kernel-fxtec-pro1x/arch/arm/mach-integrator/integrator_ap.c

476 lines
12 KiB
C
Raw Normal View History

/*
* linux/arch/arm/mach-integrator/integrator_ap.c
*
* Copyright (C) 2000-2003 Deep Blue Solutions Ltd
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/syscore_ops.h>
#include <linux/amba/bus.h>
#include <linux/amba/kmi.h>
#include <linux/clocksource.h>
#include <linux/clockchips.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/mtd/physmap.h>
#include <linux/clk.h>
#include <video/vga.h>
#include <mach/hardware.h>
#include <mach/platform.h>
#include <asm/hardware/arm_timer.h>
#include <asm/irq.h>
#include <asm/setup.h>
#include <asm/param.h> /* HZ */
#include <asm/mach-types.h>
#include <mach/lm.h>
#include <asm/mach/arch.h>
#include <asm/mach/irq.h>
#include <asm/mach/map.h>
#include <asm/mach/time.h>
#include <plat/fpga-irq.h>
#include "common.h"
/*
* All IO addresses are mapped onto VA 0xFFFx.xxxx, where x.xxxx
* is the (PA >> 12).
*
* Setup a VA for the Integrator interrupt controller (for header #0,
* just for now).
*/
#define VA_IC_BASE __io_address(INTEGRATOR_IC_BASE)
#define VA_SC_BASE __io_address(INTEGRATOR_SC_BASE)
#define VA_EBI_BASE __io_address(INTEGRATOR_EBI_BASE)
#define VA_CMIC_BASE __io_address(INTEGRATOR_HDR_IC)
/*
* Logical Physical
* e8000000 40000000 PCI memory PHYS_PCI_MEM_BASE (max 512M)
* ec000000 61000000 PCI config space PHYS_PCI_CONFIG_BASE (max 16M)
* ed000000 62000000 PCI V3 regs PHYS_PCI_V3_BASE (max 64k)
* ee000000 60000000 PCI IO PHYS_PCI_IO_BASE (max 16M)
* ef000000 Cache flush
* f1000000 10000000 Core module registers
* f1100000 11000000 System controller registers
* f1200000 12000000 EBI registers
* f1300000 13000000 Counter/Timer
* f1400000 14000000 Interrupt controller
* f1600000 16000000 UART 0
* f1700000 17000000 UART 1
* f1a00000 1a000000 Debug LEDs
* f1b00000 1b000000 GPIO
*/
static struct map_desc ap_io_desc[] __initdata = {
{
.virtual = IO_ADDRESS(INTEGRATOR_HDR_BASE),
.pfn = __phys_to_pfn(INTEGRATOR_HDR_BASE),
.length = SZ_4K,
.type = MT_DEVICE
}, {
.virtual = IO_ADDRESS(INTEGRATOR_SC_BASE),
.pfn = __phys_to_pfn(INTEGRATOR_SC_BASE),
.length = SZ_4K,
.type = MT_DEVICE
}, {
.virtual = IO_ADDRESS(INTEGRATOR_EBI_BASE),
.pfn = __phys_to_pfn(INTEGRATOR_EBI_BASE),
.length = SZ_4K,
.type = MT_DEVICE
}, {
.virtual = IO_ADDRESS(INTEGRATOR_CT_BASE),
.pfn = __phys_to_pfn(INTEGRATOR_CT_BASE),
.length = SZ_4K,
