kernel-fxtec-pro1x/kernel/params.c

963 lines
23 KiB
C
Raw Normal View History

/* Helpers for initial module or kernel cmdline parsing
Copyright (C) 2001 Rusty Russell.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/ctype.h>
#ifdef CONFIG_SYSFS
module: add per-module param_lock Add a "param_lock" mutex to each module, and update params.c to use the correct built-in or module mutex while locking kernel params. Remove the kparam_block_sysfs_r/w() macros, replace them with direct calls to kernel_param_[un]lock(module). The kernel param code currently uses a single mutex to protect modification of any and all kernel params. While this generally works, there is one specific problem with it; a module callback function cannot safely load another module, i.e. with request_module() or even with indirect calls such as crypto_has_alg(). If the module to be loaded has any of its params configured (e.g. with a /etc/modprobe.d/* config file), then the attempt will result in a deadlock between the first module param callback waiting for modprobe, and modprobe trying to lock the single kernel param mutex to set the new module's param. This fixes that by using per-module mutexes, so that each individual module is protected against concurrent changes in its own kernel params, but is not blocked by changes to other module params. All built-in modules continue to use the built-in mutex, since they will always be loaded at runtime and references (e.g. request_module(), crypto_has_alg()) to them will never cause load-time param changing. This also simplifies the interface used by modules to block sysfs access to their params; while there are currently functions to block and unblock sysfs param access which are split up by read and write and expect a single kernel param to be passed, their actual operation is identical and applies to all params, not just the one passed to them; they simply lock and unlock the global param mutex. They are replaced with direct calls to kernel_param_[un]lock(THIS_MODULE), which locks THIS_MODULE's param_lock, or if the module is built-in, it locks the built-in mutex. Suggested-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Dan Streetman <ddstreet@ieee.org> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2015-06-16 14:48:52 -06:00
/* Protects all built-in parameters, modules use their own param_lock */
static DEFINE_MUTEX(param_lock);
module: add per-module param_lock Add a "param_lock" mutex to each module, and update params.c to use the correct built-in or module mutex while locking kernel params. Remove the kparam_block_sysfs_r/w() macros, replace them with direct calls to kernel_param_[un]lock(module). The kernel param code currently uses a single mutex to protect modification of any and all kernel params. While this generally works, there is one specific problem with it; a module callback function cannot safely load another module, i.e. with request_module() or even with indirect calls such as crypto_has_alg(). If the module to be loaded has any of its params configured (e.g. with a /etc/modprobe.d/* config file), then the attempt will result in a deadlock between the first module param callback waiting for modprobe, and modprobe trying to lock the single kernel param mutex to set the new module's param. This fixes that by using per-module mutexes, so that each individual module is protected against concurrent changes in its own kernel params, but is not blocked by changes to other module params. All built-in modules continue to use the built-in mutex, since they will always be loaded at runtime and references (e.g. request_module(), crypto_has_alg()) to them will never cause load-time param changing. This also simplifies the interface used by modules to block sysfs access to their params; while there are currently functions to block and unblock sysfs param access which are split up by read and write and expect a single kernel param to be passed, their actual operation is identical and applies to all params, not just the one passed to them; they simply lock and unlock the global param mutex. They are replaced with direct calls to kernel_param_[un]lock(THIS_MODULE), which locks THIS_MODULE's param_lock, or if the module is built-in, it locks the built-in mutex. Suggested-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Dan Streetman <ddstreet@ieee.org> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2015-06-16 14:48:52 -06:00
/* Use the module's mutex, or if built-in use the built-in mutex */
#ifdef CONFIG_MODULES
module: add per-module param_lock Add a "param_lock" mutex to each module, and update params.c to use the correct built-in or module mutex while locking kernel params. Remove the kparam_block_sysfs_r/w() macros, replace them with direct calls to kernel_param_[un]lock(module). The kernel param code currently uses a single mutex to protect modification of any and all kernel params. While this generally works, there is one specific problem with it; a module callback function cannot safely load another module, i.e. with request_module() or even with indirect calls such as crypto_has_alg(). If the module to be loaded has any of its params configured (e.g. with a /etc/modprobe.d/* config file), then the attempt will result in a deadlock between the first module param callback waiting for modprobe, and modprobe trying to lock the single kernel param mutex to set the new module's param. This fixes that by using per-module mutexes, so that each individual module is protected against concurrent changes in its own kernel params, but is not blocked by changes to other module params. All built-in modules continue to use the built-in mutex, since they will always be loaded at runtime and references (e.g. request_module(), crypto_has_alg()) to them will never cause load-time param changing. This also simplifies the interface used by modules to block sysfs access to their params; while there are currently functions to block and unblock sysfs param access which are split up by read and write and expect a single kernel param to be passed, their actual operation is identical and applies to all params, not just the one passed to them; they simply lock and unlock the global param mutex. They are replaced with direct calls to kernel_param_[un]lock(THIS_MODULE), which locks THIS_MODULE's param_lock, or if the module is built-in, it locks the built-in mutex. Suggested-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Dan Streetman <ddstreet@ieee.org> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2015-06-16 14:48:52 -06:00
#define KPARAM_MUTEX(mod) ((mod) ? &(mod)->param_lock : &param_lock)
#else
#define KPARAM_MUTEX(mod) (&param_lock)
#endif
static inline void check_kparam_locked(struct module *mod)
{
BUG_ON(!mutex_is_locked(KPARAM_MUTEX(mod)));
}
#else
static inline void check_kparam_locked(struct module *mod)
{
}
#endif /* !CONFIG_SYSFS */
module: add per-module param_lock Add a "param_lock" mutex to each module, and update params.c to use the correct built-in or module mutex while locking kernel params. Remove the kparam_block_sysfs_r/w() macros, replace them with direct calls to kernel_param_[un]lock(module). The kernel param code currently uses a single mutex to protect modification of any and all kernel params. While this generally works, there is one specific problem with it; a module callback function cannot safely load another module, i.e. with request_module() or even with indirect calls such as crypto_has_alg(). If the module to be loaded has any of its params configured (e.g. with a /etc/modprobe.d/* config file), then the attempt will result in a deadlock between the first module param callback waiting for modprobe, and modprobe trying to lock the single kernel param mutex to set the new module's param. This fixes that by using per-module mutexes, so that each individual module is protected against concurrent changes in its own kernel params, but is not blocked by changes to other module params. All built-in modules continue to use the built-in mutex, since they will always be loaded at runtime and references (e.g. request_module(), crypto_has_alg()) to them will never cause load-time param changing. This also simplifies the interface used by modules to block sysfs access to their params; while there are currently functions to block and unblock sysfs param access which are split up by read and write and expect a single kernel param to be passed, their actual operation is identical and applies to all params, not just the one passed to them; they simply lock and unlock the global param mutex. They are replaced with direct calls to kernel_param_[un]lock(THIS_MODULE), which locks THIS_MODULE's param_lock, or if the module is built-in, it locks the built-in mutex. Suggested-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Dan Streetman <ddstreet@ieee.org> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2015-06-16 14:48:52 -06:00
/* This just allows us to keep track of which parameters are kmalloced. */
struct kmalloced_param {
struct list_head list;
char val[];
};
static LIST_HEAD(kmalloced_params);
module: add per-module param_lock Add a "param_lock" mutex to each module, and update params.c to use the correct built-in or module mutex while locking kernel params. Remove the kparam_block_sysfs_r/w() macros, replace them with direct calls to kernel_param_[un]lock(module). The kernel param code currently uses a single mutex to protect modification of any and all kernel params. While this generally works, there is one specific problem with it; a module callback function cannot safely load another module, i.e. with request_module() or even with indirect calls such as crypto_has_alg(). If the module to be loaded has any of its params configured (e.g. with a /etc/modprobe.d/* config file), then the attempt will result in a deadlock between the first module param callback waiting for modprobe, and modprobe trying to lock the single kernel param mutex to set the new module's param. This fixes that by using per-module mutexes, so that each individual module is protected against concurrent changes in its own kernel params, but is not blocked by changes to other module params. All built-in modules continue to use the built-in mutex, since they will always be loaded at runtime and references (e.g. request_module(), crypto_has_alg()) to them will never cause load-time param changing. This also simplifies the interface used by modules to block sysfs access to their params; while there are currently functions to block and unblock sysfs param access which are split up by read and write and expect a single kernel param to be passed, their actual operation is identical and applies to all params, not just the one passed to them; they simply lock and unlock the global param mutex. They are replaced with direct calls to kernel_param_[un]lock(THIS_MODULE), which locks THIS_MODULE's param_lock, or if the module is built-in, it locks the built-in mutex. Suggested-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Dan Streetman <ddstreet@ieee.org> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2015-06-16 14:48:52 -06:00
static DEFINE_SPINLOCK(kmalloced_params_lock);
static void *kmalloc_parameter(unsigned int size)
{
struct kmalloced_param *p;
p = kmalloc(sizeof(*p) + size, GFP_KERNEL);
if (!p)
return NULL;
