kernel-fxtec-pro1x/drivers/scsi/ncr53c8xx.c

8627 lines
210 KiB
C
Raw Normal View History

/******************************************************************************
** Device driver for the PCI-SCSI NCR538XX controller family.
**
** Copyright (C) 1994 Wolfgang Stanglmeier
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or
** (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program; if not, write to the Free Software
** Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
**
**-----------------------------------------------------------------------------
**
** This driver has been ported to Linux from the FreeBSD NCR53C8XX driver
** and is currently maintained by
**
** Gerard Roudier <groudier@free.fr>
**
** Being given that this driver originates from the FreeBSD version, and
** in order to keep synergy on both, any suggested enhancements and corrections
** received on Linux are automatically a potential candidate for the FreeBSD
** version.
**
** The original driver has been written for 386bsd and FreeBSD by
** Wolfgang Stanglmeier <wolf@cologne.de>
** Stefan Esser <se@mi.Uni-Koeln.de>
**
** And has been ported to NetBSD by
** Charles M. Hannum <mycroft@gnu.ai.mit.edu>
**
**-----------------------------------------------------------------------------
**
** Brief history
**
** December 10 1995 by Gerard Roudier:
** Initial port to Linux.
**
** June 23 1996 by Gerard Roudier:
** Support for 64 bits architectures (Alpha).
**
** November 30 1996 by Gerard Roudier:
** Support for Fast-20 scsi.
** Support for large DMA fifo and 128 dwords bursting.
**
** February 27 1997 by Gerard Roudier:
** Support for Fast-40 scsi.
** Support for on-Board RAM.
**
** May 3 1997 by Gerard Roudier:
** Full support for scsi scripts instructions pre-fetching.
**
** May 19 1997 by Richard Waltham <dormouse@farsrobt.demon.co.uk>:
** Support for NvRAM detection and reading.
**
** August 18 1997 by Cort <cort@cs.nmt.edu>:
** Support for Power/PC (Big Endian).
**
** June 20 1998 by Gerard Roudier
** Support for up to 64 tags per lun.
** O(1) everywhere (C and SCRIPTS) for normal cases.
** Low PCI traffic for command handling when on-chip RAM is present.
** Aggressive SCSI SCRIPTS optimizations.
**
** 2005 by Matthew Wilcox and James Bottomley
** PCI-ectomy. This driver now supports only the 720 chip (see the
** NCR_Q720 and zalon drivers for the bus probe logic).
**
*******************************************************************************
*/
/*
** Supported SCSI-II features:
** Synchronous negotiation
** Wide negotiation (depends on the NCR Chip)
** Enable disconnection
** Tagged command queuing
** Parity checking
** Etc...
**
** Supported NCR/SYMBIOS chips:
** 53C720 (Wide, Fast SCSI-2, intfly problems)
*/
/* Name and version of the driver */
#define SCSI_NCR_DRIVER_NAME "ncr53c8xx-3.4.3g"
#define SCSI_NCR_DEBUG_FLAGS (0)
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/signal.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/timer.h>
#include <linux/types.h>
#include <asm/dma.h>
#include <asm/io.h>
#include <asm/system.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_dbg.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_tcq.h>
#include <scsi/scsi_transport.h>
#include <scsi/scsi_transport_spi.h>
#include "ncr53c8xx.h"
#define NAME53C8XX "ncr53c8xx"
/*==========================================================
**
** Debugging tags
**
**==========================================================
*/
#define DEBUG_ALLOC (0x0001)
#define DEBUG_PHASE (0x0002)
#define DEBUG_QUEUE (0x0008)
#define DEBUG_RESULT (0x0010)
#define DEBUG_POINTER (0x0020)
#define DEBUG_SCRIPT (0x0040)
#define DEBUG_TINY (0x0080)
#define DEBUG_TIMING (0x0100)
#define DEBUG_NEGO (0x0200)
#define DEBUG_TAGS (0x0400)
#define DEBUG_SCATTER (0x0800)
#define DEBUG_IC (0x1000)
/*
** Enable/Disable debug messages.
** Can be changed at runtime too.
*/
#ifdef SCSI_NCR_DEBUG_INFO_SUPPORT
static int ncr_debug = SCSI_NCR_DEBUG_FLAGS;
#define DEBUG_FLAGS ncr_debug
#else
#define DEBUG_FLAGS SCSI_NCR_DEBUG_FLAGS
#endif
static inline struct list_head *ncr_list_pop(struct list_head *head)
{
if (!list_empty(head)) {
struct list_head *elem = head->next;
list_del(elem);
return elem;
}
return NULL;
}
/*==========================================================
**
** Simple power of two buddy-like allocator.
**
** This simple code is not intended to be fast, but to
** provide power of 2 aligned memory allocations.
** Since the SCRIPTS processor only supplies 8 bit
** arithmetic, this allocator allows simple and fast
** address calculations from the SCRIPTS code.
** In addition, cache line alignment is guaranteed for
** power of 2 cache line size.
** Enhanced in linux-2.3.44 to provide a memory pool
** per pcidev to support dynamic dma mapping. (I would
** have preferred a real bus abstraction, btw).
**
**==========================================================
*/
#define MEMO_SHIFT 4 /* 16 bytes minimum memory chunk */
#if PAGE_SIZE >= 8192
#define MEMO_PAGE_ORDER 0 /* 1 PAGE maximum */
#else
#define MEMO_PAGE_ORDER 1 /* 2 PAGES maximum */
#endif
#define MEMO_FREE_UNUSED /* Free unused pages immediately */
#define MEMO_WARN 1
#define MEMO_GFP_FLAGS GFP_ATOMIC
#define MEMO_CLUSTER_SHIFT (PAGE_SHIFT+MEMO_PAGE_ORDER)
#define MEMO_CLUSTER_SIZE (1UL << MEMO_CLUSTER_SHIFT)
#define MEMO_CLUSTER_MASK (MEMO_CLUSTER_SIZE-1)
typedef u_long m_addr_t; /* Enough bits to bit-hack addresses */
typedef struct device *m_bush_t; /* Something that addresses DMAable */
typedef struct m_link { /* Link between free memory chunks */
struct m_link *next;
} m_link_s;
typedef struct m_vtob { /* Virtual to Bus address translation */
struct m_vtob *next;
m_addr_t vaddr;
m_addr_t baddr;
} m_vtob_s;
#define VTOB_HASH_SHIFT 5
#define VTOB_HASH_SIZE (1UL << VTOB_HASH_SHIFT)
#define VTOB_HASH_MASK (VTOB_HASH_SIZE-1)
#define VTOB_HASH_CODE(m) \
((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK)
typedef struct m_pool { /* Memory pool of a given kind */
m_bush_t bush;
m_addr_t (*getp)(struct m_pool *);
void (*freep)(struct m_pool *, m_addr_t);
int nump;
m_vtob_s *(vtob[VTOB_HASH_SIZE]);
struct m_pool *next;
struct m_link h[PAGE_SHIFT-MEMO_SHIFT+MEMO_PAGE_ORDER+1];
} m_pool_s;
static void *___m_alloc(m_pool_s *mp, int size)
{
int i = 0;
int s = (1 << MEMO_SHIFT);
int j;
m_addr_t a;
m_link_s *h = mp->h;
if (size > (PAGE_SIZE << MEMO_PAGE_ORDER))
return NULL;
while (size > s) {
s <<= 1;
++i;
}
j = i;
while (!h[j].next) {
if (s == (PAGE_SIZE << MEMO_PAGE_ORDER)) {
h[j].next = (m_link_s *)mp->getp(mp);
if (h[j].next)
h[j].next->next = NULL;
break;
}
++j;
s <<= 1;
}
a = (m_addr_t) h[j].next;
if (a) {
h[j].next = h[j].next->next;
while (j > i) {
j -= 1;
s >>= 1;
h[j].next = (m_link_s *) (a+s);
h[j].next->next = NULL;
}
}
#ifdef DEBUG
printk("___m_alloc(%d) = %p\n", size, (void *) a);
#endif
return (void *) a;
}
static void ___m_free(m_pool_s *mp, void *ptr, int size)
{
int i = 0;
int s = (1 << MEMO_SHIFT);
m_link_s *q;
m_addr_t a, b;
m_link_s *h = mp->h;
#ifdef DEBUG
printk("___m_free(%p, %d)\n", ptr, size);
#endif
if (size > (PAGE_SIZE << MEMO_PAGE_ORDER))
return;
while (size > s) {
s <<= 1;
++i;
}
a = (m_addr_t) ptr;
while (1) {
#ifdef MEMO_FREE_UNUSED
if (s == (PAGE_SIZE << MEMO_PAGE_ORDER)) {
mp->freep(mp, a);
break;
}
#endif
b = a ^ s;
q = &h[i];
while (q->next && q->next != (m_link_s *) b) {
q = q->next;
}
if (!q->next) {
((m_link_s *) a)->next = h[i].next;
h[i].next = (m_link_s *) a;
break;
}
q->next = q->next->next;
a = a & b;
s <<= 1;
++i;
}
}
static DEFINE_SPINLOCK(ncr53c8xx_lock);
static void *__m_calloc2(m_pool_s *mp, int size, char *name, int uflags)
{
void *p;
p = ___m_alloc(mp, size);
if (DEBUG_FLAGS & DEBUG_ALLOC)
printk ("new %-10s[%4d] @%p.\n", name, size, p);
if (p)
memset(p, 0, size);
else if (uflags & MEMO_WARN)
printk (NAME53C8XX ": failed to allocate %s[%d]\n", name, size);
return p;
}
#define __m_calloc(mp, s, n) __m_calloc2(mp, s, n, MEMO_WARN)
static void __m_free(m_pool_s *mp, void *ptr, int size, char *name)
{
if (DEBUG_FLAGS & DEBUG_ALLOC)
printk ("freeing %-10s[%4d] @%p.\n", name, size, ptr);
___m_free(mp, ptr, size);
}
/*
* With pci bus iommu support, we use a default pool of unmapped memory
* for memory we donnot need to DMA from/to and one pool per pcidev for
* memory accessed by the PCI chip. `mp0' is the default not DMAable pool.
*/
static m_addr_t ___mp0_getp(m_pool_s *mp)
{
m_addr_t m = __get_free_pages(MEMO_GFP_FLAGS, MEMO_PAGE_ORDER);
if (m)
++mp->nump;
return m;
}
static void ___mp0_freep(m_pool_s *mp, m_addr_t m)
{
free_pages(m, MEMO_PAGE_ORDER);
--mp->nump;
}
static m_pool_s mp0 = {NULL, ___mp0_getp, ___mp0_freep};
/*
* DMAable pools.
*/
/*
* With pci bus iommu support, we maintain one pool per pcidev and a
* hashed reverse table for virtual to bus physical address translations.
*/
static m_addr_t ___dma_getp(m_pool_s *mp)
{
m_addr_t vp;
m_vtob_s *vbp;
vbp = __m_calloc(&mp0, sizeof(*vbp), "VTOB");
if (vbp) {
dma_addr_t daddr;
vp = (m_addr_t) dma_alloc_coherent(mp->bush,
PAGE_SIZE<<MEMO_PAGE_ORDER,
&daddr, GFP_ATOMIC);
if (vp) {
int hc = VTOB_HASH_CODE(vp);
vbp->vaddr = vp;
vbp->baddr = daddr;
vbp->next = mp->vtob[hc];
mp->vtob[hc] = vbp;
++mp->nump;
return vp;
}
}
if (vbp)
__m_free(&mp0, vbp, sizeof(*vbp), "VTOB");
return 0;
}
static void ___dma_freep(m_pool_s *mp, m_addr_t m)
{
m_vtob_s **vbpp, *vbp;
int hc = VTOB_HASH_CODE(m);
vbpp = &mp->vtob[hc];
while (*vbpp && (*vbpp)->vaddr != m)
vbpp = &(*vbpp)->next;
if (*vbpp) {
vbp = *vbpp;
*vbpp = (*vbpp)->next;
dma_free_coherent(mp->bush, PAGE_SIZE<<MEMO_PAGE_ORDER,
(void *)vbp->vaddr, (dma_addr_t)vbp->baddr);
__m_free(&mp0, vbp, sizeof(*vbp), "VTOB");
--mp->nump;
}
}
static inline m_pool_s *___get_dma_pool(m_bush_t bush)
{
m_pool_s *mp;
for (mp = mp0.next; mp && mp->bush != bush; mp = mp->next);
return mp;
}
static m_pool_s *___cre_dma_pool(m_bush_t bush)
{
m_pool_s *mp;
mp = __m_calloc(&mp0, sizeof(*mp), "MPOOL");
if (mp) {
memset(mp, 0, sizeof(*mp));
mp->bush = bush;
mp->getp = ___dma_getp;
mp->freep = ___dma_freep;
mp->next = mp0.next;
mp0.next = mp;
}
return mp;
}
static void ___del_dma_pool(m_pool_s *p)
{
struct m_pool **pp = &mp0.next;
while (*pp && *pp != p)
pp = &(*pp)->next;
if (*pp) {
*pp = (*pp)->next;
__m_free(&mp0, p, sizeof(*p), "MPOOL");
}
}
static void *__m_calloc_dma(m_bush_t bush, int size, char *name)
{
u_long flags;
struct m_pool *mp;
void *m = NULL;
spin_lock_irqsave(&ncr53c8xx_lock, flags);
mp = ___get_dma_pool(bush);
if (!mp)
mp = ___cre_dma_pool(bush);
if (mp)
m = __m_calloc(mp, size, name);
if (mp && !mp->nump)
___del_dma_pool(mp);
spin_unlock_irqrestore(&ncr53c8xx_lock, flags);
return m;
}
static void __m_free_dma(m_bush_t bush, void *m, int size, char *name)
{
u_long flags;
struct m_pool *mp;
spin_lock_irqsave(&ncr53c8xx_lock, flags);
mp = ___get_dma_pool(bush);
if (mp)
__m_free(mp, m, size, name);
if (mp && !mp->nump)
___del_dma_pool(mp);
spin_unlock_irqrestore(&ncr53c8xx_lock, flags);
}
static m_addr_t __vtobus(m_bush_t bush, void *m)
{
u_long flags;
m_pool_s *mp;
int hc = VTOB_HASH_CODE(m);
m_vtob_s *vp = NULL;
m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK;
spin_lock_irqsave(&ncr53c8xx_lock, flags);
mp = ___get_dma_pool(bush);
if (mp) {
vp = mp->vtob[hc];
while (vp && (m_addr_t) vp->vaddr != a)
vp = vp->next;
}
spin_unlock_irqrestore(&ncr53c8xx_lock, flags);
return vp ? vp->baddr + (((m_addr_t) m) - a) : 0;
}
#define _m_calloc_dma(np, s, n) __m_calloc_dma(np->dev, s, n)
#define _m_free_dma(np, p, s, n) __m_free_dma(np->dev, p, s, n)
#define m_calloc_dma(s, n) _m_calloc_dma(np, s, n)
#define m_free_dma(p, s, n) _m_free_dma(np, p, s, n)
#define _vtobus(np, p) __vtobus(np->dev, p)
#define vtobus(p) _vtobus(np, p)
/*
* Deal with DMA mapping/unmapping.
*/
/* To keep track of the dma mapping (sg/single) that has been set */
#define __data_mapped SCp.phase
#define __data_mapping SCp.have_data_in
static void __unmap_scsi_data(struct device *dev, struct scsi_cmnd *cmd)
{
switch(cmd->__data_mapped) {
case 2:
scsi_dma_unmap(cmd);
break;
}
cmd->__data_mapped = 0;
}
static int __map_scsi_sg_data(struct device *dev, struct scsi_cmnd *cmd)
{
int use_sg;
use_sg = scsi_dma_map(cmd);
if (!use_sg)
return 0;
cmd->__data_mapped = 2;
cmd->__data_mapping = use_sg;
return use_sg;
}
#define unmap_scsi_data(np, cmd) __unmap_scsi_data(np->dev, cmd)
#define map_scsi_sg_data(np, cmd) __map_scsi_sg_data(np->dev, cmd)
/*==========================================================
**
** Driver setup.
**
** This structure is initialized from linux config
** options. It can be overridden at boot-up by the boot
** command line.
**
**==========================================================
*/
static struct ncr_driver_setup
driver_setup = SCSI_NCR_DRIVER_SETUP;
#ifndef MODULE
#ifdef SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT
static struct ncr_driver_setup
driver_safe_setup __initdata = SCSI_NCR_DRIVER_SAFE_SETUP;
#endif
#endif /* !MODULE */
#define initverbose (driver_setup.verbose)
#define bootverbose (np->verbose)
/*===================================================================
**
** Driver setup from the boot command line
**
**===================================================================
*/
#ifdef MODULE
#define ARG_SEP ' '
#else
#define ARG_SEP ','
#endif
#define OPT_TAGS 1
#define OPT_MASTER_PARITY 2
#define OPT_SCSI_PARITY 3
#define OPT_DISCONNECTION 4
#define OPT_SPECIAL_FEATURES 5
#define OPT_UNUSED_1 6
#define OPT_FORCE_SYNC_NEGO 7
#define OPT_REVERSE_PROBE 8
#define OPT_DEFAULT_SYNC 9
#define OPT_VERBOSE 10
#define OPT_DEBUG 11
#define OPT_BURST_MAX 12
#define OPT_LED_PIN 13
#define OPT_MAX_WIDE 14
#define OPT_SETTLE_DELAY 15
#define OPT_DIFF_SUPPORT 16
#define OPT_IRQM 17
#define OPT_PCI_FIX_UP 18
#define OPT_BUS_CHECK 19
#define OPT_OPTIMIZE 20
#define OPT_RECOVERY 21
#define OPT_SAFE_SETUP 22
#define OPT_USE_NVRAM 23
#define OPT_EXCLUDE 24
#define OPT_HOST_ID 25
#ifdef SCSI_NCR_IARB_SUPPORT
#define OPT_IARB 26
#endif
#ifdef MODULE
#define ARG_SEP ' '
#else
#define ARG_SEP ','
#endif
#ifndef MODULE
static char setup_token[] __initdata =
"tags:" "mpar:"
"spar:" "disc:"
"specf:" "ultra:"
"fsn:" "revprob:"
"sync:" "verb:"
"debug:" "burst:"
"led:" "wide:"
"settle:" "diff:"
"irqm:" "pcifix:"
"buschk:" "optim:"
"recovery:"
"safe:" "nvram:"
"excl:" "hostid:"
#ifdef SCSI_NCR_IARB_SUPPORT
"iarb:"
#endif
; /* DONNOT REMOVE THIS ';' */
static int __init get_setup_token(char *p)
{
char *cur = setup_token;
char *pc;
int i = 0;
while (cur != NULL && (pc = strchr(cur, ':')) != NULL) {
++pc;
++i;
if (!strncmp(p, cur, pc - cur))
return i;
cur = pc;
}
return 0;
}
static int __init sym53c8xx__setup(char *str)
{
#ifdef SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT
char *cur = str;
char *pc, *pv;
int i, val, c;
int xi = 0;
while (cur != NULL && (pc = strchr(cur, ':')) != NULL) {
char *pe;
val = 0;
pv = pc;
c = *++pv;
if (c == 'n')
val = 0;
else if (c == 'y')
val = 1;
else
val = (int) simple_strtoul(pv, &pe, 0);
switch (get_setup_token(cur)) {
case OPT_TAGS:
driver_setup.default_tags = val;
if (pe && *pe == '/') {
i = 0;
while (*pe && *pe != ARG_SEP &&
i < sizeof(driver_setup.tag_ctrl)-1) {
driver_setup.tag_ctrl[i++] = *pe++;
}
driver_setup.tag_ctrl[i] = '\0';
}
break;
case OPT_MASTER_PARITY:
driver_setup.master_parity = val;
break;
case OPT_SCSI_PARITY:
driver_setup.scsi_parity = val;
break;
case OPT_DISCONNECTION:
driver_setup.disconnection = val;
break;
case OPT_SPECIAL_FEATURES:
driver_setup.special_features = val;
break;
case OPT_FORCE_SYNC_NEGO:
driver_setup.force_sync_nego = val;
break;
case OPT_REVERSE_PROBE:
driver_setup.reverse_probe = val;
break;
case OPT_DEFAULT_SYNC:
driver_setup.default_sync = val;
break;
case OPT_VERBOSE:
driver_setup.verbose = val;
break;
case OPT_DEBUG:
driver_setup.debug = val;
break;
case OPT_BURST_MAX:
driver_setup.burst_max = val;
break;
case OPT_LED_PIN:
driver_setup.led_pin = val;
break;
case OPT_MAX_WIDE:
driver_setup.max_wide = val? 1:0;
break;
case OPT_SETTLE_DELAY:
driver_setup.settle_delay = val;
break;
case OPT_DIFF_SUPPORT:
driver_setup.diff_support = val;
break;
case OPT_IRQM:
driver_setup.irqm = val;
break;
case OPT_PCI_FIX_UP:
driver_setup.pci_fix_up = val;
break;
case OPT_BUS_CHECK:
driver_setup.bus_check = val;
break;
case OPT_OPTIMIZE:
driver_setup.optimize = val;
break;
case OPT_RECOVERY:
driver_setup.recovery = val;
break;
case OPT_USE_NVRAM:
driver_setup.use_nvram = val;
break;
case OPT_SAFE_SETUP:
memcpy(&driver_setup, &driver_safe_setup,
sizeof(driver_setup));
break;
case OPT_EXCLUDE:
if (xi < SCSI_NCR_MAX_EXCLUDES)
driver_setup.excludes[xi++] = val;
break;
case OPT_HOST_ID:
driver_setup.host_id = val;
break;
#ifdef SCSI_NCR_IARB_SUPPORT
case OPT_IARB:
driver_setup.iarb = val;
break;
#endif
default:
printk("sym53c8xx_setup: unexpected boot option '%.*s' ignored\n", (int)(pc-cur+1), cur);
break;
}
if ((cur = strchr(cur, ARG_SEP)) != NULL)
++cur;
}
#endif /* SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT */
return 1;
}
#endif /* !MODULE */
/*===================================================================
**
** Get device queue depth from boot command line.
**
**===================================================================
*/
#define DEF_DEPTH (driver_setup.default_tags)
#define ALL_TARGETS -2
#define NO_TARGET -1
#define ALL_LUNS -2
#define NO_LUN -1
static int device_queue_depth(int unit, int target, int lun)
{
int c, h, t, u, v;
char *p = driver_setup.tag_ctrl;
char *ep;
h = -1;
t = NO_TARGET;
u = NO_LUN;
while ((c = *p++) != 0) {
v = simple_strtoul(p, &ep, 0);
switch(c) {
case '/':
++h;
t = ALL_TARGETS;
u = ALL_LUNS;
break;
case 't':
if (t != target)
t = (target == v) ? v : NO_TARGET;
u = ALL_LUNS;
break;
case 'u':
if (u != lun)
u = (lun == v) ? v : NO_LUN;
break;
case 'q':
if (h == unit &&
(t == ALL_TARGETS || t == target) &&
(u == ALL_LUNS || u == lun))
return v;
break;
case '-':
t = ALL_TARGETS;
u = ALL_LUNS;
break;
default:
break;
}
p = ep;
}
return DEF_DEPTH;
}
/*==========================================================
**
** The CCB done queue uses an array of CCB virtual
** addresses. Empty entries are flagged using the bogus
** virtual address 0xffffffff.
**
** Since PCI ensures that only aligned DWORDs are accessed
** atomically, 64 bit little-endian architecture requires
** to test the high order DWORD of the entry to determine
** if it is empty or valid.
**
** BTW, I will make things differently as soon as I will
** have a better idea, but this is simple and should work.
**
**==========================================================
*/
#define SCSI_NCR_CCB_DONE_SUPPORT
#ifdef SCSI_NCR_CCB_DONE_SUPPORT
#define MAX_DONE 24
#define CCB_DONE_EMPTY 0xffffffffUL
/* All 32 bit architectures */
#if BITS_PER_LONG == 32
#define CCB_DONE_VALID(cp) (((u_long) cp) != CCB_DONE_EMPTY)
/* All > 32 bit (64 bit) architectures regardless endian-ness */
#else
#define CCB_DONE_VALID(cp) \
((((u_long) cp) & 0xffffffff00000000ul) && \
(((u_long) cp) & 0xfffffffful) != CCB_DONE_EMPTY)
#endif
#endif /* SCSI_NCR_CCB_DONE_SUPPORT */
/*==========================================================
**
** Configuration and Debugging
**
**==========================================================
*/
/*
** SCSI address of this device.
** The boot routines should have set it.
** If not, use this.
*/
#ifndef SCSI_NCR_MYADDR
#define SCSI_NCR_MYADDR (7)
#endif
/*
** The maximum number of tags per logic unit.
** Used only for disk devices that support tags.
*/
#ifndef SCSI_NCR_MAX_TAGS
#define SCSI_NCR_MAX_TAGS (8)
#endif
/*
** TAGS are actually limited to 64 tags/lun.
** We need to deal with power of 2, for alignment constraints.
*/
#if SCSI_NCR_MAX_TAGS > 64
#define MAX_TAGS (64)
#else
#define MAX_TAGS SCSI_NCR_MAX_TAGS
#endif
#define NO_TAG (255)
/*
** Choose appropriate type for tag bitmap.
*/
#if MAX_TAGS > 32
typedef u64 tagmap_t;
#else
typedef u32 tagmap_t;
#endif
/*
** Number of targets supported by the driver.
** n permits target numbers 0..n-1.
** Default is 16, meaning targets #0..#15.
** #7 .. is myself.
*/
#ifdef SCSI_NCR_MAX_TARGET
#define MAX_TARGET (SCSI_NCR_MAX_TARGET)
#else
#define MAX_TARGET (16)
#endif
/*
** Number of logic units supported by the driver.
** n enables logic unit numbers 0..n-1.
** The common SCSI devices require only
** one lun, so take 1 as the default.
*/
#ifdef SCSI_NCR_MAX_LUN
#define MAX_LUN SCSI_NCR_MAX_LUN
#else
#define MAX_LUN (1)
#endif
/*
** Asynchronous pre-scaler (ns). Shall be 40
*/
#ifndef SCSI_NCR_MIN_ASYNC
#define SCSI_NCR_MIN_ASYNC (40)
#endif
/*
** The maximum number of jobs scheduled for starting.
** There should be one slot per target, and one slot
** for each tag of each target in use.
** The calculation below is actually quite silly ...
*/
#ifdef SCSI_NCR_CAN_QUEUE
#define MAX_START (SCSI_NCR_CAN_QUEUE + 4)
#else
#define MAX_START (MAX_TARGET + 7 * MAX_TAGS)
#endif
/*
** We limit the max number of pending IO to 250.
** since we donnot want to allocate more than 1
** PAGE for 'scripth'.
*/
#if MAX_START > 250
#undef MAX_START
#define MAX_START 250
#endif
/*
** The maximum number of segments a transfer is split into.
** We support up to 127 segments for both read and write.
** The data scripts are broken into 2 sub-scripts.
** 80 (MAX_SCATTERL) segments are moved from a sub-script
** in on-chip RAM. This makes data transfers shorter than
** 80k (assuming 1k fs) as fast as possible.
*/
#define MAX_SCATTER (SCSI_NCR_MAX_SCATTER)
#if (MAX_SCATTER > 80)
#define MAX_SCATTERL 80
#define MAX_SCATTERH (MAX_SCATTER - MAX_SCATTERL)
#else
#define MAX_SCATTERL (MAX_SCATTER-1)
#define MAX_SCATTERH 1
#endif
/*
** other
*/
#define NCR_SNOOP_TIMEOUT (1000000)
/*
** Other definitions
*/
#define ScsiResult(host_code, scsi_code) (((host_code) << 16) + ((scsi_code) & 0x7f))
#define initverbose (driver_setup.verbose)
#define bootverbose (np->verbose)
/*==========================================================
**
** Command control block states.
**
**==========================================================
*/
#define HS_IDLE (0)
#define HS_BUSY (1)
#define HS_NEGOTIATE (2) /* sync/wide data transfer*/
#define HS_DISCONNECT (3) /* Disconnected by target */
#define HS_DONEMASK (0x80)
#define HS_COMPLETE (4|HS_DONEMASK)
#define HS_SEL_TIMEOUT (5|HS_DONEMASK) /* Selection timeout */
#define HS_RESET (6|HS_DONEMASK) /* SCSI reset */
#define HS_ABORTED (7|HS_DONEMASK) /* Transfer aborted */
#define HS_TIMEOUT (8|HS_DONEMASK) /* Software timeout */
#define HS_FAIL (9|HS_DONEMASK) /* SCSI or PCI bus errors */
#define HS_UNEXPECTED (10|HS_DONEMASK)/* Unexpected disconnect */
/*
** Invalid host status values used by the SCRIPTS processor
** when the nexus is not fully identified.
** Shall never appear in a CCB.
*/
#define HS_INVALMASK (0x40)
#define HS_SELECTING (0|HS_INVALMASK)
#define HS_IN_RESELECT (1|HS_INVALMASK)
#define HS_STARTING (2|HS_INVALMASK)
/*
** Flags set by the SCRIPT processor for commands
** that have been skipped.
*/
#define HS_SKIPMASK (0x20)
/*==========================================================
**
** Software Interrupt Codes
**
**==========================================================
*/
#define SIR_BAD_STATUS (1)
#define SIR_XXXXXXXXXX (2)
#define SIR_NEGO_SYNC (3)
#define SIR_NEGO_WIDE (4)
#define SIR_NEGO_FAILED (5)
#define SIR_NEGO_PROTO (6)
#define SIR_REJECT_RECEIVED (7)
#define SIR_REJECT_SENT (8)
#define SIR_IGN_RESIDUE (9)
#define SIR_MISSING_SAVE (10)
#define SIR_RESEL_NO_MSG_IN (11)
#define SIR_RESEL_NO_IDENTIFY (12)
#define SIR_RESEL_BAD_LUN (13)
#define SIR_RESEL_BAD_TARGET (14)
#define SIR_RESEL_BAD_I_T_L (15)
#define SIR_RESEL_BAD_I_T_L_Q (16)
#define SIR_DONE_OVERFLOW (17)
#define SIR_INTFLY (18)
#define SIR_MAX (18)
