_ssp_rx",
|
||||
DMA_PRIO_HIGH,
|
||||
pxa2xx_spi_dma_handler,
|
||||
drv_data);
|
||||
if (drv_data->rx_channel < 0) {
|
||||
dev_err(dev, "problem (%d) requesting rx channel\n",
|
||||
drv_data->rx_channel);
|
||||
return -ENODEV;
|
||||
}
|
||||
drv_data->tx_channel = pxa_request_dma("pxa2xx_spi_ssp_tx",
|
||||
DMA_PRIO_MEDIUM,
|
||||
pxa2xx_spi_dma_handler,
|
||||
drv_data);
|
||||
if (drv_data->tx_channel < 0) {
|
||||
dev_err(dev, "problem (%d) requesting tx channel\n",
|
||||
drv_data->tx_channel);
|
||||
pxa_free_dma(drv_data->rx_channel);
|
||||
return -ENODEV;
|
||||
}
|
||||
|
||||
DRCMR(ssp->drcmr_rx) = DRCMR_MAPVLD | drv_data->rx_channel;
|
||||
DRCMR(ssp->drcmr_tx) = DRCMR_MAPVLD | drv_data->tx_channel;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
void pxa2xx_spi_dma_release(struct driver_data *drv_data)
|
||||
{
|
||||
struct ssp_device *ssp = drv_data->ssp;
|
||||
|
||||
DRCMR(ssp->drcmr_rx) = 0;
|
||||
DRCMR(ssp->drcmr_tx) = 0;
|
||||
|
||||
if (drv_data->tx_channel != 0)
|
||||
pxa_free_dma(drv_data->tx_channel);
|
||||
if (drv_data->rx_channel != 0)
|
||||
pxa_free_dma(drv_data->rx_channel);
|
||||
}
|
||||
|
||||
void pxa2xx_spi_dma_resume(struct driver_data *drv_data)
|
||||
{
|
||||
if (drv_data->rx_channel != -1)
|
||||
DRCMR(drv_data->ssp->drcmr_rx) =
|
||||
DRCMR_MAPVLD | drv_data->rx_channel;
|
||||
if (drv_data->tx_channel != -1)
|
||||
DRCMR(drv_data->ssp->drcmr_tx) =
|
||||
DRCMR_MAPVLD | drv_data->tx_channel;
|
||||
}
|
||||
|
||||
int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip,
|
||||
struct spi_device *spi,
|
||||
u8 bits_per_word, u32 *burst_code,
|
||||
u32 *threshold)
|
||||
{
|
||||
struct pxa2xx_spi_chip *chip_info =
|
||||
(struct pxa2xx_spi_chip *)spi->controller_data;
|
||||
int bytes_per_word;
|
||||
int burst_bytes;
|
||||
int thresh_words;
|
||||
int req_burst_size;
|
||||
int retval = 0;
|
||||
|
||||
/* Set the threshold (in registers) to equal the same amount of data
|
||||
* as represented by burst size (in bytes). The computation below
|
||||
* is (burst_size rounded up to nearest 8 byte, word or long word)
|
||||
* divided by (bytes/register); the tx threshold is the inverse of
|
||||
* the rx, so that there will always be enough data in the rx fifo
|
||||
* to satisfy a burst, and there will always be enough space in the
|
||||
* tx fifo to accept a burst (a tx burst will overwrite the fifo if
|
||||
* there is not enough space), there must always remain enough empty
|
||||
* space in the rx fifo for any data loaded to the tx fifo.
|
||||
* Whenever burst_size (in bytes) equals bits/word, the fifo threshold
|
||||
* will be 8, or half the fifo;
|
||||
* The threshold can only be set to 2, 4 or 8, but not 16, because
|
||||
* to burst 16 to the tx fifo, the fifo would have to be empty;
|
||||
* however, the minimum fifo trigger level is 1, and the tx will
|
||||
* request service when the fifo is at this level, with only 15 spaces.