module: add per-module param_lock Add a "param_lock" mutex to each module, and update params.c to use the correct built-in or module mutex while locking kernel params. Remove the kparam_block_sysfs_r/w() macros, replace them with direct calls to kernel_param_[un]lock(module). The kernel param code currently uses a single mutex to protect modification of any and all kernel params. While this generally works, there is one specific problem with it; a module callback function cannot safely load another module, i.e. with request_module() or even with indirect calls such as crypto_has_alg(). If the module to be loaded has any of its params configured (e.g. with a /etc/modprobe.d/* config file), then the attempt will result in a deadlock between the first module param callback waiting for modprobe, and modprobe trying to lock the single kernel param mutex to set the new module's param. This fixes that by using per-module mutexes, so that each individual module is protected against concurrent changes in its own kernel params, but is not blocked by changes to other module params. All built-in modules continue to use the built-in mutex, since they will always be loaded at runtime and references (e.g. request_module(), crypto_has_alg()) to them will never cause load-time param changing. This also simplifies the interface used by modules to block sysfs access to their params; while there are currently functions to block and unblock sysfs param access which are split up by read and write and expect a single kernel param to be passed, their actual operation is identical and applies to all params, not just the one passed to them; they simply lock and unlock the global param mutex. They are replaced with direct calls to kernel_param_[un]lock(THIS_MODULE), which locks THIS_MODULE's param_lock, or if the module is built-in, it locks the built-in mutex. Suggested-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Dan Streetman <ddstreet@ieee.org> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2015-06-16 14:48:52 -06:00
spin_lock(&kmalloced_params_lock);
list_add(&p->list, &kmalloced_params);
module: add per-module param_lock Add a "param_lock" mutex to each module, and update params.c to use the correct built-in or module mutex while locking kernel params. Remove the kparam_block_sysfs_r/w() macros, replace them with direct calls to kernel_param_[un]lock(module). The kernel param code currently uses a single mutex to protect modification of any and all kernel params. While this generally works, there is one specific problem with it; a module callback function cannot safely load another module, i.e. with request_module() or even with indirect calls such as crypto_has_alg(). If the module to be loaded has any of its params configured (e.g. with a /etc/modprobe.d/* config file), then the attempt will result in a deadlock between the first module param callback waiting for modprobe, and modprobe trying to lock the single kernel param mutex to set the new module's param. This fixes that by using per-module mutexes, so that each individual module is protected against concurrent changes in its own kernel params, but is not blocked by changes to other module params. All built-in modules continue to use the built-in mutex, since they will always be loaded at runtime and references (e.g. request_module(), crypto_has_alg()) to them will never cause load-time param changing. This also simplifies the interface used by modules to block sysfs access to their params; while there are currently functions to block and unblock sysfs param access which are split up by read and write and expect a single kernel param to be passed, their actual operation is identical and applies to all params, not just the one passed to them; they simply lock and unlock the global param mutex. They are replaced with direct calls to kernel_param_[un]lock(THIS_MODULE), which locks THIS_MODULE's param_lock, or if the module is built-in, it locks the built-in mutex. Suggested-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Dan Streetman <ddstreet@ieee.org> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2015-06-16 14:48:52 -06:00
spin_unlock(&kmalloced_params_lock);
return p->val;
}
/* Does nothing if parameter wasn't kmalloced above. */
static void maybe_kfree_parameter(void *param)
{
struct kmalloced_param *p;
module: add per-module param_lock Add a "param_lock" mutex to each module, and update params.c to use the correct built-in or module mutex while locking kernel params. Remove the kparam_block_sysfs_r/w() macros, replace them with direct calls to kernel_param_[un]lock(module). The kernel param code currently uses a single mutex to protect modification of any and all kernel params. While this generally works, there is one specific problem with it; a module callback function cannot safely load another module, i.e. with request_module() or even with indirect calls such as crypto_has_alg(). If the module to be loaded has any of its params configured (e.g. with a /etc/modprobe.d/* config file), then the attempt will result in a deadlock between the first module param callback waiting for modprobe, and modprobe trying to lock the single kernel param mutex to set the new module's param. This fixes that by using per-module mutexes, so that each individual module is protected against concurrent changes in its own kernel params, but is not blocked by changes to other module params. All built-in modules continue to use the built-in mutex, since they will always be loaded at runtime and references (e.g. request_module(), crypto_has_alg()) to them will never cause load-time param changing. This also simplifies the interface used by modules to block sysfs access to their params; while there are currently functions to block and unblock sysfs param access which are split up by read and write and expect a single kernel param to be passed, their actual operation is identical and applies to all params, not just the one passed to them; they simply lock and unlock the global param mutex. They are replaced with direct calls to kernel_param_[un]lock(THIS_MODULE), which locks THIS_MODULE's param_lock, or if the module is built-in, it locks the built-in mutex. Suggested-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Dan Streetman <ddstreet@ieee.org> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2015-06-16 14:48:52 -06:00
spin_lock(&kmalloced_params_lock);
list_for_each_entry(p, &kmalloced_params, list) {
if (p->val == param) {
list_del(&p->list);
kfree(p);
break;
}
}
module: add per-module param_lock Add a "param_lock" mutex to each module, and update params.c to use the correct built-in or module mutex while locking kernel params. Remove the kparam_block_sysfs_r/w() macros, replace them with direct calls to kernel_param_[un]lock(module). The kernel param code currently uses a single mutex to protect modification of any and all kernel params. While this generally works, there is one specific problem with it; a module callback function cannot safely load another module, i.e. with request_module() or even with indirect calls such as crypto_has_alg(). If the module to be loaded has any of its params configured (e.g. with a /etc/modprobe.d/* config file), then the attempt will result in a deadlock between the first module param callback waiting for modprobe, and modprobe trying to lock the single kernel param mutex to set the new module's param. This fixes that by using per-module mutexes, so that each individual module is protected against concurrent changes in its own kernel params, but is not blocked by changes to other module params. All built-in modules continue to use the built-in mutex, since they will always be loaded at runtime and references (e.g. request_module(), crypto_has_alg()) to them will never cause load-time param changing. This also simplifies the interface used by modules to block sysfs access to their params; while there are currently functions to block and unblock sysfs param access which are split up by read and write and expect a single kernel param to be passed, their actual operation is identical and applies to all params, not just the one passed to them; they simply lock and unlock the global param mutex. They are replaced with direct calls to kernel_param_[un]lock(THIS_MODULE), which locks THIS_MODULE's param_lock, or if the module is built-in, it locks the built-in mutex. Suggested-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Dan Streetman <ddstreet@ieee.org> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2015-06-16 14:48:52 -06:00
spin_unlock(&kmalloced_params_lock);
}
static char dash2underscore(char c)
{
if (c == '-')
return '_';
return c;
}
bool parameqn(const char *a, const char *b, size_t n)
{
size_t i;
for (i = 0; i < n; i++) {
if (dash2underscore(a[i]) != dash2underscore(b[i]))
return false;
}
return true;
}
bool parameq(const char *a, const char *b)
{
return parameqn(a, b, strlen(a)+1);
}
static void param_check_unsafe(const struct kernel_param *kp)
{
if (kp->flags & KERNEL_PARAM_FL_UNSAFE) {
pr_notice("Setting dangerous option %s - tainting kernel\n",
kp->name);
add_taint(TAINT_USER, LOCKDEP_STILL_OK);
}
}
static int parse_one(char *param,
char *val,
2012-04-27 14:30:34 -06:00
const char *doing,
const struct kernel_param *params,
unsigned num_params,
s16 min_level,
s16 max_level,
module: add extra argument for parse_params() callback This adds an extra argument onto parse_params() to be used as a way to make the unused callback a bit more useful and generic by allowing the caller to pass on a data structure of its choice. An example use case is to allow us to easily make module parameters for every module which we will do next. @ parse @ identifier name, args, params, num, level_min, level_max; identifier unknown, param, val, doing; type s16; @@ extern char *parse_args(const char *name, char *args, const struct kernel_param *params, unsigned num, s16 level_min, s16 level_max, + void *arg, int (*unknown)(char *param, char *val, const char *doing + , void *arg )); @ parse_mod @ identifier name, args, params, num, level_min, level_max; identifier unknown, param, val, doing; type s16; @@ char *parse_args(const char *name, char *args, const struct kernel_param *params, unsigned num, s16 level_min, s16 level_max, + void *arg, int (*unknown)(char *param, char *val, const char *doing + , void *arg )) { ... } @ parse_args_found @ expression R, E1, E2, E3, E4, E5, E6; identifier func; @@ ( R = parse_args(E1, E2, E3, E4, E5, E6, + NULL, func); | R = parse_args(E1, E2, E3, E4, E5, E6, + NULL, &func); | R = parse_args(E1, E2, E3, E4, E5, E6, + NULL, NULL); | parse_args(E1, E2, E3, E4, E5, E6, + NULL, func); | parse_args(E1, E2, E3, E4, E5, E6, + NULL, &func); | parse_args(E1, E2, E3, E4, E5, E6, + NULL, NULL); ) @ parse_args_unused depends on parse_args_found @ identifier parse_args_found.func; @@ int func(char *param, char *val, const char *unused + , void *arg ) { ... } @ mod_unused depends on parse_args_found @ identifier parse_args_found.func; expression A1, A2, A3; @@ - func(A1, A2, A3); + func(A1, A2, A3, NULL); Generated-by: Coccinelle SmPL Cc: cocci@systeme.lip6.fr Cc: Tejun Heo <tj@kernel.org> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Christoph Hellwig <hch@infradead.org> Cc: Felipe Contreras <felipe.contreras@gmail.com> Cc: Ewan Milne <emilne@redhat.com> Cc: Jean Delvare <jdelvare@suse.de> Cc: Hannes Reinecke <hare@suse.de> Cc: Jani Nikula <jani.nikula@intel.com> Cc: linux-kernel@vger.kernel.org Reviewed-by: Tejun Heo <tj@kernel.org> Acked-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Luis R. Rodriguez <mcgrof@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-03-30 17:20:03 -06:00
void *arg,
2012-04-27 14:30:34 -06:00
int (*handle_unknown)(char *param, char *val,
module: add extra argument for parse_params() callback This adds an extra argument onto parse_params() to be used as a way to make the unused callback a bit more useful and generic by allowing the caller to pass on a data structure of its choice. An example use case is to allow us to easily make module parameters for every module which we will do next. @ parse @ identifier name, args, params, num, level_min, level_max; identifier unknown, param, val, doing; type s16; @@ extern char *parse_args(const char *name, char *args, const struct kernel_param *params, unsigned num, s16 level_min, s16 level_max, + void *arg, int (*unknown)(char *param, char *val, const char *doing + , void *arg )); @ parse_mod @ identifier name, args, params, num, level_min, level_max; identifier unknown, param, val, doing; type s16; @@ char *parse_args(const char *name, char *args, const struct kernel_param *params, unsigned num, s16 level_min, s16 level_max, + void *arg, int (*unknown)(char *param, char *val, const char *doing + , void *arg )) { ... } @ parse_args_found @ expression R, E1, E2, E3, E4, E5, E6; identifier func; @@ ( R = parse_args(E1, E2, E3, E4, E5, E6, + NULL, func); | R = parse_args(E1, E2, E3, E4, E5, E6, + NULL, &func); | R = parse_args(E1, E2, E3, E4, E5, E6, + NULL, NULL); | parse_args(E1, E2, E3, E4, E5, E6, + NULL, func); | parse_args(E1, E2, E3, E4, E5, E6, + NULL, &func); | parse_args(E1, E2, E3, E4, E5, E6, + NULL, NULL); ) @ parse_args_unused depends on parse_args_found @ identifier parse_args_found.func; @@ int func(char *param, char *val, const char *unused + , void *arg ) { ... } @ mod_unused depends on parse_args_found @ identifier parse_args_found.func; expression A1, A2, A3; @@ - func(A1, A2, A3); + func(A1, A2, A3, NULL); Generated-by: Coccinelle SmPL Cc: cocci@systeme.lip6.fr Cc: Tejun Heo <tj@kernel.org> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Christoph Hellwig <hch@infradead.org> Cc: Felipe Contreras <felipe.contreras@gmail.com> Cc: Ewan Milne <emilne@redhat.com> Cc: Jean Delvare <jdelvare@suse.de> Cc: Hannes Reinecke <hare@suse.de> Cc: Jani Nikula <jani.nikula@intel.com> Cc: linux-kernel@vger.kernel.org Reviewed-by: Tejun Heo <tj@kernel.org> Acked-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Luis R. Rodriguez <mcgrof@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-03-30 17:20:03 -06:00