/*==========================================================
**
** Extended error codes.
** xerr_status field of struct ccb.
**
**==========================================================
*/
#define XE_OK (0)
#define XE_EXTRA_DATA (1) /* unexpected data phase */
#define XE_BAD_PHASE (2) /* illegal phase (4/5) */
/*==========================================================
**
** Negotiation status.
** nego_status field of struct ccb.
**
**==========================================================
*/
#define NS_NOCHANGE (0)
#define NS_SYNC (1)
#define NS_WIDE (2)
#define NS_PPR (4)
/*==========================================================
**
** Misc.
**
**==========================================================
*/
#define CCB_MAGIC (0xf2691ad2)
/*==========================================================
**
** Declaration of structs.
**
**==========================================================
*/
static struct scsi_transport_template *ncr53c8xx_transport_template = NULL;
struct tcb;
struct lcb;
struct ccb;
struct ncb;
struct script;
struct link {
ncrcmd l_cmd;
ncrcmd l_paddr;
};
struct usrcmd {
u_long target;
u_long lun;
u_long data;
u_long cmd;
};
#define UC_SETSYNC 10
#define UC_SETTAGS 11
#define UC_SETDEBUG 12
#define UC_SETORDER 13
#define UC_SETWIDE 14
#define UC_SETFLAG 15
#define UC_SETVERBOSE 17
#define UF_TRACE (0x01)
#define UF_NODISC (0x02)
#define UF_NOSCAN (0x04)
/*========================================================================
**
** Declaration of structs: target control block
**
**========================================================================
*/
struct tcb {
/*----------------------------------------------------------------
** During reselection the ncr jumps to this point with SFBR
** set to the encoded target number with bit 7 set.
** if it's not this target, jump to the next.
**
** JUMP IF (SFBR != #target#), @(next tcb)
**----------------------------------------------------------------
*/
struct link jump_tcb;
/*----------------------------------------------------------------
** Load the actual values for the sxfer and the scntl3
** register (sync/wide mode).
**
** SCR_COPY (1), @(sval field of this tcb), @(sxfer register)
** SCR_COPY (1), @(wval field of this tcb), @(scntl3 register)
**----------------------------------------------------------------
*/
ncrcmd getscr[6];
/*----------------------------------------------------------------
** Get the IDENTIFY message and load the LUN to SFBR.
**
** CALL, <RESEL_LUN>
**----------------------------------------------------------------
*/
struct link call_lun;
/*----------------------------------------------------------------
** Now look for the right lun.
**
** For i = 0 to 3
** SCR_JUMP ^ IFTRUE(MASK(i, 3)), @(first lcb mod. i)
**
** Recent chips will prefetch the 4 JUMPS using only 1 burst.
** It is kind of hashcoding.
**----------------------------------------------------------------
*/
struct link jump_lcb[4]; /* JUMPs for reselection */
struct lcb * lp[MAX_LUN]; /* The lcb's of this tcb */
/*----------------------------------------------------------------
** Pointer to the ccb used for negotiation.
** Prevent from starting a negotiation for all queued commands
** when tagged command queuing is enabled.
**----------------------------------------------------------------
*/
struct ccb * nego_cp;
/*----------------------------------------------------------------
** statistical data
**----------------------------------------------------------------
*/
u_long transfers;
u_long bytes;
/*----------------------------------------------------------------
** negotiation of wide and synch transfer and device quirks.
**----------------------------------------------------------------
*/
#ifdef SCSI_NCR_BIG_ENDIAN
/*0*/ u16 period;
/*2*/ u_char sval;
/*3*/ u_char minsync;
/*0*/ u_char wval;
/*1*/ u_char widedone;
/*2*/ u_char quirks;
/*3*/ u_char maxoffs;
#else
/*0*/ u_char minsync;
/*1*/ u_char sval;
/*2*/ u16 period;
/*0*/ u_char maxoffs;
/*1*/ u_char quirks;
/*2*/ u_char widedone;
/*3*/ u_char wval;
#endif
/* User settable limits and options. */
u_char usrsync;
u_char usrwide;
u_char usrtags;
u_char usrflag;
struct scsi_target *starget;
};
/*========================================================================
**
** Declaration of structs: lun control block
**
**========================================================================
*/
struct lcb {
/*----------------------------------------------------------------
** During reselection the ncr jumps to this point
** with SFBR set to the "Identify" message.
** if it's not this lun, jump to the next.
**
** JUMP IF (SFBR != #lun#), @(next lcb of this target)
**
** It is this lun. Load TEMP with the nexus jumps table
** address and jump to RESEL_TAG (or RESEL_NOTAG).
**
** SCR_COPY (4), p_jump_ccb, TEMP,
** SCR_JUMP, <RESEL_TAG>
**----------------------------------------------------------------
*/
struct link jump_lcb;
ncrcmd load_jump_ccb[3];
struct link jump_tag;
ncrcmd p_jump_ccb; /* Jump table bus address */
/*----------------------------------------------------------------
** Jump table used by the script processor to directly jump
** to the CCB corresponding to the reselected nexus.
** Address is allocated on 256 bytes boundary in order to
** allow 8 bit calculation of the tag jump entry for up to
** 64 possible tags.
**----------------------------------------------------------------
*/
u32 jump_ccb_0; /* Default table if no tags */
u32 *jump_ccb; /* Virtual address */
/*----------------------------------------------------------------
** CCB queue management.
**----------------------------------------------------------------
*/
struct list_head free_ccbq; /* Queue of available CCBs */
struct list_head busy_ccbq; /* Queue of busy CCBs */
struct list_head wait_ccbq; /* Queue of waiting for IO CCBs */
struct list_head skip_ccbq; /* Queue of skipped CCBs */
u_char actccbs; /* Number of allocated CCBs */
u_char busyccbs; /* CCBs busy for this lun */
u_char queuedccbs; /* CCBs queued to the controller*/
u_char queuedepth; /* Queue depth for this lun */
u_char scdev_depth; /* SCSI device queue depth */
u_char maxnxs; /* Max possible nexuses */
/*----------------------------------------------------------------
** Control of tagged command queuing.
** Tags allocation is performed using a circular buffer.
** This avoids using a loop for tag allocation.
**----------------------------------------------------------------
*/
u_char ia_tag; /* Allocation index */
u_char if_tag; /* Freeing index */
u_char cb_tags[MAX_TAGS]; /* Circular tags buffer */
u_char usetags; /* Command queuing is active */
u_char maxtags; /* Max nr of tags asked by user */
u_char numtags; /* Current number of tags */
/*----------------------------------------------------------------
** QUEUE FULL control and ORDERED tag control.
**----------------------------------------------------------------
*/
/*----------------------------------------------------------------
** QUEUE FULL and ORDERED tag control.
**----------------------------------------------------------------
*/
u16 num_good; /* Nr of GOOD since QUEUE FULL */
tagmap_t tags_umap; /* Used tags bitmap */
tagmap_t tags_smap; /* Tags in use at 'tag_stime' */
u_long tags_stime; /* Last time we set smap=umap */
struct ccb * held_ccb; /* CCB held for QUEUE FULL */
};
/*========================================================================
**
** Declaration of structs: the launch script.
**
**========================================================================
**
** It is part of the CCB and is called by the scripts processor to
** start or restart the data structure (nexus).
** This 6 DWORDs mini script makes use of prefetching.
**
**------------------------------------------------------------------------
*/
struct launch {
/*----------------------------------------------------------------
** SCR_COPY(4), @(p_phys), @(dsa register)
** SCR_JUMP, @(scheduler_point)
**----------------------------------------------------------------
*/
ncrcmd setup_dsa[3]; /* Copy 'phys' address to dsa */
struct link schedule; /* Jump to scheduler point */
ncrcmd p_phys; /* 'phys' header bus address */
};
/*========================================================================
**
** Declaration of structs: global HEADER.
**
**========================================================================
**
** This substructure is copied from the ccb to a global address after
** selection (or reselection) and copied back before disconnect.
**
** These fields are accessible to the script processor.
**
**------------------------------------------------------------------------
*/
struct head {
/*----------------------------------------------------------------
** Saved data pointer.
** Points to the position in the script responsible for the
** actual transfer transfer of data.
** It's written after reception of a SAVE_DATA_POINTER message.
** The goalpointer points after the last transfer command.
**----------------------------------------------------------------
*/
u32 savep;
u32 lastp;
u32 goalp;
/*----------------------------------------------------------------
** Alternate data pointer.
** They are copied back to savep/lastp/goalp by the SCRIPTS
** when the direction is unknown and the device claims data out.
**----------------------------------------------------------------
*/
u32 wlastp;
u32 wgoalp;
/*----------------------------------------------------------------
** The virtual address of the ccb containing this header.
**----------------------------------------------------------------
*/
struct ccb * cp;
/*----------------------------------------------------------------
** Status fields.
**----------------------------------------------------------------
*/
u_char scr_st[4]; /* script status */
u_char status[4]; /* host status. must be the */
/* last DWORD of the header. */
};
/*
** The status bytes are used by the host and the script processor.
**
** The byte corresponding to the host_status must be stored in the
** last DWORD of the CCB header since it is used for command
** completion (ncr_wakeup()). Doing so, we are sure that the header
** has been entirely copied back to the CCB when the host_status is
** seen complete by the CPU.
**
** The last four bytes (status[4]) are copied to the scratchb register
** (declared as scr0..scr3 in ncr_reg.h) just after the select/reselect,
** and copied back just after disconnecting.
** Inside the script the XX_REG are used.
**
** The first four bytes (scr_st[4]) are used inside the script by
** "COPY" commands.
** Because source and destination must have the same alignment
** in a DWORD, the fields HAVE to be at the chosen offsets.
** xerr_st 0 (0x34) scratcha
** sync_st 1 (0x05) sxfer
** wide_st 3 (0x03) scntl3
*/
/*
** Last four bytes (script)
*/
#define QU_REG scr0
#define HS_REG scr1
#define HS_PRT nc_scr1
#define SS_REG scr2
#define SS_PRT nc_scr2
#define PS_REG scr3
/*
** Last four bytes (host)
*/
#ifdef SCSI_NCR_BIG_ENDIAN
#define actualquirks phys.header.status[3]
#define host_status phys.header.status[2]
#define scsi_status phys.header.status[1]
#define parity_status phys.header.status[0]
#else
#define actualquirks phys.header.status[0]
#define host_status phys.header.status[1]
#define scsi_status phys.header.status[2]
#define parity_status phys.header.status[3]
#endif
/*
** First four bytes (script)
*/
#define xerr_st header.scr_st[0]
#define sync_st header.scr_st[1]
#define nego_st header.scr_st[2]
#define wide_st header.scr_st[3]
/*
** First four bytes (host)
*/
#define xerr_status phys.xerr_st
#define nego_status phys.nego_st
#if 0
#define sync_status phys.sync_st
#define wide_status phys.wide_st
#endif
/*==========================================================
**
** Declaration of structs: Data structure block
**
**==========================================================
**
** During execution of a ccb by the script processor,
** the DSA (data structure address) register points
** to this substructure of the ccb.
** This substructure contains the header with
** the script-processor-changeable data and
** data blocks for the indirect move commands.
**
**----------------------------------------------------------
*/
struct dsb {
/*
** Header.
*/
struct head header;
/*
** Table data for Script
*/
struct scr_tblsel select;
struct scr_tblmove smsg ;
struct scr_tblmove cmd ;
struct scr_tblmove sense ;
struct scr_tblmove data[MAX_SCATTER];
};
/*========================================================================
**
** Declaration of structs: Command control block.
**
**========================================================================
*/
struct ccb {
/*----------------------------------------------------------------
** This is the data structure which is pointed by the DSA
** register when it is executed by the script processor.
** It must be the first entry because it contains the header
** as first entry that must be cache line aligned.
**----------------------------------------------------------------
*/
struct dsb phys;
/*----------------------------------------------------------------
** Mini-script used at CCB execution start-up.
** Load the DSA with the data structure address (phys) and
** jump to SELECT. Jump to CANCEL if CCB is to be canceled.
**----------------------------------------------------------------
*/
struct launch start;
/*----------------------------------------------------------------
** Mini-script used at CCB relection to restart the nexus.
** Load the DSA with the data structure address (phys) and
** jump to RESEL_DSA. Jump to ABORT if CCB is to be aborted.
**----------------------------------------------------------------
*/
struct launch restart;
/*----------------------------------------------------------------
** If a data transfer phase is terminated too early
** (after reception of a message (i.e. DISCONNECT)),
** we have to prepare a mini script to transfer
** the rest of the data.
**----------------------------------------------------------------
*/
ncrcmd patch[8];
/*----------------------------------------------------------------
** The general SCSI driver provides a
** pointer to a control block.
**----------------------------------------------------------------
*/
struct scsi_cmnd *cmd; /* SCSI command */
u_char cdb_buf[16]; /* Copy of CDB */
u_char sense_buf[64];
int data_len; /* Total data length */
/*----------------------------------------------------------------
** Message areas.
** We prepare a message to be sent after selection.
** We may use a second one if the command is rescheduled
** due to GETCC or QFULL.
** Contents are IDENTIFY and SIMPLE_TAG.
** While negotiating sync or wide transfer,
** a SDTR or WDTR message is appended.
**----------------------------------------------------------------
*/
u_char scsi_smsg [8];
u_char scsi_smsg2[8];
/*----------------------------------------------------------------
** Other fields.
**----------------------------------------------------------------
*/
u_long p_ccb; /* BUS address of this CCB */
u_char sensecmd[6]; /* Sense command */
u_char tag; /* Tag for this transfer */
/* 255 means no tag */
u_char target;
u_char lun;
u_char queued;
u_char auto_sense;
struct ccb * link_ccb; /* Host adapter CCB chain */
struct list_head link_ccbq; /* Link to unit CCB queue */
u32 startp; /* Initial data pointer */
u_long magic; /* Free / busy CCB flag */
};
#define CCB_PHYS(cp,lbl) (cp->p_ccb + offsetof(struct ccb, lbl))
/*========================================================================
**
** Declaration of structs: NCR device descriptor
**
**========================================================================
*/
struct ncb {
/*----------------------------------------------------------------
** The global header.
** It is accessible to both the host and the script processor.
** Must be cache line size aligned (32 for x86) in order to
** allow cache line bursting when it is copied to/from CCB.
**----------------------------------------------------------------
*/
struct head header;
/*----------------------------------------------------------------
** CCBs management queues.
**----------------------------------------------------------------
*/
struct scsi_cmnd *waiting_list; /* Commands waiting for a CCB */
/* when lcb is not allocated. */
struct scsi_cmnd *done_list; /* Commands waiting for done() */
/* callback to be invoked. */
spinlock_t smp_lock; /* Lock for SMP threading */
/*----------------------------------------------------------------
** Chip and controller indentification.
**----------------------------------------------------------------
*/
int unit; /* Unit number */
char inst_name[16]; /* ncb instance name */
/*----------------------------------------------------------------
** Initial value of some IO register bits.
** These values are assumed to have been set by BIOS, and may
** be used for probing adapter implementation differences.
**----------------------------------------------------------------
*/
u_char sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest0, sv_ctest3,
sv_ctest4, sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4;
/*----------------------------------------------------------------
** Actual initial value of IO register bits used by the
** driver. They are loaded at initialisation according to
** features that are to be enabled.
**----------------------------------------------------------------
*/
u_char rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest0, rv_ctest3,
rv_ctest4, rv_ctest5, rv_stest2;
/*----------------------------------------------------------------
** Targets management.
** During reselection the ncr jumps to jump_tcb.
** The SFBR register is loaded with the encoded target id.
** For i = 0 to 3
** SCR_JUMP ^ IFTRUE(MASK(i, 3)), @(next tcb mod. i)
**
** Recent chips will prefetch the 4 JUMPS using only 1 burst.
** It is kind of hashcoding.
**----------------------------------------------------------------
*/
struct link jump_tcb[4]; /* JUMPs for reselection */
struct tcb target[MAX_TARGET]; /* Target data */
/*----------------------------------------------------------------
** Virtual and physical bus addresses of the chip.
**----------------------------------------------------------------
*/
void __iomem *vaddr; /* Virtual and bus address of */
unsigned long paddr; /* chip's IO registers. */
unsigned long paddr2; /* On-chip RAM bus address. */
volatile /* Pointer to volatile for */
struct ncr_reg __iomem *reg; /* memory mapped IO. */
/*----------------------------------------------------------------
** SCRIPTS virtual and physical bus addresses.
** 'script' is loaded in the on-chip RAM if present.
** 'scripth' stays in main memory.
**----------------------------------------------------------------
*/
struct script *script0; /* Copies of script and scripth */
struct scripth *scripth0; /* relocated for this ncb. */
struct scripth *scripth; /* Actual scripth virt. address */
u_long p_script; /* Actual script and scripth */
u_long p_scripth; /* bus addresses. */
/*----------------------------------------------------------------
** General controller parameters and configuration.
**----------------------------------------------------------------
*/
struct device *dev;
u_char revision_id; /* PCI device revision id */
u32 irq; /* IRQ level */
u32 features; /* Chip features map */
u_char myaddr; /* SCSI id of the adapter */
u_char maxburst; /* log base 2 of dwords burst */
u_char maxwide; /* Maximum transfer width */
u_char minsync; /* Minimum sync period factor */
u_char maxsync; /* Maximum sync period factor */
u_char maxoffs; /* Max scsi offset */
u_char multiplier; /* Clock multiplier (1,2,4) */
u_char clock_divn; /* Number of clock divisors */
u_long clock_khz; /* SCSI clock frequency in KHz */
/*----------------------------------------------------------------
** Start queue management.
** It is filled up by the host processor and accessed by the
** SCRIPTS processor in order to start SCSI commands.
**----------------------------------------------------------------
*/
u16 squeueput; /* Next free slot of the queue */
u16 actccbs; /* Number of allocated CCBs */
u16 queuedccbs; /* Number of CCBs in start queue*/
u16 queuedepth; /* Start queue depth */
/*----------------------------------------------------------------
** Timeout handler.
**----------------------------------------------------------------
*/
struct timer_list timer; /* Timer handler link header */
u_long lasttime;
u_long settle_time; /* Resetting the SCSI BUS */
/*----------------------------------------------------------------
** Debugging and profiling.
**----------------------------------------------------------------
*/
struct ncr_reg regdump; /* Register dump */
u_long regtime; /* Time it has been done */
/*----------------------------------------------------------------
** Miscellaneous buffers accessed by the scripts-processor.
** They shall be DWORD aligned, because they may be read or
** written with a SCR_COPY script command.
**----------------------------------------------------------------
*/
u_char msgout[8]; /* Buffer for MESSAGE OUT */
u_char msgin [8]; /* Buffer for MESSAGE IN */
u32 lastmsg; /* Last SCSI message sent */
u_char scratch; /* Scratch for SCSI receive */
/*----------------------------------------------------------------
** Miscellaneous configuration and status parameters.
**----------------------------------------------------------------
*/
u_char disc; /* Diconnection allowed */
u_char scsi_mode; /* Current SCSI BUS mode */
u_char order; /* Tag order to use */
u_char verbose; /* Verbosity for this controller*/
int ncr_cache; /* Used for cache test at init. */
u_long p_ncb; /* BUS address of this NCB */
/*----------------------------------------------------------------
** Command completion handling.
**----------------------------------------------------------------
*/
#ifdef SCSI_NCR_CCB_DONE_SUPPORT
struct ccb *(ccb_done[MAX_DONE]);
int ccb_done_ic;
#endif
/*----------------------------------------------------------------
** Fields that should be removed or changed.
**----------------------------------------------------------------
*/
struct ccb *ccb; /* Global CCB */
struct usrcmd user; /* Command from user */
volatile u_char release_stage; /* Synchronisation stage on release */
};
#define NCB_SCRIPT_PHYS(np,lbl) (np->p_script + offsetof (struct script, lbl))
#define NCB_SCRIPTH_PHYS(np,lbl) (np->p_scripth + offsetof (struct scripth,lbl))
/*==========================================================
**
**
** Script for NCR-Processor.
**
** Use ncr_script_fill() to create the variable parts.
** Use ncr_script_copy_and_bind() to make a copy and
** bind to physical addresses.
**
**
**==========================================================
**
** We have to know the offsets of all labels before
** we reach them (for forward jumps).
** Therefore we declare a struct here.
** If you make changes inside the script,
** DONT FORGET TO CHANGE THE LENGTHS HERE!
**
**----------------------------------------------------------
*/
/*
** For HP Zalon/53c720 systems, the Zalon interface
** between CPU and 53c720 does prefetches, which causes
** problems with self modifying scripts. The problem
** is overcome by calling a dummy subroutine after each
** modification, to force a refetch of the script on
** return from the subroutine.
*/
#ifdef CONFIG_NCR53C8XX_PREFETCH
#define PREFETCH_FLUSH_CNT 2
#define PREFETCH_FLUSH SCR_CALL, PADDRH (wait_dma),
#else
#define PREFETCH_FLUSH_CNT 0
#define PREFETCH_FLUSH
#endif
/*
** Script fragments which are loaded into the on-chip RAM
** of 825A, 875 and 895 chips.
*/
struct script {
ncrcmd start [ 5];
ncrcmd startpos [ 1];
ncrcmd select [ 6];
ncrcmd select2 [ 9 + PREFETCH_FLUSH_CNT];
ncrcmd loadpos [ 4];
ncrcmd send_ident [ 9];
ncrcmd prepare [ 6];
ncrcmd prepare2 [ 7];
ncrcmd command [ 6];
ncrcmd dispatch [ 32];
ncrcmd clrack [ 4];
ncrcmd no_data [ 17];
ncrcmd status [ 8];
ncrcmd msg_in [ 2];
ncrcmd msg_in2 [ 16];
ncrcmd msg_bad [ 4];
ncrcmd setmsg [ 7];
ncrcmd cleanup [ 6];
ncrcmd complete [ 9];
ncrcmd cleanup_ok [ 8 + PREFETCH_FLUSH_CNT];
ncrcmd cleanup0 [ 1];
#ifndef SCSI_NCR_CCB_DONE_SUPPORT
ncrcmd signal [ 12];
#else
ncrcmd signal [ 9];
ncrcmd done_pos [ 1];
ncrcmd done_plug [ 2];
ncrcmd done_end [ 7];
#endif
ncrcmd save_dp [ 7];
ncrcmd restore_dp [ 5];
ncrcmd disconnect [ 10];
ncrcmd msg_out [ 9];
ncrcmd msg_out_done [ 7];
ncrcmd idle [ 2];
ncrcmd reselect [ 8];
ncrcmd reselected [ 8];
ncrcmd resel_dsa [ 6 + PREFETCH_FLUSH_CNT];
ncrcmd loadpos1 [ 4];
ncrcmd resel_lun [ 6];
ncrcmd resel_tag [ 6];
ncrcmd jump_to_nexus [ 4 + PREFETCH_FLUSH_CNT];
ncrcmd nexus_indirect [ 4];
ncrcmd resel_notag [ 4];
ncrcmd data_in [MAX_SCATTERL * 4];
ncrcmd data_in2 [ 4];
ncrcmd data_out [MAX_SCATTERL * 4];
ncrcmd data_out2 [ 4];
};
/*
** Script fragments which stay in main memory for all chips.
*/
struct scripth {
ncrcmd tryloop [MAX_START*2];
ncrcmd tryloop2 [ 2];
#ifdef SCSI_NCR_CCB_DONE_SUPPORT
ncrcmd done_queue [MAX_DONE*5];
ncrcmd done_queue2 [ 2];
#endif
ncrcmd select_no_atn [ 8];
ncrcmd cancel [ 4];
ncrcmd skip [ 9 + PREFETCH_FLUSH_CNT];
ncrcmd skip2 [ 19];
ncrcmd par_err_data_in [ 6];
ncrcmd par_err_other [ 4];
ncrcmd msg_reject [ 8];
ncrcmd msg_ign_residue [ 24];
ncrcmd msg_extended [ 10];
ncrcmd msg_ext_2 [ 10];
ncrcmd msg_wdtr [ 14];
ncrcmd send_wdtr [ 7];
ncrcmd msg_ext_3 [ 10];
ncrcmd msg_sdtr [ 14];
ncrcmd send_sdtr [ 7];
ncrcmd nego_bad_phase [ 4];
ncrcmd msg_out_abort [ 10];
ncrcmd hdata_in [MAX_SCATTERH * 4];
ncrcmd hdata_in2 [ 2];
ncrcmd hdata_out [MAX_SCATTERH * 4];
ncrcmd hdata_out2 [ 2];
ncrcmd reset [ 4];
ncrcmd aborttag [ 4];
ncrcmd abort [ 2];
ncrcmd abort_resel [ 20];
ncrcmd resend_ident [ 4];
ncrcmd clratn_go_on [ 3];
ncrcmd nxtdsp_go_on [ 1];
ncrcmd sdata_in [ 8];
ncrcmd data_io [ 18];
ncrcmd bad_identify [ 12];
ncrcmd bad_i_t_l [ 4];
ncrcmd bad_i_t_l_q [ 4];
ncrcmd bad_target [ 8];
ncrcmd bad_status [ 8];
ncrcmd start_ram [ 4 + PREFETCH_FLUSH_CNT];
ncrcmd start_ram0 [ 4];
ncrcmd sto_restart [ 5];
ncrcmd wait_dma [ 2];
ncrcmd snooptest [ 9];
ncrcmd snoopend [ 2];
};
/*==========================================================
**
**
** Function headers.
**
**
**==========================================================
*/
static void ncr_alloc_ccb (struct ncb *np, u_char tn, u_char ln);
static void ncr_complete (struct ncb *np, struct ccb *cp);
static void ncr_exception (struct ncb *np);
static void ncr_free_ccb (struct ncb *np, struct ccb *cp);
static void ncr_init_ccb (struct ncb *np, struct ccb *cp);
static void ncr_init_tcb (struct ncb *np, u_char tn);
static struct lcb * ncr_alloc_lcb (struct ncb *np, u_char tn, u_char ln);
static struct lcb * ncr_setup_lcb (struct ncb *np, struct scsi_device *sdev);
static void ncr_getclock (struct ncb *np, int mult);
static void ncr_selectclock (struct ncb *np, u_char scntl3);
static struct ccb *ncr_get_ccb (struct ncb *np, struct scsi_cmnd *cmd);
static void ncr_chip_reset (struct ncb *np, int delay);
static void ncr_init (struct ncb *np, int reset, char * msg, u_long code);
static int ncr_int_sbmc (struct ncb *np);
static int ncr_int_par (struct ncb *np);
static void ncr_int_ma (struct ncb *np);
static void ncr_int_sir (struct ncb *np);
static void ncr_int_sto (struct ncb *np);
static void ncr_negotiate (struct ncb* np, struct tcb* tp);
static int ncr_prepare_nego(struct ncb *np, struct ccb *cp, u_char *msgptr);
static void ncr_script_copy_and_bind
(struct ncb *np, ncrcmd *src, ncrcmd *dst, int len);
static void ncr_script_fill (struct script * scr, struct scripth * scripth);
static int ncr_scatter (struct ncb *np, struct ccb *cp, struct scsi_cmnd *cmd);
static void ncr_getsync (struct ncb *np, u_char sfac, u_char *fakp, u_char *scntl3p);
static void ncr_setsync (struct ncb *np, struct ccb *cp, u_char scntl3, u_char sxfer);
static void ncr_setup_tags (struct ncb *np, struct scsi_device *sdev);
static void ncr_setwide (struct ncb *np, struct ccb *cp, u_char wide, u_char ack);
static int ncr_snooptest (struct ncb *np);
static void ncr_timeout (struct ncb *np);
static void ncr_wakeup (struct ncb *np, u_long code);
static void ncr_wakeup_done (struct ncb *np);
static void ncr_start_next_ccb (struct ncb *np, struct lcb * lp, int maxn);
static void ncr_put_start_queue(struct ncb *np, struct ccb *cp);
static void insert_into_waiting_list(struct ncb *np, struct scsi_cmnd *cmd);
static struct scsi_cmnd *retrieve_from_waiting_list(int to_remove, struct ncb *np, struct scsi_cmnd *cmd);
static void process_waiting_list(struct ncb *np, int sts);
#define remove_from_waiting_list(np, cmd) \
retrieve_from_waiting_list(1, (np), (cmd))
#define requeue_waiting_list(np) process_waiting_list((np), DID_OK)
#define reset_waiting_list(np) process_waiting_list((np), DID_RESET)
static inline char *ncr_name (struct ncb *np)
{
return np->inst_name;
}
/*==========================================================
**
**
** Scripts for NCR-Processor.
**
** Use ncr_script_bind for binding to physical addresses.
**
**
**==========================================================
**
** NADDR generates a reference to a field of the controller data.
** PADDR generates a reference to another part of the script.
** RADDR generates a reference to a script processor register.
** FADDR generates a reference to a script processor register
** with offset.
**
**----------------------------------------------------------
*/
#define RELOC_SOFTC 0x40000000
#define RELOC_LABEL 0x50000000
#define RELOC_REGISTER 0x60000000
#if 0
#define RELOC_KVAR 0x70000000
#endif
#define RELOC_LABELH 0x80000000
#define RELOC_MASK 0xf0000000
#define NADDR(label) (RELOC_SOFTC | offsetof(struct ncb, label))
#define PADDR(label) (RELOC_LABEL | offsetof(struct script, label))
#define PADDRH(label) (RELOC_LABELH | offsetof(struct scripth, label))
#define RADDR(label) (RELOC_REGISTER | REG(label))
#define FADDR(label,ofs)(RELOC_REGISTER | ((REG(label))+(ofs)))
#if 0
#define KVAR(which) (RELOC_KVAR | (which))
#endif
#if 0
#define SCRIPT_KVAR_JIFFIES (0)
#define SCRIPT_KVAR_FIRST SCRIPT_KVAR_JIFFIES
#define SCRIPT_KVAR_LAST SCRIPT_KVAR_JIFFIES
/*
* Kernel variables referenced in the scripts.
