Merge branch 'release' of master.kernel.org:/pub/scm/linux/kernel/git/aegl/linux-2.6

This commit is contained in:
Linus Torvalds 2005-09-16 11:54:13 -07:00
commit 0d0fc3a2d6
8 changed files with 292 additions and 74 deletions

194
Documentation/ia64/mca.txt Normal file
View file

@ -0,0 +1,194 @@
An ad-hoc collection of notes on IA64 MCA and INIT processing. Feel
free to update it with notes about any area that is not clear.
---
MCA/INIT are completely asynchronous. They can occur at any time, when
the OS is in any state. Including when one of the cpus is already
holding a spinlock. Trying to get any lock from MCA/INIT state is
asking for deadlock. Also the state of structures that are protected
by locks is indeterminate, including linked lists.
---
The complicated ia64 MCA process. All of this is mandated by Intel's
specification for ia64 SAL, error recovery and and unwind, it is not as
if we have a choice here.
* MCA occurs on one cpu, usually due to a double bit memory error.
This is the monarch cpu.
* SAL sends an MCA rendezvous interrupt (which is a normal interrupt)
to all the other cpus, the slaves.
* Slave cpus that receive the MCA interrupt call down into SAL, they
end up spinning disabled while the MCA is being serviced.
* If any slave cpu was already spinning disabled when the MCA occurred
then it cannot service the MCA interrupt. SAL waits ~20 seconds then
sends an unmaskable INIT event to the slave cpus that have not
already rendezvoused.
* Because MCA/INIT can be delivered at any time, including when the cpu
is down in PAL in physical mode, the registers at the time of the
event are _completely_ undefined. In particular the MCA/INIT
handlers cannot rely on the thread pointer, PAL physical mode can
(and does) modify TP. It is allowed to do that as long as it resets
TP on return. However MCA/INIT events expose us to these PAL
internal TP changes. Hence curr_task().
* If an MCA/INIT event occurs while the kernel was running (not user
space) and the kernel has called PAL then the MCA/INIT handler cannot
assume that the kernel stack is in a fit state to be used. Mainly
because PAL may or may not maintain the stack pointer internally.
Because the MCA/INIT handlers cannot trust the kernel stack, they
have to use their own, per-cpu stacks. The MCA/INIT stacks are
preformatted with just enough task state to let the relevant handlers
do their job.
* Unlike most other architectures, the ia64 struct task is embedded in
the kernel stack[1]. So switching to a new kernel stack means that
we switch to a new task as well. Because various bits of the kernel
assume that current points into the struct task, switching to a new
stack also means a new value for current.
* Once all slaves have rendezvoused and are spinning disabled, the
monarch is entered. The monarch now tries to diagnose the problem
and decide if it can recover or not.
* Part of the monarch's job is to look at the state of all the other
tasks. The only way to do that on ia64 is to call the unwinder,
as mandated by Intel.
* The starting point for the unwind depends on whether a task is
running or not. That is, whether it is on a cpu or is blocked. The
monarch has to determine whether or not a task is on a cpu before it
knows how to start unwinding it. The tasks that received an MCA or
INIT event are no longer running, they have been converted to blocked
tasks. But (and its a big but), the cpus that received the MCA
rendezvous interrupt are still running on their normal kernel stacks!
* To distinguish between these two cases, the monarch must know which
tasks are on a cpu and which are not. Hence each slave cpu that
switches to an MCA/INIT stack, registers its new stack using
set_curr_task(), so the monarch can tell that the _original_ task is
no longer running on that cpu. That gives us a decent chance of
getting a valid backtrace of the _original_ task.
* MCA/INIT can be nested, to a depth of 2 on any cpu. In the case of a
nested error, we want diagnostics on the MCA/INIT handler that
failed, not on the task that was originally running. Again this
requires set_curr_task() so the MCA/INIT handlers can register their
own stack as running on that cpu. Then a recursive error gets a
trace of the failing handler's "task".
[1] My (Keith Owens) original design called for ia64 to separate its
struct task and the kernel stacks. Then the MCA/INIT data would be
chained stacks like i386 interrupt stacks. But that required
radical surgery on the rest of ia64, plus extra hard wired TLB