.type = MT_DEVICE
}, {
.virtual = IO_ADDRESS(INTEGRATOR_IC_BASE),
.pfn = __phys_to_pfn(INTEGRATOR_IC_BASE),
.length = SZ_4K,
.type = MT_DEVICE
}, {
.virtual = IO_ADDRESS(INTEGRATOR_UART0_BASE),
.pfn = __phys_to_pfn(INTEGRATOR_UART0_BASE),
.length = SZ_4K,
.type = MT_DEVICE
}, {
.virtual = IO_ADDRESS(INTEGRATOR_UART1_BASE),
.pfn = __phys_to_pfn(INTEGRATOR_UART1_BASE),
.length = SZ_4K,
.type = MT_DEVICE
}, {
.virtual = IO_ADDRESS(INTEGRATOR_DBG_BASE),
.pfn = __phys_to_pfn(INTEGRATOR_DBG_BASE),
.length = SZ_4K,
.type = MT_DEVICE
}, {
.virtual = IO_ADDRESS(INTEGRATOR_AP_GPIO_BASE),
.pfn = __phys_to_pfn(INTEGRATOR_AP_GPIO_BASE),
.length = SZ_4K,
.type = MT_DEVICE
}, {
.virtual = PCI_MEMORY_VADDR,
.pfn = __phys_to_pfn(PHYS_PCI_MEM_BASE),
.length = SZ_16M,
.type = MT_DEVICE
}, {
.virtual = PCI_CONFIG_VADDR,
.pfn = __phys_to_pfn(PHYS_PCI_CONFIG_BASE),
.length = SZ_16M,
.type = MT_DEVICE
}, {
.virtual = PCI_V3_VADDR,
.pfn = __phys_to_pfn(PHYS_PCI_V3_BASE),
.length = SZ_64K,
.type = MT_DEVICE
}, {
.virtual = PCI_IO_VADDR,
.pfn = __phys_to_pfn(PHYS_PCI_IO_BASE),
.length = SZ_64K,
.type = MT_DEVICE
}
};
static void __init ap_map_io(void)
{
iotable_init(ap_io_desc, ARRAY_SIZE(ap_io_desc));
vga_base = PCI_MEMORY_VADDR;
}
#define INTEGRATOR_SC_VALID_INT 0x003fffff
static struct fpga_irq_data sc_irq_data = {
.base = VA_IC_BASE,
.irq_start = 0,
.chip.name = "SC",
};
static void __init ap_init_irq(void)
{
/* Disable all interrupts initially. */
/* Do the core module ones */
writel(-1, VA_CMIC_BASE + IRQ_ENABLE_CLEAR);
/* do the header card stuff next */
writel(-1, VA_IC_BASE + IRQ_ENABLE_CLEAR);
writel(-1, VA_IC_BASE + FIQ_ENABLE_CLEAR);
fpga_irq_init(-1, INTEGRATOR_SC_VALID_INT, &sc_irq_data);
}
#ifdef CONFIG_PM
static unsigned long ic_irq_enable;
static int irq_suspend(void)
{
ic_irq_enable = readl(VA_IC_BASE + IRQ_ENABLE);
return 0;
}
static void irq_resume(void)
{
/* disable all irq sources */
writel(-1, VA_CMIC_BASE + IRQ_ENABLE_CLEAR);
writel(-1, VA_IC_BASE + IRQ_ENABLE_CLEAR);
writel(-1, VA_IC_BASE + FIQ_ENABLE_CLEAR);
writel(ic_irq_enable, VA_IC_BASE + IRQ_ENABLE_SET);
}
#else
#define irq_suspend NULL
#define irq_resume NULL
#endif
static struct syscore_ops irq_syscore_ops = {
.suspend = irq_suspend,
.resume = irq_resume,
};
static int __init irq_syscore_init(void)
{
register_syscore_ops(&irq_syscore_ops);
return 0;
}
device_initcall(irq_syscore_init);
/*
* Flash handling.
