sched: Fix TASK_WAKING vs fork deadlock
Oleg noticed a few races with the TASK_WAKING usage on fork. - since TASK_WAKING is basically a spinlock, it should be IRQ safe - since we set TASK_WAKING (*) without holding rq->lock it could be there still is a rq->lock holder, thereby not actually providing full serialization. (*) in fact we clear PF_STARTING, which in effect enables TASK_WAKING. Cure the second issue by not setting TASK_WAKING in sched_fork(), but only temporarily in wake_up_new_task() while calling select_task_rq(). Cure the first by holding rq->lock around the select_task_rq() call, this will disable IRQs, this however requires that we push down the rq->lock release into select_task_rq_fair()'s cgroup stuff. Because select_task_rq_fair() still needs to drop the rq->lock we cannot fully get rid of TASK_WAKING. Reported-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <new-submission> Signed-off-by: Ingo Molnar <mingo@elte.hu>
This commit is contained in:
parent
9084bb8246
commit
0017d73509
5 changed files with 36 additions and 48 deletions
|
@ -1046,7 +1046,8 @@ struct sched_class {
|
|||
void (*put_prev_task) (struct rq *rq, struct task_struct *p);
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
|
||||
int (*select_task_rq)(struct rq *rq, struct task_struct *p,
|
||||
int sd_flag, int flags);
|
||||
|
||||
void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
|
||||
void (*post_schedule) (struct rq *this_rq);
|
||||
|
|
|
@ -916,14 +916,10 @@ static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
|
|||
/*
|
||||
* Check whether the task is waking, we use this to synchronize against
|
||||
* ttwu() so that task_cpu() reports a stable number.
|
||||
*
|
||||
* We need to make an exception for PF_STARTING tasks because the fork
|
||||
* path might require task_rq_lock() to work, eg. it can call
|
||||
* set_cpus_allowed_ptr() from the cpuset clone_ns code.
|
||||
*/
|
||||
static inline int task_is_waking(struct task_struct *p)
|
||||
{
|
||||
return unlikely((p->state == TASK_WAKING) && !(p->flags & PF_STARTING));
|
||||
return unlikely(p->state == TASK_WAKING);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -2320,9 +2316,9 @@ static int select_fallback_rq(int cpu, struct task_struct *p)
|
|||
* The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
|
||||
*/
|
||||
static inline
|
||||
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
|
||||
int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
|
||||
{
|
||||
int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
|
||||
int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
|
||||
|
||||
/*
|
||||
* In order not to call set_task_cpu() on a blocking task we need
|
||||
|
@ -2393,17 +2389,10 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state,
|
|||
if (p->sched_class->task_waking)
|
||||
p->sched_class->task_waking(rq, p);
|
||||
|
||||
__task_rq_unlock(rq);
|
||||
|
||||
cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
|
||||
if (cpu != orig_cpu) {
|
||||
/*
|
||||
* Since we migrate the task without holding any rq->lock,
|
||||
* we need to be careful with task_rq_lock(), since that
|
||||
* might end up locking an invalid rq.
|
||||
*/
|
||||
cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
|
||||
if (cpu != orig_cpu)
|
||||
set_task_cpu(p, cpu);
|
||||
}
|
||||
__task_rq_unlock(rq);
|
||||
|
||||
rq = cpu_rq(cpu);
|
||||
raw_spin_lock(&rq->lock);
|
||||
|
@ -2530,11 +2519,11 @@ void sched_fork(struct task_struct *p, int clone_flags)
|
|||
|
||||
__sched_fork(p);
|
||||
/*
|
||||
* We mark the process as waking here. This guarantees that
|
||||
* We mark the process as running here. This guarantees that
|
||||
* nobody will actually run it, and a signal or other external
|
||||
* event cannot wake it up and insert it on the runqueue either.
|
||||
*/
|
||||
p->state = TASK_WAKING;
|
||||
p->state = TASK_RUNNING;
|
||||
|
||||
/*
|
||||
* Revert to default priority/policy on fork if requested.