entries with its associated performance degradation. David
Mosberger vetoed that approach. Which meant that separate kernel
stacks meant separate "tasks" for the MCA/INIT handlers.
---
INIT is less complicated than MCA. Pressing the nmi button or using
the equivalent command on the management console sends INIT to all
cpus. SAL picks one one of the cpus as the monarch and the rest are
slaves. All the OS INIT handlers are entered at approximately the same
time. The OS monarch prints the state of all tasks and returns, after
which the slaves return and the system resumes.
At least that is what is supposed to happen. Alas there are broken
versions of SAL out there. Some drive all the cpus as monarchs. Some
drive them all as slaves. Some drive one cpu as monarch, wait for that
cpu to return from the OS then drive the rest as slaves. Some versions
of SAL cannot even cope with returning from the OS, they spin inside
SAL on resume. The OS INIT code has workarounds for some of these
broken SAL symptoms, but some simply cannot be fixed from the OS side.
---
The scheduler hooks used by ia64 (curr_task, set_curr_task) are layer
violations. Unfortunately MCA/INIT start off as massive layer
violations (can occur at _any_ time) and they build from there.
At least ia64 makes an attempt at recovering from hardware errors, but
it is a difficult problem because of the asynchronous nature of these
errors. When processing an unmaskable interrupt we sometimes need
special code to cope with our inability to take any locks.
---
How is ia64 MCA/INIT different from x86 NMI?
* x86 NMI typically gets delivered to one cpu. MCA/INIT gets sent to
all cpus.
* x86 NMI cannot be nested. MCA/INIT can be nested, to a depth of 2
per cpu.
* x86 has a separate struct task which points to one of multiple kernel
stacks. ia64 has the struct task embedded in the single kernel
stack, so switching stack means switching task.
* x86 does not call the BIOS so the NMI handler does not have to worry
about any registers having changed. MCA/INIT can occur while the cpu
is in PAL in physical mode, with undefined registers and an undefined
kernel stack.
* i386 backtrace is not very sensitive to whether a process is running
or not. ia64 unwind is very, very sensitive to whether a process is
running or not.
---
What happens when MCA/INIT is delivered what a cpu is running user
space code?
The user mode registers are stored in the RSE area of the MCA/INIT on
entry to the OS and are restored from there on return to SAL, so user
mode registers are preserved across a recoverable MCA/INIT. Since the
OS has no idea what unwind data is available for the user space stack,
MCA/INIT never tries to backtrace user space. Which means that the OS
does not bother making the user space process look like a blocked task,
i.e. the OS does not copy pt_regs and switch_stack to the user space
stack. Also the OS has no idea how big the user space RSE and memory
stacks are, which makes it too risky to copy the saved state to a user
mode stack.
---
How do we get a backtrace on the tasks that were running when MCA/INIT
was delivered?
mca.c:::ia64_mca_modify_original_stack(). That identifies and
verifies the original kernel stack, copies the dirty registers from
the MCA/INIT stack's RSE to the original stack's RSE, copies the
skeleton struct pt_regs and switch_stack to the original stack, fills
in the skeleton structures from the PAL minstate area and updates the
original stack's thread.ksp. That makes the original stack look
exactly like any other blocked task, i.e. it now appears to be
sleeping. To get a backtrace, just start with thread.ksp for the
original task and unwind like any other sleeping task.
---
How do we identify the tasks that were running when MCA/INIT was
delivered?
If the previous task has been verified and converted to a blocked
state, then sos->prev_task on the MCA/INIT stack is updated to point to
the previous task. You can look at that field in dumps or debuggers.
To help distinguish between the handler and the original tasks,
handlers have _TIF_MCA_INIT set in thread_info.flags.
The sos data is always in the MCA/INIT handler stack, at offset
MCA_SOS_OFFSET. You can get that value from mca_asm.h or calculate it
as KERNEL_STACK_SIZE - sizeof(struct pt_regs) - sizeof(struct
ia64_sal_os_state), with 16 byte alignment for all structures.
Also the comm field of the MCA/INIT task is modified to include the pid
of the original task, for humans to use. For example, a comm field of
'MCA 12159' means that pid 12159 was running when the MCA was
delivered.

