kernel-fxtec-pro1x/arch/ppc/syslib/m8260_pci_erratum9.c

455 lines
12 KiB
C
Raw Normal View History

/*
* Workaround for device erratum PCI 9.
* See Motorola's "XPC826xA Family Device Errata Reference."
* The erratum applies to all 8260 family Hip4 processors. It is scheduled
* to be fixed in HiP4 Rev C. Erratum PCI 9 states that a simultaneous PCI
* inbound write transaction and PCI outbound read transaction can result in a
* bus deadlock. The suggested workaround is to use the IDMA controller to
* perform all reads from PCI configuration, memory, and I/O space.
*
* Author: andy_lowe@mvista.com
*
* 2003 (c) MontaVista Software, Inc. This file is licensed under
* the terms of the GNU General Public License version 2. This program
* is licensed "as is" without any warranty of any kind, whether express
* or implied.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/types.h>
#include <linux/string.h>
#include <asm/io.h>
#include <asm/pci-bridge.h>
#include <asm/machdep.h>
#include <asm/byteorder.h>
#include <asm/mpc8260.h>
#include <asm/immap_cpm2.h>
#include <asm/cpm2.h>
#include "m82xx_pci.h"
#ifdef CONFIG_8260_PCI9
/*#include <asm/mpc8260_pci9.h>*/ /* included in asm/io.h */
#define IDMA_XFER_BUF_SIZE 64 /* size of the IDMA transfer buffer */
/* define a structure for the IDMA dpram usage */
typedef struct idma_dpram_s {
idma_t pram; /* IDMA parameter RAM */
u_char xfer_buf[IDMA_XFER_BUF_SIZE]; /* IDMA transfer buffer */
idma_bd_t bd; /* buffer descriptor */
} idma_dpram_t;
/* define offsets relative to start of IDMA dpram */
#define IDMA_XFER_BUF_OFFSET (sizeof(idma_t))
#define IDMA_BD_OFFSET (sizeof(idma_t) + IDMA_XFER_BUF_SIZE)
/* define globals */
static volatile idma_dpram_t *idma_dpram;
/* Exactly one of CONFIG_8260_PCI9_IDMAn must be defined,
* where n is 1, 2, 3, or 4. This selects the IDMA channel used for
* the PCI9 workaround.
*/
#ifdef CONFIG_8260_PCI9_IDMA1
#define IDMA_CHAN 0
#define PROFF_IDMA PROFF_IDMA1_BASE
#define IDMA_PAGE CPM_CR_IDMA1_PAGE
#define IDMA_SBLOCK CPM_CR_IDMA1_SBLOCK
#endif
#ifdef CONFIG_8260_PCI9_IDMA2
#define IDMA_CHAN 1
#define PROFF_IDMA PROFF_IDMA2_BASE
#define IDMA_PAGE CPM_CR_IDMA2_PAGE
#define IDMA_SBLOCK CPM_CR_IDMA2_SBLOCK
#endif
#ifdef CONFIG_8260_PCI9_IDMA3
#define IDMA_CHAN 2
#define PROFF_IDMA PROFF_IDMA3_BASE
#define IDMA_PAGE CPM_CR_IDMA3_PAGE
#define IDMA_SBLOCK CPM_CR_IDMA3_SBLOCK
#endif
#ifdef CONFIG_8260_PCI9_IDMA4
#define IDMA_CHAN 3
#define PROFF_IDMA PROFF_IDMA4_BASE
#define IDMA_PAGE CPM_CR_IDMA4_PAGE
#define IDMA_SBLOCK CPM_CR_IDMA4_SBLOCK
#endif
void idma_pci9_init(void)
{
uint dpram_offset;
volatile idma_t *pram;
volatile im_idma_t *idma_reg;
volatile cpm2_map_t *immap = cpm2_immr;
/* allocate IDMA dpram */
dpram_offset = cpm_dpalloc(sizeof(idma_dpram_t), 64);
idma_dpram = cpm_dpram_addr(dpram_offset);
/* initialize the IDMA parameter RAM */
memset((void *)idma_dpram, 0, sizeof(idma_dpram_t));
pram = &idma_dpram->pram;
pram->ibase = dpram_offset + IDMA_BD_OFFSET;
pram->dpr_buf = dpram_offset + IDMA_XFER_BUF_OFFSET;
pram->ss_max = 32;
pram->dts = 32;
/* initialize the IDMA_BASE pointer to the IDMA parameter RAM */
*((ushort *) &immap->im_dprambase[PROFF_IDMA]) = dpram_offset;
/* initialize the IDMA registers */
idma_reg = (volatile im_idma_t *) &immap->im_sdma.sdma_idsr1;
idma_reg[IDMA_CHAN].idmr = 0; /* mask all IDMA interrupts */
idma_reg[IDMA_CHAN].idsr = 0xff; /* clear all event flags */
printk("<4>Using IDMA%d for MPC8260 device erratum PCI 9 workaround\n",
IDMA_CHAN + 1);
return;
}
/* Use the IDMA controller to transfer data from I/O memory to local RAM.
