kernel-fxtec-pro1x/drivers/block/aoe/aoedev.c

279 lines
5.3 KiB
C
Raw Normal View History

/* Copyright (c) 2007 Coraid, Inc. See COPYING for GPL terms. */
/*
* aoedev.c
* AoE device utility functions; maintains device list.
*/
#include <linux/hdreg.h>
#include <linux/blkdev.h>
#include <linux/netdevice.h>
aoe: dynamically allocate a capped number of skbs when necessary What this Patch Does Even before this recent series of 12 patches to 2.6.22-rc4, the aoe driver was reusing a small set of skbs that were allocated once and were only used for outbound AoE commands. The network layer cannot be allowed to put_page on the data that is still associated with a bio we haven't returned to the block layer, so the aoe driver (even before the patch under discussion) is still the owner of skbs that have been handed to the network layer for transmission. We need to keep track of these skbs so that we can free them, but by tracking them, we can also easily re-use them. The new patch was a response to the behavior of certain network drivers. We cannot reuse an skb that the network driver still has in its transmit ring. Network drivers can defer transmit ring cleanup and then use the state in the skb to determine how many data segments to clean up in its transmit ring. The tg3 driver is one driver that behaves in this way. When the network driver defers cleanup of its transmit ring, the aoe driver can find itself in a situation where it would like to send an AoE command, and the AoE target is ready for more work, but the network driver still has all of the pre-allocated skbs. In that case, the new patch just calls alloc_skb, as you'd expect. We don't want to get carried away, though. We try not to do excessive allocation in the write path, so we cap the number of skbs we dynamically allocate. Probably calling it a "dynamic pool" is misleading. We were already trying to use a small fixed-size set of pre-allocated skbs before this patch, and this patch just provides a little headroom (with a ceiling, though) to accomodate network drivers that hang onto skbs, by allocating when needed. The d->skbpool_hd list of allocated skbs is necessary so that we can free them later. We didn't notice the need for this headroom until AoE targets got fast enough. Alternatives If the network layer never did a put_page on the pages in the bio's we get from the block layer, then it would be possible for us to hand skbs to the network layer and forget about them, allowing the network layer to free skbs itself (and thereby calling our own skb->destructor callback function if we needed that). In that case we could get rid of the pre-allocated skbs and also the d->skbpool_hd, instead just calling alloc_skb every time we wanted to transmit a packet. The slab allocator would effectively maintain the list of skbs. Besides a loss of CPU cache locality, the main concern with that approach the danger that it would increase the likelihood of deadlock when VM is trying to free pages by writing dirty data from the page cache through the aoe driver out to persistent storage on an AoE device. Right now we have a situation where we have pre-allocation that corresponds to how much we use, which seems ideal. Of course, there's still the separate issue of receiving the packets that tell us that a write has successfully completed on the AoE target. When memory is low and VM is using AoE to flush dirty data to free up pages, it would be perfect if there were a way for us to register a fast callback that could recognize write command completion responses. But I don't think the current problems with the receive side of the situation are a justification for exacerbating the problem on the transmit side. Signed-off-by: Ed L. Cashin <ecashin@coraid.com> Cc: Greg KH <greg@kroah.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 05:20:05 -07:00
#include <linux/delay.h>
#include "aoe.h"
static void dummy_timer(ulong);
static void aoedev_freedev(struct aoedev *);
aoe: dynamically allocate a capped number of skbs when necessary What this Patch Does Even before this recent series of 12 patches to 2.6.22-rc4, the aoe driver was reusing a small set of skbs that were allocated once and were only used for outbound AoE commands. The network layer cannot be allowed to put_page on the data that is still associated with a bio we haven't returned to the block layer, so the aoe driver (even before the patch under discussion) is still the owner of skbs that have been handed to the network layer for transmission. We need to keep track of these skbs so that we can free them, but by tracking them, we can also easily re-use them. The new patch was a response to the behavior of certain network drivers. We cannot reuse an skb that the network driver still has in its transmit ring. Network drivers can defer transmit ring cleanup and then use the state in the skb to determine how many data segments to clean up in its transmit ring. The tg3 driver is one driver that behaves in this way. When the network driver defers cleanup of its transmit ring, the aoe driver can find itself in a situation where it would like to send an AoE command, and the AoE target is ready for more work, but the network driver still has all of the pre-allocated skbs. In that case, the new patch just calls alloc_skb, as you'd expect. We don't want to get carried away, though. We try not to do excessive allocation in the write path, so we cap the number of skbs we dynamically allocate. Probably calling it a "dynamic pool" is misleading. We were already trying to use a small fixed-size set of pre-allocated skbs before this patch, and this patch just provides a little headroom (with a ceiling, though) to accomodate network drivers that hang onto skbs, by allocating when needed. The d->skbpool_hd list of allocated skbs is necessary so that we can free them later. We didn't notice the need for this headroom until AoE targets got fast enough. Alternatives If the network layer never did a put_page on the pages in the bio's we get from the block layer, then it would be possible for us to hand skbs to the network layer and forget about them, allowing the network layer to free skbs itself (and thereby calling our own skb->destructor callback function if we needed that). In that case we could get rid of the pre-allocated skbs and also the d->skbpool_hd, instead just calling alloc_skb every time we wanted to transmit a packet. The slab allocator would effectively maintain the list of skbs. Besides a loss of CPU cache locality, the main concern with that approach the danger that it would increase the likelihood of deadlock when VM is trying to free pages by writing dirty data from the page cache through the aoe driver out to persistent storage on an AoE device. Right now we have a situation where we have pre-allocation that corresponds to how much we use, which seems ideal. Of course, there's still the separate issue of receiving the packets that tell us that a write has successfully completed on the AoE target. When memory is low and VM is using AoE to flush dirty data to free up pages, it would be perfect if there were a way for us to register a fast callback that could recognize write command completion responses. But I don't think the current problems with the receive side of the situation are a justification for exacerbating the problem on the transmit side. Signed-off-by: Ed L. Cashin <ecashin@coraid.com> Cc: Greg KH <greg@kroah.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 05:20:05 -07:00
static void freetgt(struct aoedev *d, struct aoetgt *t);
static void skbpoolfree(struct aoedev *d);
static struct aoedev *devlist;
static DEFINE_SPINLOCK(devlist_lock);
struct aoedev *
aoedev_by_aoeaddr(int maj, int min)
{
struct aoedev *d;
ulong flags;