View file

@ -899,7 +899,7 @@ int acpi_register_ioapic(acpi_handle handle, u64 phys_addr, u32 gsi_base)
if ((err = iosapic_init(phys_addr, gsi_base))) if ((err = iosapic_init(phys_addr, gsi_base)))
return err; return err;
#if CONFIG_ACPI_NUMA #ifdef CONFIG_ACPI_NUMA
acpi_map_iosapic(handle, 0, NULL, NULL); acpi_map_iosapic(handle, 0, NULL, NULL);
#endif /* CONFIG_ACPI_NUMA */ #endif /* CONFIG_ACPI_NUMA */

View file

@ -491,7 +491,7 @@ GLOBAL_ENTRY(prefetch_stack)
;; ;;
lfetch.fault [r16], 128 lfetch.fault [r16], 128
br.ret.sptk.many rp br.ret.sptk.many rp
END(prefetch_switch_stack) END(prefetch_stack)
GLOBAL_ENTRY(execve) GLOBAL_ENTRY(execve)
mov r15=__NR_execve // put syscall number in place mov r15=__NR_execve // put syscall number in place

View file

@ -84,23 +84,23 @@ mca_page_isolate(unsigned long paddr)
struct page *p; struct page *p;
/* whether physical address is valid or not */ /* whether physical address is valid or not */
if ( !ia64_phys_addr_valid(paddr) ) if (!ia64_phys_addr_valid(paddr))
return ISOLATE_NG; return ISOLATE_NG;
/* convert physical address to physical page number */ /* convert physical address to physical page number */
p = pfn_to_page(paddr>>PAGE_SHIFT); p = pfn_to_page(paddr>>PAGE_SHIFT);
/* check whether a page number have been already registered or not */ /* check whether a page number have been already registered or not */
for( i = 0; i < num_page_isolate; i++ ) for (i = 0; i < num_page_isolate; i++)
if( page_isolate[i] == p ) if (page_isolate[i] == p)
return ISOLATE_OK; /* already listed */ return ISOLATE_OK; /* already listed */
/* limitation check */ /* limitation check */
if( num_page_isolate == MAX_PAGE_ISOLATE ) if (num_page_isolate == MAX_PAGE_ISOLATE)
return ISOLATE_NG; return ISOLATE_NG;
/* kick pages having attribute 'SLAB' or 'Reserved' */ /* kick pages having attribute 'SLAB' or 'Reserved' */
if( PageSlab(p) || PageReserved(p) ) if (PageSlab(p) || PageReserved(p))
return ISOLATE_NG; return ISOLATE_NG;
/* add attribute 'Reserved' and register the page */ /* add attribute 'Reserved' and register the page */
@ -139,10 +139,10 @@ mca_handler_bh(unsigned long paddr)
* @peidx: pointer to index of processor error section * @peidx: pointer to index of processor error section
*/ */
static void static void
mca_make_peidx(sal_log_processor_info_t *slpi, peidx_table_t *peidx) mca_make_peidx(sal_log_processor_info_t *slpi, peidx_table_t *peidx)
{ {
/* /*
* calculate the start address of * calculate the start address of
* "struct cpuid_info" and "sal_processor_static_info_t". * "struct cpuid_info" and "sal_processor_static_info_t".
*/ */
@ -164,7 +164,7 @@ mca_make_peidx(sal_log_processor_info_t *slpi, peidx_table_t *peidx)
} }
/** /**
* mca_make_slidx - Make index of SAL error record * mca_make_slidx - Make index of SAL error record
* @buffer: pointer to SAL error record * @buffer: pointer to SAL error record
* @slidx: pointer to index of SAL error record * @slidx: pointer to index of SAL error record
* *
@ -172,12 +172,12 @@ mca_make_peidx(sal_log_processor_info_t *slpi, peidx_table_t *peidx)
* 1 if record has platform error / 0 if not * 1 if record has platform error / 0 if not
*/ */
#define LOG_INDEX_ADD_SECT_PTR(sect, ptr) \ #define LOG_INDEX_ADD_SECT_PTR(sect, ptr) \