* THESE MUST ALL BE ALIGNED TO A 4-BYTE BOUNDARY.
*/
static void *script_kvars[] __initdata =
{ (void *)&jiffies };
#endif
static struct script script0 __initdata = {
/*--------------------------< START >-----------------------*/ {
/*
** This NOP will be patched with LED ON
** SCR_REG_REG (gpreg, SCR_AND, 0xfe)
*/
SCR_NO_OP,
0,
/*
** Clear SIGP.
*/
SCR_FROM_REG (ctest2),
0,
/*
** Then jump to a certain point in tryloop.
** Due to the lack of indirect addressing the code
** is self modifying here.
*/
SCR_JUMP,
}/*-------------------------< STARTPOS >--------------------*/,{
PADDRH(tryloop),
}/*-------------------------< SELECT >----------------------*/,{
/*
** DSA contains the address of a scheduled
** data structure.
**
** SCRATCHA contains the address of the script,
** which starts the next entry.
**
** Set Initiator mode.
**
** (Target mode is left as an exercise for the reader)
*/
SCR_CLR (SCR_TRG),
0,
SCR_LOAD_REG (HS_REG, HS_SELECTING),
0,
/*
** And try to select this target.
*/
SCR_SEL_TBL_ATN ^ offsetof (struct dsb, select),
PADDR (reselect),
}/*-------------------------< SELECT2 >----------------------*/,{
/*
** Now there are 4 possibilities:
**
** (1) The ncr loses arbitration.
** This is ok, because it will try again,
** when the bus becomes idle.
** (But beware of the timeout function!)
**
** (2) The ncr is reselected.
** Then the script processor takes the jump
** to the RESELECT label.
**
** (3) The ncr wins arbitration.
** Then it will execute SCRIPTS instruction until
** the next instruction that checks SCSI phase.
** Then will stop and wait for selection to be
** complete or selection time-out to occur.
** As a result the SCRIPTS instructions until
** LOADPOS + 2 should be executed in parallel with
** the SCSI core performing selection.
*/
/*
** The MESSAGE_REJECT problem seems to be due to a selection
** timing problem.
** Wait immediately for the selection to complete.
** (2.5x behaves so)
*/
SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_OUT)),
0,
/*
** Next time use the next slot.
*/
SCR_COPY (4),
RADDR (temp),
PADDR (startpos),
/*
** The ncr doesn't have an indirect load
** or store command. So we have to
** copy part of the control block to a
** fixed place, where we can access it.
**
** We patch the address part of a
** COPY command with the DSA-register.
*/
SCR_COPY_F (4),
RADDR (dsa),
PADDR (loadpos),
/*
** Flush script prefetch if required
*/
PREFETCH_FLUSH
/*
** then we do the actual copy.
*/
SCR_COPY (sizeof (struct head)),
/*
** continued after the next label ...
*/
}/*-------------------------< LOADPOS >---------------------*/,{
0,
NADDR (header),
/*
** Wait for the next phase or the selection
** to complete or time-out.
*/
SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
PADDR (prepare),
}/*-------------------------< SEND_IDENT >----------------------*/,{
/*
** Selection complete.
** Send the IDENTIFY and SIMPLE_TAG messages
** (and the EXTENDED_SDTR message)
*/
SCR_MOVE_TBL ^ SCR_MSG_OUT,
offsetof (struct dsb, smsg),
SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
PADDRH (resend_ident),
SCR_LOAD_REG (scratcha, 0x80),
0,
SCR_COPY (1),
RADDR (scratcha),
NADDR (lastmsg),
}/*-------------------------< PREPARE >----------------------*/,{
/*
** load the savep (saved pointer) into
** the TEMP register (actual pointer)
*/
SCR_COPY (4),
NADDR (header.savep),
RADDR (temp),
/*
** Initialize the status registers
*/
SCR_COPY (4),
NADDR (header.status),
RADDR (scr0),
}/*-------------------------< PREPARE2 >---------------------*/,{
/*
** Initialize the msgout buffer with a NOOP message.
*/
SCR_LOAD_REG (scratcha, NOP),
0,
SCR_COPY (1),
RADDR (scratcha),
NADDR (msgout),
#if 0
SCR_COPY (1),
RADDR (scratcha),
NADDR (msgin),
#endif
/*
** Anticipate the COMMAND phase.
** This is the normal case for initial selection.
*/
SCR_JUMP ^ IFFALSE (WHEN (SCR_COMMAND)),
PADDR (dispatch),
}/*-------------------------< COMMAND >--------------------*/,{
/*
** ... and send the command
*/
SCR_MOVE_TBL ^ SCR_COMMAND,
offsetof (struct dsb, cmd),
/*
** If status is still HS_NEGOTIATE, negotiation failed.
** We check this here, since we want to do that
** only once.
*/
SCR_FROM_REG (HS_REG),
0,
SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)),
SIR_NEGO_FAILED,
}/*-----------------------< DISPATCH >----------------------*/,{
/*
** MSG_IN is the only phase that shall be
** entered at least once for each (re)selection.
** So we test it first.
*/
SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
PADDR (msg_in),
SCR_RETURN ^ IFTRUE (IF (SCR_DATA_OUT)),
0,
/*
** DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 4.
** Possible data corruption during Memory Write and Invalidate.
** This work-around resets the addressing logic prior to the
** start of the first MOVE of a DATA IN phase.
** (See Documentation/scsi/ncr53c8xx.txt for more information)
*/
SCR_JUMPR ^ IFFALSE (IF (SCR_DATA_IN)),
20,
SCR_COPY (4),
RADDR (scratcha),
RADDR (scratcha),
SCR_RETURN,
0,
SCR_JUMP ^ IFTRUE (IF (SCR_STATUS)),
PADDR (status),
SCR_JUMP ^ IFTRUE (IF (SCR_COMMAND)),
PADDR (command),
SCR_JUMP ^ IFTRUE (IF (SCR_MSG_OUT)),
PADDR (msg_out),
/*
** Discard one illegal phase byte, if required.
*/
SCR_LOAD_REG (scratcha, XE_BAD_PHASE),
0,
SCR_COPY (1),
RADDR (scratcha),
NADDR (xerr_st),
SCR_JUMPR ^ IFFALSE (IF (SCR_ILG_OUT)),
8,
SCR_MOVE_ABS (1) ^ SCR_ILG_OUT,
NADDR (scratch),
SCR_JUMPR ^ IFFALSE (IF (SCR_ILG_IN)),
8,
SCR_MOVE_ABS (1) ^ SCR_ILG_IN,
NADDR (scratch),
SCR_JUMP,
PADDR (dispatch),
}/*-------------------------< CLRACK >----------------------*/,{
/*
** Terminate possible pending message phase.
*/
SCR_CLR (SCR_ACK),
0,
SCR_JUMP,
PADDR (dispatch),
}/*-------------------------< NO_DATA >--------------------*/,{
/*
** The target wants to tranfer too much data
** or in the wrong direction.
** Remember that in extended error.
*/
SCR_LOAD_REG (scratcha, XE_EXTRA_DATA),
0,
SCR_COPY (1),
RADDR (scratcha),
NADDR (xerr_st),
/*
** Discard one data byte, if required.
*/
SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_OUT)),
8,
SCR_MOVE_ABS (1) ^ SCR_DATA_OUT,
NADDR (scratch),
SCR_JUMPR ^ IFFALSE (IF (SCR_DATA_IN)),
8,
SCR_MOVE_ABS (1) ^ SCR_DATA_IN,
NADDR (scratch),
/*
** .. and repeat as required.
*/
SCR_CALL,
PADDR (dispatch),
SCR_JUMP,
PADDR (no_data),
}/*-------------------------< STATUS >--------------------*/,{
/*
** get the status
*/
SCR_MOVE_ABS (1) ^ SCR_STATUS,
NADDR (scratch),
/*
** save status to scsi_status.
** mark as complete.
*/
SCR_TO_REG (SS_REG),
0,
SCR_LOAD_REG (HS_REG, HS_COMPLETE),
0,
SCR_JUMP,
PADDR (dispatch),
}/*-------------------------< MSG_IN >--------------------*/,{
/*
** Get the first byte of the message
** and save it to SCRATCHA.
**
** The script processor doesn't negate the
** ACK signal after this transfer.
*/
SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
NADDR (msgin[0]),
}/*-------------------------< MSG_IN2 >--------------------*/,{
/*
** Handle this message.
*/
SCR_JUMP ^ IFTRUE (DATA (COMMAND_COMPLETE)),
PADDR (complete),
SCR_JUMP ^ IFTRUE (DATA (DISCONNECT)),
PADDR (disconnect),
SCR_JUMP ^ IFTRUE (DATA (SAVE_POINTERS)),
PADDR (save_dp),
SCR_JUMP ^ IFTRUE (DATA (RESTORE_POINTERS)),
PADDR (restore_dp),
SCR_JUMP ^ IFTRUE (DATA (EXTENDED_MESSAGE)),
PADDRH (msg_extended),
SCR_JUMP ^ IFTRUE (DATA (NOP)),
PADDR (clrack),
SCR_JUMP ^ IFTRUE (DATA (MESSAGE_REJECT)),
PADDRH (msg_reject),
SCR_JUMP ^ IFTRUE (DATA (IGNORE_WIDE_RESIDUE)),
PADDRH (msg_ign_residue),
/*
** Rest of the messages left as
** an exercise ...
**
** Unimplemented messages:
** fall through to MSG_BAD.
*/
}/*-------------------------< MSG_BAD >------------------*/,{
/*
** unimplemented message - reject it.
*/
SCR_INT,
SIR_REJECT_SENT,
SCR_LOAD_REG (scratcha, MESSAGE_REJECT),
0,
}/*-------------------------< SETMSG >----------------------*/,{
SCR_COPY (1),
RADDR (scratcha),
NADDR (msgout),
SCR_SET (SCR_ATN),
0,
SCR_JUMP,
PADDR (clrack),
}/*-------------------------< CLEANUP >-------------------*/,{
/*
** dsa: Pointer to ccb
** or xxxxxxFF (no ccb)
**
** HS_REG: Host-Status (<>0!)
*/
SCR_FROM_REG (dsa),
0,
SCR_JUMP ^ IFTRUE (DATA (0xff)),
PADDR (start),
/*
** dsa is valid.
** complete the cleanup.
*/
SCR_JUMP,
PADDR (cleanup_ok),
}/*-------------------------< COMPLETE >-----------------*/,{
/*
** Complete message.
**
** Copy TEMP register to LASTP in header.
*/
SCR_COPY (4),
RADDR (temp),
NADDR (header.lastp),
/*
** When we terminate the cycle by clearing ACK,
** the target may disconnect immediately.
**
** We don't want to be told of an
** "unexpected disconnect",
** so we disable this feature.
*/
SCR_REG_REG (scntl2, SCR_AND, 0x7f),
0,
/*
** Terminate cycle ...
*/
SCR_CLR (SCR_ACK|SCR_ATN),
0,
/*
** ... and wait for the disconnect.
*/
SCR_WAIT_DISC,
0,
}/*-------------------------< CLEANUP_OK >----------------*/,{
/*
** Save host status to header.
*/
SCR_COPY (4),
RADDR (scr0),
NADDR (header.status),
/*
** and copy back the header to the ccb.
*/
SCR_COPY_F (4),
RADDR (dsa),
PADDR (cleanup0),
/*
** Flush script prefetch if required
*/
PREFETCH_FLUSH
SCR_COPY (sizeof (struct head)),
NADDR (header),
}/*-------------------------< CLEANUP0 >--------------------*/,{
0,
}/*-------------------------< SIGNAL >----------------------*/,{
/*
** if job not completed ...
*/
SCR_FROM_REG (HS_REG),
0,
/*
** ... start the next command.
*/
SCR_JUMP ^ IFTRUE (MASK (0, (HS_DONEMASK|HS_SKIPMASK))),
PADDR(start),
/*
** If command resulted in not GOOD status,
** call the C code if needed.
*/
SCR_FROM_REG (SS_REG),
0,
SCR_CALL ^ IFFALSE (DATA (S_GOOD)),
PADDRH (bad_status),
#ifndef SCSI_NCR_CCB_DONE_SUPPORT
/*
** ... signal completion to the host
*/
SCR_INT,
SIR_INTFLY,
/*
** Auf zu neuen Schandtaten!
*/
SCR_JUMP,
PADDR(start),
#else /* defined SCSI_NCR_CCB_DONE_SUPPORT */
/*
** ... signal completion to the host
*/
SCR_JUMP,
}/*------------------------< DONE_POS >---------------------*/,{
PADDRH (done_queue),
}/*------------------------< DONE_PLUG >--------------------*/,{
SCR_INT,
SIR_DONE_OVERFLOW,
}/*------------------------< DONE_END >---------------------*/,{
SCR_INT,
SIR_INTFLY,
SCR_COPY (4),
RADDR (temp),
PADDR (done_pos),
SCR_JUMP,
PADDR (start),
#endif /* SCSI_NCR_CCB_DONE_SUPPORT */
}/*-------------------------< SAVE_DP >------------------*/,{
/*
** SAVE_DP message:
** Copy TEMP register to SAVEP in header.
*/
SCR_COPY (4),
RADDR (temp),
NADDR (header.savep),
SCR_CLR (SCR_ACK),
0,
SCR_JUMP,
PADDR (dispatch),
}/*-------------------------< RESTORE_DP >---------------*/,{
/*
** RESTORE_DP message:
** Copy SAVEP in header to TEMP register.
*/
SCR_COPY (4),
NADDR (header.savep),
RADDR (temp),
SCR_JUMP,
PADDR (clrack),
}/*-------------------------< DISCONNECT >---------------*/,{
/*
** DISCONNECTing ...
**
** disable the "unexpected disconnect" feature,
** and remove the ACK signal.
*/
SCR_REG_REG (scntl2, SCR_AND, 0x7f),
0,
SCR_CLR (SCR_ACK|SCR_ATN),
0,
/*
** Wait for the disconnect.
*/
SCR_WAIT_DISC,
0,
/*
** Status is: DISCONNECTED.
*/
SCR_LOAD_REG (HS_REG, HS_DISCONNECT),
0,
SCR_JUMP,
PADDR (cleanup_ok),
}/*-------------------------< MSG_OUT >-------------------*/,{
/*
** The target requests a message.
*/
SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
NADDR (msgout),
SCR_COPY (1),
NADDR (msgout),
NADDR (lastmsg),
/*
** If it was no ABORT message ...
*/
SCR_JUMP ^ IFTRUE (DATA (ABORT_TASK_SET)),
PADDRH (msg_out_abort),
/*
** ... wait for the next phase
** if it's a message out, send it again, ...
*/
SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
PADDR (msg_out),
}/*-------------------------< MSG_OUT_DONE >--------------*/,{
/*
** ... else clear the message ...
*/
SCR_LOAD_REG (scratcha, NOP),
0,
SCR_COPY (4),
RADDR (scratcha),
NADDR (msgout),
/*
** ... and process the next phase
*/
SCR_JUMP,
PADDR (dispatch),
}/*-------------------------< IDLE >------------------------*/,{
/*
** Nothing to do?
** Wait for reselect.
** This NOP will be patched with LED OFF
** SCR_REG_REG (gpreg, SCR_OR, 0x01)
*/
SCR_NO_OP,
0,
}/*-------------------------< RESELECT >--------------------*/,{
/*
** make the DSA invalid.
*/
SCR_LOAD_REG (dsa, 0xff),
0,
SCR_CLR (SCR_TRG),
0,
SCR_LOAD_REG (HS_REG, HS_IN_RESELECT),
0,
/*
** Sleep waiting for a reselection.
** If SIGP is set, special treatment.
**
** Zu allem bereit ..
*/
SCR_WAIT_RESEL,
PADDR(start),
}/*-------------------------< RESELECTED >------------------*/,{
/*
** This NOP will be patched with LED ON
** SCR_REG_REG (gpreg, SCR_AND, 0xfe)
*/
SCR_NO_OP,
0,
/*
** ... zu nichts zu gebrauchen ?
**
** load the target id into the SFBR
** and jump to the control block.
**
** Look at the declarations of
** - struct ncb
** - struct tcb
** - struct lcb
** - struct ccb
** to understand what's going on.
*/
SCR_REG_SFBR (ssid, SCR_AND, 0x8F),
0,
SCR_TO_REG (sdid),
0,
SCR_JUMP,
NADDR (jump_tcb),
}/*-------------------------< RESEL_DSA >-------------------*/,{
/*
** Ack the IDENTIFY or TAG previously received.
*/
SCR_CLR (SCR_ACK),
0,
/*
** The ncr doesn't have an indirect load
** or store command. So we have to
** copy part of the control block to a
** fixed place, where we can access it.
**
** We patch the address part of a
** COPY command with the DSA-register.
*/
SCR_COPY_F (4),
RADDR (dsa),
PADDR (loadpos1),
/*
** Flush script prefetch if required
*/
PREFETCH_FLUSH
/*
** then we do the actual copy.
*/
SCR_COPY (sizeof (struct head)),
/*
** continued after the next label ...
*/
}/*-------------------------< LOADPOS1 >-------------------*/,{
0,
NADDR (header),
/*
** The DSA contains the data structure address.
*/
SCR_JUMP,
PADDR (prepare),
}/*-------------------------< RESEL_LUN >-------------------*/,{
/*
** come back to this point
** to get an IDENTIFY message
** Wait for a msg_in phase.
*/
SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
SIR_RESEL_NO_MSG_IN,
/*
** message phase.
** Read the data directly from the BUS DATA lines.
** This helps to support very old SCSI devices that
** may reselect without sending an IDENTIFY.
*/
SCR_FROM_REG (sbdl),
0,
/*
** It should be an Identify message.
*/
SCR_RETURN,
0,
}/*-------------------------< RESEL_TAG >-------------------*/,{
/*
** Read IDENTIFY + SIMPLE + TAG using a single MOVE.
** Agressive optimization, is'nt it?
** No need to test the SIMPLE TAG message, since the
** driver only supports conformant devices for tags. ;-)
*/
SCR_MOVE_ABS (3) ^ SCR_MSG_IN,
NADDR (msgin),
/*
** Read the TAG from the SIDL.
** Still an aggressive optimization. ;-)
** Compute the CCB indirect jump address which
** is (#TAG*2 & 0xfc) due to tag numbering using
** 1,3,5..MAXTAGS*2+1 actual values.
*/
SCR_REG_SFBR (sidl, SCR_SHL, 0),
0,
SCR_SFBR_REG (temp, SCR_AND, 0xfc),
0,
}/*-------------------------< JUMP_TO_NEXUS >-------------------*/,{
SCR_COPY_F (4),
RADDR (temp),
PADDR (nexus_indirect),
/*
** Flush script prefetch if required
*/
PREFETCH_FLUSH
SCR_COPY (4),
}/*-------------------------< NEXUS_INDIRECT >-------------------*/,{
0,
RADDR (temp),
SCR_RETURN,
0,
}/*-------------------------< RESEL_NOTAG >-------------------*/,{
/*
** No tag expected.
** Read an throw away the IDENTIFY.
*/
SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
NADDR (msgin),
SCR_JUMP,
PADDR (jump_to_nexus),
}/*-------------------------< DATA_IN >--------------------*/,{
/*
** Because the size depends on the
** #define MAX_SCATTERL parameter,
** it is filled in at runtime.
**
** ##===========< i=0; i<MAX_SCATTERL >=========
** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)),
** || PADDR (dispatch),
** || SCR_MOVE_TBL ^ SCR_DATA_IN,
** || offsetof (struct dsb, data[ i]),
** ##==========================================
**
**---------------------------------------------------------
*/
0
}/*-------------------------< DATA_IN2 >-------------------*/,{
SCR_CALL,
PADDR (dispatch),
SCR_JUMP,
PADDR (no_data),
}/*-------------------------< DATA_OUT >--------------------*/,{
/*
** Because the size depends on the
** #define MAX_SCATTERL parameter,
** it is filled in at runtime.
**
** ##===========< i=0; i<MAX_SCATTERL >=========
** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT)),
** || PADDR (dispatch),
** || SCR_MOVE_TBL ^ SCR_DATA_OUT,
** || offsetof (struct dsb, data[ i]),
** ##==========================================
**
**---------------------------------------------------------
*/
0
}/*-------------------------< DATA_OUT2 >-------------------*/,{
SCR_CALL,
PADDR (dispatch),
SCR_JUMP,
PADDR (no_data),
}/*--------------------------------------------------------*/
};
static struct scripth scripth0 __initdata = {
/*-------------------------< TRYLOOP >---------------------*/{
/*
** Start the next entry.
** Called addresses point to the launch script in the CCB.
** They are patched by the main processor.
**
** Because the size depends on the
** #define MAX_START parameter, it is filled
** in at runtime.
**
**-----------------------------------------------------------
**
** ##===========< I=0; i<MAX_START >===========
** || SCR_CALL,
** || PADDR (idle),
** ##==========================================
**
**-----------------------------------------------------------
*/
0
}/*------------------------< TRYLOOP2 >---------------------*/,{
SCR_JUMP,
PADDRH(tryloop),
#ifdef SCSI_NCR_CCB_DONE_SUPPORT
}/*------------------------< DONE_QUEUE >-------------------*/,{
/*
** Copy the CCB address to the next done entry.
** Because the size depends on the
** #define MAX_DONE parameter, it is filled
** in at runtime.
**
**-----------------------------------------------------------
**
** ##===========< I=0; i<MAX_DONE >===========
** || SCR_COPY (sizeof(struct ccb *),
** || NADDR (header.cp),
** || NADDR (ccb_done[i]),
** || SCR_CALL,
** || PADDR (done_end),
** ##==========================================
**
**-----------------------------------------------------------
*/
0
}/*------------------------< DONE_QUEUE2 >------------------*/,{
SCR_JUMP,
PADDRH (done_queue),
#endif /* SCSI_NCR_CCB_DONE_SUPPORT */
}/*------------------------< SELECT_NO_ATN >-----------------*/,{
/*
** Set Initiator mode.
** And try to select this target without ATN.
*/
SCR_CLR (SCR_TRG),
0,
SCR_LOAD_REG (HS_REG, HS_SELECTING),
0,
SCR_SEL_TBL ^ offsetof (struct dsb, select),
PADDR (reselect),
SCR_JUMP,
PADDR (select2),
}/*-------------------------< CANCEL >------------------------*/,{
SCR_LOAD_REG (scratcha, HS_ABORTED),
0,
SCR_JUMPR,
8,
}/*-------------------------< SKIP >------------------------*/,{
SCR_LOAD_REG (scratcha, 0),
0,
/*
** This entry has been canceled.
** Next time use the next slot.
*/
SCR_COPY (4),
RADDR (temp),
PADDR (startpos),
/*
** The ncr doesn't have an indirect load
** or store command. So we have to
** copy part of the control block to a
** fixed place, where we can access it.
**
** We patch the address part of a
** COPY command with the DSA-register.
*/
SCR_COPY_F (4),
RADDR (dsa),
PADDRH (skip2),
/*
** Flush script prefetch if required
*/
PREFETCH_FLUSH
/*
** then we do the actual copy.
*/
SCR_COPY (sizeof (struct head)),
/*
** continued after the next label ...
*/
}/*-------------------------< SKIP2 >---------------------*/,{
0,
NADDR (header),
/*
** Initialize the status registers
*/
SCR_COPY (4),
NADDR (header.status),
RADDR (scr0),
/*
** Force host status.
*/
SCR_FROM_REG (scratcha),
0,
SCR_JUMPR ^ IFFALSE (MASK (0, HS_DONEMASK)),
16,
SCR_REG_REG (HS_REG, SCR_OR, HS_SKIPMASK),
0,
SCR_JUMPR,
8,
SCR_TO_REG (HS_REG),
0,
SCR_LOAD_REG (SS_REG, S_GOOD),
0,
SCR_JUMP,
PADDR (cleanup_ok),
},/*-------------------------< PAR_ERR_DATA_IN >---------------*/{
/*
** Ignore all data in byte, until next phase
*/
SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)),
PADDRH (par_err_other),
SCR_MOVE_ABS (1) ^ SCR_DATA_IN,
NADDR (scratch),
SCR_JUMPR,
-24,
},/*-------------------------< PAR_ERR_OTHER >------------------*/{
/*
** count it.
*/
SCR_REG_REG (PS_REG, SCR_ADD, 0x01),
0,
/*
** jump to dispatcher.
*/
SCR_JUMP,
PADDR (dispatch),
}/*-------------------------< MSG_REJECT >---------------*/,{
/*
** If a negotiation was in progress,
** negotiation failed.
** Otherwise, let the C code print
** some message.
*/
SCR_FROM_REG (HS_REG),
0,
SCR_INT ^ IFFALSE (DATA (HS_NEGOTIATE)),
SIR_REJECT_RECEIVED,
SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)),
SIR_NEGO_FAILED,
SCR_JUMP,
PADDR (clrack),
}/*-------------------------< MSG_IGN_RESIDUE >----------*/,{
/*
** Terminate cycle
*/
SCR_CLR (SCR_ACK),
0,
SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
PADDR (dispatch),
/*
** get residue size.
*/
SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
NADDR (msgin[1]),
/*
** Size is 0 .. ignore message.
*/
SCR_JUMP ^ IFTRUE (DATA (0)),
PADDR (clrack),
/*
** Size is not 1 .. have to interrupt.
*/
SCR_JUMPR ^ IFFALSE (DATA (1)),
40,
/*
** Check for residue byte in swide register
*/
SCR_FROM_REG (scntl2),
0,
SCR_JUMPR ^ IFFALSE (MASK (WSR, WSR)),
16,
/*
** There IS data in the swide register.
** Discard it.
*/
SCR_REG_REG (scntl2, SCR_OR, WSR),
0,
SCR_JUMP,
PADDR (clrack),
/*
** Load again the size to the sfbr register.
*/
SCR_FROM_REG (scratcha),
0,
SCR_INT,
SIR_IGN_RESIDUE,
SCR_JUMP,
PADDR (clrack),
}/*-------------------------< MSG_EXTENDED >-------------*/,{
/*
** Terminate cycle
*/
SCR_CLR (SCR_ACK),
0,
SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
PADDR (dispatch),
/*
** get length.
*/
SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
NADDR (msgin[1]),
/*
*/
SCR_JUMP ^ IFTRUE (DATA (3)),
PADDRH (msg_ext_3),
SCR_JUMP ^ IFFALSE (DATA (2)),
PADDR (msg_bad),
}/*-------------------------< MSG_EXT_2 >----------------*/,{
SCR_CLR (SCR_ACK),
0,
SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
PADDR (dispatch),
/*
** get extended message code.
*/
SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
NADDR (msgin[2]),
SCR_JUMP ^ IFTRUE (DATA (EXTENDED_WDTR)),
PADDRH (msg_wdtr),
/*
** unknown extended message
*/
SCR_JUMP,
PADDR (msg_bad)
}/*-------------------------< MSG_WDTR >-----------------*/,{
SCR_CLR (SCR_ACK),
0,
SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
PADDR (dispatch),
/*
** get data bus width
*/
SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
NADDR (msgin[3]),
/*
** let the host do the real work.
*/
SCR_INT,
SIR_NEGO_WIDE,
/*
** let the target fetch our answer.
*/
SCR_SET (SCR_ATN),
0,
SCR_CLR (SCR_ACK),
0,
SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
PADDRH (nego_bad_phase),
}/*-------------------------< SEND_WDTR >----------------*/,{
/*
** Send the EXTENDED_WDTR
*/
SCR_MOVE_ABS (4) ^ SCR_MSG_OUT,
NADDR (msgout),
SCR_COPY (1),
NADDR (msgout),
NADDR (lastmsg),
SCR_JUMP,
PADDR (msg_out_done),
}/*-------------------------< MSG_EXT_3 >----------------*/,{
SCR_CLR (SCR_ACK),
0,
SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
PADDR (dispatch),
/*
** get extended message code.
*/
SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
NADDR (msgin[2]),
SCR_JUMP ^ IFTRUE (DATA (EXTENDED_SDTR)),
PADDRH (msg_sdtr),
/*
** unknown extended message
*/
SCR_JUMP,
PADDR (msg_bad)
