kernel-fxtec-pro1x/samples/seccomp/bpf-direct.c

192 lines
4.9 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 08:07:57 -06:00
// SPDX-License-Identifier: GPL-2.0
Documentation: prctl/seccomp_filter Documents how system call filtering using Berkeley Packet Filter programs works and how it may be used. Includes an example for x86 and a semi-generic example using a macro-based code generator. Acked-by: Eric Paris <eparis@redhat.com> Signed-off-by: Will Drewry <wad@chromium.org> Acked-by: Kees Cook <keescook@chromium.org> v18: - added acked by - update no new privs numbers v17: - remove @compat note and add Pitfalls section for arch checking (keescook@chromium.org) v16: - v15: - v14: - rebase/nochanges v13: - rebase on to 88ebdda6159ffc15699f204c33feb3e431bf9bdc v12: - comment on the ptrace_event use - update arch support comment - note the behavior of SECCOMP_RET_DATA when there are multiple filters (keescook@chromium.org) - lots of samples/ clean up incl 64-bit bpf-direct support (markus@chromium.org) - rebase to linux-next v11: - overhaul return value language, updates (keescook@chromium.org) - comment on do_exit(SIGSYS) v10: - update for SIGSYS - update for new seccomp_data layout - update for ptrace option use v9: - updated bpf-direct.c for SIGILL v8: - add PR_SET_NO_NEW_PRIVS to the samples. v7: - updated for all the new stuff in v7: TRAP, TRACE - only talk about PR_SET_SECCOMP now - fixed bad JLE32 check (coreyb@linux.vnet.ibm.com) - adds dropper.c: a simple system call disabler v6: - tweak the language to note the requirement of PR_SET_NO_NEW_PRIVS being called prior to use. (luto@mit.edu) v5: - update sample to use system call arguments - adds a "fancy" example using a macro-based generator - cleaned up bpf in the sample - update docs to mention arguments - fix prctl value (eparis@redhat.com) - language cleanup (rdunlap@xenotime.net) v4: - update for no_new_privs use - minor tweaks v3: - call out BPF <-> Berkeley Packet Filter (rdunlap@xenotime.net) - document use of tentative always-unprivileged - guard sample compilation for i386 and x86_64 v2: - move code to samples (corbet@lwn.net) Signed-off-by: James Morris <james.l.morris@oracle.com>
2012-04-12 15:48:04 -06:00
/*
* Seccomp filter example for x86 (32-bit and 64-bit) with BPF macros
*
* Copyright (c) 2012 The Chromium OS Authors <chromium-os-dev@chromium.org>
* Author: Will Drewry <wad@chromium.org>
*
* The code may be used by anyone for any purpose,
* and can serve as a starting point for developing
* applications using prctl(PR_SET_SECCOMP, 2, ...).
*/
#if defined(__i386__) || defined(__x86_64__)
#define SUPPORTED_ARCH 1
#endif
#if defined(SUPPORTED_ARCH)
Documentation: prctl/seccomp_filter Documents how system call filtering using Berkeley Packet Filter programs works and how it may be used. Includes an example for x86 and a semi-generic example using a macro-based code generator. Acked-by: Eric Paris <eparis@redhat.com> Signed-off-by: Will Drewry <wad@chromium.org> Acked-by: Kees Cook <keescook@chromium.org> v18: - added acked by - update no new privs numbers v17: - remove @compat note and add Pitfalls section for arch checking (keescook@chromium.org) v16: - v15: - v14: - rebase/nochanges v13: - rebase on to 88ebdda6159ffc15699f204c33feb3e431bf9bdc v12: - comment on the ptrace_event use - update arch support comment - note the behavior of SECCOMP_RET_DATA when there are multiple filters (keescook@chromium.org) - lots of samples/ clean up incl 64-bit bpf-direct support (markus@chromium.org) - rebase to linux-next v11: - overhaul return value language, updates (keescook@chromium.org) - comment on do_exit(SIGSYS) v10: - update for SIGSYS - update for new seccomp_data layout - update for ptrace option use v9: - updated bpf-direct.c for SIGILL v8: - add PR_SET_NO_NEW_PRIVS to the samples. v7: - updated for all the new stuff in v7: TRAP, TRACE - only talk about PR_SET_SECCOMP now - fixed bad JLE32 check (coreyb@linux.vnet.ibm.com) - adds dropper.c: a simple system call disabler v6: - tweak the language to note the requirement of PR_SET_NO_NEW_PRIVS being called prior to use. (luto@mit.edu) v5: - update sample to use system call arguments - adds a "fancy" example using a macro-based generator - cleaned up bpf in the sample - update docs to mention arguments - fix prctl value (eparis@redhat.com) - language cleanup (rdunlap@xenotime.net) v4: - update for no_new_privs use - minor tweaks v3: - call out BPF <-> Berkeley Packet Filter (rdunlap@xenotime.net) - document use of tentative always-unprivileged - guard sample compilation for i386 and x86_64 v2: - move code to samples (corbet@lwn.net) Signed-off-by: James Morris <james.l.morris@oracle.com>