spin_lock_irqsave(&devlist_lock, flags);
for (d=devlist; d; d=d->next)
if (d->aoemajor == maj && d->aoeminor == min)
break;
spin_unlock_irqrestore(&devlist_lock, flags);
return d;
}
static void
dummy_timer(ulong vp)
{
struct aoedev *d;
d = (struct aoedev *)vp;
if (d->flags & DEVFL_TKILL)
return;
d->timer.expires = jiffies + HZ;
add_timer(&d->timer);
}
void
aoedev_downdev(struct aoedev *d)
{
aoe: handle multiple network paths to AoE device A remote AoE device is something can process ATA commands and is identified by an AoE shelf number and an AoE slot number. Such a device might have more than one network interface, and it might be reachable by more than one local network interface. This patch tracks the available network paths available to each AoE device, allowing them to be used more efficiently. Andrew Morton asked about the call to msleep_interruptible in the revalidate function. Yes, if a signal is pending, then msleep_interruptible will not return 0. That means we will not loop but will call aoenet_xmit with a NULL skb, which is a noop. If the system is too low on memory or the aoe driver is too low on frames, then the user can hit control-C to interrupt the attempt to do a revalidate. I have added a comment to the code summarizing that. Andrew Morton asked whether the allocation performed inside addtgt could use a more relaxed allocation like GFP_KERNEL, but addtgt is called when the aoedev lock has been locked with spin_lock_irqsave. It would be nice to allocate the memory under fewer restrictions, but targets are only added when the device is being discovered, and if the target can't be added right now, we can try again in a minute when then next AoE config query broadcast goes out. Andrew Morton pointed out that the "too many targets" message could be printed for failing GFP_ATOMIC allocations. The last patch in this series makes the messages more specific. Signed-off-by: Ed L. Cashin <ecashin@coraid.com> Cc: Greg KH <greg@kroah.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 05:20:00 -07:00
struct aoetgt **t, **te;
struct frame *f, *e;
struct buf *buf;
struct bio *bio;
aoe: handle multiple network paths to AoE device A remote AoE device is something can process ATA commands and is identified by an AoE shelf number and an AoE slot number. Such a device might have more than one network interface, and it might be reachable by more than one local network interface. This patch tracks the available network paths available to each AoE device, allowing them to be used more efficiently. Andrew Morton asked about the call to msleep_interruptible in the revalidate function. Yes, if a signal is pending, then msleep_interruptible will not return 0. That means we will not loop but will call aoenet_xmit with a NULL skb, which is a noop. If the system is too low on memory or the aoe driver is too low on frames, then the user can hit control-C to interrupt the attempt to do a revalidate. I have added a comment to the code summarizing that. Andrew Morton asked whether the allocation performed inside addtgt could use a more relaxed allocation like GFP_KERNEL, but addtgt is called when the aoedev lock has been locked with spin_lock_irqsave. It would be nice to allocate the memory under fewer restrictions, but targets are only added when the device is being discovered, and if the target can't be added right now, we can try again in a minute when then next AoE config query broadcast goes out. Andrew Morton pointed out that the "too many targets" message could be printed for failing GFP_ATOMIC allocations. The last patch in this series makes the messages more specific. Signed-off-by: Ed L. Cashin <ecashin@coraid.com> Cc: Greg KH <greg@kroah.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 05:20:00 -07:00
t = d->targets;
te = t + NTARGETS;
for (; t < te && *t; t++) {
f = (*t)->frames;
e = f + (*t)->nframes;
for (; f < e; f->tag = FREETAG, f->buf = NULL, f++) {
if (f->tag == FREETAG || f->buf == NULL)
continue;
buf = f->buf;
bio = buf->bio;
if (--buf->nframesout == 0
&& buf != d->inprocess) {
mempool_free(buf, d->bufpool);
bio_endio(bio, -EIO);
}
}
aoe: handle multiple network paths to AoE device A remote AoE device is something can process ATA commands and is identified by an AoE shelf number and an AoE slot number. Such a device might have more than one network interface, and it might be reachable by more than one local network interface. This patch tracks the available network paths available to each AoE device, allowing them to be used more efficiently. Andrew Morton asked about the call to msleep_interruptible in the revalidate function. Yes, if a signal is pending, then msleep_interruptible will not return 0. That means we will not loop but will call aoenet_xmit with a NULL skb, which is a noop. If the system is too low on memory or the aoe driver is too low on frames, then the user can hit control-C to interrupt the attempt to do a revalidate. I have added a comment to the code summarizing that. Andrew Morton asked whether the allocation performed inside addtgt could use a more relaxed allocation like GFP_KERNEL, but addtgt is called when the aoedev lock has been locked with spin_lock_irqsave. It would be nice to allocate the memory under fewer restrictions, but targets are only added when the device is being discovered, and if the target can't be added right now, we can try again in a minute when then next AoE config query broadcast goes out. Andrew Morton pointed out that the "too many targets" message could be printed for failing GFP_ATOMIC allocations. The last patch in this series makes the messages more specific. Signed-off-by: Ed L. Cashin <ecashin@coraid.com> Cc: Greg KH <greg@kroah.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 05:20:00 -07:00
(*t)->maxout = (*t)->nframes;
(*t)->nout = 0;
}
buf = d->inprocess;
if (buf) {
bio = buf->bio;
mempool_free(buf, d->bufpool);
bio_endio(bio, -EIO);
}
d->inprocess = NULL;
aoe: handle multiple network paths to AoE device A remote AoE device is something can process ATA commands and is identified by an AoE shelf number and an AoE slot number. Such a device might have more than one network interface, and it might be reachable by more than one local network interface. This patch tracks the available network paths available to each AoE device, allowing them to be used more efficiently. Andrew Morton asked about the call to msleep_interruptible in the revalidate function. Yes, if a signal is pending, then msleep_interruptible will not return 0. That means we will not loop but will call aoenet_xmit with a NULL skb, which is a noop. If the system is too low on memory or the aoe driver is too low on frames, then the user can hit control-C to interrupt the attempt to do a revalidate. I have added a comment to the code summarizing that. Andrew Morton asked whether the allocation performed inside addtgt could use a more relaxed allocation like GFP_KERNEL, but addtgt is called when the aoedev lock has been locked with spin_lock_irqsave. It would be nice to allocate the memory under fewer restrictions, but targets are only added when the device is being discovered, and if the target can't be added right now, we can try again in a minute when then next AoE config query broadcast goes out. Andrew Morton pointed out that the "too many targets" message could be printed for failing GFP_ATOMIC allocations. The last patch in this series makes the messages more specific. Signed-off-by: Ed L. Cashin <ecashin@coraid.com> Cc: Greg KH <greg@kroah.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 05:20:00 -07:00
d->htgt = NULL;
while (!list_empty(&d->bufq)) {
buf = container_of(d->bufq.next, struct buf, bufs);
list_del(d->bufq.next);
bio = buf->bio;
mempool_free(buf, d->bufpool);
bio_endio(bio, -EIO);
}
if (d->gd)