const char *doing, void *arg))
{
unsigned int i;
int err;
/* Find parameter */
for (i = 0; i < num_params; i++) {
if (parameq(param, params[i].name)) {
if (params[i].level < min_level
|| params[i].level > max_level)
return 0;
/* No one handled NULL, so do it here. */
if (!val &&
!(params[i].ops->flags & KERNEL_PARAM_OPS_FL_NOARG))
return -EINVAL;
2012-04-27 14:30:34 -06:00
pr_debug("handling %s with %p\n", param,
params[i].ops->set);
module: add per-module param_lock Add a "param_lock" mutex to each module, and update params.c to use the correct built-in or module mutex while locking kernel params. Remove the kparam_block_sysfs_r/w() macros, replace them with direct calls to kernel_param_[un]lock(module). The kernel param code currently uses a single mutex to protect modification of any and all kernel params. While this generally works, there is one specific problem with it; a module callback function cannot safely load another module, i.e. with request_module() or even with indirect calls such as crypto_has_alg(). If the module to be loaded has any of its params configured (e.g. with a /etc/modprobe.d/* config file), then the attempt will result in a deadlock between the first module param callback waiting for modprobe, and modprobe trying to lock the single kernel param mutex to set the new module's param. This fixes that by using per-module mutexes, so that each individual module is protected against concurrent changes in its own kernel params, but is not blocked by changes to other module params. All built-in modules continue to use the built-in mutex, since they will always be loaded at runtime and references (e.g. request_module(), crypto_has_alg()) to them will never cause load-time param changing. This also simplifies the interface used by modules to block sysfs access to their params; while there are currently functions to block and unblock sysfs param access which are split up by read and write and expect a single kernel param to be passed, their actual operation is identical and applies to all params, not just the one passed to them; they simply lock and unlock the global param mutex. They are replaced with direct calls to kernel_param_[un]lock(THIS_MODULE), which locks THIS_MODULE's param_lock, or if the module is built-in, it locks the built-in mutex. Suggested-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Dan Streetman <ddstreet@ieee.org> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2015-06-16 14:48:52 -06:00
kernel_param_lock(params[i].mod);
param_check_unsafe(&params[i]);
err = params[i].ops->set(val, &params[i]);
module: add per-module param_lock Add a "param_lock" mutex to each module, and update params.c to use the correct built-in or module mutex while locking kernel params. Remove the kparam_block_sysfs_r/w() macros, replace them with direct calls to kernel_param_[un]lock(module). The kernel param code currently uses a single mutex to protect modification of any and all kernel params. While this generally works, there is one specific problem with it; a module callback function cannot safely load another module, i.e. with request_module() or even with indirect calls such as crypto_has_alg(). If the module to be loaded has any of its params configured (e.g. with a /etc/modprobe.d/* config file), then the attempt will result in a deadlock between the first module param callback waiting for modprobe, and modprobe trying to lock the single kernel param mutex to set the new module's param. This fixes that by using per-module mutexes, so that each individual module is protected against concurrent changes in its own kernel params, but is not blocked by changes to other module params. All built-in modules continue to use the built-in mutex, since they will always be loaded at runtime and references (e.g. request_module(), crypto_has_alg()) to them will never cause load-time param changing. This also simplifies the interface used by modules to block sysfs access to their params; while there are currently functions to block and unblock sysfs param access which are split up by read and write and expect a single kernel param to be passed, their actual operation is identical and applies to all params, not just the one passed to them; they simply lock and unlock the global param mutex. They are replaced with direct calls to kernel_param_[un]lock(THIS_MODULE), which locks THIS_MODULE's param_lock, or if the module is built-in, it locks the built-in mutex. Suggested-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Dan Streetman <ddstreet@ieee.org> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2015-06-16 14:48:52 -06:00
kernel_param_unlock(params[i].mod);
return err;
}
}
if (handle_unknown) {
2012-04-27 14:30:34 -06:00
pr_debug("doing %s: %s='%s'\n", doing, param, val);
module: add extra argument for parse_params() callback This adds an extra argument onto parse_params() to be used as a way to make the unused callback a bit more useful and generic by allowing the caller to pass on a data structure of its choice. An example use case is to allow us to easily make module parameters for every module which we will do next. @ parse @ identifier name, args, params, num, level_min, level_max; identifier unknown, param, val, doing; type s16; @@ extern char *parse_args(const char *name, char *args, const struct kernel_param *params, unsigned num, s16 level_min, s16 level_max, + void *arg, int (*unknown)(char *param, char *val, const char *doing + , void *arg )); @ parse_mod @ identifier name, args, params, num, level_min, level_max; identifier unknown, param, val, doing; type s16; @@ char *parse_args(const char *name, char *args, const struct kernel_param *params, unsigned num, s16 level_min, s16 level_max, + void *arg, int (*unknown)(char *param, char *val, const char *doing + , void *arg )) { ... } @ parse_args_found @ expression R, E1, E2, E3, E4, E5, E6; identifier func; @@ ( R = parse_args(E1, E2, E3, E4, E5, E6, + NULL, func); | R = parse_args(E1, E2, E3, E4, E5, E6, + NULL, &func); | R = parse_args(E1, E2, E3, E4, E5, E6, + NULL, NULL); | parse_args(E1, E2, E3, E4, E5, E6, + NULL, func); | parse_args(E1, E2, E3, E4, E5, E6, + NULL, &func); | parse_args(E1, E2, E3, E4, E5, E6, + NULL, NULL); ) @ parse_args_unused depends on parse_args_found @ identifier parse_args_found.func; @@ int func(char *param, char *val, const char *unused + , void *arg ) { ... } @ mod_unused depends on parse_args_found @ identifier parse_args_found.func; expression A1, A2, A3; @@ - func(A1, A2, A3); + func(A1, A2, A3, NULL); Generated-by: Coccinelle SmPL Cc: cocci@systeme.lip6.fr Cc: Tejun Heo <tj@kernel.org> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Christoph Hellwig <hch@infradead.org> Cc: Felipe Contreras <felipe.contreras@gmail.com> Cc: Ewan Milne <emilne@redhat.com> Cc: Jean Delvare <jdelvare@suse.de> Cc: Hannes Reinecke <hare@suse.de> Cc: Jani Nikula <jani.nikula@intel.com> Cc: linux-kernel@vger.kernel.org Reviewed-by: Tejun Heo <tj@kernel.org> Acked-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Luis R. Rodriguez <mcgrof@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-03-30 17:20:03 -06:00
return handle_unknown(param, val, doing, arg);
}
2012-04-27 14:30:34 -06:00
pr_debug("Unknown argument '%s'\n", param);
return -ENOENT;
}
/* Args looks like "foo=bar,bar2 baz=fuz wiz". */
char *parse_args(const char *doing,
char *args,
const struct kernel_param *params,
unsigned num,
s16 min_level,
s16 max_level,
module: add extra argument for parse_params() callback This adds an extra argument onto parse_params() to be used as a way to make the unused callback a bit more useful and generic by allowing the caller to pass on a data structure of its choice. An example use case is to allow us to easily make module parameters for every module which we will do next. @ parse @ identifier name, args, params, num, level_min, level_max; identifier unknown, param, val, doing; type s16; @@ extern char *parse_args(const char *name, char *args, const struct kernel_param *params, unsigned num, s16 level_min, s16 level_max, + void *arg, int (*unknown)(char *param, char *val, const char *doing + , void *arg )); @ parse_mod @ identifier name, args, params, num, level_min, level_max; identifier unknown, param, val, doing; type s16; @@ char *parse_args(const char *name, char *args, const struct kernel_param *params, unsigned num, s16 level_min, s16 level_max, + void *arg, int (*unknown)(char *param, char *val, const char *doing + , void *arg )) { ... } @ parse_args_found @ expression R, E1, E2, E3, E4, E5, E6; identifier func; @@ ( R = parse_args(E1, E2, E3, E4, E5, E6, + NULL, func); | R = parse_args(E1, E2, E3, E4, E5, E6, + NULL, &func); | R = parse_args(E1, E2, E3, E4, E5, E6, + NULL, NULL); | parse_args(E1, E2, E3, E4, E5, E6, + NULL, func); | parse_args(E1, E2, E3, E4, E5, E6, + NULL, &func); | parse_args(E1, E2, E3, E4, E5, E6, + NULL, NULL); ) @ parse_args_unused depends on parse_args_found @ identifier parse_args_found.func; @@ int func(char *param, char *val, const char *unused + , void *arg ) { ... } @ mod_unused depends on parse_args_found @ identifier parse_args_found.func; expression A1, A2, A3; @@ - func(A1, A2, A3); + func(A1, A2, A3, NULL); Generated-by: Coccinelle SmPL Cc: cocci@systeme.lip6.fr Cc: Tejun Heo <tj@kernel.org> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Christoph Hellwig <hch@infradead.org> Cc: Felipe Contreras <felipe.contreras@gmail.com> Cc: Ewan Milne <emilne@redhat.com> Cc: Jean Delvare <jdelvare@suse.de> Cc: Hannes Reinecke <hare@suse.de> Cc: Jani Nikula <jani.nikula@intel.com> Cc: linux-kernel@vger.kernel.org Reviewed-by: Tejun Heo <tj@kernel.org> Acked-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Luis R. Rodriguez <mcgrof@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-03-30 17:20:03 -06:00
void *arg,
int (*unknown)(char *param, char *val,
const char *doing, void *arg))
{
char *param, *val, *err = NULL;
/* Chew leading spaces */
tree-wide: convert open calls to remove spaces to skip_spaces() lib function Makes use of skip_spaces() defined in lib/string.c for removing leading spaces from strings all over the tree. It decreases lib.a code size by 47 bytes and reuses the function tree-wide: text data bss dec hex filename 64688 584 592 65864 10148 (TOTALS-BEFORE) 64641 584 592 65817 10119 (TOTALS-AFTER) Also, while at it, if we see (*str && isspace(*str)), we can be sure to remove the first condition (*str) as the second one (isspace(*str)) also evaluates to 0 whenever *str == 0, making it redundant. In other words, "a char equals zero is never a space". Julia Lawall tried the semantic patch (http://coccinelle.lip6.fr) below, and found occurrences of this pattern on 3 more files: drivers/leds/led-class.c drivers/leds/ledtrig-timer.c drivers/video/output.c @@ expression str; @@ ( // ignore skip_spaces cases while (*str && isspace(*str)) { \(str++;\|++str;\) } | - *str && isspace(*str) ) Signed-off-by: André Goddard Rosa <andre.goddard@gmail.com> Cc: Julia Lawall <julia@diku.dk> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Jeff Dike <jdike@addtoit.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Richard Purdie <rpurdie@rpsys.net> Cc: Neil Brown <neilb@suse.de> Cc: Kyle McMartin <kyle@mcmartin.ca> Cc: Henrique de Moraes Holschuh <hmh@hmh.eng.br> Cc: David Howells <dhowells@redhat.com> Cc: <linux-ext4@vger.kernel.org> Cc: Samuel Ortiz <samuel@sortiz.org> Cc: Patrick McHardy <kaber@trash.net> Cc: Takashi Iwai <tiwai@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 19:01:06 -07:00