{ slidx_list_t *hl = &slidx_pool.buffer[slidx_pool.cur_idx]; \ {slidx_list_t *hl = &slidx_pool.buffer[slidx_pool.cur_idx]; \
hl->hdr = ptr; \ hl->hdr = ptr; \
list_add(&hl->list, &(sect)); \ list_add(&hl->list, &(sect)); \
slidx_pool.cur_idx = (slidx_pool.cur_idx + 1)%slidx_pool.max_idx; } slidx_pool.cur_idx = (slidx_pool.cur_idx + 1)%slidx_pool.max_idx; }
static int static int
mca_make_slidx(void *buffer, slidx_table_t *slidx) mca_make_slidx(void *buffer, slidx_table_t *slidx)
{ {
int platform_err = 0; int platform_err = 0;
@ -214,28 +214,36 @@ mca_make_slidx(void *buffer, slidx_table_t *slidx)
sp = (sal_log_section_hdr_t *)((char*)buffer + ercd_pos); sp = (sal_log_section_hdr_t *)((char*)buffer + ercd_pos);
if (!efi_guidcmp(sp->guid, SAL_PROC_DEV_ERR_SECT_GUID)) { if (!efi_guidcmp(sp->guid, SAL_PROC_DEV_ERR_SECT_GUID)) {
LOG_INDEX_ADD_SECT_PTR(slidx->proc_err, sp); LOG_INDEX_ADD_SECT_PTR(slidx->proc_err, sp);
} else if (!efi_guidcmp(sp->guid, SAL_PLAT_MEM_DEV_ERR_SECT_GUID)) { } else if (!efi_guidcmp(sp->guid,
SAL_PLAT_MEM_DEV_ERR_SECT_GUID)) {
platform_err = 1; platform_err = 1;
LOG_INDEX_ADD_SECT_PTR(slidx->mem_dev_err, sp); LOG_INDEX_ADD_SECT_PTR(slidx->mem_dev_err, sp);
} else if (!efi_guidcmp(sp->guid, SAL_PLAT_SEL_DEV_ERR_SECT_GUID)) { } else if (!efi_guidcmp(sp->guid,
SAL_PLAT_SEL_DEV_ERR_SECT_GUID)) {
platform_err = 1; platform_err = 1;
LOG_INDEX_ADD_SECT_PTR(slidx->sel_dev_err, sp); LOG_INDEX_ADD_SECT_PTR(slidx->sel_dev_err, sp);
} else if (!efi_guidcmp(sp->guid, SAL_PLAT_PCI_BUS_ERR_SECT_GUID)) { } else if (!efi_guidcmp(sp->guid,
SAL_PLAT_PCI_BUS_ERR_SECT_GUID)) {
platform_err = 1; platform_err = 1;
LOG_INDEX_ADD_SECT_PTR(slidx->pci_bus_err, sp); LOG_INDEX_ADD_SECT_PTR(slidx->pci_bus_err, sp);
} else if (!efi_guidcmp(sp->guid, SAL_PLAT_SMBIOS_DEV_ERR_SECT_GUID)) { } else if (!efi_guidcmp(sp->guid,
SAL_PLAT_SMBIOS_DEV_ERR_SECT_GUID)) {
platform_err = 1; platform_err = 1;
LOG_INDEX_ADD_SECT_PTR(slidx->smbios_dev_err, sp); LOG_INDEX_ADD_SECT_PTR(slidx->smbios_dev_err, sp);
} else if (!efi_guidcmp(sp->guid, SAL_PLAT_PCI_COMP_ERR_SECT_GUID)) { } else if (!efi_guidcmp(sp->guid,
SAL_PLAT_PCI_COMP_ERR_SECT_GUID)) {
platform_err = 1; platform_err = 1;
LOG_INDEX_ADD_SECT_PTR(slidx->pci_comp_err, sp); LOG_INDEX_ADD_SECT_PTR(slidx->pci_comp_err, sp);
} else if (!efi_guidcmp(sp->guid, SAL_PLAT_SPECIFIC_ERR_SECT_GUID)) { } else if (!efi_guidcmp(sp->guid,
SAL_PLAT_SPECIFIC_ERR_SECT_GUID)) {
platform_err = 1; platform_err = 1;
LOG_INDEX_ADD_SECT_PTR(slidx->plat_specific_err, sp); LOG_INDEX_ADD_SECT_PTR(slidx->plat_specific_err, sp);
} else if (!efi_guidcmp(sp->guid, SAL_PLAT_HOST_CTLR_ERR_SECT_GUID)) { } else if (!efi_guidcmp(sp->guid,
SAL_PLAT_HOST_CTLR_ERR_SECT_GUID)) {
platform_err = 1; platform_err = 1;
LOG_INDEX_ADD_SECT_PTR(slidx->host_ctlr_err, sp); LOG_INDEX_ADD_SECT_PTR(slidx->host_ctlr_err, sp);
} else if (!efi_guidcmp(sp->guid, SAL_PLAT_BUS_ERR_SECT_GUID)) { } else if (!efi_guidcmp(sp->guid,
SAL_PLAT_BUS_ERR_SECT_GUID)) {
platform_err = 1; platform_err = 1;
LOG_INDEX_ADD_SECT_PTR(slidx->plat_bus_err, sp); LOG_INDEX_ADD_SECT_PTR(slidx->plat_bus_err, sp);
} else { } else {
@ -253,15 +261,16 @@ mca_make_slidx(void *buffer, slidx_table_t *slidx)