set_capacity(d->gd, 0);
aoe: handle multiple network paths to AoE device A remote AoE device is something can process ATA commands and is identified by an AoE shelf number and an AoE slot number. Such a device might have more than one network interface, and it might be reachable by more than one local network interface. This patch tracks the available network paths available to each AoE device, allowing them to be used more efficiently. Andrew Morton asked about the call to msleep_interruptible in the revalidate function. Yes, if a signal is pending, then msleep_interruptible will not return 0. That means we will not loop but will call aoenet_xmit with a NULL skb, which is a noop. If the system is too low on memory or the aoe driver is too low on frames, then the user can hit control-C to interrupt the attempt to do a revalidate. I have added a comment to the code summarizing that. Andrew Morton asked whether the allocation performed inside addtgt could use a more relaxed allocation like GFP_KERNEL, but addtgt is called when the aoedev lock has been locked with spin_lock_irqsave. It would be nice to allocate the memory under fewer restrictions, but targets are only added when the device is being discovered, and if the target can't be added right now, we can try again in a minute when then next AoE config query broadcast goes out. Andrew Morton pointed out that the "too many targets" message could be printed for failing GFP_ATOMIC allocations. The last patch in this series makes the messages more specific. Signed-off-by: Ed L. Cashin <ecashin@coraid.com> Cc: Greg KH <greg@kroah.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 05:20:00 -07:00
d->flags &= ~DEVFL_UP;
}
static void
aoedev_freedev(struct aoedev *d)
{
struct aoetgt **t, **e;
if (d->gd) {
aoedisk_rm_sysfs(d);
del_gendisk(d->gd);
put_disk(d->gd);
}
t = d->targets;
e = t + NTARGETS;
for (; t < e && *t; t++)
aoe: dynamically allocate a capped number of skbs when necessary What this Patch Does Even before this recent series of 12 patches to 2.6.22-rc4, the aoe driver was reusing a small set of skbs that were allocated once and were only used for outbound AoE commands. The network layer cannot be allowed to put_page on the data that is still associated with a bio we haven't returned to the block layer, so the aoe driver (even before the patch under discussion) is still the owner of skbs that have been handed to the network layer for transmission. We need to keep track of these skbs so that we can free them, but by tracking them, we can also easily re-use them. The new patch was a response to the behavior of certain network drivers. We cannot reuse an skb that the network driver still has in its transmit ring. Network drivers can defer transmit ring cleanup and then use the state in the skb to determine how many data segments to clean up in its transmit ring. The tg3 driver is one driver that behaves in this way. When the network driver defers cleanup of its transmit ring, the aoe driver can find itself in a situation where it would like to send an AoE command, and the AoE target is ready for more work, but the network driver still has all of the pre-allocated skbs. In that case, the new patch just calls alloc_skb, as you'd expect. We don't want to get carried away, though. We try not to do excessive allocation in the write path, so we cap the number of skbs we dynamically allocate. Probably calling it a "dynamic pool" is misleading. We were already trying to use a small fixed-size set of pre-allocated skbs before this patch, and this patch just provides a little headroom (with a ceiling, though) to accomodate network drivers that hang onto skbs, by allocating when needed. The d->skbpool_hd list of allocated skbs is necessary so that we can free them later. We didn't notice the need for this headroom until AoE targets got fast enough. Alternatives If the network layer never did a put_page on the pages in the bio's we get from the block layer, then it would be possible for us to hand skbs to the network layer and forget about them, allowing the network layer to free skbs itself (and thereby calling our own skb->destructor callback function if we needed that). In that case we could get rid of the pre-allocated skbs and also the d->skbpool_hd, instead just calling alloc_skb every time we wanted to transmit a packet. The slab allocator would effectively maintain the list of skbs. Besides a loss of CPU cache locality, the main concern with that approach the danger that it would increase the likelihood of deadlock when VM is trying to free pages by writing dirty data from the page cache through the aoe driver out to persistent storage on an AoE device. Right now we have a situation where we have pre-allocation that corresponds to how much we use, which seems ideal. Of course, there's still the separate issue of receiving the packets that tell us that a write has successfully completed on the AoE target. When memory is low and VM is using AoE to flush dirty data to free up pages, it would be perfect if there were a way for us to register a fast callback that could recognize write command completion responses. But I don't think the current problems with the receive side of the situation are a justification for exacerbating the problem on the transmit side. Signed-off-by: Ed L. Cashin <ecashin@coraid.com> Cc: Greg KH <greg@kroah.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 05:20:05 -07:00
freetgt(d, *t);
if (d->bufpool)
mempool_destroy(d->bufpool);
aoe: dynamically allocate a capped number of skbs when necessary What this Patch Does Even before this recent series of 12 patches to 2.6.22-rc4, the aoe driver was reusing a small set of skbs that were allocated once and were only used for outbound AoE commands. The network layer cannot be allowed to put_page on the data that is still associated with a bio we haven't returned to the block layer, so the aoe driver (even before the patch under discussion) is still the owner of skbs that have been handed to the network layer for transmission. We need to keep track of these skbs so that we can free them, but by tracking them, we can also easily re-use them. The new patch was a response to the behavior of certain network drivers. We cannot reuse an skb that the network driver still has in its transmit ring. Network drivers can defer transmit ring cleanup and then use the state in the skb to determine how many data segments to clean up in its transmit ring. The tg3 driver is one driver that behaves in this way. When the network driver defers cleanup of its transmit ring, the aoe driver can find itself in a situation where it would like to send an AoE command, and the AoE target is ready for more work, but the network driver still has all of the pre-allocated skbs. In that case, the new patch just calls alloc_skb, as you'd expect. We don't want to get carried away, though. We try not to do excessive allocation in the write path, so we cap the number of skbs we dynamically allocate. Probably calling it a "dynamic pool" is misleading. We were already trying to use a small fixed-size set of pre-allocated skbs before this patch, and this patch just provides a little headroom (with a ceiling, though) to accomodate network drivers that hang onto skbs, by allocating when needed. The d->skbpool_hd list of allocated skbs is necessary so that we can free them later. We didn't notice the need for this headroom until AoE targets got fast enough. Alternatives If the network layer never did a put_page on the pages in the bio's we get from the block layer, then it would be possible for us to hand skbs to the network layer and forget about them, allowing the network layer to free skbs itself (and thereby calling our own skb->destructor callback function if we needed