args = skip_spaces(args);
if (*args)
2012-04-27 14:30:34 -06:00
pr_debug("doing %s, parsing ARGS: '%s'\n", doing, args);
while (*args) {
int ret;
int irq_was_disabled;
args = next_arg(args, &param, &val);
/* Stop at -- */
if (!val && strcmp(param, "--") == 0)
return err ?: args;
irq_was_disabled = irqs_disabled();
2012-04-27 14:30:34 -06:00
ret = parse_one(param, val, doing, params, num,
module: add extra argument for parse_params() callback This adds an extra argument onto parse_params() to be used as a way to make the unused callback a bit more useful and generic by allowing the caller to pass on a data structure of its choice. An example use case is to allow us to easily make module parameters for every module which we will do next. @ parse @ identifier name, args, params, num, level_min, level_max; identifier unknown, param, val, doing; type s16; @@ extern char *parse_args(const char *name, char *args, const struct kernel_param *params, unsigned num, s16 level_min, s16 level_max, + void *arg, int (*unknown)(char *param, char *val, const char *doing + , void *arg )); @ parse_mod @ identifier name, args, params, num, level_min, level_max; identifier unknown, param, val, doing; type s16; @@ char *parse_args(const char *name, char *args, const struct kernel_param *params, unsigned num, s16 level_min, s16 level_max, + void *arg, int (*unknown)(char *param, char *val, const char *doing + , void *arg )) { ... } @ parse_args_found @ expression R, E1, E2, E3, E4, E5, E6; identifier func; @@ ( R = parse_args(E1, E2, E3, E4, E5, E6, + NULL, func); | R = parse_args(E1, E2, E3, E4, E5, E6, + NULL, &func); | R = parse_args(E1, E2, E3, E4, E5, E6, + NULL, NULL); | parse_args(E1, E2, E3, E4, E5, E6, + NULL, func); | parse_args(E1, E2, E3, E4, E5, E6, + NULL, &func); | parse_args(E1, E2, E3, E4, E5, E6, + NULL, NULL); ) @ parse_args_unused depends on parse_args_found @ identifier parse_args_found.func; @@ int func(char *param, char *val, const char *unused + , void *arg ) { ... } @ mod_unused depends on parse_args_found @ identifier parse_args_found.func; expression A1, A2, A3; @@ - func(A1, A2, A3); + func(A1, A2, A3, NULL); Generated-by: Coccinelle SmPL Cc: cocci@systeme.lip6.fr Cc: Tejun Heo <tj@kernel.org> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Christoph Hellwig <hch@infradead.org> Cc: Felipe Contreras <felipe.contreras@gmail.com> Cc: Ewan Milne <emilne@redhat.com> Cc: Jean Delvare <jdelvare@suse.de> Cc: Hannes Reinecke <hare@suse.de> Cc: Jani Nikula <jani.nikula@intel.com> Cc: linux-kernel@vger.kernel.org Reviewed-by: Tejun Heo <tj@kernel.org> Acked-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Luis R. Rodriguez <mcgrof@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-03-30 17:20:03 -06:00
min_level, max_level, arg, unknown);
if (irq_was_disabled && !irqs_disabled())
pr_warn("%s: option '%s' enabled irq's!\n",
doing, param);
switch (ret) {
case 0:
continue;
case -ENOENT:
pr_err("%s: Unknown parameter `%s'\n", doing, param);
break;
case -ENOSPC:
pr_err("%s: `%s' too large for parameter `%s'\n",
2012-04-27 14:30:34 -06:00
doing, val ?: "", param);
break;
default:
pr_err("%s: `%s' invalid for parameter `%s'\n",
2012-04-27 14:30:34 -06:00
doing, val ?: "", param);
break;
}
err = ERR_PTR(ret);
}
return err;
}
/* Lazy bastard, eh? */
#define STANDARD_PARAM_DEF(name, type, format, strtolfn) \
int param_set_##name(const char *val, const struct kernel_param *kp) \
{ \
return strtolfn(val, 0, (type *)kp->arg); \
} \
int param_get_##name(char *buffer, const struct kernel_param *kp) \
{ \
return scnprintf(buffer, PAGE_SIZE, format "\n", \
*((type *)kp->arg)); \
} \
const struct kernel_param_ops param_ops_##name = { \
.set = param_set_##name, \
.get = param_get_##name, \
}; \
EXPORT_SYMBOL(param_set_##name); \
EXPORT_SYMBOL(param_get_##name); \
EXPORT_SYMBOL(param_ops_##name)
STANDARD_PARAM_DEF(byte, unsigned char, "%hhu", kstrtou8);
STANDARD_PARAM_DEF(short, short, "%hi", kstrtos16);
STANDARD_PARAM_DEF(ushort, unsigned short, "%hu", kstrtou16);
STANDARD_PARAM_DEF(int, int, "%i", kstrtoint);
STANDARD_PARAM_DEF(uint, unsigned int, "%u", kstrtouint);
STANDARD_PARAM_DEF(long, long, "%li", kstrtol);
STANDARD_PARAM_DEF(ulong, unsigned long, "%lu", kstrtoul);
STANDARD_PARAM_DEF(ullong, unsigned long long, "%llu", kstrtoull);
int param_set_charp(const char *val, const struct kernel_param *kp)
{
if (strlen(val) > 1024) {
pr_err("%s: string parameter too long\n", kp->name);
return -ENOSPC;
}
maybe_kfree_parameter(*(char **)kp->arg);
/* This is a hack. We can't kmalloc in early boot, and we
* don't need to; this mangled commandline is preserved. */
if (slab_is_available()) {
*(char **)kp->arg = kmalloc_parameter(strlen(val)+1);
if (!*(char **)kp->arg)
return -ENOMEM;
strcpy(*(char **)kp->arg, val);
} else
*(const char **)kp->arg = val;
return 0;
}
EXPORT_SYMBOL(param_set_charp);
int param_get_charp(char *buffer, const struct kernel_param *kp)
{
return scnprintf(buffer, PAGE_SIZE, "%s\n", *((char **)kp->arg));
}
EXPORT_SYMBOL(param_get_charp);
void param_free_charp(void *arg)
{
maybe_kfree_parameter(*((char **)arg));
}
EXPORT_SYMBOL(param_free_charp);
const struct kernel_param_ops param_ops_charp = {
.set = param_set_charp,
.get = param_get_charp,
.free = param_free_charp,
};
EXPORT_SYMBOL(param_ops_charp);
/* Actually could be a bool or an int, for historical reasons. */
int param_set_bool(const char *val, const struct kernel_param *kp)
{
/* No equals means "set"... */
if (!val) val = "1";
/* One of =[yYnN01] */
return strtobool(val, kp->arg);
}
EXPORT_SYMBOL(param_set_bool);
int param_get_bool(char *buffer, const struct kernel_param *kp)
{
/* Y and N chosen as being relatively non-coder friendly */
return sprintf(buffer, "%c\n", *(bool *)kp->arg ? 'Y' : 'N');
}
EXPORT_SYMBOL(param_get_bool);
const struct kernel_param_ops param_ops_bool = {
.flags = KERNEL_PARAM_OPS_FL_NOARG,
.set = param_set_bool,
.get = param_get_bool,
};
EXPORT_SYMBOL(param_ops_bool);
int param_set_bool_enable_only(const char *val, const struct kernel_param *kp)
{
int err = 0;
bool new_value;
bool orig_value = *(bool *)kp->arg;
struct kernel_param dummy_kp = *kp;
dummy_kp.arg = &new_value;
err = param_set_bool(val, &dummy_kp);
if (err)
return err;
/* Don't let them unset it once it's set! */
if (!new_value && orig_value)
return -EROFS;
if (new_value)
err = param_set_bool(val, kp);
return err;
}
EXPORT_SYMBOL_GPL(param_set_bool_enable_only);
const struct kernel_param_ops param_ops_bool_enable_only = {
.flags = KERNEL_PARAM_OPS_FL_NOARG,
.set = param_set_bool_enable_only,
.get = param_get_bool,
};
EXPORT_SYMBOL_GPL(param_ops_bool_enable_only);
/* This one must be bool. */
int param_set_invbool(const char *val, const struct kernel_param *kp)
{
int ret;
bool boolval;
struct kernel_param dummy;
dummy.arg = &boolval;
ret = param_set_bool(val, &dummy);
if (ret == 0)
*(bool *)kp->arg = !boolval;
return ret;
}
EXPORT_SYMBOL(param_set_invbool);
int param_get_invbool(char *buffer, const struct kernel_param *kp)
{
return sprintf(buffer, "%c\n", (*(bool *)kp->arg) ? 'N' : 'Y');
}
EXPORT_SYMBOL(param_get_invbool);
const struct kernel_param_ops param_ops_invbool = {
.set = param_set_invbool,
.get = param_get_invbool,
};
EXPORT_SYMBOL(param_ops_invbool);
int param_set_bint(const char *val, const struct kernel_param *kp)
{
/* Match bool exactly, by re-using it. */
struct kernel_param boolkp = *kp;
bool v;
int ret;
boolkp.arg = &v;
ret = param_set_bool(val, &boolkp);
if (ret == 0)
*(int *)kp->arg = v;
return ret;
}
EXPORT_SYMBOL(param_set_bint);
const struct kernel_param_ops param_ops_bint = {
.flags = KERNEL_PARAM_OPS_FL_NOARG,
.set = param_set_bint,
.get = param_get_int,
};
EXPORT_SYMBOL(param_ops_bint);
/* We break the rule and mangle the string. */
module: add per-module param_lock Add a "param_lock" mutex to each module, and update params.c to use the correct built-in or module mutex while locking kernel params. Remove the kparam_block_sysfs_r/w() macros, replace them with direct calls to kernel_param_[un]lock(module). The kernel param code currently uses a single mutex to protect modification of any and all kernel params. While this generally works, there is one specific problem with it; a module callback function cannot safely load another module, i.e. with request_module() or even with indirect calls such as crypto_has_alg(). If the module to be loaded has any of its params configured (e.g. with a /etc/modprobe.d/* config file), then the attempt will result in a deadlock between the first module param callback waiting for modprobe, and modprobe trying to lock the single kernel param mutex to set the new module's param. This fixes that by using per-module mutexes, so that each individual module is protected against concurrent changes in its own kernel params, but is not blocked by changes to other module params. All built-in modules continue to use the built-in mutex, since they will always be loaded at runtime and references (e.g. request_module(), crypto_has_alg()) to them will never cause load-time param changing. This also simplifies the interface used by modules to block sysfs access to their params; while there are currently functions to block and unblock sysfs param access which are split up by read and write and expect a single kernel param to be passed, their actual operation is identical and applies to all params, not just the one passed to them; they simply lock and unlock the global param mutex. They are replaced with direct calls to kernel_param_[un]lock(THIS_MODULE), which locks THIS_MODULE's param_lock, or if the module is built-in, it locks the built-in mutex. Suggested-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Dan Streetman <ddstreet@ieee.org> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2015-06-16 14:48:52 -06:00
static int param_array(struct module *mod,
const char *name,
const char *val,
unsigned int min, unsigned int max,
void *elem, int elemsize,
int (*set)(const char *, const struct kernel_param *kp),
s16 level,
unsigned int *num)
{
int ret;
struct kernel_param kp;
char save;
/* Get the name right for errors. */
kp.name = name;
kp.arg = elem;
kp.level = level;
*num = 0;
/* We expect a comma-separated list of values. */
do {
int len;
if (*num == max) {
pr_err("%s: can only take %i arguments\n", name, max);
return -EINVAL;
}
len = strcspn(val, ",");
/* nul-terminate and parse */
save = val[len];
((char *)val)[len] = '\0';
check_kparam_locked(mod);
ret = set(val, &kp);
if (ret != 0)
return ret;
kp.arg += elemsize;
val += len+1;
(*num)++;
} while (save == ',');
if (*num < min) {
pr_err("%s: needs at least %i arguments\n", name, min);
return -EINVAL;
}
return 0;
}
static int param_array_set(const char *val, const struct kernel_param *kp)
{
const struct kparam_array *arr = kp->arr;
unsigned int temp_num;
module: add per-module param_lock Add a "param_lock" mutex to each module, and update params.c to use the correct built-in or module mutex while locking kernel params. Remove the kparam_block_sysfs_r/w() macros, replace them with direct calls to kernel_param_[un]lock(module). The kernel param code currently uses a single mutex to protect modification of any and all kernel params. While this generally works, there is one specific problem with it; a module callback function cannot safely load another module, i.e. with request_module() or even with indirect calls such as crypto_has_alg(). If the module to be loaded has any of its params configured (e.g. with a /etc/modprobe.d/* config file), then the attempt will result in a deadlock between the first module param callback waiting for modprobe, and modprobe trying to lock the single kernel param mutex to set the new module's param. This fixes that by using per-module mutexes, so that each individual module is protected against concurrent changes in its own kernel params, but is not blocked by changes to other module params. All built-in modules continue to use the built-in mutex, since they will always be loaded at runtime and references (e.g. request_module(), crypto_has_alg()) to them will never cause load-time param changing. This also simplifies the interface used by modules to block sysfs access to their params; while there are currently functions to block and unblock sysfs param access which are split up by read and write and expect a single kernel param to be passed, their actual operation is identical and applies to all params, not just the one passed to them; they simply lock and unlock the global param mutex. They are replaced with direct calls to kernel_param_[un]lock(THIS_MODULE), which locks THIS_MODULE's param_lock, or if the module is built-in, it locks the built-in mutex. Suggested-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Dan Streetman <ddstreet@ieee.org> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2015-06-16 14:48:52 -06:00