}/*-------------------------< MSG_SDTR >-----------------*/,{
SCR_CLR (SCR_ACK),
0,
SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
PADDR (dispatch),
/*
** get period and offset
*/
SCR_MOVE_ABS (2) ^ SCR_MSG_IN,
NADDR (msgin[3]),
/*
** let the host do the real work.
*/
SCR_INT,
SIR_NEGO_SYNC,
/*
** let the target fetch our answer.
*/
SCR_SET (SCR_ATN),
0,
SCR_CLR (SCR_ACK),
0,
SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
PADDRH (nego_bad_phase),
}/*-------------------------< SEND_SDTR >-------------*/,{
/*
** Send the EXTENDED_SDTR
*/
SCR_MOVE_ABS (5) ^ SCR_MSG_OUT,
NADDR (msgout),
SCR_COPY (1),
NADDR (msgout),
NADDR (lastmsg),
SCR_JUMP,
PADDR (msg_out_done),
}/*-------------------------< NEGO_BAD_PHASE >------------*/,{
SCR_INT,
SIR_NEGO_PROTO,
SCR_JUMP,
PADDR (dispatch),
}/*-------------------------< MSG_OUT_ABORT >-------------*/,{
/*
** After ABORT message,
**
** expect an immediate disconnect, ...
*/
SCR_REG_REG (scntl2, SCR_AND, 0x7f),
0,
SCR_CLR (SCR_ACK|SCR_ATN),
0,
SCR_WAIT_DISC,
0,
/*
** ... and set the status to "ABORTED"
*/
SCR_LOAD_REG (HS_REG, HS_ABORTED),
0,
SCR_JUMP,
PADDR (cleanup),
}/*-------------------------< HDATA_IN >-------------------*/,{
/*
** Because the size depends on the
** #define MAX_SCATTERH parameter,
** it is filled in at runtime.
**
** ##==< i=MAX_SCATTERL; i<MAX_SCATTERL+MAX_SCATTERH >==
** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)),
** || PADDR (dispatch),
** || SCR_MOVE_TBL ^ SCR_DATA_IN,
** || offsetof (struct dsb, data[ i]),
** ##===================================================
**
**---------------------------------------------------------
*/
0
}/*-------------------------< HDATA_IN2 >------------------*/,{
SCR_JUMP,
PADDR (data_in),
}/*-------------------------< HDATA_OUT >-------------------*/,{
/*
** Because the size depends on the
** #define MAX_SCATTERH parameter,
** it is filled in at runtime.
**
** ##==< i=MAX_SCATTERL; i<MAX_SCATTERL+MAX_SCATTERH >==
** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT)),
** || PADDR (dispatch),
** || SCR_MOVE_TBL ^ SCR_DATA_OUT,
** || offsetof (struct dsb, data[ i]),
** ##===================================================
**
**---------------------------------------------------------
*/
0
}/*-------------------------< HDATA_OUT2 >------------------*/,{
SCR_JUMP,
PADDR (data_out),
}/*-------------------------< RESET >----------------------*/,{
/*
** Send a TARGET_RESET message if bad IDENTIFY
** received on reselection.
*/
SCR_LOAD_REG (scratcha, ABORT_TASK),
0,
SCR_JUMP,
PADDRH (abort_resel),
}/*-------------------------< ABORTTAG >-------------------*/,{
/*
** Abort a wrong tag received on reselection.
*/
SCR_LOAD_REG (scratcha, ABORT_TASK),
0,
SCR_JUMP,
PADDRH (abort_resel),
}/*-------------------------< ABORT >----------------------*/,{
/*
** Abort a reselection when no active CCB.
*/
SCR_LOAD_REG (scratcha, ABORT_TASK_SET),
0,
}/*-------------------------< ABORT_RESEL >----------------*/,{
SCR_COPY (1),
RADDR (scratcha),
NADDR (msgout),
SCR_SET (SCR_ATN),
0,
SCR_CLR (SCR_ACK),
0,
/*
** and send it.
** we expect an immediate disconnect
*/
SCR_REG_REG (scntl2, SCR_AND, 0x7f),
0,
SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
NADDR (msgout),
SCR_COPY (1),
NADDR (msgout),
NADDR (lastmsg),
SCR_CLR (SCR_ACK|SCR_ATN),
0,
SCR_WAIT_DISC,
0,
SCR_JUMP,
PADDR (start),
}/*-------------------------< RESEND_IDENT >-------------------*/,{
/*
** The target stays in MSG OUT phase after having acked
** Identify [+ Tag [+ Extended message ]]. Targets shall
** behave this way on parity error.
** We must send it again all the messages.
*/
SCR_SET (SCR_ATN), /* Shall be asserted 2 deskew delays before the */
0, /* 1rst ACK = 90 ns. Hope the NCR is'nt too fast */
SCR_JUMP,
PADDR (send_ident),
}/*-------------------------< CLRATN_GO_ON >-------------------*/,{
SCR_CLR (SCR_ATN),
0,
SCR_JUMP,
}/*-------------------------< NXTDSP_GO_ON >-------------------*/,{
0,
}/*-------------------------< SDATA_IN >-------------------*/,{
SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)),
PADDR (dispatch),
SCR_MOVE_TBL ^ SCR_DATA_IN,
offsetof (struct dsb, sense),
SCR_CALL,
PADDR (dispatch),
SCR_JUMP,
PADDR (no_data),
}/*-------------------------< DATA_IO >--------------------*/,{
/*
** We jump here if the data direction was unknown at the
** time we had to queue the command to the scripts processor.
** Pointers had been set as follow in this situation:
** savep --> DATA_IO
** lastp --> start pointer when DATA_IN
** goalp --> goal pointer when DATA_IN
** wlastp --> start pointer when DATA_OUT
** wgoalp --> goal pointer when DATA_OUT
** This script sets savep/lastp/goalp according to the
** direction chosen by the target.
*/
SCR_JUMPR ^ IFTRUE (WHEN (SCR_DATA_OUT)),
32,
/*
** Direction is DATA IN.
** Warning: we jump here, even when phase is DATA OUT.
*/
SCR_COPY (4),
NADDR (header.lastp),
NADDR (header.savep),
/*
** Jump to the SCRIPTS according to actual direction.
*/
SCR_COPY (4),
NADDR (header.savep),
RADDR (temp),
SCR_RETURN,
0,
/*
** Direction is DATA OUT.
*/
SCR_COPY (4),
NADDR (header.wlastp),
NADDR (header.lastp),
SCR_COPY (4),
NADDR (header.wgoalp),
NADDR (header.goalp),
SCR_JUMPR,
-64,
}/*-------------------------< BAD_IDENTIFY >---------------*/,{
/*
** If message phase but not an IDENTIFY,
** get some help from the C code.
** Old SCSI device may behave so.
*/
SCR_JUMPR ^ IFTRUE (MASK (0x80, 0x80)),
16,
SCR_INT,
SIR_RESEL_NO_IDENTIFY,
SCR_JUMP,
PADDRH (reset),
/*
** Message is an IDENTIFY, but lun is unknown.
** Read the message, since we got it directly
** from the SCSI BUS data lines.
** Signal problem to C code for logging the event.
** Send an ABORT_TASK_SET to clear all pending tasks.
*/
SCR_INT,
SIR_RESEL_BAD_LUN,
SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
NADDR (msgin),
SCR_JUMP,
PADDRH (abort),
}/*-------------------------< BAD_I_T_L >------------------*/,{
/*
** We donnot have a task for that I_T_L.
** Signal problem to C code for logging the event.
** Send an ABORT_TASK_SET message.
*/
SCR_INT,
SIR_RESEL_BAD_I_T_L,
SCR_JUMP,
PADDRH (abort),
}/*-------------------------< BAD_I_T_L_Q >----------------*/,{
/*
** We donnot have a task that matches the tag.
** Signal problem to C code for logging the event.
** Send an ABORT_TASK message.
*/
SCR_INT,
SIR_RESEL_BAD_I_T_L_Q,
SCR_JUMP,
PADDRH (aborttag),
}/*-------------------------< BAD_TARGET >-----------------*/,{
/*
** We donnot know the target that reselected us.
** Grab the first message if any (IDENTIFY).
** Signal problem to C code for logging the event.
** TARGET_RESET message.
*/
SCR_INT,
SIR_RESEL_BAD_TARGET,
SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_IN)),
8,
SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
NADDR (msgin),
SCR_JUMP,
PADDRH (reset),
}/*-------------------------< BAD_STATUS >-----------------*/,{
/*
** If command resulted in either QUEUE FULL,
** CHECK CONDITION or COMMAND TERMINATED,
** call the C code.
*/
SCR_INT ^ IFTRUE (DATA (S_QUEUE_FULL)),
SIR_BAD_STATUS,
SCR_INT ^ IFTRUE (DATA (S_CHECK_COND)),
SIR_BAD_STATUS,
SCR_INT ^ IFTRUE (DATA (S_TERMINATED)),
SIR_BAD_STATUS,
SCR_RETURN,
0,
}/*-------------------------< START_RAM >-------------------*/,{
/*
** Load the script into on-chip RAM,
** and jump to start point.
*/
SCR_COPY_F (4),
RADDR (scratcha),
PADDRH (start_ram0),
/*
** Flush script prefetch if required
*/
PREFETCH_FLUSH
SCR_COPY (sizeof (struct script)),
}/*-------------------------< START_RAM0 >--------------------*/,{
0,
PADDR (start),
SCR_JUMP,
PADDR (start),
}/*-------------------------< STO_RESTART >-------------------*/,{
/*
**
** Repair start queue (e.g. next time use the next slot)
** and jump to start point.
*/
SCR_COPY (4),
RADDR (temp),
PADDR (startpos),
SCR_JUMP,
PADDR (start),
}/*-------------------------< WAIT_DMA >-------------------*/,{
/*
** For HP Zalon/53c720 systems, the Zalon interface
** between CPU and 53c720 does prefetches, which causes
** problems with self modifying scripts. The problem
** is overcome by calling a dummy subroutine after each
** modification, to force a refetch of the script on
** return from the subroutine.
*/
SCR_RETURN,
0,
}/*-------------------------< SNOOPTEST >-------------------*/,{
/*
** Read the variable.
*/
SCR_COPY (4),
NADDR(ncr_cache),
RADDR (scratcha),
/*
** Write the variable.
*/
SCR_COPY (4),
RADDR (temp),
NADDR(ncr_cache),
/*
** Read back the variable.
*/
SCR_COPY (4),
NADDR(ncr_cache),
RADDR (temp),
}/*-------------------------< SNOOPEND >-------------------*/,{
/*
** And stop.
*/
SCR_INT,
99,
}/*--------------------------------------------------------*/
};
/*==========================================================
**
**
** Fill in #define dependent parts of the script
**
**
**==========================================================
*/
void __init ncr_script_fill (struct script * scr, struct scripth * scrh)
{
int i;
ncrcmd *p;
p = scrh->tryloop;
for (i=0; i<MAX_START; i++) {
*p++ =SCR_CALL;
*p++ =PADDR (idle);
}
BUG_ON((u_long)p != (u_long)&scrh->tryloop + sizeof (scrh->tryloop));
#ifdef SCSI_NCR_CCB_DONE_SUPPORT
p = scrh->done_queue;
for (i = 0; i<MAX_DONE; i++) {
*p++ =SCR_COPY (sizeof(struct ccb *));
*p++ =NADDR (header.cp);
*p++ =NADDR (ccb_done[i]);
*p++ =SCR_CALL;
*p++ =PADDR (done_end);
}
BUG_ON((u_long)p != (u_long)&scrh->done_queue+sizeof(scrh->done_queue));
#endif /* SCSI_NCR_CCB_DONE_SUPPORT */
p = scrh->hdata_in;
for (i=0; i<MAX_SCATTERH; i++) {
*p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN));
*p++ =PADDR (dispatch);
*p++ =SCR_MOVE_TBL ^ SCR_DATA_IN;
*p++ =offsetof (struct dsb, data[i]);
}
BUG_ON((u_long)p != (u_long)&scrh->hdata_in + sizeof (scrh->hdata_in));
p = scr->data_in;
for (i=MAX_SCATTERH; i<MAX_SCATTERH+MAX_SCATTERL; i++) {
*p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN));
*p++ =PADDR (dispatch);
*p++ =SCR_MOVE_TBL ^ SCR_DATA_IN;
*p++ =offsetof (struct dsb, data[i]);
}
BUG_ON((u_long)p != (u_long)&scr->data_in + sizeof (scr->data_in));
p = scrh->hdata_out;
for (i=0; i<MAX_SCATTERH; i++) {
*p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT));
*p++ =PADDR (dispatch);
*p++ =SCR_MOVE_TBL ^ SCR_DATA_OUT;
*p++ =offsetof (struct dsb, data[i]);
}
BUG_ON((u_long)p != (u_long)&scrh->hdata_out + sizeof (scrh->hdata_out));
p = scr->data_out;
for (i=MAX_SCATTERH; i<MAX_SCATTERH+MAX_SCATTERL; i++) {
*p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT));
*p++ =PADDR (dispatch);
*p++ =SCR_MOVE_TBL ^ SCR_DATA_OUT;
*p++ =offsetof (struct dsb, data[i]);
}
BUG_ON((u_long) p != (u_long)&scr->data_out + sizeof (scr->data_out));
}
/*==========================================================
**
**
** Copy and rebind a script.
**
**
**==========================================================
*/
static void __init
ncr_script_copy_and_bind (struct ncb *np, ncrcmd *src, ncrcmd *dst, int len)
{
ncrcmd opcode, new, old, tmp1, tmp2;
ncrcmd *start, *end;
int relocs;
int opchanged = 0;
start = src;
end = src + len/4;
while (src < end) {
opcode = *src++;
*dst++ = cpu_to_scr(opcode);
/*
** If we forget to change the length
** in struct script, a field will be
** padded with 0. This is an illegal
** command.
*/
if (opcode == 0) {
printk (KERN_ERR "%s: ERROR0 IN SCRIPT at %d.\n",
ncr_name(np), (int) (src-start-1));
mdelay(1000);
}
if (DEBUG_FLAGS & DEBUG_SCRIPT)
printk (KERN_DEBUG "%p: <%x>\n",
(src-1), (unsigned)opcode);
/*
** We don't have to decode ALL commands
*/
switch (opcode >> 28) {
case 0xc:
/*
** COPY has TWO arguments.
*/
relocs = 2;
tmp1 = src[0];
#ifdef RELOC_KVAR
if ((tmp1 & RELOC_MASK) == RELOC_KVAR)
tmp1 = 0;
#endif
tmp2 = src[1];
#ifdef RELOC_KVAR
if ((tmp2 & RELOC_MASK) == RELOC_KVAR)
tmp2 = 0;
#endif
if ((tmp1 ^ tmp2) & 3) {
printk (KERN_ERR"%s: ERROR1 IN SCRIPT at %d.\n",
ncr_name(np), (int) (src-start-1));
mdelay(1000);
}
/*
** If PREFETCH feature not enabled, remove
** the NO FLUSH bit if present.
*/
if ((opcode & SCR_NO_FLUSH) && !(np->features & FE_PFEN)) {
dst[-1] = cpu_to_scr(opcode & ~SCR_NO_FLUSH);
++opchanged;
}
break;
case 0x0:
/*
** MOVE (absolute address)
*/
relocs = 1;
break;
case 0x8:
/*
** JUMP / CALL
** don't relocate if relative :-)
*/
if (opcode & 0x00800000)
relocs = 0;
else
relocs = 1;
break;
case 0x4:
case 0x5:
case 0x6:
case 0x7:
relocs = 1;
break;
default:
relocs = 0;
break;
}
if (relocs) {
while (relocs--) {
old = *src++;
switch (old & RELOC_MASK) {
case RELOC_REGISTER:
new = (old & ~RELOC_MASK) + np->paddr;
break;
case RELOC_LABEL:
new = (old & ~RELOC_MASK) + np->p_script;
break;
case RELOC_LABELH:
new = (old & ~RELOC_MASK) + np->p_scripth;
break;
case RELOC_SOFTC:
new = (old & ~RELOC_MASK) + np->p_ncb;
break;
#ifdef RELOC_KVAR
case RELOC_KVAR:
if (((old & ~RELOC_MASK) <
SCRIPT_KVAR_FIRST) ||
((old & ~RELOC_MASK) >
SCRIPT_KVAR_LAST))
panic("ncr KVAR out of range");
new = vtophys(script_kvars[old &
~RELOC_MASK]);
break;
#endif
case 0:
/* Don't relocate a 0 address. */
if (old == 0) {
new = old;
break;
}
/* fall through */
default:
panic("ncr_script_copy_and_bind: weird relocation %x\n", old);
break;
}
*dst++ = cpu_to_scr(new);
}
} else
*dst++ = cpu_to_scr(*src++);
}
}
/*
** Linux host data structure
*/
struct host_data {
struct ncb *ncb;
};
#define PRINT_ADDR(cmd, arg...) dev_info(&cmd->device->sdev_gendev , ## arg)
static void ncr_print_msg(struct ccb *cp, char *label, u_char *msg)
{
PRINT_ADDR(cp->cmd, "%s: ", label);
spi_print_msg(msg);
printk("\n");
}
/*==========================================================
**
** NCR chip clock divisor table.
** Divisors are multiplied by 10,000,000 in order to make
** calculations more simple.
**
**==========================================================
*/
#define _5M 5000000
static u_long div_10M[] =
{2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
/*===============================================================
**
** Prepare io register values used by ncr_init() according
** to selected and supported features.
**
** NCR chips allow burst lengths of 2, 4, 8, 16, 32, 64, 128
** transfers. 32,64,128 are only supported by 875 and 895 chips.
** We use log base 2 (burst length) as internal code, with
** value 0 meaning "burst disabled".
**
**===============================================================
*/
/*
* Burst length from burst code.
*/
#define burst_length(bc) (!(bc))? 0 : 1 << (bc)
/*
* Burst code from io register bits. Burst enable is ctest0 for c720
*/
#define burst_code(dmode, ctest0) \
(ctest0) & 0x80 ? 0 : (((dmode) & 0xc0) >> 6) + 1
/*
* Set initial io register bits from burst code.
*/
static inline void ncr_init_burst(struct ncb *np, u_char bc)
{
u_char *be = &np->rv_ctest0;
*be &= ~0x80;
np->rv_dmode &= ~(0x3 << 6);
np->rv_ctest5 &= ~0x4;
if (!bc) {
*be |= 0x80;
} else {
--bc;
np->rv_dmode |= ((bc & 0x3) << 6);
np->rv_ctest5 |= (bc & 0x4);
}
}
static void __init ncr_prepare_setting(struct ncb *np)
{
u_char burst_max;
u_long period;
int i;
/*
** Save assumed BIOS setting
*/
np->sv_scntl0 = INB(nc_scntl0) & 0x0a;
np->sv_scntl3 = INB(nc_scntl3) & 0x07;
np->sv_dmode = INB(nc_dmode) & 0xce;
np->sv_dcntl = INB(nc_dcntl) & 0xa8;
np->sv_ctest0 = INB(nc_ctest0) & 0x84;
np->sv_ctest3 = INB(nc_ctest3) & 0x01;
np->sv_ctest4 = INB(nc_ctest4) & 0x80;
np->sv_ctest5 = INB(nc_ctest5) & 0x24;
np->sv_gpcntl = INB(nc_gpcntl);
np->sv_stest2 = INB(nc_stest2) & 0x20;
np->sv_stest4 = INB(nc_stest4);
/*
** Wide ?
*/
np->maxwide = (np->features & FE_WIDE)? 1 : 0;
/*
* Guess the frequency of the chip's clock.
*/
if (np->features & FE_ULTRA)
np->clock_khz = 80000;
else
np->clock_khz = 40000;
/*
* Get the clock multiplier factor.
*/
if (np->features & FE_QUAD)
np->multiplier = 4;
else if (np->features & FE_DBLR)
np->multiplier = 2;
else
np->multiplier = 1;
/*
* Measure SCSI clock frequency for chips
* it may vary from assumed one.
*/
if (np->features & FE_VARCLK)
ncr_getclock(np, np->multiplier);
/*
* Divisor to be used for async (timer pre-scaler).
*/
i = np->clock_divn - 1;
while (--i >= 0) {
if (10ul * SCSI_NCR_MIN_ASYNC * np->clock_khz > div_10M[i]) {
++i;
break;
}
}
np->rv_scntl3 = i+1;
/*
* Minimum synchronous period factor supported by the chip.
* Btw, 'period' is in tenths of nanoseconds.
*/
period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
if (period <= 250) np->minsync = 10;
else if (period <= 303) np->minsync = 11;
else if (period <= 500) np->minsync = 12;
else np->minsync = (period + 40 - 1) / 40;
/*
* Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
*/
if (np->minsync < 25 && !(np->features & FE_ULTRA))
np->minsync = 25;
/*
* Maximum synchronous period factor supported by the chip.
*/
period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
np->maxsync = period > 2540 ? 254 : period / 10;
/*
** Prepare initial value of other IO registers
*/
#if defined SCSI_NCR_TRUST_BIOS_SETTING
np->rv_scntl0 = np->sv_scntl0;
np->rv_dmode = np->sv_dmode;
np->rv_dcntl = np->sv_dcntl;
np->rv_ctest0 = np->sv_ctest0;
np->rv_ctest3 = np->sv_ctest3;
np->rv_ctest4 = np->sv_ctest4;
np->rv_ctest5 = np->sv_ctest5;
burst_max = burst_code(np->sv_dmode, np->sv_ctest0);
#else
/*
** Select burst length (dwords)
*/
burst_max = driver_setup.burst_max;
if (burst_max == 255)
burst_max = burst_code(np->sv_dmode, np->sv_ctest0);
if (burst_max > 7)
burst_max = 7;
if (burst_max > np->maxburst)
burst_max = np->maxburst;
/*
** Select all supported special features
*/
if (np->features & FE_ERL)
np->rv_dmode |= ERL; /* Enable Read Line */
if (np->features & FE_BOF)
np->rv_dmode |= BOF; /* Burst Opcode Fetch */
if (np->features & FE_ERMP)
np->rv_dmode |= ERMP; /* Enable Read Multiple */
if (np->features & FE_PFEN)
np->rv_dcntl |= PFEN; /* Prefetch Enable */
if (np->features & FE_CLSE)
np->rv_dcntl |= CLSE; /* Cache Line Size Enable */
if (np->features & FE_WRIE)
np->rv_ctest3 |= WRIE; /* Write and Invalidate */
if (np->features & FE_DFS)
np->rv_ctest5 |= DFS; /* Dma Fifo Size */
if (np->features & FE_MUX)
np->rv_ctest4 |= MUX; /* Host bus multiplex mode */
if (np->features & FE_EA)
np->rv_dcntl |= EA; /* Enable ACK */
if (np->features & FE_EHP)
np->rv_ctest0 |= EHP; /* Even host parity */
/*
** Select some other
*/
if (driver_setup.master_parity)
np->rv_ctest4 |= MPEE; /* Master parity checking */
if (driver_setup.scsi_parity)
np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */
/*
** Get SCSI addr of host adapter (set by bios?).
*/
if (np->myaddr == 255) {
np->myaddr = INB(nc_scid) & 0x07;
if (!np->myaddr)
np->myaddr = SCSI_NCR_MYADDR;
}
#endif /* SCSI_NCR_TRUST_BIOS_SETTING */
/*
* Prepare initial io register bits for burst length
*/
ncr_init_burst(np, burst_max);
/*
** Set SCSI BUS mode.
**
** - ULTRA2 chips (895/895A/896) report the current
** BUS mode through the STEST4 IO register.
** - For previous generation chips (825/825A/875),
** user has to tell us how to check against HVD,
** since a 100% safe algorithm is not possible.
*/
np->scsi_mode = SMODE_SE;
if (np->features & FE_DIFF) {
switch(driver_setup.diff_support) {
case 4: /* Trust previous settings if present, then GPIO3 */
if (np->sv_scntl3) {
if (np->sv_stest2 & 0x20)
np->scsi_mode = SMODE_HVD;
break;
}
case 3: /* SYMBIOS controllers report HVD through GPIO3 */
if (INB(nc_gpreg) & 0x08)
break;
case 2: /* Set HVD unconditionally */
np->scsi_mode = SMODE_HVD;
case 1: /* Trust previous settings for HVD */
if (np->sv_stest2 & 0x20)
np->scsi_mode = SMODE_HVD;
break;
default:/* Don't care about HVD */
break;
}
}
if (np->scsi_mode == SMODE_HVD)
np->rv_stest2 |= 0x20;
/*
** Set LED support from SCRIPTS.
** Ignore this feature for boards known to use a
** specific GPIO wiring and for the 895A or 896
** that drive the LED directly.
** Also probe initial setting of GPIO0 as output.
*/
if ((driver_setup.led_pin) &&
!(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
np->features |= FE_LED0;
/*
** Set irq mode.
*/
switch(driver_setup.irqm & 3) {
case 2:
np->rv_dcntl |= IRQM;
break;
case 1:
np->rv_dcntl |= (np->sv_dcntl & IRQM);
break;
default:
break;
}
/*
** Configure targets according to driver setup.
** Allow to override sync, wide and NOSCAN from
** boot command line.
*/
for (i = 0 ; i < MAX_TARGET ; i++) {
struct tcb *tp = &np->target[i];
tp->usrsync = driver_setup.default_sync;
tp->usrwide = driver_setup.max_wide;
tp->usrtags = MAX_TAGS;
tp->period = 0xffff;
if (!driver_setup.disconnection)
np->target[i].usrflag = UF_NODISC;
}
/*
** Announce all that stuff to user.
*/
printk(KERN_INFO "%s: ID %d, Fast-%d%s%s\n", ncr_name(np),
np->myaddr,
np->minsync < 12 ? 40 : (np->minsync < 25 ? 20 : 10),
(np->rv_scntl0 & 0xa) ? ", Parity Checking" : ", NO Parity",
(np->rv_stest2 & 0x20) ? ", Differential" : "");
if (bootverbose > 1) {
printk (KERN_INFO "%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
ncr_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
printk (KERN_INFO "%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
ncr_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
}
if (bootverbose && np->paddr2)
printk (KERN_INFO "%s: on-chip RAM at 0x%lx\n",
ncr_name(np), np->paddr2);
}
/*==========================================================
**
**
** Done SCSI commands list management.
**
** We donnot enter the scsi_done() callback immediately
** after a command has been seen as completed but we
** insert it into a list which is flushed outside any kind
** of driver critical section.
** This allows to do minimal stuff under interrupt and
** inside critical sections and to also avoid locking up
** on recursive calls to driver entry points under SMP.
** In fact, the only kernel point which is entered by the
** driver with a driver lock set is kmalloc(GFP_ATOMIC)
** that shall not reenter the driver under any circumstances,
** AFAIK.
**
**==========================================================
*/
static inline void ncr_queue_done_cmd(struct ncb *np, struct scsi_cmnd *cmd)
{
unmap_scsi_data(np, cmd);
cmd->host_scribble = (char *) np->done_list;
np->done_list = cmd;
}
static inline void ncr_flush_done_cmds(struct scsi_cmnd *lcmd)
{
struct scsi_cmnd *cmd;
while (lcmd) {
cmd = lcmd;
lcmd = (struct scsi_cmnd *) cmd->host_scribble;
cmd->scsi_done(cmd);
}
}
/*==========================================================
**
**
** Prepare the next negotiation message if needed.
**
** Fill in the part of message buffer that contains the
** negotiation and the nego_status field of the CCB.
** Returns the size of the message in bytes.
**
**
**==========================================================
*/
static int ncr_prepare_nego(struct ncb *np, struct ccb *cp, u_char *msgptr)
{
struct tcb *tp = &np->target[cp->target];
int msglen = 0;
int nego = 0;
struct scsi_target *starget = tp->starget;
/* negotiate wide transfers ? */
if (!tp->widedone) {
if (spi_support_wide(starget)) {
nego = NS_WIDE;
} else
tp->widedone=1;
}
/* negotiate synchronous transfers? */
if (!nego && !tp->period) {
if (spi_support_sync(starget)) {
nego = NS_SYNC;
} else {
tp->period =0xffff;
dev_info(&starget->dev, "target did not report SYNC.\n");
}
}
switch (nego) {
case NS_SYNC:
msglen += spi_populate_sync_msg(msgptr + msglen,
tp->maxoffs ? tp->minsync : 0, tp->maxoffs);
break;
case NS_WIDE:
msglen += spi_populate_width_msg(msgptr + msglen, tp->usrwide);
break;
}
cp->nego_status = nego;
if (nego) {
tp->nego_cp = cp;
if (DEBUG_FLAGS & DEBUG_NEGO) {
ncr_print_msg(cp, nego == NS_WIDE ?