that). In that case we could get rid of the pre-allocated skbs and also the d->skbpool_hd, instead just calling alloc_skb every time we wanted to transmit a packet. The slab allocator would effectively maintain the list of skbs. Besides a loss of CPU cache locality, the main concern with that approach the danger that it would increase the likelihood of deadlock when VM is trying to free pages by writing dirty data from the page cache through the aoe driver out to persistent storage on an AoE device. Right now we have a situation where we have pre-allocation that corresponds to how much we use, which seems ideal. Of course, there's still the separate issue of receiving the packets that tell us that a write has successfully completed on the AoE target. When memory is low and VM is using AoE to flush dirty data to free up pages, it would be perfect if there were a way for us to register a fast callback that could recognize write command completion responses. But I don't think the current problems with the receive side of the situation are a justification for exacerbating the problem on the transmit side. Signed-off-by: Ed L. Cashin <ecashin@coraid.com> Cc: Greg KH <greg@kroah.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 05:20:05 -07:00
skbpoolfree(d);
aoe: allocate unused request_queue for sysfs Andy Whitcroft reported an oops in aoe triggered by use of an incorrectly initialised request_queue object: [ 2645.959090] kobject '<NULL>' (ffff880059ca22c0): tried to add an uninitialized object, something is seriously wrong. [ 2645.959104] Pid: 6, comm: events/0 Not tainted 2.6.31-5-generic #24-Ubuntu [ 2645.959107] Call Trace: [ 2645.959139] [<ffffffff8126ca2f>] kobject_add+0x5f/0x70 [ 2645.959151] [<ffffffff8125b4ab>] blk_register_queue+0x8b/0xf0 [ 2645.959155] [<ffffffff8126043f>] add_disk+0x8f/0x160 [ 2645.959161] [<ffffffffa01673c4>] aoeblk_gdalloc+0x164/0x1c0 [aoe] The request queue of an aoe device is not used but can be allocated in code that does not sleep. Bruno bisected this regression down to cd43e26f071524647e660706b784ebcbefbd2e44 block: Expose stacked device queues in sysfs "This seems to generate /sys/block/$device/queue and its contents for everyone who is using queues, not just for those queues that have a non-NULL queue->request_fn." Addresses http://bugs.launchpad.net/bugs/410198 Addresses http://bugzilla.kernel.org/show_bug.cgi?id=13942 Note that embedding a queue inside another object has always been an illegal construct, since the queues are reference counted and must persist until the last reference is dropped. So aoe was always buggy in this respect (Jens). Signed-off-by: Ed Cashin <ecashin@coraid.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Bruno Premont <bonbons@linux-vserver.org> Cc: Martin K. Petersen <martin.petersen@oracle.com> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-09-09 06:10:18 -06:00
blk_cleanup_queue(d->blkq);
kfree(d);
}
int
aoedev_flush(const char __user *str, size_t cnt)
{
ulong flags;
struct aoedev *d, **dd;
struct aoedev *rmd = NULL;
char buf[16];
int all = 0;
if (cnt >= 3) {
if (cnt > sizeof buf)
cnt = sizeof buf;
if (copy_from_user(buf, str, cnt))
return -EFAULT;
all = !strncmp(buf, "all", 3);
}
flush_scheduled_work();
spin_lock_irqsave(&devlist_lock, flags);
dd = &devlist;
while ((d = *dd)) {
spin_lock(&d->lock);
if ((!all && (d->flags & DEVFL_UP))
|| (d->flags & (DEVFL_GDALLOC|DEVFL_NEWSIZE))
|| d->nopen) {
spin_unlock(&d->lock);
dd = &d->next;
continue;
}
*dd = d->next;
aoedev_downdev(d);
d->flags |= DEVFL_TKILL;
spin_unlock(&d->lock);
d->next = rmd;
rmd = d;
}
spin_unlock_irqrestore(&devlist_lock, flags);
while ((d = rmd)) {
rmd = d->next;
del_timer_sync(&d->timer);
aoedev_freedev(d); /* must be able to sleep */
}
return 0;
}
aoe: dynamically allocate a capped number of skbs when necessary What this Patch Does Even before this recent series of 12 patches to 2.6.22-rc4, the aoe driver was reusing a small set of skbs that were allocated once and were only used for outbound AoE commands. The network layer cannot be allowed to put_page on the data that is still associated with a bio we haven't returned to the block layer, so the aoe driver (even before the patch under discussion) is still the owner of skbs that have been handed to the network layer for transmission. We need to keep track of these skbs so that we can free them, but by tracking them, we can also easily re-use them. The new patch was a response to the behavior of certain network drivers. We cannot reuse an skb that the network driver still has in its transmit ring. Network drivers can defer transmit ring cleanup and then use the state in the skb to determine how many data segments to clean up in its transmit ring. The tg3 driver is one driver that behaves in this way. When the network driver defers cleanup of its transmit ring, the aoe driver can find itself in a situation where it would like to send an AoE command, and the AoE target is ready for more work, but the network driver still has all of the pre-allocated skbs. In that case, the new patch just calls alloc_skb, as you'd expect. We don't want to get carried away, though. We try not to do excessive allocation in the write path, so we cap the number of skbs we dynamically allocate. Probably calling it a "dynamic pool" is misleading. We were already trying to use a small fixed-size set of pre-allocated skbs before this patch, and this patch just provides a little headroom (with a ceiling, though) to accomodate network drivers that hang onto skbs, by allocating when needed. The d->skbpool_hd list of allocated skbs is necessary so that we can free them later. We didn't notice the need for this headroom until AoE targets got fast enough. Alternatives If the network layer never did a put_page on the pages in the bio's we get from the block layer, then it would be possible for us to hand skbs to the network layer and forget about them, allowing the network layer to free skbs itself (and thereby calling our own skb->destructor callback function if we needed that). In that case we could get rid of the pre-allocated skbs and also the d->skbpool_hd, instead just calling alloc_skb every time we wanted to transmit a packet. The slab allocator would effectively maintain the list of skbs. Besides a loss of CPU cache locality, the main concern with that approach the danger that it would increase the likelihood of deadlock when VM is trying to free pages by writing dirty data from the page cache through the aoe driver out to persistent storage on an AoE device. Right now we have a situation where we have pre-allocation that corresponds to how much we use, which seems ideal. Of course, there's still the separate issue of receiving the packets that tell us that a write has successfully completed on the AoE target. When memory is low and VM is using AoE to flush dirty data to free up pages, it would be perfect if there were a way for us to register a fast callback that could recognize write command completion responses. But I don't think the current problems with the receive side of the situation are a justification for exacerbating the problem on the transmit side. Signed-off-by: Ed L. Cashin <ecashin@coraid.com> Cc: Greg KH <greg@kroah.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 05:20:05 -07:00
/* I'm not really sure that this is a realistic problem, but if the
network driver goes gonzo let's just leak memory after complaining. */
static void
skbfree(struct sk_buff *skb)
{
enum { Sms = 100, Tms = 3*1000};
int i = Tms / Sms;
if (skb == NULL)
return;
while (atomic_read(&skb_shinfo(skb)->dataref) != 1 && i-- > 0)
msleep(Sms);
if (i < 0) {