return param_array(kp->mod, kp->name, val, 1, arr->max, arr->elem,
arr->elemsize, arr->ops->set, kp->level,
arr->num ?: &temp_num);
}
static int param_array_get(char *buffer, const struct kernel_param *kp)
{
int i, off, ret;
const struct kparam_array *arr = kp->arr;
struct kernel_param p = *kp;
for (i = off = 0; i < (arr->num ? *arr->num : arr->max); i++) {
/* Replace \n with comma */
if (i)
buffer[off - 1] = ',';
p.arg = arr->elem + arr->elemsize * i;
check_kparam_locked(p.mod);
ret = arr->ops->get(buffer + off, &p);
if (ret < 0)
return ret;
off += ret;
}
buffer[off] = '\0';
return off;
}
static void param_array_free(void *arg)
{
unsigned int i;
const struct kparam_array *arr = arg;
if (arr->ops->free)
for (i = 0; i < (arr->num ? *arr->num : arr->max); i++)
arr->ops->free(arr->elem + arr->elemsize * i);
}
const struct kernel_param_ops param_array_ops = {
.set = param_array_set,
.get = param_array_get,
.free = param_array_free,
};
EXPORT_SYMBOL(param_array_ops);
int param_set_copystring(const char *val, const struct kernel_param *kp)
{
const struct kparam_string *kps = kp->str;
if (strlen(val)+1 > kps->maxlen) {
pr_err("%s: string doesn't fit in %u chars.\n",
kp->name, kps->maxlen-1);
return -ENOSPC;
}
strcpy(kps->string, val);
return 0;
}
EXPORT_SYMBOL(param_set_copystring);
int param_get_string(char *buffer, const struct kernel_param *kp)
{
const struct kparam_string *kps = kp->str;
return scnprintf(buffer, PAGE_SIZE, "%s\n", kps->string);
}
EXPORT_SYMBOL(param_get_string);
const struct kernel_param_ops param_ops_string = {
.set = param_set_copystring,
.get = param_get_string,
};
EXPORT_SYMBOL(param_ops_string);
/* sysfs output in /sys/modules/XYZ/parameters/ */
#define to_module_attr(n) container_of(n, struct module_attribute, attr)
#define to_module_kobject(n) container_of(n, struct module_kobject, kobj)
struct param_attribute
{
struct module_attribute mattr;
const struct kernel_param *param;
};
struct module_param_attrs
{
unsigned int num;
struct attribute_group grp;
struct param_attribute attrs[0];
};
#ifdef CONFIG_SYSFS
#define to_param_attr(n) container_of(n, struct param_attribute, mattr)
static ssize_t param_attr_show(struct module_attribute *mattr,
struct module_kobject *mk, char *buf)
{
int count;
struct param_attribute *attribute = to_param_attr(mattr);
if (!attribute->param->ops->get)
return -EPERM;
module: add per-module param_lock Add a "param_lock" mutex to each module, and update params.c to use the correct built-in or module mutex while locking kernel params. Remove the kparam_block_sysfs_r/w() macros, replace them with direct calls to kernel_param_[un]lock(module). The kernel param code currently uses a single mutex to protect modification of any and all kernel params. While this generally works, there is one specific problem with it; a module callback function cannot safely load another module, i.e. with request_module() or even with indirect calls such as crypto_has_alg(). If the module to be loaded has any of its params configured (e.g. with a /etc/modprobe.d/* config file), then the attempt will result in a deadlock between the first module param callback waiting for modprobe, and modprobe trying to lock the single kernel param mutex to set the new module's param. This fixes that by using per-module mutexes, so that each individual module is protected against concurrent changes in its own kernel params, but is not blocked by changes to other module params. All built-in modules continue to use the built-in mutex, since they will always be loaded at runtime and references (e.g. request_module(), crypto_has_alg()) to them will never cause load-time param changing. This also simplifies the interface used by modules to block sysfs access to their params; while there are currently functions to block and unblock sysfs param access which are split up by read and write and expect a single kernel param to be passed, their actual operation is identical and applies to all params, not just the one passed to them; they simply lock and unlock the global param mutex. They are replaced with direct calls to kernel_param_[un]lock(THIS_MODULE), which locks THIS_MODULE's param_lock, or if the module is built-in, it locks the built-in mutex. Suggested-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Dan Streetman <ddstreet@ieee.org> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2015-06-16 14:48:52 -06:00
kernel_param_lock(mk->mod);
count = attribute->param->ops->get(buf, attribute->param);
module: add per-module param_lock Add a "param_lock" mutex to each module, and update params.c to use the correct built-in or module mutex while locking kernel params. Remove the kparam_block_sysfs_r/w() macros, replace them with direct calls to kernel_param_[un]lock(module). The kernel param code currently uses a single mutex to protect modification of any and all kernel params. While this generally works, there is one specific problem with it; a module callback function cannot safely load another module, i.e. with request_module() or even with indirect calls such as crypto_has_alg(). If the module to be loaded has any of its params configured (e.g. with a /etc/modprobe.d/* config file), then the attempt will result in a deadlock between the first module param callback waiting for modprobe, and modprobe trying to lock the single kernel param mutex to set the new module's param. This fixes that by using per-module mutexes, so that each individual module is protected against concurrent changes in its own kernel params, but is not blocked by changes to other module params. All built-in modules continue to use the built-in mutex, since they will always be loaded at runtime and references (e.g. request_module(), crypto_has_alg()) to them will never cause load-time param changing. This also simplifies the interface used by modules to block sysfs access to their params; while there are currently functions to block and unblock sysfs param access which are split up by read and write and expect a single kernel param to be passed, their actual operation is identical and applies to all params, not just the one passed to them; they simply lock and unlock the global param mutex. They are replaced with direct calls to kernel_param_[un]lock(THIS_MODULE), which locks THIS_MODULE's param_lock, or if the module is built-in, it locks the built-in mutex. Suggested-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Dan Streetman <ddstreet@ieee.org> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2015-06-16 14:48:52 -06:00
kernel_param_unlock(mk->mod);
return count;
}
/* sysfs always hands a nul-terminated string in buf. We rely on that. */
static ssize_t param_attr_store(struct module_attribute *mattr,
module: add per-module param_lock Add a "param_lock" mutex to each module, and update params.c to use the correct built-in or module mutex while locking kernel params. Remove the kparam_block_sysfs_r/w() macros, replace them with direct calls to kernel_param_[un]lock(module). The kernel param code currently uses a single mutex to protect modification of any and all kernel params. While this generally works, there is one specific problem with it; a module callback function cannot safely load another module, i.e. with request_module() or even with indirect calls such as crypto_has_alg(). If the module to be loaded has any of its params configured (e.g. with a /etc/modprobe.d/* config file), then the attempt will result in a deadlock between the first module param callback waiting for modprobe, and modprobe trying to lock the single kernel param mutex to set the new module's param. This fixes that by using per-module mutexes, so that each individual module is protected against concurrent changes in its own kernel params, but is not blocked by changes to other module params. All built-in modules continue to use the built-in mutex, since they will always be loaded at runtime and references (e.g. request_module(), crypto_has_alg()) to them will never cause load-time param changing. This also simplifies the interface used by modules to block sysfs access to their params; while there are currently functions to block and unblock sysfs param access which are split up by read and write and expect a single kernel param to be passed, their actual operation is identical and applies to all params, not just the one passed to them; they simply lock and unlock the global param mutex. They are replaced with direct calls to kernel_param_[un]lock(THIS_MODULE), which locks THIS_MODULE's param_lock, or if the module is built-in, it locks the built-in mutex. Suggested-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Dan Streetman <ddstreet@ieee.org> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2015-06-16 14:48:52 -06:00
struct module_kobject *mk,
const char *buf, size_t len)
{
int err;
struct param_attribute *attribute = to_param_attr(mattr);
if (!attribute->param->ops->set)
return -EPERM;
module: add per-module param_lock Add a "param_lock" mutex to each module, and update params.c to use the correct built-in or module mutex while locking kernel params. Remove the kparam_block_sysfs_r/w() macros, replace them with direct calls to kernel_param_[un]lock(module). The kernel param code currently uses a single mutex to protect modification of any and all kernel params. While this generally works, there is one specific problem with it; a module callback function cannot safely load another module, i.e. with request_module() or even with indirect calls such as crypto_has_alg(). If the module to be loaded has any of its params configured (e.g. with a /etc/modprobe.d/* config file), then the attempt will result in a deadlock between the first module param callback waiting for modprobe, and modprobe trying to lock the single kernel param mutex to set the new module's param. This fixes that by using per-module mutexes, so that each individual module is protected against concurrent changes in its own kernel params, but is not blocked by changes to other module params. All built-in modules continue to use the built-in mutex, since they will always be loaded at runtime and references (e.g. request_module(), crypto_has_alg()) to them will never cause load-time param changing. This also simplifies the interface used by modules to block sysfs access to their params; while there are currently functions to block and unblock sysfs param access which are split up by read and write and expect a single kernel param to be passed, their actual operation is identical and applies to all params, not just the one passed to them; they simply lock and unlock the global param mutex. They are replaced with direct calls to kernel_param_[un]lock(THIS_MODULE), which locks THIS_MODULE's param_lock, or if the module is built-in, it locks the built-in mutex. Suggested-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Dan Streetman <ddstreet@ieee.org> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2015-06-16 14:48:52 -06:00
kernel_param_lock(mk->mod);
param_check_unsafe(attribute->param);
err = attribute->param->ops->set(buf, attribute->param);