|
||||
*/
|
||||
|
||||
/* find bytes/word */
|
||||
if (bits_per_word <= 8)
|
||||
bytes_per_word = 1;
|
||||
else if (bits_per_word <= 16)
|
||||
bytes_per_word = 2;
|
||||
else
|
||||
bytes_per_word = 4;
|
||||
|
||||
/* use struct pxa2xx_spi_chip->dma_burst_size if available */
|
||||
if (chip_info)
|
||||
req_burst_size = chip_info->dma_burst_size;
|
||||
else {
|
||||
switch (chip->dma_burst_size) {
|
||||
default:
|
||||
/* if the default burst size is not set,
|
||||
* do it now */
|
||||
chip->dma_burst_size = DCMD_BURST8;
|
||||
case DCMD_BURST8:
|
||||
req_burst_size = 8;
|
||||
break;
|
||||
case DCMD_BURST16:
|
||||
req_burst_size = 16;
|
||||
break;
|
||||
case DCMD_BURST32:
|
||||
req_burst_size = 32;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (req_burst_size <= 8) {
|
||||
*burst_code = DCMD_BURST8;
|
||||
burst_bytes = 8;
|
||||
} else if (req_burst_size <= 16) {
|
||||
if (bytes_per_word == 1) {
|
||||
/* don't burst more than 1/2 the fifo */
|
||||
*burst_code = DCMD_BURST8;
|
||||
burst_bytes = 8;
|
||||
retval = 1;
|
||||
} else {
|
||||
*burst_code = DCMD_BURST16;
|
||||
burst_bytes = 16;
|
||||
}
|
||||
} else {
|
||||
if (bytes_per_word == 1) {
|
||||
/* don't burst more than 1/2 the fifo */
|
||||
*burst_code = DCMD_BURST8;
|
||||
burst_bytes = 8;
|
||||
retval = 1;
|
||||
} else if (bytes_per_word == 2) {
|
||||
/* don't burst more than 1/2 the fifo */
|
||||
*burst_code = DCMD_BURST16;
|
||||
burst_bytes = 16;
|
||||
retval = 1;
|
||||
} else {
|
||||
*burst_code = DCMD_BURST32;
|
||||
burst_bytes = 32;
|
||||
}
|
||||
}
|
||||
|
||||
thresh_words = burst_bytes / bytes_per_word;
|
||||
|
||||
/* thresh_words will be between 2 and 8 */
|
||||
*threshold = (SSCR1_RxTresh(thresh_words) & SSCR1_RFT)
|
||||
| (SSCR1_TxTresh(16-thresh_words) & SSCR1_TFT);
|
||||
|
||||
return retval;
|
||||
}
|
File diff suppressed because it is too large
Load diff
221
drivers/spi/spi-pxa2xx.h
Normal file
221
drivers/spi/spi-pxa2xx.h
Normal file
|
@ -0,0 +1,221 @@
|
|||
/*
|
||||
* Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
|
||||
* Copyright (C) 2013, Intel Corporation
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*/
|
||||
|
||||
#ifndef SPI_PXA2XX_H
|
||||
#define SPI_PXA2XX_H
|
||||
|
||||
#include <linux/atomic.h>
|
||||
#include <linux/dmaengine.h>
|
||||
#include <linux/errno.h>
|
||||
#include <linux/io.h>
|
||||
#include <linux/interrupt.h>
|
||||
#include <linux/platform_device.h>
|
||||
#include <linux/pxa2xx_ssp.h>
|
||||
#include <linux/scatterlist.h>
|
||||
#include <linux/sizes.h>
|
||||
#include <linux/spi/spi.h>
|
||||
#include <linux/spi/pxa2xx_spi.h>
|
||||
|
||||