"wide msgout":"sync_msgout", msgptr);
}
}
return msglen;
}
/*==========================================================
**
**
** Start execution of a SCSI command.
** This is called from the generic SCSI driver.
**
**
**==========================================================
*/
static int ncr_queue_command (struct ncb *np, struct scsi_cmnd *cmd)
{
struct scsi_device *sdev = cmd->device;
struct tcb *tp = &np->target[sdev->id];
struct lcb *lp = tp->lp[sdev->lun];
struct ccb *cp;
int segments;
u_char idmsg, *msgptr;
u32 msglen;
int direction;
u32 lastp, goalp;
/*---------------------------------------------
**
** Some shortcuts ...
**
**---------------------------------------------
*/
if ((sdev->id == np->myaddr ) ||
(sdev->id >= MAX_TARGET) ||
(sdev->lun >= MAX_LUN )) {
return(DID_BAD_TARGET);
}
/*---------------------------------------------
**
** Complete the 1st TEST UNIT READY command
** with error condition if the device is
** flagged NOSCAN, in order to speed up
** the boot.
**
**---------------------------------------------
*/
if ((cmd->cmnd[0] == 0 || cmd->cmnd[0] == 0x12) &&
(tp->usrflag & UF_NOSCAN)) {
tp->usrflag &= ~UF_NOSCAN;
return DID_BAD_TARGET;
}
if (DEBUG_FLAGS & DEBUG_TINY) {
PRINT_ADDR(cmd, "CMD=%x ", cmd->cmnd[0]);
}
/*---------------------------------------------------
**
** Assign a ccb / bind cmd.
** If resetting, shorten settle_time if necessary
** in order to avoid spurious timeouts.
** If resetting or no free ccb,
** insert cmd into the waiting list.
**
**----------------------------------------------------
*/
if (np->settle_time && cmd->timeout_per_command >= HZ) {
u_long tlimit = jiffies + cmd->timeout_per_command - HZ;
if (time_after(np->settle_time, tlimit))
np->settle_time = tlimit;
}
if (np->settle_time || !(cp=ncr_get_ccb (np, cmd))) {
insert_into_waiting_list(np, cmd);
return(DID_OK);
}
cp->cmd = cmd;
/*----------------------------------------------------
**
** Build the identify / tag / sdtr message
**
**----------------------------------------------------
*/
idmsg = IDENTIFY(0, sdev->lun);
if (cp ->tag != NO_TAG ||
(cp != np->ccb && np->disc && !(tp->usrflag & UF_NODISC)))
idmsg |= 0x40;
msgptr = cp->scsi_smsg;
msglen = 0;
msgptr[msglen++] = idmsg;
if (cp->tag != NO_TAG) {
char order = np->order;
/*
** Force ordered tag if necessary to avoid timeouts
** and to preserve interactivity.
*/
if (lp && time_after(jiffies, lp->tags_stime)) {
if (lp->tags_smap) {
order = ORDERED_QUEUE_TAG;
if ((DEBUG_FLAGS & DEBUG_TAGS)||bootverbose>2){
PRINT_ADDR(cmd,
"ordered tag forced.\n");
}
}
lp->tags_stime = jiffies + 3*HZ;
lp->tags_smap = lp->tags_umap;
}
if (order == 0) {
/*
** Ordered write ops, unordered read ops.
*/
switch (cmd->cmnd[0]) {
case 0x08: /* READ_SMALL (6) */
case 0x28: /* READ_BIG (10) */
case 0xa8: /* READ_HUGE (12) */
order = SIMPLE_QUEUE_TAG;
break;
default:
order = ORDERED_QUEUE_TAG;
}
}
msgptr[msglen++] = order;
/*
** Actual tags are numbered 1,3,5,..2*MAXTAGS+1,
** since we may have to deal with devices that have
** problems with #TAG 0 or too great #TAG numbers.
*/
msgptr[msglen++] = (cp->tag << 1) + 1;
}
/*----------------------------------------------------
**
** Build the data descriptors
**
**----------------------------------------------------
*/
direction = cmd->sc_data_direction;
if (direction != DMA_NONE) {
segments = ncr_scatter(np, cp, cp->cmd);
if (segments < 0) {
ncr_free_ccb(np, cp);
return(DID_ERROR);
}
}
else {
cp->data_len = 0;
segments = 0;
}
/*---------------------------------------------------
**
** negotiation required?
**
** (nego_status is filled by ncr_prepare_nego())
**
**---------------------------------------------------
*/
cp->nego_status = 0;
if ((!tp->widedone || !tp->period) && !tp->nego_cp && lp) {
msglen += ncr_prepare_nego (np, cp, msgptr + msglen);
}
/*----------------------------------------------------
**
** Determine xfer direction.
**
**----------------------------------------------------
*/
if (!cp->data_len)
direction = DMA_NONE;
/*
** If data direction is BIDIRECTIONAL, speculate FROM_DEVICE
** but prepare alternate pointers for TO_DEVICE in case
** of our speculation will be just wrong.
** SCRIPTS will swap values if needed.
*/
switch(direction) {
case DMA_BIDIRECTIONAL:
case DMA_TO_DEVICE:
goalp = NCB_SCRIPT_PHYS (np, data_out2) + 8;
if (segments <= MAX_SCATTERL)
lastp = goalp - 8 - (segments * 16);
else {
lastp = NCB_SCRIPTH_PHYS (np, hdata_out2);
lastp -= (segments - MAX_SCATTERL) * 16;
}
if (direction != DMA_BIDIRECTIONAL)
break;
cp->phys.header.wgoalp = cpu_to_scr(goalp);
cp->phys.header.wlastp = cpu_to_scr(lastp);
/* fall through */
case DMA_FROM_DEVICE:
goalp = NCB_SCRIPT_PHYS (np, data_in2) + 8;
if (segments <= MAX_SCATTERL)
lastp = goalp - 8 - (segments * 16);
else {
lastp = NCB_SCRIPTH_PHYS (np, hdata_in2);
lastp -= (segments - MAX_SCATTERL) * 16;
}
break;
default:
case DMA_NONE:
lastp = goalp = NCB_SCRIPT_PHYS (np, no_data);
break;
}
/*
** Set all pointers values needed by SCRIPTS.
** If direction is unknown, start at data_io.
*/
cp->phys.header.lastp = cpu_to_scr(lastp);
cp->phys.header.goalp = cpu_to_scr(goalp);
if (direction == DMA_BIDIRECTIONAL)
cp->phys.header.savep =
cpu_to_scr(NCB_SCRIPTH_PHYS (np, data_io));
else
cp->phys.header.savep= cpu_to_scr(lastp);
/*
** Save the initial data pointer in order to be able
** to redo the command.
*/
cp->startp = cp->phys.header.savep;
/*----------------------------------------------------
**
** fill in ccb
**
**----------------------------------------------------
**
**
** physical -> virtual backlink
** Generic SCSI command
*/
/*
** Startqueue
*/
cp->start.schedule.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, select));
cp->restart.schedule.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_dsa));
/*
** select
*/
cp->phys.select.sel_id = sdev_id(sdev);
cp->phys.select.sel_scntl3 = tp->wval;
cp->phys.select.sel_sxfer = tp->sval;
/*
** message
*/
cp->phys.smsg.addr = cpu_to_scr(CCB_PHYS (cp, scsi_smsg));
cp->phys.smsg.size = cpu_to_scr(msglen);
/*
** command
*/
memcpy(cp->cdb_buf, cmd->cmnd, min_t(int, cmd->cmd_len, sizeof(cp->cdb_buf)));
cp->phys.cmd.addr = cpu_to_scr(CCB_PHYS (cp, cdb_buf[0]));
cp->phys.cmd.size = cpu_to_scr(cmd->cmd_len);
/*
** status
*/
cp->actualquirks = 0;
cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
cp->scsi_status = S_ILLEGAL;
cp->parity_status = 0;
cp->xerr_status = XE_OK;
#if 0
cp->sync_status = tp->sval;
cp->wide_status = tp->wval;
#endif
/*----------------------------------------------------
**
** Critical region: start this job.
**
**----------------------------------------------------
*/
/* activate this job. */
cp->magic = CCB_MAGIC;
/*
** insert next CCBs into start queue.
** 2 max at a time is enough to flush the CCB wait queue.
*/
cp->auto_sense = 0;
if (lp)
ncr_start_next_ccb(np, lp, 2);
else
ncr_put_start_queue(np, cp);
/* Command is successfully queued. */
return DID_OK;
}
/*==========================================================
**
**
** Insert a CCB into the start queue and wake up the
** SCRIPTS processor.
**
**
**==========================================================
*/
static void ncr_start_next_ccb(struct ncb *np, struct lcb *lp, int maxn)
{
struct list_head *qp;
struct ccb *cp;
if (lp->held_ccb)
return;
while (maxn-- && lp->queuedccbs < lp->queuedepth) {
qp = ncr_list_pop(&lp->wait_ccbq);
if (!qp)
break;
++lp->queuedccbs;
cp = list_entry(qp, struct ccb, link_ccbq);
list_add_tail(qp, &lp->busy_ccbq);
lp->jump_ccb[cp->tag == NO_TAG ? 0 : cp->tag] =
cpu_to_scr(CCB_PHYS (cp, restart));
ncr_put_start_queue(np, cp);
}
}
static void ncr_put_start_queue(struct ncb *np, struct ccb *cp)
{
u16 qidx;
/*
** insert into start queue.
*/
if (!np->squeueput) np->squeueput = 1;
qidx = np->squeueput + 2;
if (qidx >= MAX_START + MAX_START) qidx = 1;
np->scripth->tryloop [qidx] = cpu_to_scr(NCB_SCRIPT_PHYS (np, idle));
MEMORY_BARRIER();
np->scripth->tryloop [np->squeueput] = cpu_to_scr(CCB_PHYS (cp, start));
np->squeueput = qidx;
++np->queuedccbs;
cp->queued = 1;
if (DEBUG_FLAGS & DEBUG_QUEUE)
printk ("%s: queuepos=%d.\n", ncr_name (np), np->squeueput);
/*
** Script processor may be waiting for reselect.
** Wake it up.
*/
MEMORY_BARRIER();
OUTB (nc_istat, SIGP);
}
static int ncr_reset_scsi_bus(struct ncb *np, int enab_int, int settle_delay)
{
u32 term;
int retv = 0;
np->settle_time = jiffies + settle_delay * HZ;
if (bootverbose > 1)
printk("%s: resetting, "
"command processing suspended for %d seconds\n",
ncr_name(np), settle_delay);
ncr_chip_reset(np, 100);
udelay(2000); /* The 895 needs time for the bus mode to settle */
if (enab_int)
OUTW (nc_sien, RST);
/*
** Enable Tolerant, reset IRQD if present and
** properly set IRQ mode, prior to resetting the bus.
*/
OUTB (nc_stest3, TE);
OUTB (nc_scntl1, CRST);
udelay(200);
if (!driver_setup.bus_check)
goto out;
/*
** Check for no terminators or SCSI bus shorts to ground.
** Read SCSI data bus, data parity bits and control signals.
** We are expecting RESET to be TRUE and other signals to be
** FALSE.
*/
term = INB(nc_sstat0);
term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */
term |= ((INB(nc_sstat2) & 0x01) << 26) | /* sdp1 */
((INW(nc_sbdl) & 0xff) << 9) | /* d7-0 */
((INW(nc_sbdl) & 0xff00) << 10) | /* d15-8 */
INB(nc_sbcl); /* req ack bsy sel atn msg cd io */
if (!(np->features & FE_WIDE))
term &= 0x3ffff;
if (term != (2<<7)) {
printk("%s: suspicious SCSI data while resetting the BUS.\n",
ncr_name(np));
printk("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
"0x%lx, expecting 0x%lx\n",
ncr_name(np),
(np->features & FE_WIDE) ? "dp1,d15-8," : "",
(u_long)term, (u_long)(2<<7));
if (driver_setup.bus_check == 1)
retv = 1;
}
out:
OUTB (nc_scntl1, 0);
return retv;
}
/*
* Start reset process.
* If reset in progress do nothing.
* The interrupt handler will reinitialize the chip.
* The timeout handler will wait for settle_time before
* clearing it and so resuming command processing.
*/
static void ncr_start_reset(struct ncb *np)
{
if (!np->settle_time) {
ncr_reset_scsi_bus(np, 1, driver_setup.settle_delay);
}
}
/*==========================================================
**
**
** Reset the SCSI BUS.
** This is called from the generic SCSI driver.
**
**
**==========================================================
*/
static int ncr_reset_bus (struct ncb *np, struct scsi_cmnd *cmd, int sync_reset)
{
/* struct scsi_device *device = cmd->device; */
struct ccb *cp;
int found;
/*
* Return immediately if reset is in progress.
*/
if (np->settle_time) {
return FAILED;
}
/*
* Start the reset process.
* The script processor is then assumed to be stopped.
* Commands will now be queued in the waiting list until a settle
* delay of 2 seconds will be completed.
*/
ncr_start_reset(np);
/*
* First, look in the wakeup list
*/
for (found=0, cp=np->ccb; cp; cp=cp->link_ccb) {
/*
** look for the ccb of this command.
*/
if (cp->host_status == HS_IDLE) continue;
if (cp->cmd == cmd) {
found = 1;
break;
}
}
/*
* Then, look in the waiting list
*/
if (!found && retrieve_from_waiting_list(0, np, cmd))
found = 1;
/*
* Wake-up all awaiting commands with DID_RESET.
*/
reset_waiting_list(np);
/*
* Wake-up all pending commands with HS_RESET -> DID_RESET.
*/
ncr_wakeup(np, HS_RESET);
/*
* If the involved command was not in a driver queue, and the
* scsi driver told us reset is synchronous, and the command is not
* currently in the waiting list, complete it with DID_RESET status,
* in order to keep it alive.
*/
if (!found && sync_reset && !retrieve_from_waiting_list(0, np, cmd)) {
cmd->result = ScsiResult(DID_RESET, 0);
ncr_queue_done_cmd(np, cmd);
}
return SUCCESS;
}
#if 0 /* unused and broken.. */
/*==========================================================
**
**
** Abort an SCSI command.
** This is called from the generic SCSI driver.
**
**
**==========================================================
*/
static int ncr_abort_command (struct ncb *np, struct scsi_cmnd *cmd)
{
/* struct scsi_device *device = cmd->device; */
struct ccb *cp;
int found;
int retv;
/*
* First, look for the scsi command in the waiting list
*/
if (remove_from_waiting_list(np, cmd)) {
cmd->result = ScsiResult(DID_ABORT, 0);
ncr_queue_done_cmd(np, cmd);
return SCSI_ABORT_SUCCESS;
}
/*
* Then, look in the wakeup list
*/
for (found=0, cp=np->ccb; cp; cp=cp->link_ccb) {
/*
** look for the ccb of this command.
*/
if (cp->host_status == HS_IDLE) continue;
if (cp->cmd == cmd) {
found = 1;
break;
}
}
if (!found) {
return SCSI_ABORT_NOT_RUNNING;
}
if (np->settle_time) {
return SCSI_ABORT_SNOOZE;
}
/*
** If the CCB is active, patch schedule jumps for the
** script to abort the command.
*/
switch(cp->host_status) {
case HS_BUSY:
case HS_NEGOTIATE:
printk ("%s: abort ccb=%p (cancel)\n", ncr_name (np), cp);
cp->start.schedule.l_paddr =
cpu_to_scr(NCB_SCRIPTH_PHYS (np, cancel));
retv = SCSI_ABORT_PENDING;
break;
case HS_DISCONNECT:
cp->restart.schedule.l_paddr =
cpu_to_scr(NCB_SCRIPTH_PHYS (np, abort));
retv = SCSI_ABORT_PENDING;
break;
default:
retv = SCSI_ABORT_NOT_RUNNING;
break;
}
/*
** If there are no requests, the script
** processor will sleep on SEL_WAIT_RESEL.
** Let's wake it up, since it may have to work.
*/
OUTB (nc_istat, SIGP);
return retv;
}
#endif
static void ncr_detach(struct ncb *np)
{
struct ccb *cp;
struct tcb *tp;
struct lcb *lp;
int target, lun;
int i;
char inst_name[16];
/* Local copy so we don't access np after freeing it! */
strlcpy(inst_name, ncr_name(np), sizeof(inst_name));
printk("%s: releasing host resources\n", ncr_name(np));
/*
** Stop the ncr_timeout process
** Set release_stage to 1 and wait that ncr_timeout() set it to 2.
*/
#ifdef DEBUG_NCR53C8XX
printk("%s: stopping the timer\n", ncr_name(np));
#endif
np->release_stage = 1;
for (i = 50 ; i && np->release_stage != 2 ; i--)
mdelay(100);
if (np->release_stage != 2)
printk("%s: the timer seems to be already stopped\n", ncr_name(np));
else np->release_stage = 2;
/*
** Disable chip interrupts
*/
#ifdef DEBUG_NCR53C8XX
printk("%s: disabling chip interrupts\n", ncr_name(np));
#endif
OUTW (nc_sien , 0);
OUTB (nc_dien , 0);
/*
** Reset NCR chip
** Restore bios setting for automatic clock detection.
*/
printk("%s: resetting chip\n", ncr_name(np));
ncr_chip_reset(np, 100);
OUTB(nc_dmode, np->sv_dmode);
OUTB(nc_dcntl, np->sv_dcntl);
OUTB(nc_ctest0, np->sv_ctest0);
OUTB(nc_ctest3, np->sv_ctest3);
OUTB(nc_ctest4, np->sv_ctest4);
OUTB(nc_ctest5, np->sv_ctest5);
OUTB(nc_gpcntl, np->sv_gpcntl);
OUTB(nc_stest2, np->sv_stest2);
ncr_selectclock(np, np->sv_scntl3);
/*
** Free allocated ccb(s)
*/
while ((cp=np->ccb->link_ccb) != NULL) {
np->ccb->link_ccb = cp->link_ccb;
if (cp->host_status) {
printk("%s: shall free an active ccb (host_status=%d)\n",
ncr_name(np), cp->host_status);
}
#ifdef DEBUG_NCR53C8XX
printk("%s: freeing ccb (%lx)\n", ncr_name(np), (u_long) cp);
#endif
m_free_dma(cp, sizeof(*cp), "CCB");
}
/* Free allocated tp(s) */
for (target = 0; target < MAX_TARGET ; target++) {
tp=&np->target[target];
for (lun = 0 ; lun < MAX_LUN ; lun++) {
lp = tp->lp[lun];
if (lp) {
#ifdef DEBUG_NCR53C8XX
printk("%s: freeing lp (%lx)\n", ncr_name(np), (u_long) lp);
#endif
if (lp->jump_ccb != &lp->jump_ccb_0)
m_free_dma(lp->jump_ccb,256,"JUMP_CCB");
m_free_dma(lp, sizeof(*lp), "LCB");
}
}
}
if (np->scripth0)
m_free_dma(np->scripth0, sizeof(struct scripth), "SCRIPTH");
if (np->script0)
m_free_dma(np->script0, sizeof(struct script), "SCRIPT");
if (np->ccb)
m_free_dma(np->ccb, sizeof(struct ccb), "CCB");
m_free_dma(np, sizeof(struct ncb), "NCB");
printk("%s: host resources successfully released\n", inst_name);
}
/*==========================================================
**
**
** Complete execution of a SCSI command.
** Signal completion to the generic SCSI driver.
**
**
**==========================================================
*/
void ncr_complete (struct ncb *np, struct ccb *cp)
{
struct scsi_cmnd *cmd;
struct tcb *tp;
struct lcb *lp;
/*
** Sanity check
*/
if (!cp || cp->magic != CCB_MAGIC || !cp->cmd)
return;
/*
** Print minimal debug information.
*/
if (DEBUG_FLAGS & DEBUG_TINY)
printk ("CCB=%lx STAT=%x/%x\n", (unsigned long)cp,
cp->host_status,cp->scsi_status);
/*
** Get command, target and lun pointers.
*/
cmd = cp->cmd;
cp->cmd = NULL;
tp = &np->target[cmd->device->id];
lp = tp->lp[cmd->device->lun];
/*
** We donnot queue more than 1 ccb per target
** with negotiation at any time. If this ccb was
** used for negotiation, clear this info in the tcb.
*/
if (cp == tp->nego_cp)
tp->nego_cp = NULL;
/*
** If auto-sense performed, change scsi status.
*/
if (cp->auto_sense) {
cp->scsi_status = cp->auto_sense;
}
/*
** If we were recovering from queue full or performing
** auto-sense, requeue skipped CCBs to the wait queue.
*/
if (lp && lp->held_ccb) {
if (cp == lp->held_ccb) {
list_splice_init(&lp->skip_ccbq, &lp->wait_ccbq);
lp->held_ccb = NULL;
}
}
/*
** Check for parity errors.
*/
if (cp->parity_status > 1) {
PRINT_ADDR(cmd, "%d parity error(s).\n",cp->parity_status);
}
/*
** Check for extended errors.
*/
if (cp->xerr_status != XE_OK) {
switch (cp->xerr_status) {
case XE_EXTRA_DATA:
PRINT_ADDR(cmd, "extraneous data discarded.\n");
break;
case XE_BAD_PHASE:
PRINT_ADDR(cmd, "invalid scsi phase (4/5).\n");
break;
default:
PRINT_ADDR(cmd, "extended error %d.\n",
cp->xerr_status);
break;
}
if (cp->host_status==HS_COMPLETE)
cp->host_status = HS_FAIL;
}
/*
** Print out any error for debugging purpose.
*/
if (DEBUG_FLAGS & (DEBUG_RESULT|DEBUG_TINY)) {
if (cp->host_status!=HS_COMPLETE || cp->scsi_status!=S_GOOD) {
PRINT_ADDR(cmd, "ERROR: cmd=%x host_status=%x "
"scsi_status=%x\n", cmd->cmnd[0],
cp->host_status, cp->scsi_status);
}
}
/*
** Check the status.
*/
if ( (cp->host_status == HS_COMPLETE)
&& (cp->scsi_status == S_GOOD ||
cp->scsi_status == S_COND_MET)) {
/*
* All went well (GOOD status).
* CONDITION MET status is returned on
* `Pre-Fetch' or `Search data' success.
*/
cmd->result = ScsiResult(DID_OK, cp->scsi_status);
/*
** @RESID@
** Could dig out the correct value for resid,
** but it would be quite complicated.
*/
/* if (cp->phys.header.lastp != cp->phys.header.goalp) */
/*
** Allocate the lcb if not yet.
*/
if (!lp)
ncr_alloc_lcb (np, cmd->device->id, cmd->device->lun);
tp->bytes += cp->data_len;
tp->transfers ++;
/*
** If tags was reduced due to queue full,
** increase tags if 1000 good status received.
*/
if (lp && lp->usetags && lp->numtags < lp->maxtags) {
++lp->num_good;
if (lp->num_good >= 1000) {
lp->num_good = 0;
++lp->numtags;
ncr_setup_tags (np, cmd->device);
}
}
} else if ((cp->host_status == HS_COMPLETE)
&& (cp->scsi_status == S_CHECK_COND)) {
/*
** Check condition code
*/
cmd->result = ScsiResult(DID_OK, S_CHECK_COND);
/*
** Copy back sense data to caller's buffer.
*/
memcpy(cmd->sense_buffer, cp->sense_buf,
min_t(size_t, SCSI_SENSE_BUFFERSIZE,
sizeof(cp->sense_buf)));
if (DEBUG_FLAGS & (DEBUG_RESULT|DEBUG_TINY)) {
u_char *p = cmd->sense_buffer;
int i;
PRINT_ADDR(cmd, "sense data:");
for (i=0; i<14; i++) printk (" %x", *p++);
printk (".\n");
}
} else if ((cp->host_status == HS_COMPLETE)
&& (cp->scsi_status == S_CONFLICT)) {
/*
** Reservation Conflict condition code
*/
cmd->result = ScsiResult(DID_OK, S_CONFLICT);
} else if ((cp->host_status == HS_COMPLETE)
&& (cp->scsi_status == S_BUSY ||
cp->scsi_status == S_QUEUE_FULL)) {
/*
** Target is busy.
*/
cmd->result = ScsiResult(DID_OK, cp->scsi_status);
} else if ((cp->host_status == HS_SEL_TIMEOUT)
|| (cp->host_status == HS_TIMEOUT)) {
/*
** No response
*/
cmd->result = ScsiResult(DID_TIME_OUT, cp->scsi_status);
} else if (cp->host_status == HS_RESET) {
/*
** SCSI bus reset
*/
cmd->result = ScsiResult(DID_RESET, cp->scsi_status);
} else if (cp->host_status == HS_ABORTED) {
/*
** Transfer aborted
*/
cmd->result = ScsiResult(DID_ABORT, cp->scsi_status);
} else {
/*
** Other protocol messes
*/
PRINT_ADDR(cmd, "COMMAND FAILED (%x %x) @%p.\n",
cp->host_status, cp->scsi_status, cp);
cmd->result = ScsiResult(DID_ERROR, cp->scsi_status);
}
/*
** trace output
*/
if (tp->usrflag & UF_TRACE) {
u_char * p;
int i;
PRINT_ADDR(cmd, " CMD:");
p = (u_char*) &cmd->cmnd[0];
for (i=0; i<cmd->cmd_len; i++) printk (" %x", *p++);
if (cp->host_status==HS_COMPLETE) {
switch (cp->scsi_status) {
case S_GOOD:
printk (" GOOD");
break;
case S_CHECK_COND:
printk (" SENSE:");
p = (u_char*) &cmd->sense_buffer;
for (i=0; i<14; i++)
printk (" %x", *p++);
break;
default:
printk (" STAT: %x\n", cp->scsi_status);
break;
}
} else printk (" HOSTERROR: %x", cp->host_status);
printk ("\n");
}
/*
** Free this ccb
*/
ncr_free_ccb (np, cp);
/*
** requeue awaiting scsi commands for this lun.
*/
if (lp && lp->queuedccbs < lp->queuedepth &&
!list_empty(&lp->wait_ccbq))
ncr_start_next_ccb(np, lp, 2);
/*
** requeue awaiting scsi commands for this controller.
*/
if (np->waiting_list)
requeue_waiting_list(np);
/*
** signal completion to generic driver.
*/
ncr_queue_done_cmd(np, cmd);
}
/*==========================================================
**
**
** Signal all (or one) control block done.
**
**
**==========================================================
*/
/*
** This CCB has been skipped by the NCR.
** Queue it in the corresponding unit queue.
*/
static void ncr_ccb_skipped(struct ncb *np, struct ccb *cp)
{
struct tcb *tp = &np->target[cp->target];
struct lcb *lp = tp->lp[cp->lun];
if (lp && cp != np->ccb) {
cp->host_status &= ~HS_SKIPMASK;
cp->start.schedule.l_paddr =
cpu_to_scr(NCB_SCRIPT_PHYS (np, select));
list_move_tail(&cp->link_ccbq, &lp->skip_ccbq);
if (cp->queued) {
--lp->queuedccbs;
}
}
if (cp->queued) {
--np->queuedccbs;
cp->queued = 0;
}
}
/*
** The NCR has completed CCBs.
** Look at the DONE QUEUE if enabled, otherwise scan all CCBs
*/
void ncr_wakeup_done (struct ncb *np)
{
struct ccb *cp;
#ifdef SCSI_NCR_CCB_DONE_SUPPORT
int i, j;
i = np->ccb_done_ic;
while (1) {
j = i+1;
if (j >= MAX_DONE)
j = 0;
cp = np->ccb_done[j];
if (!CCB_DONE_VALID(cp))
break;
np->ccb_done[j] = (struct ccb *)CCB_DONE_EMPTY;
np->scripth->done_queue[5*j + 4] =
cpu_to_scr(NCB_SCRIPT_PHYS (np, done_plug));
MEMORY_BARRIER();
np->scripth->done_queue[5*i + 4] =
cpu_to_scr(NCB_SCRIPT_PHYS (np, done_end));
if (cp->host_status & HS_DONEMASK)
ncr_complete (np, cp);
else if (cp->host_status & HS_SKIPMASK)
ncr_ccb_skipped (np, cp);
i = j;
}
np->ccb_done_ic = i;
#else
cp = np->ccb;
while (cp) {
if (cp->host_status & HS_DONEMASK)
ncr_complete (np, cp);
else if (cp->host_status & HS_SKIPMASK)
ncr_ccb_skipped (np, cp);
cp = cp->link_ccb;
}
#endif
}
/*
** Complete all active CCBs.
*/
void ncr_wakeup (struct ncb *np, u_long code)
{
struct ccb *cp = np->ccb;
while (cp) {
if (cp->host_status != HS_IDLE) {
cp->host_status = code;
ncr_complete (np, cp);
}
cp = cp->link_ccb;
}
}
/*
** Reset ncr chip.
*/
/* Some initialisation must be done immediately following reset, for 53c720,
* at least. EA (dcntl bit 5) isn't set here as it is set once only in
* the _detect function.