* Return value: * Return value:
* 0 on Success / -ENOMEM on Failure * 0 on Success / -ENOMEM on Failure
*/ */
static int static int
init_record_index_pools(void) init_record_index_pools(void)
{ {
int i; int i;
int rec_max_size; /* Maximum size of SAL error records */ int rec_max_size; /* Maximum size of SAL error records */
int sect_min_size; /* Minimum size of SAL error sections */ int sect_min_size; /* Minimum size of SAL error sections */
/* minimum size table of each section */ /* minimum size table of each section */
static int sal_log_sect_min_sizes[] = { static int sal_log_sect_min_sizes[] = {
sizeof(sal_log_processor_info_t) + sizeof(sal_processor_static_info_t), sizeof(sal_log_processor_info_t)
+ sizeof(sal_processor_static_info_t),
sizeof(sal_log_mem_dev_err_info_t), sizeof(sal_log_mem_dev_err_info_t),
sizeof(sal_log_sel_dev_err_info_t), sizeof(sal_log_sel_dev_err_info_t),
sizeof(sal_log_pci_bus_err_info_t), sizeof(sal_log_pci_bus_err_info_t),
@ -294,7 +303,8 @@ init_record_index_pools(void)
/* - 3 - */ /* - 3 - */
slidx_pool.max_idx = (rec_max_size/sect_min_size) * 2 + 1; slidx_pool.max_idx = (rec_max_size/sect_min_size) * 2 + 1;
slidx_pool.buffer = (slidx_list_t *) kmalloc(slidx_pool.max_idx * sizeof(slidx_list_t), GFP_KERNEL); slidx_pool.buffer = (slidx_list_t *)
kmalloc(slidx_pool.max_idx * sizeof(slidx_list_t), GFP_KERNEL);
return slidx_pool.buffer ? 0 : -ENOMEM; return slidx_pool.buffer ? 0 : -ENOMEM;
} }
@ -308,6 +318,7 @@ init_record_index_pools(void)
* is_mca_global - Check whether this MCA is global or not * is_mca_global - Check whether this MCA is global or not
* @peidx: pointer of index of processor error section * @peidx: pointer of index of processor error section
* @pbci: pointer to pal_bus_check_info_t * @pbci: pointer to pal_bus_check_info_t
* @sos: pointer to hand off struct between SAL and OS
* *
* Return value: * Return value:
* MCA_IS_LOCAL / MCA_IS_GLOBAL * MCA_IS_LOCAL / MCA_IS_GLOBAL
@ -317,11 +328,12 @@ static mca_type_t
is_mca_global(peidx_table_t *peidx, pal_bus_check_info_t *pbci, is_mca_global(peidx_table_t *peidx, pal_bus_check_info_t *pbci,
struct ia64_sal_os_state *sos) struct ia64_sal_os_state *sos)
{ {
pal_processor_state_info_t *psp = (pal_processor_state_info_t*)peidx_psp(peidx); pal_processor_state_info_t *psp =
(pal_processor_state_info_t*)peidx_psp(peidx);
/* /*
* PAL can request a rendezvous, if the MCA has a global scope. * PAL can request a rendezvous, if the MCA has a global scope.
* If "rz_always" flag is set, SAL requests MCA rendezvous * If "rz_always" flag is set, SAL requests MCA rendezvous
* in spite of global MCA. * in spite of global MCA.
* Therefore it is local MCA when rendezvous has not been requested. * Therefore it is local MCA when rendezvous has not been requested.
* Failed to rendezvous, the system must be down. * Failed to rendezvous, the system must be down.
@ -381,13 +393,15 @@ is_mca_global(peidx_table_t *peidx, pal_bus_check_info_t *pbci,
* @slidx: pointer of index of SAL error record * @slidx: pointer of index of SAL error record
* @peidx: pointer of index of processor error section * @peidx: pointer of index of processor error section
* @pbci: pointer of pal_bus_check_info * @pbci: pointer of pal_bus_check_info