aoe: dynamically allocate a capped number of skbs when necessary What this Patch Does Even before this recent series of 12 patches to 2.6.22-rc4, the aoe driver was reusing a small set of skbs that were allocated once and were only used for outbound AoE commands. The network layer cannot be allowed to put_page on the data that is still associated with a bio we haven't returned to the block layer, so the aoe driver (even before the patch under discussion) is still the owner of skbs that have been handed to the network layer for transmission. We need to keep track of these skbs so that we can free them, but by tracking them, we can also easily re-use them. The new patch was a response to the behavior of certain network drivers. We cannot reuse an skb that the network driver still has in its transmit ring. Network drivers can defer transmit ring cleanup and then use the state in the skb to determine how many data segments to clean up in its transmit ring. The tg3 driver is one driver that behaves in this way. When the network driver defers cleanup of its transmit ring, the aoe driver can find itself in a situation where it would like to send an AoE command, and the AoE target is ready for more work, but the network driver still has all of the pre-allocated skbs. In that case, the new patch just calls alloc_skb, as you'd expect. We don't want to get carried away, though. We try not to do excessive allocation in the write path, so we cap the number of skbs we dynamically allocate. Probably calling it a "dynamic pool" is misleading. We were already trying to use a small fixed-size set of pre-allocated skbs before this patch, and this patch just provides a little headroom (with a ceiling, though) to accomodate network drivers that hang onto skbs, by allocating when needed. The d->skbpool_hd list of allocated skbs is necessary so that we can free them later. We didn't notice the need for this headroom until AoE targets got fast enough. Alternatives If the network layer never did a put_page on the pages in the bio's we get from the block layer, then it would be possible for us to hand skbs to the network layer and forget about them, allowing the network layer to free skbs itself (and thereby calling our own skb->destructor callback function if we needed that). In that case we could get rid of the pre-allocated skbs and also the d->skbpool_hd, instead just calling alloc_skb every time we wanted to transmit a packet. The slab allocator would effectively maintain the list of skbs. Besides a loss of CPU cache locality, the main concern with that approach the danger that it would increase the likelihood of deadlock when VM is trying to free pages by writing dirty data from the page cache through the aoe driver out to persistent storage on an AoE device. Right now we have a situation where we have pre-allocation that corresponds to how much we use, which seems ideal. Of course, there's still the separate issue of receiving the packets that tell us that a write has successfully completed on the AoE target. When memory is low and VM is using AoE to flush dirty data to free up pages, it would be perfect if there were a way for us to register a fast callback that could recognize write command completion responses. But I don't think the current problems with the receive side of the situation are a justification for exacerbating the problem on the transmit side. Signed-off-by: Ed L. Cashin <ecashin@coraid.com> Cc: Greg KH <greg@kroah.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 05:20:05 -07:00
printk(KERN_ERR
"aoe: %s holds ref: %s\n",
skb->dev ? skb->dev->name : "netif",
"cannot free skb -- memory leaked.");
return;
}
skb_shinfo(skb)->nr_frags = skb->data_len = 0;
skb_trim(skb, 0);
dev_kfree_skb(skb);
}
static void
skbpoolfree(struct aoedev *d)
{
struct sk_buff *skb, *tmp;
aoe: dynamically allocate a capped number of skbs when necessary What this Patch Does Even before this recent series of 12 patches to 2.6.22-rc4, the aoe driver was reusing a small set of skbs that were allocated once and were only used for outbound AoE commands. The network layer cannot be allowed to put_page on the data that is still associated with a bio we haven't returned to the block layer, so the aoe driver (even before the patch under discussion) is still the owner of skbs that have been handed to the network layer for transmission. We need to keep track of these skbs so that we can free them, but by tracking them, we can also easily re-use them. The new patch was a response to the behavior of certain network drivers. We cannot reuse an skb that the network driver still has in its transmit ring. Network drivers can defer transmit ring cleanup and then use the state in the skb to determine how many data segments to clean up in its transmit ring. The tg3 driver is one driver that behaves in this way. When the network driver defers cleanup of its transmit ring, the aoe driver can find itself in a situation where it would like to send an AoE command, and the AoE target is ready for more work, but the network driver still has all of the pre-allocated skbs. In that case, the new patch just calls alloc_skb, as you'd expect. We don't want to get carried away, though. We try not to do excessive allocation in the write path, so we cap the number of skbs we dynamically allocate. Probably calling it a "dynamic pool" is misleading. We were already trying to use a small fixed-size set of pre-allocated skbs before this patch, and this patch just provides a little headroom (with a ceiling, though) to accomodate network drivers that hang onto skbs, by allocating when needed. The d->skbpool_hd list of allocated skbs is necessary so that we can free them later. We didn't notice the need for this headroom until AoE targets got fast enough. Alternatives If the network layer never did a put_page on the pages in the bio's we get from the block layer, then it would be possible for us to hand skbs to the network layer and forget about them, allowing the network layer to free skbs itself (and thereby calling our own skb->destructor callback function if we needed that). In that case we could get rid of the pre-allocated skbs and also the d->skbpool_hd, instead just calling alloc_skb every time we wanted to transmit a packet. The slab allocator would effectively maintain the list of skbs. Besides a loss of CPU cache locality, the main concern with that approach the danger that it would increase the likelihood of deadlock when VM is trying to free pages by writing dirty data from the page cache through the aoe driver out to persistent storage on an AoE device. Right now we have a situation where we have pre-allocation that corresponds to how much we use, which seems ideal. Of course, there's still the separate issue of receiving the packets that tell us that a write has successfully completed on the AoE target. When memory is low and VM is using AoE to flush dirty data to free up pages, it would be perfect if there were a way for us to register a fast callback that could recognize write command completion responses. But I don't think the current problems with the receive side of the situation are a justification for exacerbating the problem on the transmit side. Signed-off-by: Ed L. Cashin <ecashin@coraid.com> Cc: Greg KH <greg@kroah.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 05:20:05 -07:00
skb_queue_walk_safe(&d->skbpool, skb, tmp)