struct driver_data {
|
||||
/* Driver model hookup */
|
||||
struct platform_device *pdev;
|
||||
|
||||
/* SSP Info */
|
||||
struct ssp_device *ssp;
|
||||
|
||||
/* SPI framework hookup */
|
||||
enum pxa_ssp_type ssp_type;
|
||||
struct spi_master *master;
|
||||
|
||||
/* PXA hookup */
|
||||
struct pxa2xx_spi_master *master_info;
|
||||
|
||||
/* PXA private DMA setup stuff */
|
||||
int rx_channel;
|
||||
int tx_channel;
|
||||
u32 *null_dma_buf;
|
||||
|
||||
/* SSP register addresses */
|
||||
void __iomem *ioaddr;
|
||||
u32 ssdr_physical;
|
||||
|
||||
/* SSP masks*/
|
||||
u32 dma_cr1;
|
||||
u32 int_cr1;
|
||||
u32 clear_sr;
|
||||
u32 mask_sr;
|
||||
|
||||
/* Maximun clock rate */
|
||||
unsigned long max_clk_rate;
|
||||
|
||||
/* Message Transfer pump */
|
||||
struct tasklet_struct pump_transfers;
|
||||
|
||||
/* DMA engine support */
|
||||
struct dma_chan *rx_chan;
|
||||
struct dma_chan *tx_chan;
|
||||
struct sg_table rx_sgt;
|
||||
struct sg_table tx_sgt;
|
||||
int rx_nents;
|
||||
int tx_nents;
|
||||
void *dummy;
|
||||
atomic_t dma_running;
|
||||
|
||||
/* Current message transfer state info */
|
||||
struct spi_message *cur_msg;
|
||||
struct spi_transfer *cur_transfer;
|
||||
struct chip_data *cur_chip;
|
||||
size_t len;
|
||||
void *tx;
|
||||
void *tx_end;
|
||||
void *rx;
|
||||
void *rx_end;
|
||||
int dma_mapped;
|
||||
dma_addr_t rx_dma;
|
||||
dma_addr_t tx_dma;
|
||||
size_t rx_map_len;
|
||||
size_t tx_map_len;
|
||||
u8 n_bytes;
|
||||
int (*write)(struct driver_data *drv_data);
|
||||
int (*read)(struct driver_data *drv_data);
|
||||
irqreturn_t (*transfer_handler)(struct driver_data *drv_data);
|
||||
void (*cs_control)(u32 command);
|
||||
|
||||
void __iomem *lpss_base;
|
||||
};
|
||||
|
||||
struct chip_data {
|
||||
u32 cr0;
|
||||
u32 cr1;
|
||||
u32 psp;
|
||||
u32 timeout;
|
||||
u8 n_bytes;
|
||||
u32 dma_burst_size;
|
||||
u32 threshold;
|
||||
u32 dma_threshold;
|
||||
u16 lpss_rx_threshold;
|
||||
u16 lpss_tx_threshold;
|
||||
u8 enable_dma;
|
||||
u8 bits_per_word;
|
||||
u32 speed_hz;
|
||||
union {
|
||||
int gpio_cs;
|
||||
unsigned int frm;
|
||||
};
|
||||
int gpio_cs_inverted;
|
||||
int (*write)(struct driver_data *drv_data);
|
||||
int (*read)(struct driver_data *drv_data);
|
||||
void (*cs_control)(u32 command);
|
||||
};
|
||||
|
||||
#define DEFINE_SSP_REG(reg, off) \
|
||||
static inline u32 read_##reg(void const __iomem *p) \
|
||||
{ return __raw_readl(p + (off)); } \
|
||||
\
|
||||
static inline void write_##reg(u32 v, void __iomem *p) \
|
||||
{ __raw_writel(v, p + (off)); }
|
||||
|
||||
DEFINE_SSP_REG(SSCR0, 0x00)
|
||||
DEFINE_SSP_REG(SSCR1, 0x04)
|