module: add per-module param_lock Add a "param_lock" mutex to each module, and update params.c to use the correct built-in or module mutex while locking kernel params. Remove the kparam_block_sysfs_r/w() macros, replace them with direct calls to kernel_param_[un]lock(module). The kernel param code currently uses a single mutex to protect modification of any and all kernel params. While this generally works, there is one specific problem with it; a module callback function cannot safely load another module, i.e. with request_module() or even with indirect calls such as crypto_has_alg(). If the module to be loaded has any of its params configured (e.g. with a /etc/modprobe.d/* config file), then the attempt will result in a deadlock between the first module param callback waiting for modprobe, and modprobe trying to lock the single kernel param mutex to set the new module's param. This fixes that by using per-module mutexes, so that each individual module is protected against concurrent changes in its own kernel params, but is not blocked by changes to other module params. All built-in modules continue to use the built-in mutex, since they will always be loaded at runtime and references (e.g. request_module(), crypto_has_alg()) to them will never cause load-time param changing. This also simplifies the interface used by modules to block sysfs access to their params; while there are currently functions to block and unblock sysfs param access which are split up by read and write and expect a single kernel param to be passed, their actual operation is identical and applies to all params, not just the one passed to them; they simply lock and unlock the global param mutex. They are replaced with direct calls to kernel_param_[un]lock(THIS_MODULE), which locks THIS_MODULE's param_lock, or if the module is built-in, it locks the built-in mutex. Suggested-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Dan Streetman <ddstreet@ieee.org> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2015-06-16 14:48:52 -06:00
kernel_param_unlock(mk->mod);
if (!err)
return len;
return err;
}
#endif
#ifdef CONFIG_MODULES
#define __modinit
#else
#define __modinit __init
#endif
#ifdef CONFIG_SYSFS
module: add per-module param_lock Add a "param_lock" mutex to each module, and update params.c to use the correct built-in or module mutex while locking kernel params. Remove the kparam_block_sysfs_r/w() macros, replace them with direct calls to kernel_param_[un]lock(module). The kernel param code currently uses a single mutex to protect modification of any and all kernel params. While this generally works, there is one specific problem with it; a module callback function cannot safely load another module, i.e. with request_module() or even with indirect calls such as crypto_has_alg(). If the module to be loaded has any of its params configured (e.g. with a /etc/modprobe.d/* config file), then the attempt will result in a deadlock between the first module param callback waiting for modprobe, and modprobe trying to lock the single kernel param mutex to set the new module's param. This fixes that by using per-module mutexes, so that each individual module is protected against concurrent changes in its own kernel params, but is not blocked by changes to other module params. All built-in modules continue to use the built-in mutex, since they will always be loaded at runtime and references (e.g. request_module(), crypto_has_alg()) to them will never cause load-time param changing. This also simplifies the interface used by modules to block sysfs access to their params; while there are currently functions to block and unblock sysfs param access which are split up by read and write and expect a single kernel param to be passed, their actual operation is identical and applies to all params, not just the one passed to them; they simply lock and unlock the global param mutex. They are replaced with direct calls to kernel_param_[un]lock(THIS_MODULE), which locks THIS_MODULE's param_lock, or if the module is built-in, it locks the built-in mutex. Suggested-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Dan Streetman <ddstreet@ieee.org> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2015-06-16 14:48:52 -06:00
void kernel_param_lock(struct module *mod)
{
module: add per-module param_lock Add a "param_lock" mutex to each module, and update params.c to use the correct built-in or module mutex while locking kernel params. Remove the kparam_block_sysfs_r/w() macros, replace them with direct calls to kernel_param_[un]lock(module). The kernel param code currently uses a single mutex to protect modification of any and all kernel params. While this generally works, there is one specific problem with it; a module callback function cannot safely load another module, i.e. with request_module() or even with indirect calls such as crypto_has_alg(). If the module to be loaded has any of its params configured (e.g. with a /etc/modprobe.d/* config file), then the attempt will result in a deadlock between the first module param callback waiting for modprobe, and modprobe trying to lock the single kernel param mutex to set the new module's param. This fixes that by using per-module mutexes, so that each individual module is protected against concurrent changes in its own kernel params, but is not blocked by changes to other module params. All built-in modules continue to use the built-in mutex, since they will always be loaded at runtime and references (e.g. request_module(), crypto_has_alg()) to them will never cause load-time param changing. This also simplifies the interface used by modules to block sysfs access to their params; while there are currently functions to block and unblock sysfs param access which are split up by read and write and expect a single kernel param to be passed, their actual operation is identical and applies to all params, not just the one passed to them; they simply lock and unlock the global param mutex. They are replaced with direct calls to kernel_param_[un]lock(THIS_MODULE), which locks THIS_MODULE's param_lock, or if the module is built-in, it locks the built-in mutex. Suggested-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Dan Streetman <ddstreet@ieee.org> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2015-06-16 14:48:52 -06:00
mutex_lock(KPARAM_MUTEX(mod));
}
module: add per-module param_lock Add a "param_lock" mutex to each module, and update params.c to use the correct built-in or module mutex while locking kernel params. Remove the kparam_block_sysfs_r/w() macros, replace them with direct calls to kernel_param_[un]lock(module). The kernel param code currently uses a single mutex to protect modification of any and all kernel params. While this generally works, there is one specific problem with it; a module callback function cannot safely load another module, i.e. with request_module() or even with indirect calls such as crypto_has_alg(). If the module to be loaded has any of its params configured (e.g. with a /etc/modprobe.d/* config file), then the attempt will result in a deadlock between the first module param callback waiting for modprobe, and modprobe trying to lock the single kernel param mutex to set the new module's param. This fixes that by using per-module mutexes, so that each individual module is protected against concurrent changes in its own kernel params, but is not blocked by changes to other module params. All built-in modules continue to use the built-in mutex, since they will always be loaded at runtime and references (e.g. request_module(), crypto_has_alg()) to them will never cause load-time param changing. This also simplifies the interface used by modules to block sysfs access to their params; while there are currently functions to block and unblock sysfs param access which are split up by read and write and expect a single kernel param to be passed, their actual operation is identical and applies to all params, not just the one passed to them; they simply lock and unlock the global param mutex. They are replaced with direct calls to kernel_param_[un]lock(THIS_MODULE), which locks THIS_MODULE's param_lock, or if the module is built-in, it locks the built-in mutex. Suggested-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Dan Streetman <ddstreet@ieee.org> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2015-06-16 14:48:52 -06:00
void kernel_param_unlock(struct module *mod)
{
module: add per-module param_lock Add a "param_lock" mutex to each module, and update params.c to use the correct built-in or module mutex while locking kernel params. Remove the kparam_block_sysfs_r/w() macros, replace them with direct calls to kernel_param_[un]lock(module). The kernel param code currently uses a single mutex to protect modification of any and all kernel params. While this generally works, there is one specific problem with it; a module callback function cannot safely load another module, i.e. with request_module() or even with indirect calls such as crypto_has_alg(). If the module to be loaded has any of its params configured (e.g. with a /etc/modprobe.d/* config file), then the attempt will result in a deadlock between the first module param callback waiting for modprobe, and modprobe trying to lock the single kernel param mutex to set the new module's param. This fixes that by using per-module mutexes, so that each individual module is protected against concurrent changes in its own kernel params, but is not blocked by changes to other module params. All built-in modules continue to use the built-in mutex, since they will always be loaded at runtime and references (e.g. request_module(), crypto_has_alg()) to them will never cause load-time param changing. This also simplifies the interface used by modules to block sysfs access to their params; while there are currently functions to block and unblock sysfs param access which are split up by read and write and expect a single kernel param to be passed, their actual operation is identical and applies to all params, not just the one passed to them; they simply lock and unlock the global param mutex. They are replaced with direct calls to kernel_param_[un]lock(THIS_MODULE), which locks THIS_MODULE's param_lock, or if the module is built-in, it locks the built-in mutex. Suggested-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Dan Streetman <ddstreet@ieee.org> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2015-06-16 14:48:52 -06:00
mutex_unlock(KPARAM_MUTEX(mod));
}
module: add per-module param_lock Add a "param_lock" mutex to each module, and update params.c to use the correct built-in or module mutex while locking kernel params. Remove the kparam_block_sysfs_r/w() macros, replace them with direct calls to kernel_param_[un]lock(module). The kernel param code currently uses a single mutex to protect modification of any and all kernel params. While this generally works, there is one specific problem with it; a module callback function cannot safely load another module, i.e. with request_module() or even with indirect calls such as crypto_has_alg(). If the module to be loaded has any of its params configured (e.g. with a /etc/modprobe.d/* config file), then the attempt will result in a deadlock between the first module param callback waiting for modprobe, and modprobe trying to lock the single kernel param mutex to set the new module's param. This fixes that by using per-module mutexes, so that each individual module is protected against concurrent changes in its own kernel params, but is not blocked by changes to other module params. All built-in modules continue to use the built-in mutex, since they will always be loaded at runtime and references (e.g. request_module(), crypto_has_alg()) to them will never cause load-time param changing. This also simplifies the interface used by modules to block sysfs access to their params; while there are currently functions to block and unblock sysfs param access which are split up by read and write and expect a single kernel param to be passed, their actual operation is identical and applies to all params, not just the one passed to them; they simply lock and unlock the global param mutex. They are replaced with direct calls to kernel_param_[un]lock(THIS_MODULE), which locks THIS_MODULE's param_lock, or if the module is built-in, it locks the built-in mutex. Suggested-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Dan Streetman <ddstreet@ieee.org> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2015-06-16 14:48:52 -06:00
EXPORT_SYMBOL(kernel_param_lock);
EXPORT_SYMBOL(kernel_param_unlock);
/*
* add_sysfs_param - add a parameter to sysfs
* @mk: struct module_kobject
* @kp: the actual parameter definition to add to sysfs
* @name: name of parameter
*
* Create a kobject if for a (per-module) parameter if mp NULL, and
* create file in sysfs. Returns an error on out of memory. Always cleans up
* if there's an error.