aoe: dynamically allocate a capped number of skbs when necessary What this Patch Does Even before this recent series of 12 patches to 2.6.22-rc4, the aoe driver was reusing a small set of skbs that were allocated once and were only used for outbound AoE commands. The network layer cannot be allowed to put_page on the data that is still associated with a bio we haven't returned to the block layer, so the aoe driver (even before the patch under discussion) is still the owner of skbs that have been handed to the network layer for transmission. We need to keep track of these skbs so that we can free them, but by tracking them, we can also easily re-use them. The new patch was a response to the behavior of certain network drivers. We cannot reuse an skb that the network driver still has in its transmit ring. Network drivers can defer transmit ring cleanup and then use the state in the skb to determine how many data segments to clean up in its transmit ring. The tg3 driver is one driver that behaves in this way. When the network driver defers cleanup of its transmit ring, the aoe driver can find itself in a situation where it would like to send an AoE command, and the AoE target is ready for more work, but the network driver still has all of the pre-allocated skbs. In that case, the new patch just calls alloc_skb, as you'd expect. We don't want to get carried away, though. We try not to do excessive allocation in the write path, so we cap the number of skbs we dynamically allocate. Probably calling it a "dynamic pool" is misleading. We were already trying to use a small fixed-size set of pre-allocated skbs before this patch, and this patch just provides a little headroom (with a ceiling, though) to accomodate network drivers that hang onto skbs, by allocating when needed. The d->skbpool_hd list of allocated skbs is necessary so that we can free them later. We didn't notice the need for this headroom until AoE targets got fast enough. Alternatives If the network layer never did a put_page on the pages in the bio's we get from the block layer, then it would be possible for us to hand skbs to the network layer and forget about them, allowing the network layer to free skbs itself (and thereby calling our own skb->destructor callback function if we needed that). In that case we could get rid of the pre-allocated skbs and also the d->skbpool_hd, instead just calling alloc_skb every time we wanted to transmit a packet. The slab allocator would effectively maintain the list of skbs. Besides a loss of CPU cache locality, the main concern with that approach the danger that it would increase the likelihood of deadlock when VM is trying to free pages by writing dirty data from the page cache through the aoe driver out to persistent storage on an AoE device. Right now we have a situation where we have pre-allocation that corresponds to how much we use, which seems ideal. Of course, there's still the separate issue of receiving the packets that tell us that a write has successfully completed on the AoE target. When memory is low and VM is using AoE to flush dirty data to free up pages, it would be perfect if there were a way for us to register a fast callback that could recognize write command completion responses. But I don't think the current problems with the receive side of the situation are a justification for exacerbating the problem on the transmit side. Signed-off-by: Ed L. Cashin <ecashin@coraid.com> Cc: Greg KH <greg@kroah.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 05:20:05 -07:00
skbfree(skb);
__skb_queue_head_init(&d->skbpool);
aoe: dynamically allocate a capped number of skbs when necessary What this Patch Does Even before this recent series of 12 patches to 2.6.22-rc4, the aoe driver was reusing a small set of skbs that were allocated once and were only used for outbound AoE commands. The network layer cannot be allowed to put_page on the data that is still associated with a bio we haven't returned to the block layer, so the aoe driver (even before the patch under discussion) is still the owner of skbs that have been handed to the network layer for transmission. We need to keep track of these skbs so that we can free them, but by tracking them, we can also easily re-use them. The new patch was a response to the behavior of certain network drivers. We cannot reuse an skb that the network driver still has in its transmit ring. Network drivers can defer transmit ring cleanup and then use the state in the skb to determine how many data segments to clean up in its transmit ring. The tg3 driver is one driver that behaves in this way. When the network driver defers cleanup of its transmit ring, the aoe driver can find itself in a situation where it would like to send an AoE command, and the AoE target is ready for more work, but the network driver still has all of the pre-allocated skbs. In that case, the new patch just calls alloc_skb, as you'd expect. We don't want to get carried away, though. We try not to do excessive allocation in the write path, so we cap the number of skbs we dynamically allocate. Probably calling it a "dynamic pool" is misleading. We were already trying to use a small fixed-size set of pre-allocated skbs before this patch, and this patch just provides a little headroom (with a ceiling, though) to accomodate network drivers that hang onto skbs, by allocating when needed. The d->skbpool_hd list of allocated skbs is necessary so that we can free them later. We didn't notice the need for this headroom until AoE targets got fast enough. Alternatives If the network layer never did a put_page on the pages in the bio's we get from the block layer, then it would be possible for us to hand skbs to the network layer and forget about them, allowing the network layer to free skbs itself (and thereby calling our own skb->destructor callback function if we needed that). In that case we could get rid of the pre-allocated skbs and also the d->skbpool_hd, instead just calling alloc_skb every time we wanted to transmit a packet. The slab allocator would effectively maintain the list of skbs. Besides a loss of CPU cache locality, the main concern with that approach the danger that it would increase the likelihood of deadlock when VM is trying to free pages by writing dirty data from the page cache through the aoe driver out to persistent storage on an AoE device. Right now we have a situation where we have pre-allocation that corresponds to how much we use, which seems ideal. Of course, there's still the separate issue of receiving the packets that tell us that a write has successfully completed on the AoE target. When memory is low and VM is using AoE to flush dirty data to free up pages, it would be perfect if there were a way for us to register a fast callback that could recognize write command completion responses. But I don't think the current problems with the receive side of the situation are a justification for exacerbating the problem on the transmit side. Signed-off-by: Ed L. Cashin <ecashin@coraid.com> Cc: Greg KH <greg@kroah.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 05:20:05 -07:00
}
/* find it or malloc it */
struct aoedev *
aoe: handle multiple network paths to AoE device A remote AoE device is something can process ATA commands and is identified by an AoE shelf number and an AoE slot number. Such a device might have more than one network interface, and it might be reachable by more than one local network interface. This patch tracks the available network paths available to each AoE device, allowing them to be used more efficiently. Andrew Morton asked about the call to msleep_interruptible in the revalidate function. Yes, if a signal is pending, then msleep_interruptible will not return 0. That means we will not loop but will call aoenet_xmit with a NULL skb, which is a noop. If the system is too low on memory or the aoe driver is too low on frames, then the user can hit control-C to interrupt the attempt to do a revalidate. I have added a comment to the code summarizing that. Andrew Morton asked whether the allocation performed inside addtgt could use a more relaxed allocation like GFP_KERNEL, but addtgt is called when the aoedev lock has been locked with spin_lock_irqsave. It would be nice to allocate the memory under fewer restrictions, but targets are only added when the device is being discovered, and if the target can't be added right now, we can try again in a minute when then next AoE config query broadcast goes out. Andrew Morton pointed out that the "too many targets" message could be printed for failing GFP_ATOMIC allocations. The last patch in this series makes the messages more specific. Signed-off-by: Ed L. Cashin <ecashin@coraid.com> Cc: Greg KH <greg@kroah.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 05:20:00 -07:00