||||
DEFINE_SSP_REG(SSSR, 0x08)
|
||||
DEFINE_SSP_REG(SSITR, 0x0c)
|
||||
DEFINE_SSP_REG(SSDR, 0x10)
|
||||
DEFINE_SSP_REG(SSTO, 0x28)
|
||||
DEFINE_SSP_REG(SSPSP, 0x2c)
|
||||
DEFINE_SSP_REG(SSITF, SSITF)
|
||||
DEFINE_SSP_REG(SSIRF, SSIRF)
|
||||
|
||||
#define START_STATE ((void *)0)
|
||||
#define RUNNING_STATE ((void *)1)
|
||||
#define DONE_STATE ((void *)2)
|
||||
#define ERROR_STATE ((void *)-1)
|
||||
|
||||
#define IS_DMA_ALIGNED(x) IS_ALIGNED((unsigned long)(x), DMA_ALIGNMENT)
|
||||
#define DMA_ALIGNMENT 8
|
||||
|
||||
static inline int pxa25x_ssp_comp(struct driver_data *drv_data)
|
||||
{
|
||||
if (drv_data->ssp_type == PXA25x_SSP)
|
||||
return 1;
|
||||
if (drv_data->ssp_type == CE4100_SSP)
|
||||
return 1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static inline void write_SSSR_CS(struct driver_data *drv_data, u32 val)
|
||||
{
|
||||
void __iomem *reg = drv_data->ioaddr;
|
||||
|
||||
if (drv_data->ssp_type == CE4100_SSP)
|
||||
val |= read_SSSR(reg) & SSSR_ALT_FRM_MASK;
|
||||
|
||||
write_SSSR(val, reg);
|
||||
}
|
||||
|
||||
extern int pxa2xx_spi_flush(struct driver_data *drv_data);
|
||||
extern void *pxa2xx_spi_next_transfer(struct driver_data *drv_data);
|
||||
|
||||
/*
|
||||
* Select the right DMA implementation.
|
||||
*/
|
||||
#if defined(CONFIG_SPI_PXA2XX_PXADMA)
|
||||
#define SPI_PXA2XX_USE_DMA 1
|
||||
#define MAX_DMA_LEN 8191
|
||||
#define DEFAULT_DMA_CR1 (SSCR1_TSRE | SSCR1_RSRE | SSCR1_TINTE)
|
||||
#elif defined(CONFIG_SPI_PXA2XX_DMA)
|
||||
#define SPI_PXA2XX_USE_DMA 1
|
||||
#define MAX_DMA_LEN SZ_64K
|
||||
#define DEFAULT_DMA_CR1 (SSCR1_TSRE | SSCR1_RSRE | SSCR1_TRAIL)
|
||||
#else
|
||||
#undef SPI_PXA2XX_USE_DMA
|
||||
#define MAX_DMA_LEN 0
|
||||
#define DEFAULT_DMA_CR1 0
|
||||
#endif
|
||||
|
||||
#ifdef SPI_PXA2XX_USE_DMA
|
||||
extern bool pxa2xx_spi_dma_is_possible(size_t len);
|
||||
extern int pxa2xx_spi_map_dma_buffers(struct driver_data *drv_data);
|
||||
extern irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data);
|
||||
extern int pxa2xx_spi_dma_prepare(struct driver_data *drv_data, u32 dma_burst);
|
||||
extern void pxa2xx_spi_dma_start(struct driver_data *drv_data);
|
||||
extern int pxa2xx_spi_dma_setup(struct driver_data *drv_data);
|
||||
extern void pxa2xx_spi_dma_release(struct driver_data *drv_data);
|
||||
extern void pxa2xx_spi_dma_resume(struct driver_data *drv_data);
|
||||
extern int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip,
|
||||
struct spi_device *spi,
|
||||
u8 bits_per_word,
|
||||
u32 *burst_code,
|
||||
u32 *threshold);
|
||||
#else
|
||||
static inline bool pxa2xx_spi_dma_is_possible(size_t len) { return false; }