* The src address must be a physical address suitable for use by the DMA
* controller with no translation. The dst address must be a kernel virtual
* address. The dst address is translated to a physical address via
* virt_to_phys().
* The sinc argument specifies whether or not the source address is incremented
* by the DMA controller. The source address is incremented if and only if sinc
* is non-zero. The destination address is always incremented since the
* destination is always host RAM.
*/
static void
idma_pci9_read(u8 *dst, u8 *src, int bytes, int unit_size, int sinc)
{
unsigned long flags;
volatile idma_t *pram = &idma_dpram->pram;
volatile idma_bd_t *bd = &idma_dpram->bd;
volatile cpm2_map_t *immap = cpm2_immr;
local_irq_save(flags);
/* initialize IDMA parameter RAM for this transfer */
if (sinc)
pram->dcm = IDMA_DCM_DMA_WRAP_64 | IDMA_DCM_SINC
| IDMA_DCM_DINC | IDMA_DCM_SD_MEM2MEM;
else
pram->dcm = IDMA_DCM_DMA_WRAP_64 | IDMA_DCM_DINC
| IDMA_DCM_SD_MEM2MEM;
pram->ibdptr = pram->ibase;
pram->sts = unit_size;
pram->istate = 0;
/* initialize the buffer descriptor */
bd->dst = virt_to_phys(dst);
bd->src = (uint) src;
bd->len = bytes;
bd->flags = IDMA_BD_V | IDMA_BD_W | IDMA_BD_I | IDMA_BD_L | IDMA_BD_DGBL
| IDMA_BD_DBO_BE | IDMA_BD_SBO_BE | IDMA_BD_SDTB;
/* issue the START_IDMA command to the CP */
while (immap->im_cpm.cp_cpcr & CPM_CR_FLG);
immap->im_cpm.cp_cpcr = mk_cr_cmd(IDMA_PAGE, IDMA_SBLOCK, 0,
CPM_CR_START_IDMA) | CPM_CR_FLG;
while (immap->im_cpm.cp_cpcr & CPM_CR_FLG);
/* wait for transfer to complete */
while(bd->flags & IDMA_BD_V);
local_irq_restore(flags);
return;
}
/* Use the IDMA controller to transfer data from I/O memory to local RAM.
* The dst address must be a physical address suitable for use by the DMA
* controller with no translation. The src address must be a kernel virtual
* address. The src address is translated to a physical address via
* virt_to_phys().
* The dinc argument specifies whether or not the dest address is incremented
* by the DMA controller. The source address is incremented if and only if sinc
* is non-zero. The source address is always incremented since the
* source is always host RAM.