* @sos: pointer to hand off struct between SAL and OS
* *
* Return value: * Return value:
* 1 on Success / 0 on Failure * 1 on Success / 0 on Failure
*/ */
static int static int
recover_from_read_error(slidx_table_t *slidx, peidx_table_t *peidx, pal_bus_check_info_t *pbci, recover_from_read_error(slidx_table_t *slidx,
peidx_table_t *peidx, pal_bus_check_info_t *pbci,
struct ia64_sal_os_state *sos) struct ia64_sal_os_state *sos)
{ {
sal_log_mod_error_info_t *smei; sal_log_mod_error_info_t *smei;
@ -453,24 +467,28 @@ recover_from_read_error(slidx_table_t *slidx, peidx_table_t *peidx, pal_bus_chec
* @slidx: pointer of index of SAL error record * @slidx: pointer of index of SAL error record
* @peidx: pointer of index of processor error section * @peidx: pointer of index of processor error section
* @pbci: pointer of pal_bus_check_info * @pbci: pointer of pal_bus_check_info
* @sos: pointer to hand off struct between SAL and OS
* *
* Return value: * Return value:
* 1 on Success / 0 on Failure * 1 on Success / 0 on Failure
*/ */
static int static int
recover_from_platform_error(slidx_table_t *slidx, peidx_table_t *peidx, pal_bus_check_info_t *pbci, recover_from_platform_error(slidx_table_t *slidx, peidx_table_t *peidx,
pal_bus_check_info_t *pbci,
struct ia64_sal_os_state *sos) struct ia64_sal_os_state *sos)
{ {
int status = 0; int status = 0;
pal_processor_state_info_t *psp = (pal_processor_state_info_t*)peidx_psp(peidx); pal_processor_state_info_t *psp =
(pal_processor_state_info_t*)peidx_psp(peidx);
if (psp->bc && pbci->eb && pbci->bsi == 0) { if (psp->bc && pbci->eb && pbci->bsi == 0) {
switch(pbci->type) { switch(pbci->type) {
case 1: /* partial read */ case 1: /* partial read */
case 3: /* full line(cpu) read */ case 3: /* full line(cpu) read */
case 9: /* I/O space read */ case 9: /* I/O space read */
status = recover_from_read_error(slidx, peidx, pbci, sos); status = recover_from_read_error(slidx, peidx, pbci,
sos);
break; break;
case 0: /* unknown */ case 0: /* unknown */
case 2: /* partial write */ case 2: /* partial write */
@ -481,7 +499,8 @@ recover_from_platform_error(slidx_table_t *slidx, peidx_table_t *peidx, pal_bus_
case 8: /* write coalescing transactions */ case 8: /* write coalescing transactions */
case 10: /* I/O space write */ case 10: /* I/O space write */
case 11: /* inter-processor interrupt message(IPI) */ case 11: /* inter-processor interrupt message(IPI) */
case 12: /* interrupt acknowledge or external task priority cycle */ case 12: /* interrupt acknowledge or
external task priority cycle */
default: default:
break; break;
} }
@ -496,6 +515,7 @@ recover_from_platform_error(slidx_table_t *slidx, peidx_table_t *peidx, pal_bus_
* @slidx: pointer of index of SAL error record * @slidx: pointer of index of SAL error record
* @peidx: pointer of index of processor error section * @peidx: pointer of index of processor error section
* @pbci: pointer of pal_bus_check_info * @pbci: pointer of pal_bus_check_info
* @sos: pointer to hand off struct between SAL and OS
* *
* Return value: * Return value:
* 1 on Success / 0 on Failure * 1 on Success / 0 on Failure
@ -509,15 +529,17 @@ recover_from_platform_error(slidx_table_t *slidx, peidx_table_t *peidx, pal_bus_