*/
static void ncr_chip_reset(struct ncb *np, int delay)
{
OUTB (nc_istat, SRST);
udelay(delay);
OUTB (nc_istat, 0 );
if (np->features & FE_EHP)
OUTB (nc_ctest0, EHP);
if (np->features & FE_MUX)
OUTB (nc_ctest4, MUX);
}
/*==========================================================
**
**
** Start NCR chip.
**
**
**==========================================================
*/
void ncr_init (struct ncb *np, int reset, char * msg, u_long code)
{
int i;
/*
** Reset chip if asked, otherwise just clear fifos.
*/
if (reset) {
OUTB (nc_istat, SRST);
udelay(100);
}
else {
OUTB (nc_stest3, TE|CSF);
OUTONB (nc_ctest3, CLF);
}
/*
** Message.
*/
if (msg) printk (KERN_INFO "%s: restart (%s).\n", ncr_name (np), msg);
/*
** Clear Start Queue
*/
np->queuedepth = MAX_START - 1; /* 1 entry needed as end marker */
for (i = 1; i < MAX_START + MAX_START; i += 2)
np->scripth0->tryloop[i] =
cpu_to_scr(NCB_SCRIPT_PHYS (np, idle));
/*
** Start at first entry.
*/
np->squeueput = 0;
np->script0->startpos[0] = cpu_to_scr(NCB_SCRIPTH_PHYS (np, tryloop));
#ifdef SCSI_NCR_CCB_DONE_SUPPORT
/*
** Clear Done Queue
*/
for (i = 0; i < MAX_DONE; i++) {
np->ccb_done[i] = (struct ccb *)CCB_DONE_EMPTY;
np->scripth0->done_queue[5*i + 4] =
cpu_to_scr(NCB_SCRIPT_PHYS (np, done_end));
}
#endif
/*
** Start at first entry.
*/
np->script0->done_pos[0] = cpu_to_scr(NCB_SCRIPTH_PHYS (np,done_queue));
np->ccb_done_ic = MAX_DONE-1;
np->scripth0->done_queue[5*(MAX_DONE-1) + 4] =
cpu_to_scr(NCB_SCRIPT_PHYS (np, done_plug));
/*
** Wakeup all pending jobs.
*/
ncr_wakeup (np, code);
/*
** Init chip.
*/
/*
** Remove reset; big delay because the 895 needs time for the
** bus mode to settle
*/
ncr_chip_reset(np, 2000);
OUTB (nc_scntl0, np->rv_scntl0 | 0xc0);
/* full arb., ena parity, par->ATN */
OUTB (nc_scntl1, 0x00); /* odd parity, and remove CRST!! */
ncr_selectclock(np, np->rv_scntl3); /* Select SCSI clock */
OUTB (nc_scid , RRE|np->myaddr); /* Adapter SCSI address */
OUTW (nc_respid, 1ul<<np->myaddr); /* Id to respond to */
OUTB (nc_istat , SIGP ); /* Signal Process */
OUTB (nc_dmode , np->rv_dmode); /* Burst length, dma mode */
OUTB (nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */
OUTB (nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */
OUTB (nc_ctest0, np->rv_ctest0); /* 720: CDIS and EHP */
OUTB (nc_ctest3, np->rv_ctest3); /* Write and invalidate */
OUTB (nc_ctest4, np->rv_ctest4); /* Master parity checking */
OUTB (nc_stest2, EXT|np->rv_stest2); /* Extended Sreq/Sack filtering */
OUTB (nc_stest3, TE); /* TolerANT enable */
OUTB (nc_stime0, 0x0c ); /* HTH disabled STO 0.25 sec */
/*
** Disable disconnects.
*/
np->disc = 0;
/*
** Enable GPIO0 pin for writing if LED support.
*/
if (np->features & FE_LED0) {
OUTOFFB (nc_gpcntl, 0x01);
}
/*
** enable ints
*/
OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
OUTB (nc_dien , MDPE|BF|ABRT|SSI|SIR|IID);
/*
** Fill in target structure.
** Reinitialize usrsync.
** Reinitialize usrwide.
** Prepare sync negotiation according to actual SCSI bus mode.
*/
for (i=0;i<MAX_TARGET;i++) {
struct tcb *tp = &np->target[i];
tp->sval = 0;
tp->wval = np->rv_scntl3;
if (tp->usrsync != 255) {
if (tp->usrsync <= np->maxsync) {
if (tp->usrsync < np->minsync) {
tp->usrsync = np->minsync;
}
}
else
tp->usrsync = 255;
}
if (tp->usrwide > np->maxwide)
tp->usrwide = np->maxwide;
}
/*
** Start script processor.
*/
if (np->paddr2) {
if (bootverbose)
printk ("%s: Downloading SCSI SCRIPTS.\n",
ncr_name(np));
OUTL (nc_scratcha, vtobus(np->script0));
OUTL_DSP (NCB_SCRIPTH_PHYS (np, start_ram));
}
else
OUTL_DSP (NCB_SCRIPT_PHYS (np, start));
}
/*==========================================================
**
** Prepare the negotiation values for wide and
** synchronous transfers.
**
**==========================================================
*/
static void ncr_negotiate (struct ncb* np, struct tcb* tp)
{
/*
** minsync unit is 4ns !
*/
u_long minsync = tp->usrsync;
/*
** SCSI bus mode limit
*/
if (np->scsi_mode && np->scsi_mode == SMODE_SE) {
if (minsync < 12) minsync = 12;
}
/*
** our limit ..
*/
if (minsync < np->minsync)
minsync = np->minsync;
/*
** divider limit
*/
if (minsync > np->maxsync)
minsync = 255;
if (tp->maxoffs > np->maxoffs)
tp->maxoffs = np->maxoffs;
tp->minsync = minsync;
tp->maxoffs = (minsync<255 ? tp->maxoffs : 0);
/*
** period=0: has to negotiate sync transfer
*/
tp->period=0;
/*
** widedone=0: has to negotiate wide transfer
*/
tp->widedone=0;
}
/*==========================================================
**
** Get clock factor and sync divisor for a given
** synchronous factor period.
** Returns the clock factor (in sxfer) and scntl3
** synchronous divisor field.
**
**==========================================================
*/
static void ncr_getsync(struct ncb *np, u_char sfac, u_char *fakp, u_char *scntl3p)
{
u_long clk = np->clock_khz; /* SCSI clock frequency in kHz */
int div = np->clock_divn; /* Number of divisors supported */
u_long fak; /* Sync factor in sxfer */
u_long per; /* Period in tenths of ns */
u_long kpc; /* (per * clk) */
/*
** Compute the synchronous period in tenths of nano-seconds
*/
if (sfac <= 10) per = 250;
else if (sfac == 11) per = 303;
else if (sfac == 12) per = 500;
else per = 40 * sfac;
/*
** Look for the greatest clock divisor that allows an
** input speed faster than the period.
*/
kpc = per * clk;
while (--div >= 0)
if (kpc >= (div_10M[div] << 2)) break;
/*
** Calculate the lowest clock factor that allows an output
** speed not faster than the period.
*/
fak = (kpc - 1) / div_10M[div] + 1;
#if 0 /* This optimization does not seem very useful */
per = (fak * div_10M[div]) / clk;
/*
** Why not to try the immediate lower divisor and to choose
** the one that allows the fastest output speed ?
** We don't want input speed too much greater than output speed.
*/
if (div >= 1 && fak < 8) {
u_long fak2, per2;
fak2 = (kpc - 1) / div_10M[div-1] + 1;
per2 = (fak2 * div_10M[div-1]) / clk;
if (per2 < per && fak2 <= 8) {
fak = fak2;
per = per2;
--div;
}
}
#endif
if (fak < 4) fak = 4; /* Should never happen, too bad ... */
/*
** Compute and return sync parameters for the ncr
*/
*fakp = fak - 4;
*scntl3p = ((div+1) << 4) + (sfac < 25 ? 0x80 : 0);
}
/*==========================================================
**
** Set actual values, sync status and patch all ccbs of
** a target according to new sync/wide agreement.
**
**==========================================================
*/
static void ncr_set_sync_wide_status (struct ncb *np, u_char target)
{
struct ccb *cp;
struct tcb *tp = &np->target[target];
/*
** set actual value and sync_status
*/
OUTB (nc_sxfer, tp->sval);
np->sync_st = tp->sval;
OUTB (nc_scntl3, tp->wval);
np->wide_st = tp->wval;
/*
** patch ALL ccbs of this target.
*/
for (cp = np->ccb; cp; cp = cp->link_ccb) {
if (!cp->cmd) continue;
if (scmd_id(cp->cmd) != target) continue;
#if 0
cp->sync_status = tp->sval;
cp->wide_status = tp->wval;
#endif
cp->phys.select.sel_scntl3 = tp->wval;
cp->phys.select.sel_sxfer = tp->sval;
}
}
/*==========================================================
**
** Switch sync mode for current job and it's target
**
**==========================================================
*/
static void ncr_setsync (struct ncb *np, struct ccb *cp, u_char scntl3, u_char sxfer)
{
struct scsi_cmnd *cmd = cp->cmd;
struct tcb *tp;
u_char target = INB (nc_sdid) & 0x0f;
u_char idiv;
BUG_ON(target != (scmd_id(cmd) & 0xf));
tp = &np->target[target];
if (!scntl3 || !(sxfer & 0x1f))
scntl3 = np->rv_scntl3;
scntl3 = (scntl3 & 0xf0) | (tp->wval & EWS) | (np->rv_scntl3 & 0x07);
/*
** Deduce the value of controller sync period from scntl3.
** period is in tenths of nano-seconds.
*/
idiv = ((scntl3 >> 4) & 0x7);
if ((sxfer & 0x1f) && idiv)
tp->period = (((sxfer>>5)+4)*div_10M[idiv-1])/np->clock_khz;
else
tp->period = 0xffff;
/* Stop there if sync parameters are unchanged */
if (tp->sval == sxfer && tp->wval == scntl3)
return;
tp->sval = sxfer;
tp->wval = scntl3;
if (sxfer & 0x01f) {
/* Disable extended Sreq/Sack filtering */
if (tp->period <= 2000)
OUTOFFB(nc_stest2, EXT);
}
spi_display_xfer_agreement(tp->starget);
/*
** set actual value and sync_status
** patch ALL ccbs of this target.
*/
ncr_set_sync_wide_status(np, target);
}
/*==========================================================
**
** Switch wide mode for current job and it's target
** SCSI specs say: a SCSI device that accepts a WDTR
** message shall reset the synchronous agreement to
** asynchronous mode.
**
**==========================================================
*/
static void ncr_setwide (struct ncb *np, struct ccb *cp, u_char wide, u_char ack)
{
struct scsi_cmnd *cmd = cp->cmd;
u16 target = INB (nc_sdid) & 0x0f;
struct tcb *tp;
u_char scntl3;
u_char sxfer;
BUG_ON(target != (scmd_id(cmd) & 0xf));
tp = &np->target[target];
tp->widedone = wide+1;
scntl3 = (tp->wval & (~EWS)) | (wide ? EWS : 0);
sxfer = ack ? 0 : tp->sval;
/*
** Stop there if sync/wide parameters are unchanged
*/
if (tp->sval == sxfer && tp->wval == scntl3) return;
tp->sval = sxfer;
tp->wval = scntl3;
/*
** Bells and whistles ;-)
*/
if (bootverbose >= 2) {
dev_info(&cmd->device->sdev_target->dev, "WIDE SCSI %sabled.\n",
(scntl3 & EWS) ? "en" : "dis");
}
/*
** set actual value and sync_status
** patch ALL ccbs of this target.
*/
ncr_set_sync_wide_status(np, target);
}
/*==========================================================
**
** Switch tagged mode for a target.
**
**==========================================================
*/
static void ncr_setup_tags (struct ncb *np, struct scsi_device *sdev)
{
unsigned char tn = sdev->id, ln = sdev->lun;
struct tcb *tp = &np->target[tn];
struct lcb *lp = tp->lp[ln];
u_char reqtags, maxdepth;
/*
** Just in case ...
*/
if ((!tp) || (!lp) || !sdev)
return;
/*
** If SCSI device queue depth is not yet set, leave here.
*/
if (!lp->scdev_depth)
return;
/*
** Donnot allow more tags than the SCSI driver can queue
** for this device.
** Donnot allow more tags than we can handle.
*/
maxdepth = lp->scdev_depth;
if (maxdepth > lp->maxnxs) maxdepth = lp->maxnxs;
if (lp->maxtags > maxdepth) lp->maxtags = maxdepth;
if (lp->numtags > maxdepth) lp->numtags = maxdepth;
/*
** only devices conformant to ANSI Version >= 2
** only devices capable of tagged commands
** only if enabled by user ..
*/
if (sdev->tagged_supported && lp->numtags > 1) {
reqtags = lp->numtags;
} else {
reqtags = 1;
}
/*
** Update max number of tags
*/
lp->numtags = reqtags;
if (lp->numtags > lp->maxtags)
lp->maxtags = lp->numtags;
/*
** If we want to switch tag mode, we must wait
** for no CCB to be active.
*/
if (reqtags > 1 && lp->usetags) { /* Stay in tagged mode */
if (lp->queuedepth == reqtags) /* Already announced */
return;
lp->queuedepth = reqtags;
}
else if (reqtags <= 1 && !lp->usetags) { /* Stay in untagged mode */
lp->queuedepth = reqtags;
return;
}
else { /* Want to switch tag mode */
if (lp->busyccbs) /* If not yet safe, return */
return;
lp->queuedepth = reqtags;
lp->usetags = reqtags > 1 ? 1 : 0;
}
/*
** Patch the lun mini-script, according to tag mode.
*/
lp->jump_tag.l_paddr = lp->usetags?
cpu_to_scr(NCB_SCRIPT_PHYS(np, resel_tag)) :
cpu_to_scr(NCB_SCRIPT_PHYS(np, resel_notag));
/*
** Announce change to user.
*/
if (bootverbose) {
if (lp->usetags) {
dev_info(&sdev->sdev_gendev,
"tagged command queue depth set to %d\n",
reqtags);
} else {
dev_info(&sdev->sdev_gendev,
"tagged command queueing disabled\n");
}
}
}
/*==========================================================
**
**
** ncr timeout handler.
**
**
**==========================================================
**
** Misused to keep the driver running when
** interrupts are not configured correctly.
**
**----------------------------------------------------------
*/
static void ncr_timeout (struct ncb *np)
{
u_long thistime = jiffies;
/*
** If release process in progress, let's go
** Set the release stage from 1 to 2 to synchronize
** with the release process.
*/
if (np->release_stage) {
if (np->release_stage == 1) np->release_stage = 2;
return;
}
np->timer.expires = jiffies + SCSI_NCR_TIMER_INTERVAL;
add_timer(&np->timer);
/*
** If we are resetting the ncr, wait for settle_time before
** clearing it. Then command processing will be resumed.
*/
if (np->settle_time) {
if (np->settle_time <= thistime) {
if (bootverbose > 1)
printk("%s: command processing resumed\n", ncr_name(np));
np->settle_time = 0;
np->disc = 1;
requeue_waiting_list(np);
}
return;
}
/*
** Since the generic scsi driver only allows us 0.5 second
** to perform abort of a command, we must look at ccbs about
** every 0.25 second.
*/
if (np->lasttime + 4*HZ < thistime) {
/*
** block ncr interrupts
*/
np->lasttime = thistime;
}
#ifdef SCSI_NCR_BROKEN_INTR
if (INB(nc_istat) & (INTF|SIP|DIP)) {
/*
** Process pending interrupts.
*/
if (DEBUG_FLAGS & DEBUG_TINY) printk ("{");
ncr_exception (np);
if (DEBUG_FLAGS & DEBUG_TINY) printk ("}");
}
#endif /* SCSI_NCR_BROKEN_INTR */
}
/*==========================================================
**
** log message for real hard errors
**
** "ncr0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc)."
** " reg: r0 r1 r2 r3 r4 r5 r6 ..... rf."
**
** exception register:
** ds: dstat
** si: sist
**
** SCSI bus lines:
** so: control lines as driver by NCR.
** si: control lines as seen by NCR.
** sd: scsi data lines as seen by NCR.
**
** wide/fastmode:
** sxfer: (see the manual)
** scntl3: (see the manual)
**
** current script command:
** dsp: script address (relative to start of script).
** dbc: first word of script command.
**
** First 16 register of the chip:
** r0..rf
**
**==========================================================
*/
static void ncr_log_hard_error(struct ncb *np, u16 sist, u_char dstat)
{
u32 dsp;
int script_ofs;
int script_size;
char *script_name;
u_char *script_base;
int i;
dsp = INL (nc_dsp);
if (dsp > np->p_script && dsp <= np->p_script + sizeof(struct script)) {
script_ofs = dsp - np->p_script;
script_size = sizeof(struct script);
script_base = (u_char *) np->script0;
script_name = "script";
}
else if (np->p_scripth < dsp &&
dsp <= np->p_scripth + sizeof(struct scripth)) {
script_ofs = dsp - np->p_scripth;
script_size = sizeof(struct scripth);
script_base = (u_char *) np->scripth0;
script_name = "scripth";
} else {
script_ofs = dsp;
script_size = 0;
script_base = NULL;
script_name = "mem";
}
printk ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n",
ncr_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist,
(unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl), (unsigned)INB (nc_sbdl),
(unsigned)INB (nc_sxfer),(unsigned)INB (nc_scntl3), script_name, script_ofs,
(unsigned)INL (nc_dbc));
if (((script_ofs & 3) == 0) &&
(unsigned)script_ofs < script_size) {
printk ("%s: script cmd = %08x\n", ncr_name(np),
scr_to_cpu((int) *(ncrcmd *)(script_base + script_ofs)));
}
printk ("%s: regdump:", ncr_name(np));
for (i=0; i<16;i++)
printk (" %02x", (unsigned)INB_OFF(i));
printk (".\n");
}
/*============================================================
**
** ncr chip exception handler.
**
**============================================================
**
** In normal cases, interrupt conditions occur one at a
** time. The ncr is able to stack in some extra registers
** other interrupts that will occur after the first one.
** But, several interrupts may occur at the same time.
**
** We probably should only try to deal with the normal
** case, but it seems that multiple interrupts occur in
** some cases that are not abnormal at all.
**
** The most frequent interrupt condition is Phase Mismatch.
** We should want to service this interrupt quickly.
** A SCSI parity error may be delivered at the same time.
** The SIR interrupt is not very frequent in this driver,
** since the INTFLY is likely used for command completion
** signaling.
** The Selection Timeout interrupt may be triggered with
** IID and/or UDC.
** The SBMC interrupt (SCSI Bus Mode Change) may probably
** occur at any time.
**
** This handler try to deal as cleverly as possible with all
** the above.
**
**============================================================
*/
void ncr_exception (struct ncb *np)
{
u_char istat, dstat;
u16 sist;
int i;
/*
** interrupt on the fly ?
** Since the global header may be copied back to a CCB
** using a posted PCI memory write, the last operation on
** the istat register is a READ in order to flush posted
** PCI write commands.
*/
istat = INB (nc_istat);
if (istat & INTF) {
OUTB (nc_istat, (istat & SIGP) | INTF);
istat = INB (nc_istat);
if (DEBUG_FLAGS & DEBUG_TINY) printk ("F ");
ncr_wakeup_done (np);
}
if (!(istat & (SIP|DIP)))
return;
if (istat & CABRT)
OUTB (nc_istat, CABRT);
/*
** Steinbach's Guideline for Systems Programming:
** Never test for an error condition you don't know how to handle.
*/
sist = (istat & SIP) ? INW (nc_sist) : 0;
dstat = (istat & DIP) ? INB (nc_dstat) : 0;
if (DEBUG_FLAGS & DEBUG_TINY)
printk ("<%d|%x:%x|%x:%x>",
(int)INB(nc_scr0),
dstat,sist,
(unsigned)INL(nc_dsp),
(unsigned)INL(nc_dbc));
/*========================================================
** First, interrupts we want to service cleanly.
**
** Phase mismatch is the most frequent interrupt, and
** so we have to service it as quickly and as cleanly
** as possible.
** Programmed interrupts are rarely used in this driver,
** but we must handle them cleanly anyway.
** We try to deal with PAR and SBMC combined with
** some other interrupt(s).
**=========================================================
*/
if (!(sist & (STO|GEN|HTH|SGE|UDC|RST)) &&
!(dstat & (MDPE|BF|ABRT|IID))) {
if ((sist & SBMC) && ncr_int_sbmc (np))
return;
if ((sist & PAR) && ncr_int_par (np))
return;
if (sist & MA) {
ncr_int_ma (np);
return;
}
if (dstat & SIR) {
ncr_int_sir (np);
return;
}
/*
** DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 2.
*/
if (!(sist & (SBMC|PAR)) && !(dstat & SSI)) {
printk( "%s: unknown interrupt(s) ignored, "
"ISTAT=%x DSTAT=%x SIST=%x\n",
ncr_name(np), istat, dstat, sist);
return;
}
OUTONB_STD ();
return;
}
/*========================================================
** Now, interrupts that need some fixing up.
** Order and multiple interrupts is so less important.
**
** If SRST has been asserted, we just reset the chip.
**
** Selection is intirely handled by the chip. If the
** chip says STO, we trust it. Seems some other
** interrupts may occur at the same time (UDC, IID), so
** we ignore them. In any case we do enough fix-up
** in the service routine.
** We just exclude some fatal dma errors.
**=========================================================
*/
if (sist & RST) {
ncr_init (np, 1, bootverbose ? "scsi reset" : NULL, HS_RESET);
return;
}
if ((sist & STO) &&
!(dstat & (MDPE|BF|ABRT))) {
/*
** DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 1.
*/
OUTONB (nc_ctest3, CLF);
ncr_int_sto (np);
return;
}
/*=========================================================
** Now, interrupts we are not able to recover cleanly.
** (At least for the moment).
**
** Do the register dump.
** Log message for real hard errors.
** Clear all fifos.
** For MDPE, BF, ABORT, IID, SGE and HTH we reset the
** BUS and the chip.
** We are more soft for UDC.
**=========================================================
*/
if (time_after(jiffies, np->regtime)) {
np->regtime = jiffies + 10*HZ;
for (i = 0; i<sizeof(np->regdump); i++)
((char*)&np->regdump)[i] = INB_OFF(i);
np->regdump.nc_dstat = dstat;
np->regdump.nc_sist = sist;
}
ncr_log_hard_error(np, sist, dstat);
printk ("%s: have to clear fifos.\n", ncr_name (np));
OUTB (nc_stest3, TE|CSF);
OUTONB (nc_ctest3, CLF);
if ((sist & (SGE)) ||
(dstat & (MDPE|BF|ABRT|IID))) {
ncr_start_reset(np);
return;
}
if (sist & HTH) {
printk ("%s: handshake timeout\n", ncr_name(np));
ncr_start_reset(np);
return;
}
if (sist & UDC) {
printk ("%s: unexpected disconnect\n", ncr_name(np));
OUTB (HS_PRT, HS_UNEXPECTED);
OUTL_DSP (NCB_SCRIPT_PHYS (np, cleanup));
return;
}
/*=========================================================
** We just miss the cause of the interrupt. :(
** Print a message. The timeout will do the real work.
**=========================================================
*/
printk ("%s: unknown interrupt\n", ncr_name(np));
}
/*==========================================================
**
** ncr chip exception handler for selection timeout
**
**==========================================================
**
** There seems to be a bug in the 53c810.
** Although a STO-Interrupt is pending,
** it continues executing script commands.
** But it will fail and interrupt (IID) on
** the next instruction where it's looking
** for a valid phase.
**
**----------------------------------------------------------
*/
void ncr_int_sto (struct ncb *np)
{
u_long dsa;
struct ccb *cp;
if (DEBUG_FLAGS & DEBUG_TINY) printk ("T");
/*
** look for ccb and set the status.
*/
dsa = INL (nc_dsa);
cp = np->ccb;
while (cp && (CCB_PHYS (cp, phys) != dsa))
cp = cp->link_ccb;
if (cp) {
cp-> host_status = HS_SEL_TIMEOUT;
ncr_complete (np, cp);
}
/*
** repair start queue and jump to start point.
*/
OUTL_DSP (NCB_SCRIPTH_PHYS (np, sto_restart));
return;
}
/*==========================================================
**
** ncr chip exception handler for SCSI bus mode change
**
**==========================================================
**
** spi2-r12 11.2.3 says a transceiver mode change must
** generate a reset event and a device that detects a reset
** event shall initiate a hard reset. It says also that a
** device that detects a mode change shall set data transfer
** mode to eight bit asynchronous, etc...
** So, just resetting should be enough.
**
**
**----------------------------------------------------------
*/
static int ncr_int_sbmc (struct ncb *np)
{
u_char scsi_mode = INB (nc_stest4) & SMODE;
if (scsi_mode != np->scsi_mode) {
printk("%s: SCSI bus mode change from %x to %x.\n",
ncr_name(np), np->scsi_mode, scsi_mode);
np->scsi_mode = scsi_mode;
/*
** Suspend command processing for 1 second and
** reinitialize all except the chip.
*/
np->settle_time = jiffies + HZ;
ncr_init (np, 0, bootverbose ? "scsi mode change" : NULL, HS_RESET);
return 1;
}
return 0;
}
/*==========================================================
**
** ncr chip exception handler for SCSI parity error.
**
**==========================================================
**
**
**----------------------------------------------------------
*/
static int ncr_int_par (struct ncb *np)
{
u_char hsts = INB (HS_PRT);
u32 dbc = INL (nc_dbc);
u_char sstat1 = INB (nc_sstat1);
int phase = -1;
int msg = -1;
u32 jmp;
printk("%s: SCSI parity error detected: SCR1=%d DBC=%x SSTAT1=%x\n",
ncr_name(np), hsts, dbc, sstat1);
/*
* Ignore the interrupt if the NCR is not connected
* to the SCSI bus, since the right work should have
* been done on unexpected disconnection handling.
*/
if (!(INB (nc_scntl1) & ISCON))
return 0;
/*
* If the nexus is not clearly identified, reset the bus.
* We will try to do better later.
*/
if (hsts & HS_INVALMASK)
goto reset_all;
/*
* If the SCSI parity error occurs in MSG IN phase, prepare a
* MSG PARITY message. Otherwise, prepare a INITIATOR DETECTED
* ERROR message and let the device decide to retry the command
* or to terminate with check condition. If we were in MSG IN
* phase waiting for the response of a negotiation, we will
* get SIR_NEGO_FAILED at dispatch.
*/
if (!(dbc & 0xc0000000))
phase = (dbc >> 24) & 7;
if (phase == 7)
msg = MSG_PARITY_ERROR;
else
msg = INITIATOR_ERROR;
/*
* If the NCR stopped on a MOVE ^ DATA_IN, we jump to a
* script that will ignore all data in bytes until phase
* change, since we are not sure the chip will wait the phase
* change prior to delivering the interrupt.
*/
if (phase == 1)
jmp = NCB_SCRIPTH_PHYS (np, par_err_data_in);
else
jmp = NCB_SCRIPTH_PHYS (np, par_err_other);
OUTONB (nc_ctest3, CLF ); /* clear dma fifo */
OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */
np->msgout[0] = msg;
OUTL_DSP (jmp);
return 1;
reset_all:
ncr_start_reset(np);
return 1;
}
/*==========================================================
**
**
** ncr chip exception handler for phase errors.
**
**
**==========================================================
**
** We have to construct a new transfer descriptor,
** to transfer the rest of the current block.
**
**----------------------------------------------------------
*/
static void ncr_int_ma (struct ncb *np)
{
u32 dbc;
u32 rest;
u32 dsp;
u32 dsa;
u32 nxtdsp;
u32 newtmp;
u32 *vdsp;
u32 oadr, olen;
u32 *tblp;
ncrcmd *newcmd;
u_char cmd, sbcl;
struct ccb *cp;
dsp = INL (nc_dsp);
dbc = INL (nc_dbc);
sbcl = INB (nc_sbcl);
cmd = dbc >> 24;
rest = dbc & 0xffffff;
/*
** Take into account dma fifo and various buffers and latches,
** only if the interrupted phase is an OUTPUT phase.
*/
if ((cmd & 1) == 0) {
u_char ctest5, ss0, ss2;
u16 delta;
ctest5 = (np->rv_ctest5 & DFS) ? INB (nc_ctest5) : 0;
if (ctest5 & DFS)
delta=(((ctest5 << 8) | (INB (nc_dfifo) & 0xff)) - rest) & 0x3ff;
else
delta=(INB (nc_dfifo) - rest) & 0x7f;
/*
** The data in the dma fifo has not been transferred to
** the target -> add the amount to the rest
** and clear the data.
** Check the sstat2 register in case of wide transfer.
*/
rest += delta;
ss0 = INB (nc_sstat0);
if (ss0 & OLF) rest++;
if (ss0 & ORF) rest++;
if (INB(nc_scntl3) & EWS) {
ss2 = INB (nc_sstat2);
if (ss2 & OLF1) rest++;
if (ss2 & ORF1) rest++;
}
if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
printk ("P%x%x RL=%d D=%d SS0=%x ", cmd&7, sbcl&7,
(unsigned) rest, (unsigned) delta, ss0);
} else {
if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
printk ("P%x%x RL=%d ", cmd&7, sbcl&7, rest);
}
/*
** Clear fifos.
*/
OUTONB (nc_ctest3, CLF ); /* clear dma fifo */
OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */
/*
** locate matching cp.
** if the interrupted phase is DATA IN or DATA OUT,
** trust the global header.
*/
dsa = INL (nc_dsa);
if (!(cmd & 6)) {
cp = np->header.cp;
if (CCB_PHYS(cp, phys) != dsa)
cp = NULL;
} else {
cp = np->ccb;
while (cp && (CCB_PHYS (cp, phys) != dsa))
cp = cp->link_ccb;
}
/*
** try to find the interrupted script command,
** and the address at which to continue.
*/
vdsp = NULL;
nxtdsp = 0;
if (dsp > np->p_script &&
dsp <= np->p_script + sizeof(struct script)) {
vdsp = (u32 *)((char*)np->script0 + (dsp-np->p_script-8));
nxtdsp = dsp;
}
else if (dsp > np->p_scripth &&
dsp <= np->p_scripth + sizeof(struct scripth)) {
vdsp = (u32 *)((char*)np->scripth0 + (dsp-np->p_scripth-8));
nxtdsp = dsp;
}
else if (cp) {
if (dsp == CCB_PHYS (cp, patch[2])) {
vdsp = &cp->patch[0];
nxtdsp = scr_to_cpu(vdsp[3]);
}
else if (dsp == CCB_PHYS (cp, patch[6])) {
vdsp = &cp->patch[4];
nxtdsp = scr_to_cpu(vdsp[3]);
}
}
/*
** log the information
*/
if (DEBUG_FLAGS & DEBUG_PHASE) {
printk ("\nCP=%p CP2=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
cp, np->header.cp,
(unsigned)dsp,
(unsigned)nxtdsp, vdsp, cmd);
}
/*
** cp=0 means that the DSA does not point to a valid control
** block. This should not happen since we donnot use multi-byte
** move while we are being reselected ot after command complete.
** We are not able to recover from such a phase error.
*/
if (!cp) {
printk ("%s: SCSI phase error fixup: "
"CCB already dequeued (0x%08lx)\n",
ncr_name (np), (u_long) np->header.cp);
goto reset_all;
}
/*
** get old startaddress and old length.
*/
oadr = scr_to_cpu(vdsp[1]);
if (cmd & 0x10) { /* Table indirect */
tblp = (u32 *) ((char*) &cp->phys + oadr);
olen = scr_to_cpu(tblp[0]);
oadr = scr_to_cpu(tblp[1]);
} else {
tblp = (u32 *) 0;
olen = scr_to_cpu(vdsp[0]) & 0xffffff;
}
if (DEBUG_FLAGS & DEBUG_PHASE) {
printk ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
(unsigned) (scr_to_cpu(vdsp[0]) >> 24),
tblp,
(unsigned) olen,
(unsigned) oadr);
}
/*
** check cmd against assumed interrupted script command.
*/
if (cmd != (scr_to_cpu(vdsp[0]) >> 24)) {
PRINT_ADDR(cp->cmd, "internal error: cmd=%02x != %02x=(vdsp[0] "
">> 24)\n", cmd, scr_to_cpu(vdsp[0]) >> 24);
goto reset_all;
}
/*
** cp != np->header.cp means that the header of the CCB
** currently being processed has not yet been copied to
** the global header area. That may happen if the device did
** not accept all our messages after having been selected.
*/
if (cp != np->header.cp) {
printk ("%s: SCSI phase error fixup: "
"CCB address mismatch (0x%08lx != 0x%08lx)\n",
ncr_name (np), (u_long) cp, (u_long) np->header.cp);
}
/*
** if old phase not dataphase, leave here.
*/
if (cmd & 0x06) {
PRINT_ADDR(cp->cmd, "phase change %x-%x %d@%08x resid=%d.\n",
cmd&7, sbcl&7, (unsigned)olen,
(unsigned)oadr, (unsigned)rest);
goto unexpected_phase;