|
||||
|
@ -2601,28 +2590,25 @@ void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
|
|||
int cpu __maybe_unused = get_cpu();
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
rq = task_rq_lock(p, &flags);
|
||||
p->state = TASK_WAKING;
|
||||
|
||||
/*
|
||||
* Fork balancing, do it here and not earlier because:
|
||||
* - cpus_allowed can change in the fork path
|
||||
* - any previously selected cpu might disappear through hotplug
|
||||
*
|
||||
* We still have TASK_WAKING but PF_STARTING is gone now, meaning
|
||||
* ->cpus_allowed is stable, we have preemption disabled, meaning
|
||||
* cpu_online_mask is stable.
|
||||
* We set TASK_WAKING so that select_task_rq() can drop rq->lock
|
||||
* without people poking at ->cpus_allowed.
|
||||
*/
|
||||
cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
|
||||
cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
|
||||
set_task_cpu(p, cpu);
|
||||
|
||||
p->state = TASK_RUNNING;
|
||||
task_rq_unlock(rq, &flags);
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Since the task is not on the rq and we still have TASK_WAKING set
|
||||
* nobody else will migrate this task.
|
||||
*/
|
||||
rq = cpu_rq(cpu);
|
||||
raw_spin_lock_irqsave(&rq->lock, flags);
|
||||
|
||||
BUG_ON(p->state != TASK_WAKING);
|
||||
p->state = TASK_RUNNING;
|
||||
rq = task_rq_lock(p, &flags);
|
||||
activate_task(rq, p, 0);
|
||||
trace_sched_wakeup_new(rq, p, 1);
|
||||
check_preempt_curr(rq, p, WF_FORK);
|
||||
|
@ -3068,19 +3054,15 @@ void sched_exec(void)
|
|||
{
|
||||
struct task_struct *p = current;
|
||||
struct migration_req req;
|
||||
int dest_cpu, this_cpu;
|
||||
unsigned long flags;
|
||||
struct rq *rq;
|
||||
|
||||
this_cpu = get_cpu();
|
||||
dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
|
||||
if (dest_cpu == this_cpu) {
|
||||
put_cpu();
|
||||
return;
|
||||
}
|
||||
int dest_cpu;
|
||||
|
||||
rq = task_rq_lock(p, &flags);
|
||||
put_cpu();
|
||||
dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
|
||||
if (dest_cpu == smp_processor_id())
|
||||
goto unlock;
|
||||
|
||||
/*
|
||||
* select_task_rq() can race against ->cpus_allowed
|
||||
*/
|
||||
|
@ -3098,6 +3080,7 @@ void sched_exec(void)
|
|||
|
||||
return;
|
||||
}
|
||||
unlock:
|
||||
task_rq_unlock(rq, &flags);
|
||||
}
|
||||
|
||||
|
|
|
@ -1423,7 +1423,8 @@ select_idle_sibling(struct task_struct *p, struct sched_domain *sd, int target)
|
|||
*
|
||||
* preempt must be disabled.
|
||||
*/
|
||||
static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
|
||||
static int
|
||||
select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags)
|
||||
{
|
||||
struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
|
||||
int cpu = smp_processor_id();
|
||||
|
@ -1521,8 +1522,11 @@ static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flag
|
|||
cpumask_weight(sched_domain_span(sd))))
|
||||
tmp = affine_sd;
|
||||
|
||||
if (tmp)
|
||||
if (tmp) {
|
||||
raw_spin_unlock(&rq->lock);
|
||||
update_shares(tmp);
|
||||
raw_spin_lock(&rq->lock);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
|
|
|
@ -6,7 +6,8 @@
|
|||
*/
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
static int select_task_rq_idle(struct task_struct *p, int sd_flag, int flags)
|
||||
static int
|
||||
select_task_rq_idle(struct rq *rq, struct task_struct *p, int sd_flag, int flags)
|
||||
{
|
||||
return task_cpu(p); /* IDLE tasks as never migrated */
|
||||
}
|
||||
|
|
|
@ -948,10 +948,9 @@ static void yield_task_rt(struct rq *rq)
|
|||
#ifdef CONFIG_SMP
|
||||
static int find_lowest_rq(struct task_struct *task);
|
||||
|
||||
static int select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
|
||||
static int
|
||||
select_task_rq_rt(struct rq *rq, struct task_struct *p, int sd_flag, int flags)
|
||||
{
|
||||
struct rq *rq = task_rq(p);
|
||||
|
||||
if (sd_flag != SD_BALANCE_WAKE)
|
||||
return smp_processor_id();
|
||||
|
||||
|
|
Loading…
Reference in a new issue