*/ */
static int static int
recover_from_processor_error(int platform, slidx_table_t *slidx, peidx_table_t *peidx, pal_bus_check_info_t *pbci, recover_from_processor_error(int platform, slidx_table_t *slidx,
peidx_table_t *peidx, pal_bus_check_info_t *pbci,
struct ia64_sal_os_state *sos) struct ia64_sal_os_state *sos)
{ {
pal_processor_state_info_t *psp = (pal_processor_state_info_t*)peidx_psp(peidx); pal_processor_state_info_t *psp =
(pal_processor_state_info_t*)peidx_psp(peidx);
/* /*
* We cannot recover errors with other than bus_check. * We cannot recover errors with other than bus_check.
*/ */
if (psp->cc || psp->rc || psp->uc) if (psp->cc || psp->rc || psp->uc)
return 0; return 0;
/* /*
@ -546,10 +568,10 @@ recover_from_processor_error(int platform, slidx_table_t *slidx, peidx_table_t *
* (e.g. a load from poisoned memory) * (e.g. a load from poisoned memory)
* This means "there are some platform errors". * This means "there are some platform errors".
*/ */
if (platform) if (platform)
return recover_from_platform_error(slidx, peidx, pbci, sos); return recover_from_platform_error(slidx, peidx, pbci, sos);
/* /*
* On account of strange SAL error record, we cannot recover. * On account of strange SAL error record, we cannot recover.
*/ */
return 0; return 0;
} }
@ -557,14 +579,14 @@ recover_from_processor_error(int platform, slidx_table_t *slidx, peidx_table_t *
/** /**
* mca_try_to_recover - Try to recover from MCA * mca_try_to_recover - Try to recover from MCA
* @rec: pointer to a SAL error record * @rec: pointer to a SAL error record
* @sos: pointer to hand off struct between SAL and OS
* *
* Return value: * Return value:
* 1 on Success / 0 on Failure * 1 on Success / 0 on Failure
*/ */
static int static int
mca_try_to_recover(void *rec, mca_try_to_recover(void *rec, struct ia64_sal_os_state *sos)
struct ia64_sal_os_state *sos)
{ {
int platform_err; int platform_err;
int n_proc_err; int n_proc_err;
@ -588,7 +610,8 @@ mca_try_to_recover(void *rec,
} }
/* Make index of processor error section */ /* Make index of processor error section */
mca_make_peidx((sal_log_processor_info_t*)slidx_first_entry(&slidx.proc_err)->hdr, &peidx); mca_make_peidx((sal_log_processor_info_t*)
slidx_first_entry(&slidx.proc_err)->hdr, &peidx);
/* Extract Processor BUS_CHECK[0] */ /* Extract Processor BUS_CHECK[0] */
*((u64*)&pbci) = peidx_check_info(&peidx, bus_check, 0); *((u64*)&pbci) = peidx_check_info(&peidx, bus_check, 0);
@ -598,7 +621,8 @@ mca_try_to_recover(void *rec,
return 0; return 0;
/* Try to recover a processor error */ /* Try to recover a processor error */
return recover_from_processor_error(platform_err, &slidx, &peidx, &pbci, sos); return recover_from_processor_error(platform_err, &slidx, &peidx,
&pbci, sos);
} }
/* /*
@ -611,7 +635,7 @@ int __init mca_external_handler_init(void)
return -ENOMEM; return -ENOMEM;
/* register external mca handlers */ /* register external mca handlers */
if (ia64_reg_MCA_extension(mca_try_to_recover)){ if (ia64_reg_MCA_extension(mca_try_to_recover)) {
printk(KERN_ERR "ia64_reg_MCA_extension failed.\n"); printk(KERN_ERR "ia64_reg_MCA_extension failed.\n");
kfree(slidx_pool.buffer); kfree(slidx_pool.buffer);
return -EFAULT; return -EFAULT;