2012-04-12 15:48:04 -06:00
#define __USE_GNU 1
#define _GNU_SOURCE 1
#include <linux/types.h>
#include <linux/filter.h>
#include <linux/seccomp.h>
#include <linux/unistd.h>
#include <signal.h>
#include <stdio.h>
#include <stddef.h>
#include <string.h>
#include <sys/prctl.h>
#include <unistd.h>
#define syscall_arg(_n) (offsetof(struct seccomp_data, args[_n]))
#define syscall_nr (offsetof(struct seccomp_data, nr))
#if defined(__i386__)
#define REG_RESULT REG_EAX
#define REG_SYSCALL REG_EAX
#define REG_ARG0 REG_EBX
#define REG_ARG1 REG_ECX
#define REG_ARG2 REG_EDX
#define REG_ARG3 REG_ESI
#define REG_ARG4 REG_EDI
#define REG_ARG5 REG_EBP
#elif defined(__x86_64__)
#define REG_RESULT REG_RAX
#define REG_SYSCALL REG_RAX
#define REG_ARG0 REG_RDI
#define REG_ARG1 REG_RSI
#define REG_ARG2 REG_RDX
#define REG_ARG3 REG_R10
#define REG_ARG4 REG_R8
#define REG_ARG5 REG_R9
#endif
#ifndef PR_SET_NO_NEW_PRIVS
#define PR_SET_NO_NEW_PRIVS 38
#endif
#ifndef SYS_SECCOMP
#define SYS_SECCOMP 1
#endif
static void emulator(int nr, siginfo_t *info, void *void_context)
{
ucontext_t *ctx = (ucontext_t *)(void_context);
int syscall;
char *buf;
ssize_t bytes;
size_t len;
if (info->si_code != SYS_SECCOMP)
return;
if (!ctx)
return;
syscall = ctx->uc_mcontext.gregs[REG_SYSCALL];
buf = (char *) ctx->uc_mcontext.gregs[REG_ARG1];
len = (size_t) ctx->uc_mcontext.gregs[REG_ARG2];
if (syscall != __NR_write)
return;
if (ctx->uc_mcontext.gregs[REG_ARG0] != STDERR_FILENO)
return;
/* Redirect stderr messages to stdout. Doesn't handle EINTR, etc */
ctx->uc_mcontext.gregs[REG_RESULT] = -1;
if (write(STDOUT_FILENO, "[ERR] ", 6) > 0) {
bytes = write(STDOUT_FILENO, buf, len);
ctx->uc_mcontext.gregs[REG_RESULT] = bytes;
}
return;
}
static int install_emulator(void)
{
struct sigaction act;
sigset_t mask;
memset(&act, 0, sizeof(act));
sigemptyset(&mask);
sigaddset(&mask, SIGSYS);
act.sa_sigaction = &emulator;
act.sa_flags = SA_SIGINFO;
if (sigaction(SIGSYS, &act, NULL) < 0) {
perror("sigaction");
return -1;
}
if (sigprocmask(SIG_UNBLOCK, &mask, NULL)) {
perror("sigprocmask");
return -1;
}
return 0;
}
static int install_filter(void)
{
struct sock_filter filter[] = {
/* Grab the system call number */
BPF_STMT(BPF_LD+BPF_W+BPF_ABS, syscall_nr),
/* Jump table for the allowed syscalls */
BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, __NR_rt_sigreturn, 0, 1),
BPF_STMT(BPF_RET+BPF_K, SECCOMP_RET_ALLOW),
#ifdef __NR_sigreturn
BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, __NR_sigreturn, 0, 1),
BPF_STMT(BPF_RET+BPF_K, SECCOMP_RET_ALLOW),
#endif
BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, __NR_exit_group, 0, 1),
BPF_STMT(BPF_RET+BPF_K, SECCOMP_RET_ALLOW),
BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, __NR_exit, 0, 1),
BPF_STMT(BPF_RET+BPF_K, SECCOMP_RET_ALLOW),
BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, __NR_read, 1, 0),
BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, __NR_write, 3, 2),
/* Check that read is only using stdin. */
BPF_STMT(BPF_LD+BPF_W+BPF_ABS, syscall_arg(0)),
BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, STDIN_FILENO, 4, 0),
BPF_STMT(BPF_RET+BPF_K, SECCOMP_RET_KILL),
/* Check that write is only using stdout */
BPF_STMT(BPF_LD+BPF_W+BPF_ABS, syscall_arg(0)),
BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, STDOUT_FILENO, 1, 0),
/* Trap attempts to write to stderr */
BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, STDERR_FILENO, 1, 2),
BPF_STMT(BPF_RET+BPF_K, SECCOMP_RET_ALLOW),
BPF_STMT(BPF_RET+BPF_K, SECCOMP_RET_TRAP),
BPF_STMT(BPF_RET+BPF_K, SECCOMP_RET_KILL),
};
struct sock_fprog prog = {
.len = (unsigned short)(sizeof(filter)/sizeof(filter[0])),
.filter = filter,
};
if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0)) {
perror("prctl(NO_NEW_PRIVS)");
return 1;
}
if (prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog)) {
perror("prctl");
return 1;
}
return 0;
}
#define payload(_c) (_c), sizeof((_c))
int main(int argc, char **argv)
{
char buf[4096];
ssize_t bytes = 0;
if (install_emulator())
return 1;
if (install_filter())
return 1;
syscall(__NR_write, STDOUT_FILENO,
payload("OHAI! WHAT IS YOUR NAME? "));
bytes = syscall(__NR_read, STDIN_FILENO, buf, sizeof(buf));
syscall(__NR_write, STDOUT_FILENO, payload("HELLO, "));
syscall(__NR_write, STDOUT_FILENO, buf, bytes);
syscall(__NR_write, STDERR_FILENO,
payload("Error message going to STDERR\n"));
return 0;
}
#else /* SUPPORTED_ARCH */
/*
* This sample is x86-only. Since kernel samples are compiled with the
* host toolchain, a non-x86 host will result in using only the main()
* below.
*/
int main(void)
{
return 1;
}
#endif /* SUPPORTED_ARCH */