*/
static __modinit int add_sysfs_param(struct module_kobject *mk,
const struct kernel_param *kp,
const char *name)
{
struct module_param_attrs *new_mp;
struct attribute **new_attrs;
unsigned int i;
/* We don't bother calling this with invisible parameters. */
BUG_ON(!kp->perm);
if (!mk->mp) {
/* First allocation. */
mk->mp = kzalloc(sizeof(*mk->mp), GFP_KERNEL);
if (!mk->mp)
return -ENOMEM;
mk->mp->grp.name = "parameters";
/* NULL-terminated attribute array. */
mk->mp->grp.attrs = kzalloc(sizeof(mk->mp->grp.attrs[0]),
GFP_KERNEL);
/* Caller will cleanup via free_module_param_attrs */
if (!mk->mp->grp.attrs)
return -ENOMEM;
}
/* Enlarge allocations. */
new_mp = krealloc(mk->mp,
sizeof(*mk->mp) +
sizeof(mk->mp->attrs[0]) * (mk->mp->num + 1),
GFP_KERNEL);
if (!new_mp)
return -ENOMEM;
mk->mp = new_mp;
/* Extra pointer for NULL terminator */
new_attrs = krealloc(mk->mp->grp.attrs,
sizeof(mk->mp->grp.attrs[0]) * (mk->mp->num + 2),
GFP_KERNEL);
if (!new_attrs)
return -ENOMEM;
mk->mp->grp.attrs = new_attrs;
/* Tack new one on the end. */
memset(&mk->mp->attrs[mk->mp->num], 0, sizeof(mk->mp->attrs[0]));
sysfs_attr_init(&mk->mp->attrs[mk->mp->num].mattr.attr);
mk->mp->attrs[mk->mp->num].param = kp;
mk->mp->attrs[mk->mp->num].mattr.show = param_attr_show;
/* Do not allow runtime DAC changes to make param writable. */
if ((kp->perm & (S_IWUSR | S_IWGRP | S_IWOTH)) != 0)
mk->mp->attrs[mk->mp->num].mattr.store = param_attr_store;
else
mk->mp->attrs[mk->mp->num].mattr.store = NULL;
mk->mp->attrs[mk->mp->num].mattr.attr.name = (char *)name;
mk->mp->attrs[mk->mp->num].mattr.attr.mode = kp->perm;
mk->mp->num++;
/* Fix up all the pointers, since krealloc can move us */
for (i = 0; i < mk->mp->num; i++)
mk->mp->grp.attrs[i] = &mk->mp->attrs[i].mattr.attr;
mk->mp->grp.attrs[mk->mp->num] = NULL;
return 0;
}
#ifdef CONFIG_MODULES
static void free_module_param_attrs(struct module_kobject *mk)
{
if (mk->mp)
kfree(mk->mp->grp.attrs);
kfree(mk->mp);
mk->mp = NULL;
}
/*
* module_param_sysfs_setup - setup sysfs support for one module
* @mod: module
* @kparam: module parameters (array)
* @num_params: number of module parameters
*
* Adds sysfs entries for module parameters under
* /sys/module/[mod->name]/parameters/
*/
int module_param_sysfs_setup(struct module *mod,
const struct kernel_param *kparam,
unsigned int num_params)
{
int i, err;
bool params = false;
for (i = 0; i < num_params; i++) {
if (kparam[i].perm == 0)
continue;
err = add_sysfs_param(&mod->mkobj, &kparam[i], kparam[i].name);
if (err) {
free_module_param_attrs(&mod->mkobj);
return err;
}
params = true;
}
if (!params)
return 0;
/* Create the param group. */
err = sysfs_create_group(&mod->mkobj.kobj, &mod->mkobj.mp->grp);
if (err)
free_module_param_attrs(&mod->mkobj);
return err;
}
/*
* module_param_sysfs_remove - remove sysfs support for one module
* @mod: module
*
* Remove sysfs entries for module parameters and the corresponding
* kobject.
*/
void module_param_sysfs_remove(struct module *mod)
{
if (mod->mkobj.mp) {
sysfs_remove_group(&mod->mkobj.kobj, &mod->mkobj.mp->grp);
/* We are positive that no one is using any param
* attrs at this point. Deallocate immediately. */
free_module_param_attrs(&mod->mkobj);
}
}
#endif
void destroy_params(const struct kernel_param *params, unsigned num)
{
unsigned int i;
for (i = 0; i < num; i++)
if (params[i].ops->free)
params[i].ops->free(params[i].arg);
}
static struct module_kobject * __init locate_module_kobject(const char *name)
{
struct module_kobject *mk;
struct kobject *kobj;
int err;
kobj = kset_find_obj(module_kset, name);
if (kobj) {
mk = to_module_kobject(kobj);
} else {
mk = kzalloc(sizeof(struct module_kobject), GFP_KERNEL);
BUG_ON(!mk);
mk->mod = THIS_MODULE;
mk->kobj.kset = module_kset;
err = kobject_init_and_add(&mk->kobj, &module_ktype, NULL,
"%s", name);
#ifdef CONFIG_MODULES
if (!err)
err = sysfs_create_file(&mk->kobj, &module_uevent.attr);
#endif
if (err) {
kobject_put(&mk->kobj);
pr_crit("Adding module '%s' to sysfs failed (%d), the system may be unstable.\n",
name, err);
return NULL;
}
/* So that we hold reference in both cases. */
kobject_get(&mk->kobj);
}
return mk;
}
static void __init kernel_add_sysfs_param(const char *name,
const struct kernel_param *kparam,
unsigned int name_skip)
{
struct module_kobject *mk;
int err;
mk = locate_module_kobject(name);
if (!mk)
return;
/* We need to remove old parameters before adding more. */
if (mk->mp)
sysfs_remove_group(&mk->kobj, &mk->mp->grp);
/* These should not fail at boot. */
err = add_sysfs_param(mk, kparam, kparam->name + name_skip);
BUG_ON(err);
err = sysfs_create_group(&mk->kobj, &mk->mp->grp);
BUG_ON(err);
kobject_uevent(&mk->kobj, KOBJ_ADD);
kobject_put(&mk->kobj);
}
/*
* param_sysfs_builtin - add sysfs parameters for built-in modules
*
* Add module_parameters to sysfs for "modules" built into the kernel.
*
* The "module" name (KBUILD_MODNAME) is stored before a dot, the
* "parameter" name is stored behind a dot in kernel_param->name. So,
* extract the "module" name for all built-in kernel_param-eters,
* and for all who have the same, call kernel_add_sysfs_param.
*/
static void __init param_sysfs_builtin(void)
{
const struct kernel_param *kp;
unsigned int name_len;
char modname[MODULE_NAME_LEN];
for (kp = __start___param; kp < __stop___param; kp++) {
char *dot;
if (kp->perm == 0)
continue;
dot = strchr(kp->name, '.');
if (!dot) {
/* This happens for core_param() */
strcpy(modname, "kernel");
name_len = 0;
} else {
name_len = dot - kp->name + 1;
strlcpy(modname, kp->name, name_len);
}
kernel_add_sysfs_param(modname, kp, name_len);
}
}
ssize_t __modver_version_show(struct module_attribute *mattr,
struct module_kobject *mk, char *buf)
{
struct module_version_attribute *vattr =
container_of(mattr, struct module_version_attribute, mattr);
return scnprintf(buf, PAGE_SIZE, "%s\n", vattr->version);
}
extern const struct module_version_attribute *__start___modver[];
extern const struct module_version_attribute *__stop___modver[];
static void __init version_sysfs_builtin(void)
{
const struct module_version_attribute **p;
struct module_kobject *mk;
int err;
for (p = __start___modver; p < __stop___modver; p++) {
const struct module_version_attribute *vattr = *p;
mk = locate_module_kobject(vattr->module_name);
if (mk) {
err = sysfs_create_file(&mk->kobj, &vattr->mattr.attr);
WARN_ON_ONCE(err);
kobject_uevent(&mk->kobj, KOBJ_ADD);
kobject_put(&mk->kobj);
}
}
}
/* module-related sysfs stuff */
static ssize_t module_attr_show(struct kobject *kobj,
struct attribute *attr,
char *buf)
{
struct module_attribute *attribute;
struct module_kobject *mk;
int ret;
attribute = to_module_attr(attr);
mk = to_module_kobject(kobj);
if (!attribute->show)
return -EIO;
ret = attribute->show(attribute, mk, buf);
return ret;
}
static ssize_t module_attr_store(struct kobject *kobj,
struct attribute *attr,
const char *buf, size_t len)
{
struct module_attribute *attribute;
struct module_kobject *mk;
int ret;
attribute = to_module_attr(attr);
mk = to_module_kobject(kobj);
if (!attribute->store)
return -EIO;
ret = attribute->store(attribute, mk, buf, len);
return ret;
}
static const struct sysfs_ops module_sysfs_ops = {
.show = module_attr_show,
.store = module_attr_store,
};
static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
struct kobj_type *ktype = get_ktype(kobj);
if (ktype == &module_ktype)
return 1;
return 0;
}
static const struct kset_uevent_ops module_uevent_ops = {
.filter = uevent_filter,
};
struct kset *module_kset;
EXPORT_SYMBOL_GPL(module_kset);
int module_sysfs_initialized;