*/
static void
idma_pci9_write(u8 *dst, u8 *src, int bytes, int unit_size, int dinc)
{
unsigned long flags;
volatile idma_t *pram = &idma_dpram->pram;
volatile idma_bd_t *bd = &idma_dpram->bd;
volatile cpm2_map_t *immap = cpm2_immr;
local_irq_save(flags);
/* initialize IDMA parameter RAM for this transfer */
if (dinc)
pram->dcm = IDMA_DCM_DMA_WRAP_64 | IDMA_DCM_SINC
| IDMA_DCM_DINC | IDMA_DCM_SD_MEM2MEM;
else
pram->dcm = IDMA_DCM_DMA_WRAP_64 | IDMA_DCM_SINC
| IDMA_DCM_SD_MEM2MEM;
pram->ibdptr = pram->ibase;
pram->sts = unit_size;
pram->istate = 0;
/* initialize the buffer descriptor */
bd->dst = (uint) dst;
bd->src = virt_to_phys(src);
bd->len = bytes;
bd->flags = IDMA_BD_V | IDMA_BD_W | IDMA_BD_I | IDMA_BD_L | IDMA_BD_DGBL
| IDMA_BD_DBO_BE | IDMA_BD_SBO_BE | IDMA_BD_SDTB;
/* issue the START_IDMA command to the CP */
while (immap->im_cpm.cp_cpcr & CPM_CR_FLG);
immap->im_cpm.cp_cpcr = mk_cr_cmd(IDMA_PAGE, IDMA_SBLOCK, 0,
CPM_CR_START_IDMA) | CPM_CR_FLG;
while (immap->im_cpm.cp_cpcr & CPM_CR_FLG);
/* wait for transfer to complete */
while(bd->flags & IDMA_BD_V);
local_irq_restore(flags);
return;
}
/* Same as idma_pci9_read, but 16-bit little-endian byte swapping is performed
* if the unit_size is 2, and 32-bit little-endian byte swapping is performed if
* the unit_size is 4.
*/
static void
idma_pci9_read_le(u8 *dst, u8 *src, int bytes, int unit_size, int sinc)
{
int i;
u8 *p;
idma_pci9_read(dst, src, bytes, unit_size, sinc);
switch(unit_size) {
case 2:
for (i = 0, p = dst; i < bytes; i += 2, p += 2)
swab16s((u16 *) p);
break;
case 4:
for (i = 0, p = dst; i < bytes; i += 4, p += 4)
swab32s((u32 *) p);
break;
default:
break;
}
}
EXPORT_SYMBOL(idma_pci9_init);
EXPORT_SYMBOL(idma_pci9_read);
EXPORT_SYMBOL(idma_pci9_read_le);
static inline int is_pci_mem(unsigned long addr)
{
if (addr >= M82xx_PCI_LOWER_MMIO &&
addr <= M82xx_PCI_UPPER_MMIO)
return 1;
if (addr >= M82xx_PCI_LOWER_MEM &&
addr <= M82xx_PCI_UPPER_MEM)
return 1;
return 0;
}
#define is_pci_mem(pa) ( (pa > 0x80000000) && (pa < 0xc0000000))
int readb(volatile unsigned char *addr)
{
u8 val;
unsigned long pa = iopa((unsigned long) addr);
if (!is_pci_mem(pa))
return in_8(addr);
idma_pci9_read((u8 *)&val, (u8 *)pa, sizeof(val), sizeof(val), 0);
return val;
}
int readw(volatile unsigned short *addr)
{
u16 val;
unsigned long pa = iopa((unsigned long) addr);
if (!is_pci_mem(pa))
return in_le16(addr);
idma_pci9_read((u8 *)&val, (u8 *)pa, sizeof(val), sizeof(val), 0);
return swab16(val);
}
unsigned readl(volatile unsigned *addr)
{
u32 val;
unsigned long pa = iopa((unsigned long) addr);
if (!is_pci_mem(pa))
return in_le32(addr);
idma_pci9_read((u8 *)&val, (u8 *)pa, sizeof(val), sizeof(val), 0);
return swab32(val);
}
int inb(unsigned port)
{
u8 val;
u8 *addr = (u8 *)(port + _IO_BASE);
idma_pci9_read((u8 *)&val, (u8 *)addr, sizeof(val), sizeof(val), 0);
return val;
}
int inw(unsigned port)
{
u16 val;
u8 *addr = (u8 *)(port + _IO_BASE);
idma_pci9_read((u8 *)&val, (u8 *)addr, sizeof(val), sizeof(val), 0);
return swab16(val);
}
unsigned inl(unsigned port)
{
u32 val;
u8 *addr = (u8 *)(port + _IO_BASE);
idma_pci9_read((u8 *)&val, (u8 *)addr, sizeof(val), sizeof(val), 0);
return swab32(val);
}
void insb(unsigned port, void *buf, int ns)
{
u8 *addr = (u8 *)(port + _IO_BASE);
idma_pci9_read((u8 *)buf, (u8 *)addr, ns*sizeof(u8), sizeof(u8), 0);
}
void insw(unsigned port, void *buf, int ns)
{
u8 *addr = (u8 *)(port + _IO_BASE);
idma_pci9_read((u8 *)buf, (u8 *)addr, ns*sizeof(u16), sizeof(u16), 0);
}
void insl(unsigned port, void *buf, int nl)
{
u8 *addr = (u8 *)(port + _IO_BASE);
idma_pci9_read((u8 *)buf, (u8 *)addr, nl*sizeof(u32), sizeof(u32), 0);
}
void *memcpy_fromio(void *dest, unsigned long src, size_t count)
{
unsigned long pa = iopa((unsigned long) src);
if (is_pci_mem(pa))
idma_pci9_read((u8 *)dest, (u8 *)pa, count, 32, 1);
else
memcpy(dest, (void *)src, count);
return dest;
}
EXPORT_SYMBOL(readb);
EXPORT_SYMBOL(readw);
EXPORT_SYMBOL(readl);
EXPORT_SYMBOL(inb);
EXPORT_SYMBOL(inw);
EXPORT_SYMBOL(inl);
EXPORT_SYMBOL(insb);
EXPORT_SYMBOL(insw);
EXPORT_SYMBOL(insl);
EXPORT_SYMBOL(memcpy_fromio);
#endif /* ifdef CONFIG_8260_PCI9 */
/* Indirect PCI routines adapted from arch/ppc/kernel/indirect_pci.c.