}
/*
** choose the correct patch area.
** if savep points to one, choose the other.
*/
newcmd = cp->patch;
newtmp = CCB_PHYS (cp, patch);
if (newtmp == scr_to_cpu(cp->phys.header.savep)) {
newcmd = &cp->patch[4];
newtmp = CCB_PHYS (cp, patch[4]);
}
/*
** fillin the commands
*/
newcmd[0] = cpu_to_scr(((cmd & 0x0f) << 24) | rest);
newcmd[1] = cpu_to_scr(oadr + olen - rest);
newcmd[2] = cpu_to_scr(SCR_JUMP);
newcmd[3] = cpu_to_scr(nxtdsp);
if (DEBUG_FLAGS & DEBUG_PHASE) {
PRINT_ADDR(cp->cmd, "newcmd[%d] %x %x %x %x.\n",
(int) (newcmd - cp->patch),
(unsigned)scr_to_cpu(newcmd[0]),
(unsigned)scr_to_cpu(newcmd[1]),
(unsigned)scr_to_cpu(newcmd[2]),
(unsigned)scr_to_cpu(newcmd[3]));
}
/*
** fake the return address (to the patch).
** and restart script processor at dispatcher.
*/
OUTL (nc_temp, newtmp);
OUTL_DSP (NCB_SCRIPT_PHYS (np, dispatch));
return;
/*
** Unexpected phase changes that occurs when the current phase
** is not a DATA IN or DATA OUT phase are due to error conditions.
** Such event may only happen when the SCRIPTS is using a
** multibyte SCSI MOVE.
**
** Phase change Some possible cause
**
** COMMAND --> MSG IN SCSI parity error detected by target.
** COMMAND --> STATUS Bad command or refused by target.
** MSG OUT --> MSG IN Message rejected by target.
** MSG OUT --> COMMAND Bogus target that discards extended
** negotiation messages.
**
** The code below does not care of the new phase and so
** trusts the target. Why to annoy it ?
** If the interrupted phase is COMMAND phase, we restart at
** dispatcher.
** If a target does not get all the messages after selection,
** the code assumes blindly that the target discards extended
** messages and clears the negotiation status.
** If the target does not want all our response to negotiation,
** we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
** bloat for such a should_not_happen situation).
** In all other situation, we reset the BUS.
** Are these assumptions reasonnable ? (Wait and see ...)
*/
unexpected_phase:
dsp -= 8;
nxtdsp = 0;
switch (cmd & 7) {
case 2: /* COMMAND phase */
nxtdsp = NCB_SCRIPT_PHYS (np, dispatch);
break;
#if 0
case 3: /* STATUS phase */
nxtdsp = NCB_SCRIPT_PHYS (np, dispatch);
break;
#endif
case 6: /* MSG OUT phase */
np->scripth->nxtdsp_go_on[0] = cpu_to_scr(dsp + 8);
if (dsp == NCB_SCRIPT_PHYS (np, send_ident)) {
cp->host_status = HS_BUSY;
nxtdsp = NCB_SCRIPTH_PHYS (np, clratn_go_on);
}
else if (dsp == NCB_SCRIPTH_PHYS (np, send_wdtr) ||
dsp == NCB_SCRIPTH_PHYS (np, send_sdtr)) {
nxtdsp = NCB_SCRIPTH_PHYS (np, nego_bad_phase);
}
break;
#if 0
case 7: /* MSG IN phase */
nxtdsp = NCB_SCRIPT_PHYS (np, clrack);
break;
#endif
}
if (nxtdsp) {
OUTL_DSP (nxtdsp);
return;
}
reset_all:
ncr_start_reset(np);
}
static void ncr_sir_to_redo(struct ncb *np, int num, struct ccb *cp)
{
struct scsi_cmnd *cmd = cp->cmd;
struct tcb *tp = &np->target[cmd->device->id];
struct lcb *lp = tp->lp[cmd->device->lun];
struct list_head *qp;
struct ccb * cp2;
int disc_cnt = 0;
int busy_cnt = 0;
u32 startp;
u_char s_status = INB (SS_PRT);
/*
** Let the SCRIPTS processor skip all not yet started CCBs,
** and count disconnected CCBs. Since the busy queue is in
** the same order as the chip start queue, disconnected CCBs
** are before cp and busy ones after.
*/
if (lp) {
qp = lp->busy_ccbq.prev;
while (qp != &lp->busy_ccbq) {
cp2 = list_entry(qp, struct ccb, link_ccbq);
qp = qp->prev;
++busy_cnt;
if (cp2 == cp)
break;
cp2->start.schedule.l_paddr =
cpu_to_scr(NCB_SCRIPTH_PHYS (np, skip));
}
lp->held_ccb = cp; /* Requeue when this one completes */
disc_cnt = lp->queuedccbs - busy_cnt;
}
switch(s_status) {
default: /* Just for safety, should never happen */
case S_QUEUE_FULL:
/*
** Decrease number of tags to the number of
** disconnected commands.
*/
if (!lp)
goto out;
if (bootverbose >= 1) {
PRINT_ADDR(cmd, "QUEUE FULL! %d busy, %d disconnected "
"CCBs\n", busy_cnt, disc_cnt);
}
if (disc_cnt < lp->numtags) {
lp->numtags = disc_cnt > 2 ? disc_cnt : 2;
lp->num_good = 0;
ncr_setup_tags (np, cmd->device);
}
/*
** Requeue the command to the start queue.
** If any disconnected commands,
** Clear SIGP.
** Jump to reselect.
*/
cp->phys.header.savep = cp->startp;
cp->host_status = HS_BUSY;
cp->scsi_status = S_ILLEGAL;
ncr_put_start_queue(np, cp);
if (disc_cnt)
INB (nc_ctest2); /* Clear SIGP */
OUTL_DSP (NCB_SCRIPT_PHYS (np, reselect));
return;
case S_TERMINATED:
case S_CHECK_COND:
/*
** If we were requesting sense, give up.
*/
if (cp->auto_sense)
goto out;
/*
** Device returned CHECK CONDITION status.
** Prepare all needed data strutures for getting
** sense data.
**
** identify message
*/
cp->scsi_smsg2[0] = IDENTIFY(0, cmd->device->lun);
cp->phys.smsg.addr = cpu_to_scr(CCB_PHYS (cp, scsi_smsg2));
cp->phys.smsg.size = cpu_to_scr(1);
/*
** sense command
*/
cp->phys.cmd.addr = cpu_to_scr(CCB_PHYS (cp, sensecmd));
cp->phys.cmd.size = cpu_to_scr(6);
/*
** patch requested size into sense command
*/
cp->sensecmd[0] = 0x03;
cp->sensecmd[1] = cmd->device->lun << 5;
cp->sensecmd[4] = sizeof(cp->sense_buf);
/*
** sense data
*/
memset(cp->sense_buf, 0, sizeof(cp->sense_buf));
cp->phys.sense.addr = cpu_to_scr(CCB_PHYS(cp,sense_buf[0]));
cp->phys.sense.size = cpu_to_scr(sizeof(cp->sense_buf));
/*
** requeue the command.
*/
startp = cpu_to_scr(NCB_SCRIPTH_PHYS (np, sdata_in));
cp->phys.header.savep = startp;
cp->phys.header.goalp = startp + 24;
cp->phys.header.lastp = startp;
cp->phys.header.wgoalp = startp + 24;
cp->phys.header.wlastp = startp;
cp->host_status = HS_BUSY;
cp->scsi_status = S_ILLEGAL;
cp->auto_sense = s_status;
cp->start.schedule.l_paddr =
cpu_to_scr(NCB_SCRIPT_PHYS (np, select));
/*
** Select without ATN for quirky devices.
*/
if (cmd->device->select_no_atn)
cp->start.schedule.l_paddr =
cpu_to_scr(NCB_SCRIPTH_PHYS (np, select_no_atn));
ncr_put_start_queue(np, cp);
OUTL_DSP (NCB_SCRIPT_PHYS (np, start));
return;
}
out:
OUTONB_STD ();
return;
}
/*==========================================================
**
**
** ncr chip exception handler for programmed interrupts.
**
**
**==========================================================
*/
void ncr_int_sir (struct ncb *np)
{
u_char scntl3;
u_char chg, ofs, per, fak, wide;
u_char num = INB (nc_dsps);
struct ccb *cp=NULL;
u_long dsa = INL (nc_dsa);
u_char target = INB (nc_sdid) & 0x0f;
struct tcb *tp = &np->target[target];
struct scsi_target *starget = tp->starget;
if (DEBUG_FLAGS & DEBUG_TINY) printk ("I#%d", num);
switch (num) {
case SIR_INTFLY:
/*
** This is used for HP Zalon/53c720 where INTFLY
** operation is currently broken.
*/
ncr_wakeup_done(np);
#ifdef SCSI_NCR_CCB_DONE_SUPPORT
OUTL(nc_dsp, NCB_SCRIPT_PHYS (np, done_end) + 8);
#else
OUTL(nc_dsp, NCB_SCRIPT_PHYS (np, start));
#endif
return;
case SIR_RESEL_NO_MSG_IN:
case SIR_RESEL_NO_IDENTIFY:
/*
** If devices reselecting without sending an IDENTIFY
** message still exist, this should help.
** We just assume lun=0, 1 CCB, no tag.
*/
if (tp->lp[0]) {
OUTL_DSP (scr_to_cpu(tp->lp[0]->jump_ccb[0]));
return;
}
case SIR_RESEL_BAD_TARGET: /* Will send a TARGET RESET message */
case SIR_RESEL_BAD_LUN: /* Will send a TARGET RESET message */
case SIR_RESEL_BAD_I_T_L_Q: /* Will send an ABORT TAG message */
case SIR_RESEL_BAD_I_T_L: /* Will send an ABORT message */
printk ("%s:%d: SIR %d, "
"incorrect nexus identification on reselection\n",
ncr_name (np), target, num);
goto out;
case SIR_DONE_OVERFLOW:
printk ("%s:%d: SIR %d, "
"CCB done queue overflow\n",
ncr_name (np), target, num);
goto out;
case SIR_BAD_STATUS:
cp = np->header.cp;
if (!cp || CCB_PHYS (cp, phys) != dsa)
goto out;
ncr_sir_to_redo(np, num, cp);
return;
default:
/*
** lookup the ccb
*/
cp = np->ccb;
while (cp && (CCB_PHYS (cp, phys) != dsa))
cp = cp->link_ccb;
BUG_ON(!cp);
BUG_ON(cp != np->header.cp);
if (!cp || cp != np->header.cp)
goto out;
}
switch (num) {
/*-----------------------------------------------------------------------------
**
** Was Sie schon immer ueber transfermode negotiation wissen wollten ...
** ("Everything you've always wanted to know about transfer mode
** negotiation")
**
** We try to negotiate sync and wide transfer only after
** a successful inquire command. We look at byte 7 of the
** inquire data to determine the capabilities of the target.
**
** When we try to negotiate, we append the negotiation message
** to the identify and (maybe) simple tag message.
** The host status field is set to HS_NEGOTIATE to mark this
** situation.
**
** If the target doesn't answer this message immediately
** (as required by the standard), the SIR_NEGO_FAIL interrupt
** will be raised eventually.
** The handler removes the HS_NEGOTIATE status, and sets the
** negotiated value to the default (async / nowide).
**
** If we receive a matching answer immediately, we check it
** for validity, and set the values.
**
** If we receive a Reject message immediately, we assume the
** negotiation has failed, and fall back to standard values.
**
** If we receive a negotiation message while not in HS_NEGOTIATE
** state, it's a target initiated negotiation. We prepare a
** (hopefully) valid answer, set our parameters, and send back
** this answer to the target.
**
** If the target doesn't fetch the answer (no message out phase),
** we assume the negotiation has failed, and fall back to default
** settings.
**
** When we set the values, we adjust them in all ccbs belonging
** to this target, in the controller's register, and in the "phys"
** field of the controller's struct ncb.
**
** Possible cases: hs sir msg_in value send goto
** We try to negotiate:
** -> target doesn't msgin NEG FAIL noop defa. - dispatch
** -> target rejected our msg NEG FAIL reject defa. - dispatch
** -> target answered (ok) NEG SYNC sdtr set - clrack
** -> target answered (!ok) NEG SYNC sdtr defa. REJ--->msg_bad
** -> target answered (ok) NEG WIDE wdtr set - clrack
** -> target answered (!ok) NEG WIDE wdtr defa. REJ--->msg_bad
** -> any other msgin NEG FAIL noop defa. - dispatch
**
** Target tries to negotiate:
** -> incoming message --- SYNC sdtr set SDTR -
** -> incoming message --- WIDE wdtr set WDTR -
** We sent our answer:
** -> target doesn't msgout --- PROTO ? defa. - dispatch
**
**-----------------------------------------------------------------------------
*/
case SIR_NEGO_FAILED:
/*-------------------------------------------------------
**
** Negotiation failed.
** Target doesn't send an answer message,
** or target rejected our message.
**
** Remove negotiation request.
**
**-------------------------------------------------------
*/
OUTB (HS_PRT, HS_BUSY);
/* fall through */
case SIR_NEGO_PROTO:
/*-------------------------------------------------------
**
** Negotiation failed.
** Target doesn't fetch the answer message.
**
**-------------------------------------------------------
*/
if (DEBUG_FLAGS & DEBUG_NEGO) {
PRINT_ADDR(cp->cmd, "negotiation failed sir=%x "
"status=%x.\n", num, cp->nego_status);
}
/*
** any error in negotiation:
** fall back to default mode.
*/
switch (cp->nego_status) {
case NS_SYNC:
spi_period(starget) = 0;
spi_offset(starget) = 0;
ncr_setsync (np, cp, 0, 0xe0);
break;
case NS_WIDE:
spi_width(starget) = 0;
ncr_setwide (np, cp, 0, 0);
break;
}
np->msgin [0] = NOP;
np->msgout[0] = NOP;
cp->nego_status = 0;
break;
case SIR_NEGO_SYNC:
if (DEBUG_FLAGS & DEBUG_NEGO) {
ncr_print_msg(cp, "sync msgin", np->msgin);
}
chg = 0;
per = np->msgin[3];
ofs = np->msgin[4];
if (ofs==0) per=255;
/*
** if target sends SDTR message,
** it CAN transfer synch.
*/
if (ofs && starget)
spi_support_sync(starget) = 1;
/*
** check values against driver limits.
*/
if (per < np->minsync)
{chg = 1; per = np->minsync;}
if (per < tp->minsync)
{chg = 1; per = tp->minsync;}
if (ofs > tp->maxoffs)
{chg = 1; ofs = tp->maxoffs;}
/*
** Check against controller limits.
*/
fak = 7;
scntl3 = 0;
if (ofs != 0) {
ncr_getsync(np, per, &fak, &scntl3);
if (fak > 7) {
chg = 1;
ofs = 0;
}
}
if (ofs == 0) {
fak = 7;
per = 0;
scntl3 = 0;
tp->minsync = 0;
}
if (DEBUG_FLAGS & DEBUG_NEGO) {
PRINT_ADDR(cp->cmd, "sync: per=%d scntl3=0x%x ofs=%d "
"fak=%d chg=%d.\n", per, scntl3, ofs, fak, chg);
}
if (INB (HS_PRT) == HS_NEGOTIATE) {
OUTB (HS_PRT, HS_BUSY);
switch (cp->nego_status) {
case NS_SYNC:
/* This was an answer message */
if (chg) {
/* Answer wasn't acceptable. */
spi_period(starget) = 0;
spi_offset(starget) = 0;
ncr_setsync(np, cp, 0, 0xe0);
OUTL_DSP(NCB_SCRIPT_PHYS (np, msg_bad));
} else {
/* Answer is ok. */
spi_period(starget) = per;
spi_offset(starget) = ofs;
ncr_setsync(np, cp, scntl3, (fak<<5)|ofs);
OUTL_DSP(NCB_SCRIPT_PHYS (np, clrack));
}
return;
case NS_WIDE:
spi_width(starget) = 0;
ncr_setwide(np, cp, 0, 0);
break;
}
}
/*
** It was a request. Set value and
** prepare an answer message
*/
spi_period(starget) = per;
spi_offset(starget) = ofs;
ncr_setsync(np, cp, scntl3, (fak<<5)|ofs);
spi_populate_sync_msg(np->msgout, per, ofs);
cp->nego_status = NS_SYNC;
if (DEBUG_FLAGS & DEBUG_NEGO) {
ncr_print_msg(cp, "sync msgout", np->msgout);
}
if (!ofs) {
OUTL_DSP (NCB_SCRIPT_PHYS (np, msg_bad));
return;
}
np->msgin [0] = NOP;
break;
case SIR_NEGO_WIDE:
/*
** Wide request message received.
*/
if (DEBUG_FLAGS & DEBUG_NEGO) {
ncr_print_msg(cp, "wide msgin", np->msgin);
}
/*
** get requested values.
*/
chg = 0;
wide = np->msgin[3];
/*
** if target sends WDTR message,
** it CAN transfer wide.
*/
if (wide && starget)
spi_support_wide(starget) = 1;
/*
** check values against driver limits.
*/
if (wide > tp->usrwide)
{chg = 1; wide = tp->usrwide;}
if (DEBUG_FLAGS & DEBUG_NEGO) {
PRINT_ADDR(cp->cmd, "wide: wide=%d chg=%d.\n", wide,
chg);
}
if (INB (HS_PRT) == HS_NEGOTIATE) {
OUTB (HS_PRT, HS_BUSY);
switch (cp->nego_status) {
case NS_WIDE:
/*
** This was an answer message
*/
if (chg) {
/* Answer wasn't acceptable. */
spi_width(starget) = 0;
ncr_setwide(np, cp, 0, 1);
OUTL_DSP (NCB_SCRIPT_PHYS (np, msg_bad));
} else {
/* Answer is ok. */
spi_width(starget) = wide;
ncr_setwide(np, cp, wide, 1);
OUTL_DSP (NCB_SCRIPT_PHYS (np, clrack));
}
return;
case NS_SYNC:
spi_period(starget) = 0;
spi_offset(starget) = 0;
ncr_setsync(np, cp, 0, 0xe0);
break;
}
}
/*
** It was a request, set value and
** prepare an answer message
*/
spi_width(starget) = wide;
ncr_setwide(np, cp, wide, 1);
spi_populate_width_msg(np->msgout, wide);
np->msgin [0] = NOP;
cp->nego_status = NS_WIDE;
if (DEBUG_FLAGS & DEBUG_NEGO) {
ncr_print_msg(cp, "wide msgout", np->msgin);
}
break;
/*--------------------------------------------------------------------
**
** Processing of special messages
**
**--------------------------------------------------------------------
*/
case SIR_REJECT_RECEIVED:
/*-----------------------------------------------
**
** We received a MESSAGE_REJECT.
**
**-----------------------------------------------
*/
PRINT_ADDR(cp->cmd, "MESSAGE_REJECT received (%x:%x).\n",
(unsigned)scr_to_cpu(np->lastmsg), np->msgout[0]);
break;
case SIR_REJECT_SENT:
/*-----------------------------------------------
**
** We received an unknown message
**
**-----------------------------------------------
*/
ncr_print_msg(cp, "MESSAGE_REJECT sent for", np->msgin);
break;
/*--------------------------------------------------------------------
**
** Processing of special messages
**
**--------------------------------------------------------------------
*/
case SIR_IGN_RESIDUE:
/*-----------------------------------------------
**
** We received an IGNORE RESIDUE message,
** which couldn't be handled by the script.
**
**-----------------------------------------------
*/
PRINT_ADDR(cp->cmd, "IGNORE_WIDE_RESIDUE received, but not yet "
"implemented.\n");
break;
#if 0
case SIR_MISSING_SAVE:
/*-----------------------------------------------
**
** We received an DISCONNECT message,
** but the datapointer wasn't saved before.
**
**-----------------------------------------------
*/
PRINT_ADDR(cp->cmd, "DISCONNECT received, but datapointer "
"not saved: data=%x save=%x goal=%x.\n",
(unsigned) INL (nc_temp),
(unsigned) scr_to_cpu(np->header.savep),
(unsigned) scr_to_cpu(np->header.goalp));
break;
#endif
}
out:
OUTONB_STD ();
}
/*==========================================================
**
**
** Acquire a control block
**
**
**==========================================================
*/
static struct ccb *ncr_get_ccb(struct ncb *np, struct scsi_cmnd *cmd)
{
u_char tn = cmd->device->id;
u_char ln = cmd->device->lun;
struct tcb *tp = &np->target[tn];
struct lcb *lp = tp->lp[ln];
u_char tag = NO_TAG;
struct ccb *cp = NULL;
/*
** Lun structure available ?
*/
if (lp) {
struct list_head *qp;
/*
** Keep from using more tags than we can handle.
*/
if (lp->usetags && lp->busyccbs >= lp->maxnxs)
return NULL;
/*
** Allocate a new CCB if needed.
*/
if (list_empty(&lp->free_ccbq))
ncr_alloc_ccb(np, tn, ln);
/*
** Look for free CCB
*/
qp = ncr_list_pop(&lp->free_ccbq);
if (qp) {
cp = list_entry(qp, struct ccb, link_ccbq);
if (cp->magic) {
PRINT_ADDR(cmd, "ccb free list corrupted "
"(@%p)\n", cp);
cp = NULL;
} else {
list_add_tail(qp, &lp->wait_ccbq);
++lp->busyccbs;
}
}
/*
** If a CCB is available,
** Get a tag for this nexus if required.
*/
if (cp) {
if (lp->usetags)
tag = lp->cb_tags[lp->ia_tag];
}
else if (lp->actccbs > 0)
return NULL;
}
/*
** if nothing available, take the default.
*/
if (!cp)
cp = np->ccb;
/*
** Wait until available.
*/
#if 0
while (cp->magic) {
if (flags & SCSI_NOSLEEP) break;
if (tsleep ((caddr_t)cp, PRIBIO|PCATCH, "ncr", 0))
break;
}
#endif
if (cp->magic)
return NULL;
cp->magic = 1;
/*
** Move to next available tag if tag used.
*/
if (lp) {
if (tag != NO_TAG) {
++lp->ia_tag;
if (lp->ia_tag == MAX_TAGS)
lp->ia_tag = 0;
lp->tags_umap |= (((tagmap_t) 1) << tag);
}
}
/*
** Remember all informations needed to free this CCB.
*/
cp->tag = tag;
cp->target = tn;
cp->lun = ln;
if (DEBUG_FLAGS & DEBUG_TAGS) {
PRINT_ADDR(cmd, "ccb @%p using tag %d.\n", cp, tag);
}
return cp;
}
/*==========================================================
**
**
** Release one control block
**
**
**==========================================================
*/
static void ncr_free_ccb (struct ncb *np, struct ccb *cp)
{
struct tcb *tp = &np->target[cp->target];
struct lcb *lp = tp->lp[cp->lun];
if (DEBUG_FLAGS & DEBUG_TAGS) {
PRINT_ADDR(cp->cmd, "ccb @%p freeing tag %d.\n", cp, cp->tag);
}
/*
** If lun control block available,
** decrement active commands and increment credit,
** free the tag if any and remove the JUMP for reselect.
*/
if (lp) {
if (cp->tag != NO_TAG) {
lp->cb_tags[lp->if_tag++] = cp->tag;
if (lp->if_tag == MAX_TAGS)
lp->if_tag = 0;
lp->tags_umap &= ~(((tagmap_t) 1) << cp->tag);
lp->tags_smap &= lp->tags_umap;
lp->jump_ccb[cp->tag] =
cpu_to_scr(NCB_SCRIPTH_PHYS(np, bad_i_t_l_q));
} else {
lp->jump_ccb[0] =
cpu_to_scr(NCB_SCRIPTH_PHYS(np, bad_i_t_l));
}
}
/*
** Make this CCB available.
*/
if (lp) {
if (cp != np->ccb)
list_move(&cp->link_ccbq, &lp->free_ccbq);
--lp->busyccbs;
if (cp->queued) {
--lp->queuedccbs;
}
}
cp -> host_status = HS_IDLE;
cp -> magic = 0;
if (cp->queued) {
--np->queuedccbs;
cp->queued = 0;
}
#if 0
if (cp == np->ccb)
wakeup ((caddr_t) cp);
#endif
}
#define ncr_reg_bus_addr(r) (np->paddr + offsetof (struct ncr_reg, r))
/*------------------------------------------------------------------------
** Initialize the fixed part of a CCB structure.
**------------------------------------------------------------------------
**------------------------------------------------------------------------
*/
static void ncr_init_ccb(struct ncb *np, struct ccb *cp)
{
ncrcmd copy_4 = np->features & FE_PFEN ? SCR_COPY(4) : SCR_COPY_F(4);
/*
** Remember virtual and bus address of this ccb.
*/
cp->p_ccb = vtobus(cp);
cp->phys.header.cp = cp;
/*
** This allows list_del to work for the default ccb.
*/
INIT_LIST_HEAD(&cp->link_ccbq);
/*
** Initialyze the start and restart launch script.
**
** COPY(4) @(...p_phys), @(dsa)
** JUMP @(sched_point)
*/
cp->start.setup_dsa[0] = cpu_to_scr(copy_4);
cp->start.setup_dsa[1] = cpu_to_scr(CCB_PHYS(cp, start.p_phys));
cp->start.setup_dsa[2] = cpu_to_scr(ncr_reg_bus_addr(nc_dsa));
cp->start.schedule.l_cmd = cpu_to_scr(SCR_JUMP);
cp->start.p_phys = cpu_to_scr(CCB_PHYS(cp, phys));
memcpy(&cp->restart, &cp->start, sizeof(cp->restart));
cp->start.schedule.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, idle));
cp->restart.schedule.l_paddr = cpu_to_scr(NCB_SCRIPTH_PHYS (np, abort));
}
/*------------------------------------------------------------------------
** Allocate a CCB and initialize its fixed part.
**------------------------------------------------------------------------
**------------------------------------------------------------------------
*/
static void ncr_alloc_ccb(struct ncb *np, u_char tn, u_char ln)
{
struct tcb *tp = &np->target[tn];
struct lcb *lp = tp->lp[ln];
struct ccb *cp = NULL;
/*
** Allocate memory for this CCB.
*/
cp = m_calloc_dma(sizeof(struct ccb), "CCB");
if (!cp)
return;
/*
** Count it and initialyze it.
*/
lp->actccbs++;
np->actccbs++;
memset(cp, 0, sizeof (*cp));
ncr_init_ccb(np, cp);
/*
** Chain into wakeup list and free ccb queue and take it
** into account for tagged commands.
*/
cp->link_ccb = np->ccb->link_ccb;
np->ccb->link_ccb = cp;
list_add(&cp->link_ccbq, &lp->free_ccbq);
}
/*==========================================================
**
**
** Allocation of resources for Targets/Luns/Tags.
**
**
**==========================================================
*/
/*------------------------------------------------------------------------
** Target control block initialisation.
**------------------------------------------------------------------------
** This data structure is fully initialized after a SCSI command
** has been successfully completed for this target.
** It contains a SCRIPT that is called on target reselection.
**------------------------------------------------------------------------
*/
static void ncr_init_tcb (struct ncb *np, u_char tn)
{
struct tcb *tp = &np->target[tn];
ncrcmd copy_1 = np->features & FE_PFEN ? SCR_COPY(1) : SCR_COPY_F(1);
int th = tn & 3;
int i;
/*
** Jump to next tcb if SFBR does not match this target.
** JUMP IF (SFBR != #target#), @(next tcb)
*/
tp->jump_tcb.l_cmd =
cpu_to_scr((SCR_JUMP ^ IFFALSE (DATA (0x80 + tn))));
tp->jump_tcb.l_paddr = np->jump_tcb[th].l_paddr;
/*
** Load the synchronous transfer register.
** COPY @(tp->sval), @(sxfer)
*/
tp->getscr[0] = cpu_to_scr(copy_1);
tp->getscr[1] = cpu_to_scr(vtobus (&tp->sval));
#ifdef SCSI_NCR_BIG_ENDIAN
tp->getscr[2] = cpu_to_scr(ncr_reg_bus_addr(nc_sxfer) ^ 3);
#else
tp->getscr[2] = cpu_to_scr(ncr_reg_bus_addr(nc_sxfer));
#endif
/*
** Load the timing register.
** COPY @(tp->wval), @(scntl3)
*/
tp->getscr[3] = cpu_to_scr(copy_1);
tp->getscr[4] = cpu_to_scr(vtobus (&tp->wval));
#ifdef SCSI_NCR_BIG_ENDIAN
tp->getscr[5] = cpu_to_scr(ncr_reg_bus_addr(nc_scntl3) ^ 3);
#else
tp->getscr[5] = cpu_to_scr(ncr_reg_bus_addr(nc_scntl3));
#endif
/*
** Get the IDENTIFY message and the lun.
** CALL @script(resel_lun)
*/
tp->call_lun.l_cmd = cpu_to_scr(SCR_CALL);
tp->call_lun.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_lun));
/*
** Look for the lun control block of this nexus.
** For i = 0 to 3
** JUMP ^ IFTRUE (MASK (i, 3)), @(next_lcb)
*/
for (i = 0 ; i < 4 ; i++) {
tp->jump_lcb[i].l_cmd =
cpu_to_scr((SCR_JUMP ^ IFTRUE (MASK (i, 3))));
tp->jump_lcb[i].l_paddr =
cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_identify));
}
/*
** Link this target control block to the JUMP chain.
*/
np->jump_tcb[th].l_paddr = cpu_to_scr(vtobus (&tp->jump_tcb));