aoedev_by_sysminor_m(ulong sysminor)
{
struct aoedev *d;
ulong flags;
spin_lock_irqsave(&devlist_lock, flags);
for (d=devlist; d; d=d->next)
if (d->sysminor == sysminor)
break;
aoe: handle multiple network paths to AoE device A remote AoE device is something can process ATA commands and is identified by an AoE shelf number and an AoE slot number. Such a device might have more than one network interface, and it might be reachable by more than one local network interface. This patch tracks the available network paths available to each AoE device, allowing them to be used more efficiently. Andrew Morton asked about the call to msleep_interruptible in the revalidate function. Yes, if a signal is pending, then msleep_interruptible will not return 0. That means we will not loop but will call aoenet_xmit with a NULL skb, which is a noop. If the system is too low on memory or the aoe driver is too low on frames, then the user can hit control-C to interrupt the attempt to do a revalidate. I have added a comment to the code summarizing that. Andrew Morton asked whether the allocation performed inside addtgt could use a more relaxed allocation like GFP_KERNEL, but addtgt is called when the aoedev lock has been locked with spin_lock_irqsave. It would be nice to allocate the memory under fewer restrictions, but targets are only added when the device is being discovered, and if the target can't be added right now, we can try again in a minute when then next AoE config query broadcast goes out. Andrew Morton pointed out that the "too many targets" message could be printed for failing GFP_ATOMIC allocations. The last patch in this series makes the messages more specific. Signed-off-by: Ed L. Cashin <ecashin@coraid.com> Cc: Greg KH <greg@kroah.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 05:20:00 -07:00
if (d)
goto out;
d = kcalloc(1, sizeof *d, GFP_ATOMIC);
if (!d)
goto out;
INIT_WORK(&d->work, aoecmd_sleepwork);
spin_lock_init(&d->lock);
skb_queue_head_init(&d->sendq);
skb_queue_head_init(&d->skbpool);
aoe: handle multiple network paths to AoE device A remote AoE device is something can process ATA commands and is identified by an AoE shelf number and an AoE slot number. Such a device might have more than one network interface, and it might be reachable by more than one local network interface. This patch tracks the available network paths available to each AoE device, allowing them to be used more efficiently. Andrew Morton asked about the call to msleep_interruptible in the revalidate function. Yes, if a signal is pending, then msleep_interruptible will not return 0. That means we will not loop but will call aoenet_xmit with a NULL skb, which is a noop. If the system is too low on memory or the aoe driver is too low on frames, then the user can hit control-C to interrupt the attempt to do a revalidate. I have added a comment to the code summarizing that. Andrew Morton asked whether the allocation performed inside addtgt could use a more relaxed allocation like GFP_KERNEL, but addtgt is called when the aoedev lock has been locked with spin_lock_irqsave. It would be nice to allocate the memory under fewer restrictions, but targets are only added when the device is being discovered, and if the target can't be added right now, we can try again in a minute when then next AoE config query broadcast goes out. Andrew Morton pointed out that the "too many targets" message could be printed for failing GFP_ATOMIC allocations. The last patch in this series makes the messages more specific. Signed-off-by: Ed L. Cashin <ecashin@coraid.com> Cc: Greg KH <greg@kroah.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 05:20:00 -07:00
init_timer(&d->timer);
d->timer.data = (ulong) d;
d->timer.function = dummy_timer;
d->timer.expires = jiffies + HZ;
add_timer(&d->timer);
d->bufpool = NULL; /* defer to aoeblk_gdalloc */
d->tgt = d->targets;
INIT_LIST_HEAD(&d->bufq);
d->sysminor = sysminor;
d->aoemajor = AOEMAJOR(sysminor);
d->aoeminor = AOEMINOR(sysminor);
d->mintimer = MINTIMER;
d->next = devlist;
devlist = d;
out:
spin_unlock_irqrestore(&devlist_lock, flags);
return d;
}
static void
aoe: dynamically allocate a capped number of skbs when necessary What this Patch Does Even before this recent series of 12 patches to 2.6.22-rc4, the aoe driver was reusing a small set of skbs that were allocated once and were only used for outbound AoE commands. The network layer cannot be allowed to put_page on the data that is still associated with a bio we haven't returned to the block layer, so the aoe driver (even before the patch under discussion) is still the owner of skbs that have been handed to the network layer for transmission. We need to keep track of these skbs so that we can free them, but by tracking them, we can also easily re-use them. The new patch was a response to the behavior of certain network drivers. We cannot reuse an skb that the network driver still has in its transmit ring. Network drivers can defer transmit ring cleanup and then use the state in the skb to determine how many data segments to clean up in its transmit ring. The tg3 driver is one driver that behaves in this way. When the network driver defers cleanup of its transmit ring, the aoe driver can find itself in a situation where it would like to send an AoE command, and the AoE target is ready for more work, but the network driver still has all of the pre-allocated skbs. In that case, the new patch just calls alloc_skb, as you'd expect. We don't want to get carried away, though. We try not to do excessive allocation in the write path, so we cap the number of skbs we dynamically allocate. Probably calling it a "dynamic pool" is misleading. We were already trying to use a small fixed-size set of pre-allocated skbs before this patch, and this patch just provides a little headroom (with a ceiling, though) to accomodate network drivers that hang onto skbs, by allocating when needed. The d->skbpool_hd list of allocated skbs is necessary so that we can free them later. We didn't notice the need for this headroom until AoE targets got fast enough. Alternatives If the network layer never did a put_page on the pages in the bio's we get from the block layer, then it would be possible for us to hand skbs to the network layer and forget about them, allowing the network layer to free skbs itself (and thereby calling our own skb->destructor callback function if we needed that). In that case we could get rid of the pre-allocated skbs and also the d->skbpool_hd, instead just calling alloc_skb every time we wanted to transmit a packet. The slab allocator would effectively maintain the list of skbs. Besides a loss of CPU cache locality, the main concern with that approach the danger that it would increase the likelihood of deadlock when VM is trying to free pages by writing dirty data from the page cache through the aoe driver out to persistent storage on an AoE device. Right now we have a situation where we have pre-allocation that corresponds to how much we use, which seems ideal. Of course, there's still the separate issue of receiving the packets that tell us that a write has successfully completed on the AoE target. When memory is low and VM is using AoE to flush dirty data to free up pages, it would be perfect if there were a way for us to register a fast callback that could recognize write command completion responses. But I don't think the current problems with the receive side of the situation are a justification for exacerbating the problem on the transmit side. Signed-off-by: Ed L. Cashin <ecashin@coraid.com> Cc: Greg KH <greg@kroah.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 05:20:05 -07:00