* Copyright (C) 1998 Gabriel Paubert.
*/
#ifndef CONFIG_8260_PCI9
#define cfg_read(val, addr, type, op) *val = op((type)(addr))
#else
#define cfg_read(val, addr, type, op) \
idma_pci9_read_le((u8*)(val),(u8*)(addr),sizeof(*(val)),sizeof(*(val)),0)
#endif
#define cfg_write(val, addr, type, op) op((type *)(addr), (val))
static int indirect_write_config(struct pci_bus *pbus, unsigned int devfn, int where,
int size, u32 value)
{
struct pci_controller *hose = pbus->sysdata;
u8 cfg_type = 0;
if (ppc_md.pci_exclude_device)
if (ppc_md.pci_exclude_device(pbus->number, devfn))
return PCIBIOS_DEVICE_NOT_FOUND;
if (hose->set_cfg_type)
if (pbus->number != hose->first_busno)
cfg_type = 1;
out_be32(hose->cfg_addr,
(((where & 0xfc) | cfg_type) << 24) | (devfn << 16)
| ((pbus->number - hose->bus_offset) << 8) | 0x80);
switch (size)
{
case 1:
cfg_write(value, hose->cfg_data + (where & 3), u8, out_8);
break;
case 2:
cfg_write(value, hose->cfg_data + (where & 2), u16, out_le16);
break;
case 4:
cfg_write(value, hose->cfg_data + (where & 0), u32, out_le32);
break;
}
return PCIBIOS_SUCCESSFUL;
}
static int indirect_read_config(struct pci_bus *pbus, unsigned int devfn, int where,
int size, u32 *value)
{
struct pci_controller *hose = pbus->sysdata;
u8 cfg_type = 0;
if (ppc_md.pci_exclude_device)
if (ppc_md.pci_exclude_device(pbus->number, devfn))
return PCIBIOS_DEVICE_NOT_FOUND;
if (hose->set_cfg_type)
if (pbus->number != hose->first_busno)
cfg_type = 1;
out_be32(hose->cfg_addr,
(((where & 0xfc) | cfg_type) << 24) | (devfn << 16)
| ((pbus->number - hose->bus_offset) << 8) | 0x80);
switch (size)
{
case 1:
cfg_read(value, hose->cfg_data + (where & 3), u8 *, in_8);
break;
case 2:
cfg_read(value, hose->cfg_data + (where & 2), u16 *, in_le16);
break;
case 4:
cfg_read(value, hose->cfg_data + (where & 0), u32 *, in_le32);
break;
}
return PCIBIOS_SUCCESSFUL;
}
static struct pci_ops indirect_pci_ops =
{
.read = indirect_read_config,
.write = indirect_write_config,
};
void
setup_m8260_indirect_pci(struct pci_controller* hose, u32 cfg_addr, u32 cfg_data)
{
hose->ops = &indirect_pci_ops;
hose->cfg_addr = (unsigned int *) ioremap(cfg_addr, 4);
hose->cfg_data = (unsigned char *) ioremap(cfg_data, 4);
}