|
||||
static inline int pxa2xx_spi_map_dma_buffers(struct driver_data *drv_data)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
#define pxa2xx_spi_dma_transfer NULL
|
||||
static inline void pxa2xx_spi_dma_prepare(struct driver_data *drv_data,
|
||||
u32 dma_burst) {}
|
||||
static inline void pxa2xx_spi_dma_start(struct driver_data *drv_data) {}
|
||||
static inline int pxa2xx_spi_dma_setup(struct driver_data *drv_data)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
static inline void pxa2xx_spi_dma_release(struct driver_data *drv_data) {}
|
||||
static inline void pxa2xx_spi_dma_resume(struct driver_data *drv_data) {}
|
||||
static inline int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip,
|
||||
struct spi_device *spi,
|
||||
u8 bits_per_word,
|
||||
u32 *burst_code,
|
||||
u32 *threshold)
|
||||
{
|
||||
return -ENODEV;
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* SPI_PXA2XX_H */
|
|
@ -155,6 +155,14 @@
|
|||
#define SSACD_ACDS(x) ((x) << 0) /* Audio clock divider select */
|
||||
#define SSACD_SCDX8 (1 << 7) /* SYSCLK division ratio select */
|
||||
|
||||
/* LPSS SSP */
|
||||
#define SSITF 0x44 /* TX FIFO trigger level */
|
||||
#define SSITF_TxLoThresh(x) (((x) - 1) << 8)
|
||||
#define SSITF_TxHiThresh(x) ((x) - 1)
|
||||
|
||||
#define SSIRF 0x48 /* RX FIFO trigger level */
|
||||
#define SSIRF_RxThresh(x) ((x) - 1)
|
||||
|
||||
enum pxa_ssp_type {
|
||||
SSP_UNDEFINED = 0,
|
||||
PXA25x_SSP, /* pxa 210, 250, 255, 26x */
|
||||
|
@ -164,6 +172,7 @@ enum pxa_ssp_type {
|
|||
PXA168_SSP,
|
||||
PXA910_SSP,
|
||||
CE4100_SSP,
|
||||
LPSS_SSP,
|
||||
};
|
||||
|
||||
struct ssp_device {
|
||||
|
|
|
@ -29,6 +29,12 @@ struct pxa2xx_spi_master {
|
|||
u16 num_chipselect;
|
||||
u8 enable_dma;
|
||||
|
||||
/* DMA engine specific config */
|
||||
int rx_chan_id;
|
||||
int tx_chan_id;
|
||||
int rx_slave_id;
|
||||
int tx_slave_id;
|
||||
|
||||
/* For non-PXA arches */
|
||||
struct ssp_device ssp;
|
||||
};
|
||||
|
@ -38,6 +44,7 @@ struct pxa2xx_spi_master {
|
|||
*/
|
||||
struct pxa2xx_spi_chip {
|
||||
u8 tx_threshold;
|
||||
u8 tx_hi_threshold;
|
||||
u8 rx_threshold;
|
||||
u8 dma_burst_size;
|
||||
u32 timeout;
|
||||
|
@ -53,85 +60,5 @@ struct pxa2xx_spi_chip {
|
|||
|
||||
extern void pxa2xx_set_spi_info(unsigned id, struct pxa2xx_spi_master *info);
|
||||
|
||||
#else
|
||||
/*
|
||||
* This is the implemtation for CE4100 on x86. ARM defines them in mach/ or
|
||||
* plat/ include path.
|
||||
* The CE4100 does not provide DMA support. This bits are here to let the driver
|
||||
* compile and will never be used. Maybe we get DMA support at a later point in
|
||||
* time.