freetgt(struct aoedev *d, struct aoetgt *t)
{
struct frame *f, *e;
aoe: handle multiple network paths to AoE device A remote AoE device is something can process ATA commands and is identified by an AoE shelf number and an AoE slot number. Such a device might have more than one network interface, and it might be reachable by more than one local network interface. This patch tracks the available network paths available to each AoE device, allowing them to be used more efficiently. Andrew Morton asked about the call to msleep_interruptible in the revalidate function. Yes, if a signal is pending, then msleep_interruptible will not return 0. That means we will not loop but will call aoenet_xmit with a NULL skb, which is a noop. If the system is too low on memory or the aoe driver is too low on frames, then the user can hit control-C to interrupt the attempt to do a revalidate. I have added a comment to the code summarizing that. Andrew Morton asked whether the allocation performed inside addtgt could use a more relaxed allocation like GFP_KERNEL, but addtgt is called when the aoedev lock has been locked with spin_lock_irqsave. It would be nice to allocate the memory under fewer restrictions, but targets are only added when the device is being discovered, and if the target can't be added right now, we can try again in a minute when then next AoE config query broadcast goes out. Andrew Morton pointed out that the "too many targets" message could be printed for failing GFP_ATOMIC allocations. The last patch in this series makes the messages more specific. Signed-off-by: Ed L. Cashin <ecashin@coraid.com> Cc: Greg KH <greg@kroah.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 05:20:00 -07:00
f = t->frames;
e = f + t->nframes;
aoe: dynamically allocate a capped number of skbs when necessary What this Patch Does Even before this recent series of 12 patches to 2.6.22-rc4, the aoe driver was reusing a small set of skbs that were allocated once and were only used for outbound AoE commands. The network layer cannot be allowed to put_page on the data that is still associated with a bio we haven't returned to the block layer, so the aoe driver (even before the patch under discussion) is still the owner of skbs that have been handed to the network layer for transmission. We need to keep track of these skbs so that we can free them, but by tracking them, we can also easily re-use them. The new patch was a response to the behavior of certain network drivers. We cannot reuse an skb that the network driver still has in its transmit ring. Network drivers can defer transmit ring cleanup and then use the state in the skb to determine how many data segments to clean up in its transmit ring. The tg3 driver is one driver that behaves in this way. When the network driver defers cleanup of its transmit ring, the aoe driver can find itself in a situation where it would like to send an AoE command, and the AoE target is ready for more work, but the network driver still has all of the pre-allocated skbs. In that case, the new patch just calls alloc_skb, as you'd expect. We don't want to get carried away, though. We try not to do excessive allocation in the write path, so we cap the number of skbs we dynamically allocate. Probably calling it a "dynamic pool" is misleading. We were already trying to use a small fixed-size set of pre-allocated skbs before this patch, and this patch just provides a little headroom (with a ceiling, though) to accomodate network drivers that hang onto skbs, by allocating when needed. The d->skbpool_hd list of allocated skbs is necessary so that we can free them later. We didn't notice the need for this headroom until AoE targets got fast enough. Alternatives If the network layer never did a put_page on the pages in the bio's we get from the block layer, then it would be possible for us to hand skbs to the network layer and forget about them, allowing the network layer to free skbs itself (and thereby calling our own skb->destructor callback function if we needed that). In that case we could get rid of the pre-allocated skbs and also the d->skbpool_hd, instead just calling alloc_skb every time we wanted to transmit a packet. The slab allocator would effectively maintain the list of skbs. Besides a loss of CPU cache locality, the main concern with that approach the danger that it would increase the likelihood of deadlock when VM is trying to free pages by writing dirty data from the page cache through the aoe driver out to persistent storage on an AoE device. Right now we have a situation where we have pre-allocation that corresponds to how much we use, which seems ideal. Of course, there's still the separate issue of receiving the packets that tell us that a write has successfully completed on the AoE target. When memory is low and VM is using AoE to flush dirty data to free up pages, it would be perfect if there were a way for us to register a fast callback that could recognize write command completion responses. But I don't think the current problems with the receive side of the situation are a justification for exacerbating the problem on the transmit side. Signed-off-by: Ed L. Cashin <ecashin@coraid.com> Cc: Greg KH <greg@kroah.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 05:20:05 -07:00
for (; f < e; f++)
skbfree(f->skb);
aoe: handle multiple network paths to AoE device A remote AoE device is something can process ATA commands and is identified by an AoE shelf number and an AoE slot number. Such a device might have more than one network interface, and it might be reachable by more than one local network interface. This patch tracks the available network paths available to each AoE device, allowing them to be used more efficiently. Andrew Morton asked about the call to msleep_interruptible in the revalidate function. Yes, if a signal is pending, then msleep_interruptible will not return 0. That means we will not loop but will call aoenet_xmit with a NULL skb, which is a noop. If the system is too low on memory or the aoe driver is too low on frames, then the user can hit control-C to interrupt the attempt to do a revalidate. I have added a comment to the code summarizing that. Andrew Morton asked whether the allocation performed inside addtgt could use a more relaxed allocation like GFP_KERNEL, but addtgt is called when the aoedev lock has been locked with spin_lock_irqsave. It would be nice to allocate the memory under fewer restrictions, but targets are only added when the device is being discovered, and if the target can't be added right now, we can try again in a minute when then next AoE config query broadcast goes out. Andrew Morton pointed out that the "too many targets" message could be printed for failing GFP_ATOMIC allocations. The last patch in this series makes the messages more specific. Signed-off-by: Ed L. Cashin <ecashin@coraid.com> Cc: Greg KH <greg@kroah.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 05:20:00 -07:00
kfree(t->frames);
kfree(t);
}
void
aoedev_exit(void)
{
struct aoedev *d;
ulong flags;
flush_scheduled_work();
while ((d = devlist)) {
devlist = d->next;
spin_lock_irqsave(&d->lock, flags);
aoedev_downdev(d);
d->flags |= DEVFL_TKILL;
spin_unlock_irqrestore(&d->lock, flags);
del_timer_sync(&d->timer);
aoedev_freedev(d);
}
}
int __init
aoedev_init(void)
{
return 0;
}