*/
#define SC_CTRLC (VA_SC_BASE + INTEGRATOR_SC_CTRLC_OFFSET)
#define SC_CTRLS (VA_SC_BASE + INTEGRATOR_SC_CTRLS_OFFSET)
#define EBI_CSR1 (VA_EBI_BASE + INTEGRATOR_EBI_CSR1_OFFSET)
#define EBI_LOCK (VA_EBI_BASE + INTEGRATOR_EBI_LOCK_OFFSET)
static int ap_flash_init(struct platform_device *dev)
{
u32 tmp;
writel(INTEGRATOR_SC_CTRL_nFLVPPEN | INTEGRATOR_SC_CTRL_nFLWP, SC_CTRLC);
tmp = readl(EBI_CSR1) | INTEGRATOR_EBI_WRITE_ENABLE;
writel(tmp, EBI_CSR1);
if (!(readl(EBI_CSR1) & INTEGRATOR_EBI_WRITE_ENABLE)) {
writel(0xa05f, EBI_LOCK);
writel(tmp, EBI_CSR1);
writel(0, EBI_LOCK);
}
return 0;
}
static void ap_flash_exit(struct platform_device *dev)
{
u32 tmp;
writel(INTEGRATOR_SC_CTRL_nFLVPPEN | INTEGRATOR_SC_CTRL_nFLWP, SC_CTRLC);
tmp = readl(EBI_CSR1) & ~INTEGRATOR_EBI_WRITE_ENABLE;
writel(tmp, EBI_CSR1);
if (readl(EBI_CSR1) & INTEGRATOR_EBI_WRITE_ENABLE) {
writel(0xa05f, EBI_LOCK);
writel(tmp, EBI_CSR1);
writel(0, EBI_LOCK);
}
}
static void ap_flash_set_vpp(struct platform_device *pdev, int on)
{
void __iomem *reg = on ? SC_CTRLS : SC_CTRLC;
writel(INTEGRATOR_SC_CTRL_nFLVPPEN, reg);
}
static struct physmap_flash_data ap_flash_data = {
.width = 4,
.init = ap_flash_init,
.exit = ap_flash_exit,
.set_vpp = ap_flash_set_vpp,
};
static struct resource cfi_flash_resource = {
.start = INTEGRATOR_FLASH_BASE,
.end = INTEGRATOR_FLASH_BASE + INTEGRATOR_FLASH_SIZE - 1,
.flags = IORESOURCE_MEM,
};
static struct platform_device cfi_flash_device = {
.name = "physmap-flash",
.id = 0,
.dev = {
.platform_data = &ap_flash_data,
},
.num_resources = 1,
.resource = &cfi_flash_resource,
};
static void __init ap_init(void)
{
unsigned long sc_dec;
int i;
platform_device_register(&cfi_flash_device);
sc_dec = readl(VA_SC_BASE + INTEGRATOR_SC_DEC_OFFSET);
for (i = 0; i < 4; i++) {
struct lm_device *lmdev;
if ((sc_dec & (16 << i)) == 0)
continue;
lmdev = kzalloc(sizeof(struct lm_device), GFP_KERNEL);
if (!lmdev)
continue;
lmdev->resource.start = 0xc0000000 + 0x10000000 * i;
lmdev->resource.end = lmdev->resource.start + 0x0fffffff;
lmdev->resource.flags = IORESOURCE_MEM;
lmdev->irq = IRQ_AP_EXPINT0 + i;
lmdev->id = i;
lm_device_register(lmdev);
}
}
/*
* Where is the timer (VA)?
*/
#define TIMER0_VA_BASE IO_ADDRESS(INTEGRATOR_TIMER0_BASE)
#define TIMER1_VA_BASE IO_ADDRESS(INTEGRATOR_TIMER1_BASE)
#define TIMER2_VA_BASE IO_ADDRESS(INTEGRATOR_TIMER2_BASE)
static unsigned long timer_reload;
static void integrator_clocksource_init(unsigned long inrate)
{
void __iomem *base = (void __iomem *)TIMER2_VA_BASE;
u32 ctrl = TIMER_CTRL_ENABLE | TIMER_CTRL_PERIODIC;
unsigned long rate = inrate;
if (rate >= 1500000) {
rate /= 16;
ctrl |= TIMER_CTRL_DIV16;
}
writel(0xffff, base + TIMER_LOAD);
writel(ctrl, base + TIMER_CTRL);
clocksource_mmio_init(base + TIMER_VALUE, "timer2",
rate, 200, 16, clocksource_mmio_readl_down);
}
static void __iomem * const clkevt_base = (void __iomem *)TIMER1_VA_BASE;
/*
* IRQ handler for the timer
*/