|
||||
*/
|
||||
|
||||
#define DCSR(n) (n)
|
||||
#define DSADR(n) (n)
|
||||
#define DTADR(n) (n)
|
||||
#define DCMD(n) (n)
|
||||
#define DRCMR(n) (n)
|
||||
|
||||
#define DCSR_RUN (1 << 31) /* Run Bit */
|
||||
#define DCSR_NODESC (1 << 30) /* No-Descriptor Fetch */
|
||||
#define DCSR_STOPIRQEN (1 << 29) /* Stop Interrupt Enable */
|
||||
#define DCSR_REQPEND (1 << 8) /* Request Pending (read-only) */
|
||||
#define DCSR_STOPSTATE (1 << 3) /* Stop State (read-only) */
|
||||
#define DCSR_ENDINTR (1 << 2) /* End Interrupt */
|
||||
#define DCSR_STARTINTR (1 << 1) /* Start Interrupt */
|
||||
#define DCSR_BUSERR (1 << 0) /* Bus Error Interrupt */
|
||||
|
||||
#define DCSR_EORIRQEN (1 << 28) /* End of Receive Interrupt Enable */
|
||||
#define DCSR_EORJMPEN (1 << 27) /* Jump to next descriptor on EOR */
|
||||
#define DCSR_EORSTOPEN (1 << 26) /* STOP on an EOR */
|
||||
#define DCSR_SETCMPST (1 << 25) /* Set Descriptor Compare Status */
|
||||
#define DCSR_CLRCMPST (1 << 24) /* Clear Descriptor Compare Status */
|
||||
#define DCSR_CMPST (1 << 10) /* The Descriptor Compare Status */
|
||||
#define DCSR_EORINTR (1 << 9) /* The end of Receive */
|
||||
|
||||
#define DRCMR_MAPVLD (1 << 7) /* Map Valid */
|
||||
#define DRCMR_CHLNUM 0x1f /* mask for Channel Number */
|
||||
|
||||
#define DDADR_DESCADDR 0xfffffff0 /* Address of next descriptor */
|
||||
#define DDADR_STOP (1 << 0) /* Stop */
|
||||
|
||||
#define DCMD_INCSRCADDR (1 << 31) /* Source Address Increment Setting. */
|
||||
#define DCMD_INCTRGADDR (1 << 30) /* Target Address Increment Setting. */
|
||||
#define DCMD_FLOWSRC (1 << 29) /* Flow Control by the source. */
|
||||
#define DCMD_FLOWTRG (1 << 28) /* Flow Control by the target. */
|
||||
#define DCMD_STARTIRQEN (1 << 22) /* Start Interrupt Enable */
|
||||
#define DCMD_ENDIRQEN (1 << 21) /* End Interrupt Enable */
|
||||
#define DCMD_ENDIAN (1 << 18) /* Device Endian-ness. */
|
||||
#define DCMD_BURST8 (1 << 16) /* 8 byte burst */
|
||||
#define DCMD_BURST16 (2 << 16) /* 16 byte burst */
|
||||
#define DCMD_BURST32 (3 << 16) /* 32 byte burst */
|
||||
#define DCMD_WIDTH1 (1 << 14) /* 1 byte width */
|
||||
#define DCMD_WIDTH2 (2 << 14) /* 2 byte width (HalfWord) */
|
||||
#define DCMD_WIDTH4 (3 << 14) /* 4 byte width (Word) */
|
||||
#define DCMD_LENGTH 0x01fff /* length mask (max = 8K - 1) */
|
||||
|
||||
/*
|
||||
* Descriptor structure for PXA's DMA engine
|
||||
* Note: this structure must always be aligned to a 16-byte boundary.
|
||||
*/
|
||||
|
||||
typedef enum {
|
||||
DMA_PRIO_HIGH = 0,
|
||||
DMA_PRIO_MEDIUM = 1,
|
||||
DMA_PRIO_LOW = 2
|
||||
} pxa_dma_prio;
|
||||
|
||||
/*
|
||||
* DMA registration
|
||||
*/
|
||||
|
||||
static inline int pxa_request_dma(char *name,
|
||||
pxa_dma_prio prio,
|
||||
void (*irq_handler)(int, void *),
|
||||
void *data)
|
||||
{
|
||||
return -ENODEV;
|
||||
}
|
||||
|
||||
static inline void pxa_free_dma(int dma_ch)
|
||||
{
|
||||
}
|
||||
|
||||
#endif
|
||||
#endif
|
||||
|
|
Loading…
Reference in a new issue