View file

@ -6,7 +6,7 @@
* Copyright (C) Hidetoshi Seto (seto.hidetoshi@jp.fujitsu.com) * Copyright (C) Hidetoshi Seto (seto.hidetoshi@jp.fujitsu.com)
*/ */
/* /*
* Processor error section: * Processor error section:
* *
* +-sal_log_processor_info_t *info-------------+ * +-sal_log_processor_info_t *info-------------+
* | sal_log_section_hdr_t header; | * | sal_log_section_hdr_t header; |

View file

@ -13,45 +13,45 @@
#include <asm/ptrace.h> #include <asm/ptrace.h>
GLOBAL_ENTRY(mca_handler_bhhook) GLOBAL_ENTRY(mca_handler_bhhook)
invala // clear RSE ? invala // clear RSE ?
;; // ;;
cover // cover
;; // ;;
clrrrb // clrrrb
;; ;;
alloc r16=ar.pfs,0,2,1,0 // make a new frame alloc r16=ar.pfs,0,2,1,0 // make a new frame
;; ;;
mov ar.rsc=0 mov ar.rsc=0
;; ;;
mov r13=IA64_KR(CURRENT) // current task pointer mov r13=IA64_KR(CURRENT) // current task pointer
;; ;;
mov r2=r13 mov r2=r13
;; ;;
addl r22=IA64_RBS_OFFSET,r2 addl r22=IA64_RBS_OFFSET,r2
;; ;;
mov ar.bspstore=r22 mov ar.bspstore=r22
;; ;;
addl sp=IA64_STK_OFFSET-IA64_PT_REGS_SIZE,r2 addl sp=IA64_STK_OFFSET-IA64_PT_REGS_SIZE,r2
;; ;;
adds r2=IA64_TASK_THREAD_ON_USTACK_OFFSET,r13 adds r2=IA64_TASK_THREAD_ON_USTACK_OFFSET,r13
;; ;;
st1 [r2]=r0 // clear current->thread.on_ustack flag st1 [r2]=r0 // clear current->thread.on_ustack flag
mov loc0=r16 mov loc0=r16
movl loc1=mca_handler_bh // recovery C function movl loc1=mca_handler_bh // recovery C function
;; ;;
mov out0=r8 // poisoned address mov out0=r8 // poisoned address
mov b6=loc1 mov b6=loc1
;; ;;
mov loc1=rp mov loc1=rp
;; ;;
ssm psr.i ssm psr.i
;; ;;
br.call.sptk.many rp=b6 // does not return ... br.call.sptk.many rp=b6 // does not return ...
;; ;;
mov ar.pfs=loc0 mov ar.pfs=loc0
mov rp=loc1 mov rp=loc1
;; ;;
mov r8=r0 mov r8=r0
br.ret.sptk.many rp br.ret.sptk.many rp
;; ;;
END(mca_handler_bhhook) END(mca_handler_bhhook)

View file

@ -574,7 +574,7 @@ pfm_protect_ctx_ctxsw(pfm_context_t *x)
return 0UL; return 0UL;
} }
static inline unsigned long static inline void
pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f) pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
{ {
spin_unlock(&(x)->ctx_lock); spin_unlock(&(x)->ctx_lock);

View file

@ -252,7 +252,7 @@ hp_zx1_configure (void)
readl(hp->ioc_regs+HP_ZX1_PDIR_BASE); readl(hp->ioc_regs+HP_ZX1_PDIR_BASE);
writel(hp->io_tlb_ps, hp->ioc_regs+HP_ZX1_TCNFG); writel(hp->io_tlb_ps, hp->ioc_regs+HP_ZX1_TCNFG);
readl(hp->ioc_regs+HP_ZX1_TCNFG); readl(hp->ioc_regs+HP_ZX1_TCNFG);
writel(~(HP_ZX1_IOVA_SIZE-1), hp->ioc_regs+HP_ZX1_IMASK); writel((unsigned int)(~(HP_ZX1_IOVA_SIZE-1)), hp->ioc_regs+HP_ZX1_IMASK);
readl(hp->ioc_regs+HP_ZX1_IMASK); readl(hp->ioc_regs+HP_ZX1_IMASK);
writel(hp->iova_base|1, hp->ioc_regs+HP_ZX1_IBASE); writel(hp->iova_base|1, hp->ioc_regs+HP_ZX1_IBASE);
readl(hp->ioc_regs+HP_ZX1_IBASE); readl(hp->ioc_regs+HP_ZX1_IBASE);