static irqreturn_t integrator_timer_interrupt(int irq, void *dev_id)
{
struct clock_event_device *evt = dev_id;
/* clear the interrupt */
writel(1, clkevt_base + TIMER_INTCLR);
evt->event_handler(evt);
return IRQ_HANDLED;
}
static void clkevt_set_mode(enum clock_event_mode mode, struct clock_event_device *evt)
{
u32 ctrl = readl(clkevt_base + TIMER_CTRL) & ~TIMER_CTRL_ENABLE;
/* Disable timer */
writel(ctrl, clkevt_base + TIMER_CTRL);
switch (mode) {
case CLOCK_EVT_MODE_PERIODIC:
/* Enable the timer and start the periodic tick */
writel(timer_reload, clkevt_base + TIMER_LOAD);
ctrl |= TIMER_CTRL_PERIODIC | TIMER_CTRL_ENABLE;
writel(ctrl, clkevt_base + TIMER_CTRL);
break;
case CLOCK_EVT_MODE_ONESHOT:
/* Leave the timer disabled, .set_next_event will enable it */
ctrl &= ~TIMER_CTRL_PERIODIC;
writel(ctrl, clkevt_base + TIMER_CTRL);
break;
case CLOCK_EVT_MODE_UNUSED:
case CLOCK_EVT_MODE_SHUTDOWN:
case CLOCK_EVT_MODE_RESUME:
default:
/* Just leave in disabled state */
break;
}
}
static int clkevt_set_next_event(unsigned long next, struct clock_event_device *evt)
{
unsigned long ctrl = readl(clkevt_base + TIMER_CTRL);
writel(ctrl & ~TIMER_CTRL_ENABLE, clkevt_base + TIMER_CTRL);
writel(next, clkevt_base + TIMER_LOAD);
writel(ctrl | TIMER_CTRL_ENABLE, clkevt_base + TIMER_CTRL);
return 0;
}
static struct clock_event_device integrator_clockevent = {
.name = "timer1",
.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
.set_mode = clkevt_set_mode,
.set_next_event = clkevt_set_next_event,
.rating = 300,
};
static struct irqaction integrator_timer_irq = {
.name = "timer",
.flags = IRQF_DISABLED | IRQF_TIMER | IRQF_IRQPOLL,
.handler = integrator_timer_interrupt,
.dev_id = &integrator_clockevent,
};
static void integrator_clockevent_init(unsigned long inrate)
{
unsigned long rate = inrate;
unsigned int ctrl = 0;
/* Calculate and program a divisor */
if (rate > 0x100000 * HZ) {
rate /= 256;
ctrl |= TIMER_CTRL_DIV256;
} else if (rate > 0x10000 * HZ) {
rate /= 16;
ctrl |= TIMER_CTRL_DIV16;
}
timer_reload = rate / HZ;
writel(ctrl, clkevt_base + TIMER_CTRL);
setup_irq(IRQ_TIMERINT1, &integrator_timer_irq);
clockevents_config_and_register(&integrator_clockevent,
rate,
1,
0xffffU);
}
/*
* Set up timer(s).
*/
static void __init ap_init_timer(void)
{
struct clk *clk;
unsigned long rate;
clk = clk_get_sys("ap_timer", NULL);
BUG_ON(IS_ERR(clk));
clk_enable(clk);
rate = clk_get_rate(clk);
writel(0, TIMER0_VA_BASE + TIMER_CTRL);
writel(0, TIMER1_VA_BASE + TIMER_CTRL);
writel(0, TIMER2_VA_BASE + TIMER_CTRL);
integrator_clocksource_init(rate);
integrator_clockevent_init(rate);
}
static struct sys_timer ap_timer = {
.init = ap_init_timer,
};
MACHINE_START(INTEGRATOR, "ARM-Integrator")
/* Maintainer: ARM Ltd/Deep Blue Solutions Ltd */
.atag_offset = 0x100,
.reserve = integrator_reserve,
.map_io = ap_map_io,
.init_early = integrator_init_early,
.init_irq = ap_init_irq,
.timer = &ap_timer,
.init_machine = ap_init,
MACHINE_END