module: Fix mod->mkobj.kobj potentially freed too early DEBUG_KOBJECT_RELEASE helps to find the issue attached below. After some investigation, it seems the reason is: The mod->mkobj.kobj(ffffffffa01600d0 below) is freed together with mod itself in free_module(). However, its children still hold references to it, as the delay caused by DEBUG_KOBJECT_RELEASE. So when the child(holders below) tries to decrease the reference count to its parent in kobject_del(), BUG happens as it tries to access already freed memory. This patch tries to fix it by waiting for the mod->mkobj.kobj to be really released in the module removing process (and some error code paths). [ 1844.175287] kobject: 'holders' (ffff88007c1f1600): kobject_release, parent ffffffffa01600d0 (delayed) [ 1844.178991] kobject: 'notes' (ffff8800370b2a00): kobject_release, parent ffffffffa01600d0 (delayed) [ 1845.180118] kobject: 'holders' (ffff88007c1f1600): kobject_cleanup, parent ffffffffa01600d0 [ 1845.182130] kobject: 'holders' (ffff88007c1f1600): auto cleanup kobject_del [ 1845.184120] BUG: unable to handle kernel paging request at ffffffffa01601d0 [ 1845.185026] IP: [<ffffffff812cda81>] kobject_put+0x11/0x60 [ 1845.185026] PGD 1a13067 PUD 1a14063 PMD 7bd30067 PTE 0 [ 1845.185026] Oops: 0000 [#1] PREEMPT [ 1845.185026] Modules linked in: xfs libcrc32c [last unloaded: kprobe_example] [ 1845.185026] CPU: 0 PID: 18 Comm: kworker/0:1 Tainted: G O 3.11.0-rc6-next-20130819+ #1 [ 1845.185026] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 1845.185026] Workqueue: events kobject_delayed_cleanup [ 1845.185026] task: ffff88007ca51f00 ti: ffff88007ca5c000 task.ti: ffff88007ca5c000 [ 1845.185026] RIP: 0010:[<ffffffff812cda81>] [<ffffffff812cda81>] kobject_put+0x11/0x60 [ 1845.185026] RSP: 0018:ffff88007ca5dd08 EFLAGS: 00010282 [ 1845.185026] RAX: 0000000000002000 RBX: ffffffffa01600d0 RCX: ffffffff8177d638 [ 1845.185026] RDX: ffff88007ca5dc18 RSI: 0000000000000000 RDI: ffffffffa01600d0 [ 1845.185026] RBP: ffff88007ca5dd18 R08: ffffffff824e9810 R09: ffffffffffffffff [ 1845.185026] R10: ffff8800ffffffff R11: dead4ead00000001 R12: ffffffff81a95040 [ 1845.185026] R13: ffff88007b27a960 R14: ffff88007c1f1600 R15: 0000000000000000 [ 1845.185026] FS: 0000000000000000(0000) GS:ffffffff81a23000(0000) knlGS:0000000000000000 [ 1845.185026] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [ 1845.185026] CR2: ffffffffa01601d0 CR3: 0000000037207000 CR4: 00000000000006b0 [ 1845.185026] Stack: [ 1845.185026] ffff88007c1f1600 ffff88007c1f1600 ffff88007ca5dd38 ffffffff812cdb7e [ 1845.185026] 0000000000000000 ffff88007c1f1640 ffff88007ca5dd68 ffffffff812cdbfe [ 1845.185026] ffff88007c974800 ffff88007c1f1640 ffff88007ff61a00 0000000000000000 [ 1845.185026] Call Trace: [ 1845.185026] [<ffffffff812cdb7e>] kobject_del+0x2e/0x40 [ 1845.185026] [<ffffffff812cdbfe>] kobject_delayed_cleanup+0x6e/0x1d0 [ 1845.185026] [<ffffffff81063a45>] process_one_work+0x1e5/0x670 [ 1845.185026] [<ffffffff810639e3>] ? process_one_work+0x183/0x670 [ 1845.185026] [<ffffffff810642b3>] worker_thread+0x113/0x370 [ 1845.185026] [<ffffffff810641a0>] ? rescuer_thread+0x290/0x290 [ 1845.185026] [<ffffffff8106bfba>] kthread+0xda/0xe0 [ 1845.185026] [<ffffffff814ff0f0>] ? _raw_spin_unlock_irq+0x30/0x60 [ 1845.185026] [<ffffffff8106bee0>] ? kthread_create_on_node+0x130/0x130 [ 1845.185026] [<ffffffff8150751a>] ret_from_fork+0x7a/0xb0 [ 1845.185026] [<ffffffff8106bee0>] ? kthread_create_on_node+0x130/0x130 [ 1845.185026] Code: 81 48 c7 c7 28 95 ad 81 31 c0 e8 9b da 01 00 e9 4f ff ff ff 66 0f 1f 44 00 00 55 48 89 e5 53 48 89 fb 48 83 ec 08 48 85 ff 74 1d <f6> 87 00 01 00 00 01 74 1e 48 8d 7b 38 83 6b 38 01 0f 94 c0 84 [ 1845.185026] RIP [<ffffffff812cda81>] kobject_put+0x11/0x60 [ 1845.185026] RSP <ffff88007ca5dd08> [ 1845.185026] CR2: ffffffffa01601d0 [ 1845.185026] ---[ end trace 49a70afd109f5653 ]--- Signed-off-by: Li Zhong <zhong@linux.vnet.ibm.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2013-09-03 01:03:57 -06:00
static void module_kobj_release(struct kobject *kobj)
{
struct module_kobject *mk = to_module_kobject(kobj);
complete(mk->kobj_completion);
}
struct kobj_type module_ktype = {
module: Fix mod->mkobj.kobj potentially freed too early DEBUG_KOBJECT_RELEASE helps to find the issue attached below. After some investigation, it seems the reason is: The mod->mkobj.kobj(ffffffffa01600d0 below) is freed together with mod itself in free_module(). However, its children still hold references to it, as the delay caused by DEBUG_KOBJECT_RELEASE. So when the child(holders below) tries to decrease the reference count to its parent in kobject_del(), BUG happens as it tries to access already freed memory. This patch tries to fix it by waiting for the mod->mkobj.kobj to be really released in the module removing process (and some error code paths). [ 1844.175287] kobject: 'holders' (ffff88007c1f1600): kobject_release, parent ffffffffa01600d0 (delayed) [ 1844.178991] kobject: 'notes' (ffff8800370b2a00): kobject_release, parent ffffffffa01600d0 (delayed) [ 1845.180118] kobject: 'holders' (ffff88007c1f1600): kobject_cleanup, parent ffffffffa01600d0 [ 1845.182130] kobject: 'holders' (ffff88007c1f1600): auto cleanup kobject_del [ 1845.184120] BUG: unable to handle kernel paging request at ffffffffa01601d0 [ 1845.185026] IP: [<ffffffff812cda81>] kobject_put+0x11/0x60 [ 1845.185026] PGD 1a13067 PUD 1a14063 PMD 7bd30067 PTE 0 [ 1845.185026] Oops: 0000 [#1] PREEMPT [ 1845.185026] Modules linked in: xfs libcrc32c [last unloaded: kprobe_example] [ 1845.185026] CPU: 0 PID: 18 Comm: kworker/0:1 Tainted: G O 3.11.0-rc6-next-20130819+ #1 [ 1845.185026] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 1845.185026] Workqueue: events kobject_delayed_cleanup [ 1845.185026] task: ffff88007ca51f00 ti: ffff88007ca5c000 task.ti: ffff88007ca5c000 [ 1845.185026] RIP: 0010:[<ffffffff812cda81>] [<ffffffff812cda81>] kobject_put+0x11/0x60 [ 1845.185026] RSP: 0018:ffff88007ca5dd08 EFLAGS: 00010282 [ 1845.185026] RAX: 0000000000002000 RBX: ffffffffa01600d0 RCX: ffffffff8177d638 [ 1845.185026] RDX: ffff88007ca5dc18 RSI: 0000000000000000 RDI: ffffffffa01600d0 [ 1845.185026] RBP: ffff88007ca5dd18 R08: ffffffff824e9810 R09: ffffffffffffffff [ 1845.185026] R10: ffff8800ffffffff R11: dead4ead00000001 R12: ffffffff81a95040 [ 1845.185026] R13: ffff88007b27a960 R14: ffff88007c1f1600 R15: 0000000000000000 [ 1845.185026] FS: 0000000000000000(0000) GS:ffffffff81a23000(0000) knlGS:0000000000000000 [ 1845.185026] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [ 1845.185026] CR2: ffffffffa01601d0 CR3: 0000000037207000 CR4: 00000000000006b0 [ 1845.185026] Stack: [ 1845.185026] ffff88007c1f1600 ffff88007c1f1600 ffff88007ca5dd38 ffffffff812cdb7e [ 1845.185026] 0000000000000000 ffff88007c1f1640 ffff88007ca5dd68 ffffffff812cdbfe [ 1845.185026] ffff88007c974800 ffff88007c1f1640 ffff88007ff61a00 0000000000000000 [ 1845.185026] Call Trace: [ 1845.185026] [<ffffffff812cdb7e>] kobject_del+0x2e/0x40 [ 1845.185026] [<ffffffff812cdbfe>] kobject_delayed_cleanup+0x6e/0x1d0 [ 1845.185026] [<ffffffff81063a45>] process_one_work+0x1e5/0x670 [ 1845.185026] [<ffffffff810639e3>] ? process_one_work+0x183/0x670 [ 1845.185026] [<ffffffff810642b3>] worker_thread+0x113/0x370 [ 1845.185026] [<ffffffff810641a0>] ? rescuer_thread+0x290/0x290 [ 1845.185026] [<ffffffff8106bfba>] kthread+0xda/0xe0 [ 1845.185026] [<ffffffff814ff0f0>] ? _raw_spin_unlock_irq+0x30/0x60 [ 1845.185026] [<ffffffff8106bee0>] ? kthread_create_on_node+0x130/0x130 [ 1845.185026] [<ffffffff8150751a>] ret_from_fork+0x7a/0xb0 [ 1845.185026] [<ffffffff8106bee0>] ? kthread_create_on_node+0x130/0x130 [ 1845.185026] Code: 81 48 c7 c7 28 95 ad 81 31 c0 e8 9b da 01 00 e9 4f ff ff ff 66 0f 1f 44 00 00 55 48 89 e5 53 48 89 fb 48 83 ec 08 48 85 ff 74 1d <f6> 87 00 01 00 00 01 74 1e 48 8d 7b 38 83 6b 38 01 0f 94 c0 84 [ 1845.185026] RIP [<ffffffff812cda81>] kobject_put+0x11/0x60 [ 1845.185026] RSP <ffff88007ca5dd08> [ 1845.185026] CR2: ffffffffa01601d0 [ 1845.185026] ---[ end trace 49a70afd109f5653 ]--- Signed-off-by: Li Zhong <zhong@linux.vnet.ibm.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2013-09-03 01:03:57 -06:00
.release = module_kobj_release,
.sysfs_ops = &module_sysfs_ops,
};
EXPORT_SYMBOL_GPL(module_ktype);
/*
* param_sysfs_init - wrapper for built-in params support
*/
static int __init param_sysfs_init(void)
{
module_kset = kset_create_and_add("module", &module_uevent_ops, NULL);
if (!module_kset) {
printk(KERN_WARNING "%s (%d): error creating kset\n",
__FILE__, __LINE__);
return -ENOMEM;
}
module_sysfs_initialized = 1;
version_sysfs_builtin();
param_sysfs_builtin();
return 0;
}
subsys_initcall(param_sysfs_init);
#endif /* CONFIG_SYSFS */