/*
** These assert's should be moved at driver initialisations.
*/
#ifdef SCSI_NCR_BIG_ENDIAN
BUG_ON(((offsetof(struct ncr_reg, nc_sxfer) ^
offsetof(struct tcb , sval )) &3) != 3);
BUG_ON(((offsetof(struct ncr_reg, nc_scntl3) ^
offsetof(struct tcb , wval )) &3) != 3);
#else
BUG_ON(((offsetof(struct ncr_reg, nc_sxfer) ^
offsetof(struct tcb , sval )) &3) != 0);
BUG_ON(((offsetof(struct ncr_reg, nc_scntl3) ^
offsetof(struct tcb , wval )) &3) != 0);
#endif
}
/*------------------------------------------------------------------------
** Lun control block allocation and initialization.
**------------------------------------------------------------------------
** This data structure is allocated and initialized after a SCSI
** command has been successfully completed for this target/lun.
**------------------------------------------------------------------------
*/
static struct lcb *ncr_alloc_lcb (struct ncb *np, u_char tn, u_char ln)
{
struct tcb *tp = &np->target[tn];
struct lcb *lp = tp->lp[ln];
ncrcmd copy_4 = np->features & FE_PFEN ? SCR_COPY(4) : SCR_COPY_F(4);
int lh = ln & 3;
/*
** Already done, return.
*/
if (lp)
return lp;
/*
** Allocate the lcb.
*/
lp = m_calloc_dma(sizeof(struct lcb), "LCB");
if (!lp)
goto fail;
memset(lp, 0, sizeof(*lp));
tp->lp[ln] = lp;
/*
** Initialize the target control block if not yet.
*/
if (!tp->jump_tcb.l_cmd)
ncr_init_tcb(np, tn);
/*
** Initialize the CCB queue headers.
*/
INIT_LIST_HEAD(&lp->free_ccbq);
INIT_LIST_HEAD(&lp->busy_ccbq);
INIT_LIST_HEAD(&lp->wait_ccbq);
INIT_LIST_HEAD(&lp->skip_ccbq);
/*
** Set max CCBs to 1 and use the default 1 entry
** jump table by default.
*/
lp->maxnxs = 1;
lp->jump_ccb = &lp->jump_ccb_0;
lp->p_jump_ccb = cpu_to_scr(vtobus(lp->jump_ccb));
/*
** Initilialyze the reselect script:
**
** Jump to next lcb if SFBR does not match this lun.
** Load TEMP with the CCB direct jump table bus address.
** Get the SIMPLE TAG message and the tag.
**
** JUMP IF (SFBR != #lun#), @(next lcb)
** COPY @(lp->p_jump_ccb), @(temp)
** JUMP @script(resel_notag)
*/
lp->jump_lcb.l_cmd =
cpu_to_scr((SCR_JUMP ^ IFFALSE (MASK (0x80+ln, 0xff))));
lp->jump_lcb.l_paddr = tp->jump_lcb[lh].l_paddr;
lp->load_jump_ccb[0] = cpu_to_scr(copy_4);
lp->load_jump_ccb[1] = cpu_to_scr(vtobus (&lp->p_jump_ccb));
lp->load_jump_ccb[2] = cpu_to_scr(ncr_reg_bus_addr(nc_temp));
lp->jump_tag.l_cmd = cpu_to_scr(SCR_JUMP);
lp->jump_tag.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_notag));
/*
** Link this lun control block to the JUMP chain.
*/
tp->jump_lcb[lh].l_paddr = cpu_to_scr(vtobus (&lp->jump_lcb));
/*
** Initialize command queuing control.
*/
lp->busyccbs = 1;
lp->queuedccbs = 1;
lp->queuedepth = 1;
fail:
return lp;
}
/*------------------------------------------------------------------------
** Lun control block setup on INQUIRY data received.
**------------------------------------------------------------------------
** We only support WIDE, SYNC for targets and CMDQ for logical units.
** This setup is done on each INQUIRY since we are expecting user
** will play with CHANGE DEFINITION commands. :-)
**------------------------------------------------------------------------
*/
static struct lcb *ncr_setup_lcb (struct ncb *np, struct scsi_device *sdev)
{
unsigned char tn = sdev->id, ln = sdev->lun;
struct tcb *tp = &np->target[tn];
struct lcb *lp = tp->lp[ln];
/* If no lcb, try to allocate it. */
if (!lp && !(lp = ncr_alloc_lcb(np, tn, ln)))
goto fail;
/*
** If unit supports tagged commands, allocate the
** CCB JUMP table if not yet.
*/
if (sdev->tagged_supported && lp->jump_ccb == &lp->jump_ccb_0) {
int i;
lp->jump_ccb = m_calloc_dma(256, "JUMP_CCB");
if (!lp->jump_ccb) {
lp->jump_ccb = &lp->jump_ccb_0;
goto fail;
}
lp->p_jump_ccb = cpu_to_scr(vtobus(lp->jump_ccb));
for (i = 0 ; i < 64 ; i++)
lp->jump_ccb[i] =
cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_i_t_l_q));
for (i = 0 ; i < MAX_TAGS ; i++)
lp->cb_tags[i] = i;
lp->maxnxs = MAX_TAGS;
lp->tags_stime = jiffies + 3*HZ;
ncr_setup_tags (np, sdev);
}
fail:
return lp;
}
/*==========================================================
**
**
** Build Scatter Gather Block
**
**
**==========================================================
**
** The transfer area may be scattered among
** several non adjacent physical pages.
**
** We may use MAX_SCATTER blocks.
**
**----------------------------------------------------------
*/
/*
** We try to reduce the number of interrupts caused
** by unexpected phase changes due to disconnects.
** A typical harddisk may disconnect before ANY block.
** If we wanted to avoid unexpected phase changes at all
** we had to use a break point every 512 bytes.
** Of course the number of scatter/gather blocks is
** limited.
** Under Linux, the scatter/gatter blocks are provided by
** the generic driver. We just have to copy addresses and
** sizes to the data segment array.
*/
static int ncr_scatter(struct ncb *np, struct ccb *cp, struct scsi_cmnd *cmd)
{
int segment = 0;
int use_sg = scsi_sg_count(cmd);
cp->data_len = 0;
use_sg = map_scsi_sg_data(np, cmd);
if (use_sg > 0) {
struct scatterlist *sg;
struct scr_tblmove *data;
if (use_sg > MAX_SCATTER) {
unmap_scsi_data(np, cmd);
return -1;
}
data = &cp->phys.data[MAX_SCATTER - use_sg];
scsi_for_each_sg(cmd, sg, use_sg, segment) {
dma_addr_t baddr = sg_dma_address(sg);
unsigned int len = sg_dma_len(sg);
ncr_build_sge(np, &data[segment], baddr, len);
cp->data_len += len;
}
} else
segment = -2;
return segment;
}
/*==========================================================
**
**
** Test the bus snoop logic :-(
**
** Has to be called with interrupts disabled.
**
**
**==========================================================
*/
static int __init ncr_regtest (struct ncb* np)
{
register volatile u32 data;
/*
** ncr registers may NOT be cached.
** write 0xffffffff to a read only register area,
** and try to read it back.
*/
data = 0xffffffff;
OUTL_OFF(offsetof(struct ncr_reg, nc_dstat), data);
data = INL_OFF(offsetof(struct ncr_reg, nc_dstat));
#if 1
if (data == 0xffffffff) {
#else
if ((data & 0xe2f0fffd) != 0x02000080) {
#endif
printk ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
(unsigned) data);
return (0x10);
}
return (0);
}
static int __init ncr_snooptest (struct ncb* np)
{
u32 ncr_rd, ncr_wr, ncr_bk, host_rd, host_wr, pc;
int i, err=0;
if (np->reg) {
err |= ncr_regtest (np);
if (err)
return (err);
}
/* init */
pc = NCB_SCRIPTH_PHYS (np, snooptest);
host_wr = 1;
ncr_wr = 2;
/*
** Set memory and register.
*/
np->ncr_cache = cpu_to_scr(host_wr);
OUTL (nc_temp, ncr_wr);
/*
** Start script (exchange values)
*/
OUTL_DSP (pc);
/*
** Wait 'til done (with timeout)
*/
for (i=0; i<NCR_SNOOP_TIMEOUT; i++)
if (INB(nc_istat) & (INTF|SIP|DIP))
break;
/*
** Save termination position.
*/
pc = INL (nc_dsp);
/*
** Read memory and register.
*/
host_rd = scr_to_cpu(np->ncr_cache);
ncr_rd = INL (nc_scratcha);
ncr_bk = INL (nc_temp);
/*
** Reset ncr chip
*/
ncr_chip_reset(np, 100);
/*
** check for timeout
*/
if (i>=NCR_SNOOP_TIMEOUT) {
printk ("CACHE TEST FAILED: timeout.\n");
return (0x20);
}
/*
** Check termination position.
*/
if (pc != NCB_SCRIPTH_PHYS (np, snoopend)+8) {
printk ("CACHE TEST FAILED: script execution failed.\n");
printk ("start=%08lx, pc=%08lx, end=%08lx\n",
(u_long) NCB_SCRIPTH_PHYS (np, snooptest), (u_long) pc,
(u_long) NCB_SCRIPTH_PHYS (np, snoopend) +8);
return (0x40);
}
/*
** Show results.
*/
if (host_wr != ncr_rd) {
printk ("CACHE TEST FAILED: host wrote %d, ncr read %d.\n",
(int) host_wr, (int) ncr_rd);
err |= 1;
}
if (host_rd != ncr_wr) {
printk ("CACHE TEST FAILED: ncr wrote %d, host read %d.\n",
(int) ncr_wr, (int) host_rd);
err |= 2;
}
if (ncr_bk != ncr_wr) {
printk ("CACHE TEST FAILED: ncr wrote %d, read back %d.\n",
(int) ncr_wr, (int) ncr_bk);
err |= 4;
}
return (err);
}
/*==========================================================
**
** Determine the ncr's clock frequency.
** This is essential for the negotiation
** of the synchronous transfer rate.
**
**==========================================================
**
** Note: we have to return the correct value.
** THERE IS NO SAFE DEFAULT VALUE.
**
** Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
** 53C860 and 53C875 rev. 1 support fast20 transfers but
** do not have a clock doubler and so are provided with a
** 80 MHz clock. All other fast20 boards incorporate a doubler
** and so should be delivered with a 40 MHz clock.
** The future fast40 chips (895/895) use a 40 Mhz base clock
** and provide a clock quadrupler (160 Mhz). The code below
** tries to deal as cleverly as possible with all this stuff.
**
**----------------------------------------------------------
*/
/*
* Select NCR SCSI clock frequency
*/
static void ncr_selectclock(struct ncb *np, u_char scntl3)
{
if (np->multiplier < 2) {
OUTB(nc_scntl3, scntl3);
return;
}
if (bootverbose >= 2)
printk ("%s: enabling clock multiplier\n", ncr_name(np));
OUTB(nc_stest1, DBLEN); /* Enable clock multiplier */
if (np->multiplier > 2) { /* Poll bit 5 of stest4 for quadrupler */
int i = 20;
while (!(INB(nc_stest4) & LCKFRQ) && --i > 0)
udelay(20);
if (!i)
printk("%s: the chip cannot lock the frequency\n", ncr_name(np));
} else /* Wait 20 micro-seconds for doubler */
udelay(20);
OUTB(nc_stest3, HSC); /* Halt the scsi clock */
OUTB(nc_scntl3, scntl3);
OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */
OUTB(nc_stest3, 0x00); /* Restart scsi clock */
}
/*
* calculate NCR SCSI clock frequency (in KHz)
*/
static unsigned __init ncrgetfreq (struct ncb *np, int gen)
{
unsigned ms = 0;
char count = 0;
/*
* Measure GEN timer delay in order
* to calculate SCSI clock frequency
*
* This code will never execute too
* many loop iterations (if DELAY is
* reasonably correct). It could get
* too low a delay (too high a freq.)
* if the CPU is slow executing the
* loop for some reason (an NMI, for
* example). For this reason we will
* if multiple measurements are to be
* performed trust the higher delay
* (lower frequency returned).
*/
OUTB (nc_stest1, 0); /* make sure clock doubler is OFF */
OUTW (nc_sien , 0); /* mask all scsi interrupts */
(void) INW (nc_sist); /* clear pending scsi interrupt */
OUTB (nc_dien , 0); /* mask all dma interrupts */
(void) INW (nc_sist); /* another one, just to be sure :) */
OUTB (nc_scntl3, 4); /* set pre-scaler to divide by 3 */
OUTB (nc_stime1, 0); /* disable general purpose timer */
OUTB (nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */
while (!(INW(nc_sist) & GEN) && ms++ < 100000) {
for (count = 0; count < 10; count ++)
udelay(100); /* count ms */
}
OUTB (nc_stime1, 0); /* disable general purpose timer */
/*
* set prescaler to divide by whatever 0 means
* 0 ought to choose divide by 2, but appears
* to set divide by 3.5 mode in my 53c810 ...
*/
OUTB (nc_scntl3, 0);
if (bootverbose >= 2)
printk ("%s: Delay (GEN=%d): %u msec\n", ncr_name(np), gen, ms);
/*
* adjust for prescaler, and convert into KHz
*/
return ms ? ((1 << gen) * 4340) / ms : 0;
}
/*
* Get/probe NCR SCSI clock frequency
*/
static void __init ncr_getclock (struct ncb *np, int mult)
{
unsigned char scntl3 = INB(nc_scntl3);
unsigned char stest1 = INB(nc_stest1);
unsigned f1;
np->multiplier = 1;
f1 = 40000;
/*
** True with 875 or 895 with clock multiplier selected
*/
if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
if (bootverbose >= 2)
printk ("%s: clock multiplier found\n", ncr_name(np));
np->multiplier = mult;
}
/*
** If multiplier not found or scntl3 not 7,5,3,
** reset chip and get frequency from general purpose timer.
** Otherwise trust scntl3 BIOS setting.
*/
if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
unsigned f2;
ncr_chip_reset(np, 5);
(void) ncrgetfreq (np, 11); /* throw away first result */
f1 = ncrgetfreq (np, 11);
f2 = ncrgetfreq (np, 11);
if(bootverbose)
printk ("%s: NCR clock is %uKHz, %uKHz\n", ncr_name(np), f1, f2);
if (f1 > f2) f1 = f2; /* trust lower result */
if (f1 < 45000) f1 = 40000;
else if (f1 < 55000) f1 = 50000;
else f1 = 80000;
if (f1 < 80000 && mult > 1) {
if (bootverbose >= 2)
printk ("%s: clock multiplier assumed\n", ncr_name(np));
np->multiplier = mult;
}
} else {
if ((scntl3 & 7) == 3) f1 = 40000;
else if ((scntl3 & 7) == 5) f1 = 80000;
else f1 = 160000;
f1 /= np->multiplier;
}
/*
** Compute controller synchronous parameters.
*/
f1 *= np->multiplier;
np->clock_khz = f1;
}
/*===================== LINUX ENTRY POINTS SECTION ==========================*/
static int ncr53c8xx_slave_alloc(struct scsi_device *device)
{
struct Scsi_Host *host = device->host;
struct ncb *np = ((struct host_data *) host->hostdata)->ncb;
struct tcb *tp = &np->target[device->id];
tp->starget = device->sdev_target;
return 0;
}
static int ncr53c8xx_slave_configure(struct scsi_device *device)
{
struct Scsi_Host *host = device->host;
struct ncb *np = ((struct host_data *) host->hostdata)->ncb;
struct tcb *tp = &np->target[device->id];
struct lcb *lp = tp->lp[device->lun];
int numtags, depth_to_use;
ncr_setup_lcb(np, device);
/*
** Select queue depth from driver setup.
** Donnot use more than configured by user.
** Use at least 2.
** Donnot use more than our maximum.
*/
numtags = device_queue_depth(np->unit, device->id, device->lun);
if (numtags > tp->usrtags)
numtags = tp->usrtags;
if (!device->tagged_supported)
numtags = 1;
depth_to_use = numtags;
if (depth_to_use < 2)
depth_to_use = 2;
if (depth_to_use > MAX_TAGS)
depth_to_use = MAX_TAGS;
scsi_adjust_queue_depth(device,
(device->tagged_supported ?
MSG_SIMPLE_TAG : 0),
depth_to_use);
/*
** Since the queue depth is not tunable under Linux,
** we need to know this value in order not to
** announce stupid things to user.
**
** XXX(hch): As of Linux 2.6 it certainly _is_ tunable..
** In fact we just tuned it, or did I miss
** something important? :)
*/
if (lp) {
lp->numtags = lp->maxtags = numtags;
lp->scdev_depth = depth_to_use;
}
ncr_setup_tags (np, device);
#ifdef DEBUG_NCR53C8XX
printk("ncr53c8xx_select_queue_depth: host=%d, id=%d, lun=%d, depth=%d\n",
np->unit, device->id, device->lun, depth_to_use);
#endif
if (spi_support_sync(device->sdev_target) &&
!spi_initial_dv(device->sdev_target))
spi_dv_device(device);
return 0;
}
static int ncr53c8xx_queue_command (struct scsi_cmnd *cmd, void (* done)(struct scsi_cmnd *))
{
struct ncb *np = ((struct host_data *) cmd->device->host->hostdata)->ncb;
unsigned long flags;
int sts;
#ifdef DEBUG_NCR53C8XX
printk("ncr53c8xx_queue_command\n");
#endif
cmd->scsi_done = done;
cmd->host_scribble = NULL;
cmd->__data_mapped = 0;
cmd->__data_mapping = 0;
spin_lock_irqsave(&np->smp_lock, flags);
if ((sts = ncr_queue_command(np, cmd)) != DID_OK) {
cmd->result = ScsiResult(sts, 0);
#ifdef DEBUG_NCR53C8XX
printk("ncr53c8xx : command not queued - result=%d\n", sts);
#endif
}
#ifdef DEBUG_NCR53C8XX
else
printk("ncr53c8xx : command successfully queued\n");
#endif
spin_unlock_irqrestore(&np->smp_lock, flags);
if (sts != DID_OK) {
unmap_scsi_data(np, cmd);
done(cmd);
sts = 0;
}
return sts;
}
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 07:55:46 -06:00
irqreturn_t ncr53c8xx_intr(int irq, void *dev_id)
{
unsigned long flags;
struct Scsi_Host *shost = (struct Scsi_Host *)dev_id;
struct host_data *host_data = (struct host_data *)shost->hostdata;
struct ncb *np = host_data->ncb;
struct scsi_cmnd *done_list;
#ifdef DEBUG_NCR53C8XX
printk("ncr53c8xx : interrupt received\n");
#endif
if (DEBUG_FLAGS & DEBUG_TINY) printk ("[");
spin_lock_irqsave(&np->smp_lock, flags);
ncr_exception(np);
done_list = np->done_list;
np->done_list = NULL;
spin_unlock_irqrestore(&np->smp_lock, flags);
if (DEBUG_FLAGS & DEBUG_TINY) printk ("]\n");
if (done_list)
ncr_flush_done_cmds(done_list);
return IRQ_HANDLED;
}
static void ncr53c8xx_timeout(unsigned long npref)
{
struct ncb *np = (struct ncb *) npref;
unsigned long flags;
struct scsi_cmnd *done_list;
spin_lock_irqsave(&np->smp_lock, flags);
ncr_timeout(np);
done_list = np->done_list;
np->done_list = NULL;
spin_unlock_irqrestore(&np->smp_lock, flags);
if (done_list)
ncr_flush_done_cmds(done_list);
}
static int ncr53c8xx_bus_reset(struct scsi_cmnd *cmd)
{
struct ncb *np = ((struct host_data *) cmd->device->host->hostdata)->ncb;
int sts;
unsigned long flags;
struct scsi_cmnd *done_list;
/*
* If the mid-level driver told us reset is synchronous, it seems
* that we must call the done() callback for the involved command,
* even if this command was not queued to the low-level driver,
* before returning SUCCESS.
*/
spin_lock_irqsave(&np->smp_lock, flags);
sts = ncr_reset_bus(np, cmd, 1);
done_list = np->done_list;
np->done_list = NULL;
spin_unlock_irqrestore(&np->smp_lock, flags);
ncr_flush_done_cmds(done_list);
return sts;
}
#if 0 /* unused and broken */
static int ncr53c8xx_abort(struct scsi_cmnd *cmd)
{
struct ncb *np = ((struct host_data *) cmd->device->host->hostdata)->ncb;
int sts;
unsigned long flags;
struct scsi_cmnd *done_list;
printk("ncr53c8xx_abort: command pid %lu\n", cmd->serial_number);
NCR_LOCK_NCB(np, flags);
sts = ncr_abort_command(np, cmd);
out:
done_list = np->done_list;
np->done_list = NULL;
NCR_UNLOCK_NCB(np, flags);
ncr_flush_done_cmds(done_list);
return sts;
}
#endif
/*
** Scsi command waiting list management.
**
** It may happen that we cannot insert a scsi command into the start queue,
** in the following circumstances.
** Too few preallocated ccb(s),
** maxtags < cmd_per_lun of the Linux host control block,
** etc...
** Such scsi commands are inserted into a waiting list.
** When a scsi command complete, we try to requeue the commands of the
** waiting list.
*/
#define next_wcmd host_scribble
static void insert_into_waiting_list(struct ncb *np, struct scsi_cmnd *cmd)
{
struct scsi_cmnd *wcmd;
#ifdef DEBUG_WAITING_LIST
printk("%s: cmd %lx inserted into waiting list\n", ncr_name(np), (u_long) cmd);
#endif
cmd->next_wcmd = NULL;
if (!(wcmd = np->waiting_list)) np->waiting_list = cmd;
else {
while ((wcmd->next_wcmd) != 0)
wcmd = (struct scsi_cmnd *) wcmd->next_wcmd;
wcmd->next_wcmd = (char *) cmd;
}
}
static struct scsi_cmnd *retrieve_from_waiting_list(int to_remove, struct ncb *np, struct scsi_cmnd *cmd)
{
struct scsi_cmnd **pcmd = &np->waiting_list;
while (*pcmd) {
if (cmd == *pcmd) {
if (to_remove) {
*pcmd = (struct scsi_cmnd *) cmd->next_wcmd;
cmd->next_wcmd = NULL;
}
#ifdef DEBUG_WAITING_LIST
printk("%s: cmd %lx retrieved from waiting list\n", ncr_name(np), (u_long) cmd);
#endif
return cmd;
}
pcmd = (struct scsi_cmnd **) &(*pcmd)->next_wcmd;
}
return NULL;
}
static void process_waiting_list(struct ncb *np, int sts)
{
struct scsi_cmnd *waiting_list, *wcmd;
waiting_list = np->waiting_list;
np->waiting_list = NULL;
#ifdef DEBUG_WAITING_LIST
if (waiting_list) printk("%s: waiting_list=%lx processing sts=%d\n", ncr_name(np), (u_long) waiting_list, sts);
#endif
while ((wcmd = waiting_list) != 0) {
waiting_list = (struct scsi_cmnd *) wcmd->next_wcmd;
wcmd->next_wcmd = NULL;
if (sts == DID_OK) {
#ifdef DEBUG_WAITING_LIST
printk("%s: cmd %lx trying to requeue\n", ncr_name(np), (u_long) wcmd);
#endif
sts = ncr_queue_command(np, wcmd);
}
if (sts != DID_OK) {
#ifdef DEBUG_WAITING_LIST
printk("%s: cmd %lx done forced sts=%d\n", ncr_name(np), (u_long) wcmd, sts);
#endif
wcmd->result = ScsiResult(sts, 0);
ncr_queue_done_cmd(np, wcmd);
}
}
}
#undef next_wcmd
static ssize_t show_ncr53c8xx_revision(struct class_device *dev, char *buf)
{
struct Scsi_Host *host = class_to_shost(dev);
struct host_data *host_data = (struct host_data *)host->hostdata;
return snprintf(buf, 20, "0x%x\n", host_data->ncb->revision_id);
}
static struct class_device_attribute ncr53c8xx_revision_attr = {
.attr = { .name = "revision", .mode = S_IRUGO, },
.show = show_ncr53c8xx_revision,
};
static struct class_device_attribute *ncr53c8xx_host_attrs[] = {
&ncr53c8xx_revision_attr,
NULL
};
/*==========================================================
**
** Boot command line.
**
**==========================================================
*/
#ifdef MODULE
char *ncr53c8xx; /* command line passed by insmod */
module_param(ncr53c8xx, charp, 0);
#endif
#ifndef MODULE
static int __init ncr53c8xx_setup(char *str)
{
return sym53c8xx__setup(str);
}
__setup("ncr53c8xx=", ncr53c8xx_setup);
#endif
/*
* Host attach and initialisations.
*
* Allocate host data and ncb structure.
* Request IO region and remap MMIO region.
* Do chip initialization.
* If all is OK, install interrupt handling and
* start the timer daemon.
*/
struct Scsi_Host * __init ncr_attach(struct scsi_host_template *tpnt,
int unit, struct ncr_device *device)
{
struct host_data *host_data;
struct ncb *np = NULL;
struct Scsi_Host *instance = NULL;
u_long flags = 0;
int i;
if (!tpnt->name)
tpnt->name = SCSI_NCR_DRIVER_NAME;
if (!tpnt->shost_attrs)
tpnt->shost_attrs = ncr53c8xx_host_attrs;
tpnt->queuecommand = ncr53c8xx_queue_command;
tpnt->slave_configure = ncr53c8xx_slave_configure;
tpnt->slave_alloc = ncr53c8xx_slave_alloc;
tpnt->eh_bus_reset_handler = ncr53c8xx_bus_reset;
tpnt->can_queue = SCSI_NCR_CAN_QUEUE;
tpnt->this_id = 7;
tpnt->sg_tablesize = SCSI_NCR_SG_TABLESIZE;
tpnt->cmd_per_lun = SCSI_NCR_CMD_PER_LUN;
tpnt->use_clustering = ENABLE_CLUSTERING;
if (device->differential)
driver_setup.diff_support = device->differential;
printk(KERN_INFO "ncr53c720-%d: rev 0x%x irq %d\n",
unit, device->chip.revision_id, device->slot.irq);
instance = scsi_host_alloc(tpnt, sizeof(*host_data));
if (!instance)
goto attach_error;
host_data = (struct host_data *) instance->hostdata;
np = __m_calloc_dma(device->dev, sizeof(struct ncb), "NCB");
if (!np)
goto attach_error;
spin_lock_init(&np->smp_lock);
np->dev = device->dev;
np->p_ncb = vtobus(np);
host_data->ncb = np;
np->ccb = m_calloc_dma(sizeof(struct ccb), "CCB");
if (!np->ccb)
goto attach_error;
/* Store input information in the host data structure. */
np->unit = unit;
np->verbose = driver_setup.verbose;
sprintf(np->inst_name, "ncr53c720-%d", np->unit);
np->revision_id = device->chip.revision_id;
np->features = device->chip.features;
np->clock_divn = device->chip.nr_divisor;
np->maxoffs = device->chip.offset_max;
np->maxburst = device->chip.burst_max;
np->myaddr = device->host_id;
/* Allocate SCRIPTS areas. */
np->script0 = m_calloc_dma(sizeof(struct script), "SCRIPT");
if (!np->script0)
goto attach_error;
np->scripth0 = m_calloc_dma(sizeof(struct scripth), "SCRIPTH");
if (!np->scripth0)
goto attach_error;
init_timer(&np->timer);
np->timer.data = (unsigned long) np;
np->timer.function = ncr53c8xx_timeout;
/* Try to map the controller chip to virtual and physical memory. */
np->paddr = device->slot.base;
np->paddr2 = (np->features & FE_RAM) ? device->slot.base_2 : 0;
if (device->slot.base_v)
np->vaddr = device->slot.base_v;
else
np->vaddr = ioremap(device->slot.base_c, 128);
if (!np->vaddr) {
printk(KERN_ERR
"%s: can't map memory mapped IO region\n",ncr_name(np));
goto attach_error;
} else {
if (bootverbose > 1)
printk(KERN_INFO
"%s: using memory mapped IO at virtual address 0x%lx\n", ncr_name(np), (u_long) np->vaddr);
}
/* Make the controller's registers available. Now the INB INW INL
* OUTB OUTW OUTL macros can be used safely.
*/
np->reg = (struct ncr_reg __iomem *)np->vaddr;
/* Do chip dependent initialization. */
ncr_prepare_setting(np);
if (np->paddr2 && sizeof(struct script) > 4096) {
np->paddr2 = 0;
printk(KERN_WARNING "%s: script too large, NOT using on chip RAM.\n",
ncr_name(np));
}
instance->max_channel = 0;
instance->this_id = np->myaddr;
instance->max_id = np->maxwide ? 16 : 8;
instance->max_lun = SCSI_NCR_MAX_LUN;
instance->base = (unsigned long) np->reg;
instance->irq = device->slot.irq;
instance->unique_id = device->slot.base;
instance->dma_channel = 0;
instance->cmd_per_lun = MAX_TAGS;
instance->can_queue = (MAX_START-4);
/* This can happen if you forget to call ncr53c8xx_init from
* your module_init */
BUG_ON(!ncr53c8xx_transport_template);
instance->transportt = ncr53c8xx_transport_template;
/* Patch script to physical addresses */
ncr_script_fill(&script0, &scripth0);
np->scripth = np->scripth0;
np->p_scripth = vtobus(np->scripth);
np->p_script = (np->paddr2) ? np->paddr2 : vtobus(np->script0);
ncr_script_copy_and_bind(np, (ncrcmd *) &script0,
(ncrcmd *) np->script0, sizeof(struct script));
ncr_script_copy_and_bind(np, (ncrcmd *) &scripth0,
(ncrcmd *) np->scripth0, sizeof(struct scripth));
np->ccb->p_ccb = vtobus (np->ccb);
/* Patch the script for LED support. */
if (np->features & FE_LED0) {
np->script0->idle[0] =
cpu_to_scr(SCR_REG_REG(gpreg, SCR_OR, 0x01));
np->script0->reselected[0] =
cpu_to_scr(SCR_REG_REG(gpreg, SCR_AND, 0xfe));
np->script0->start[0] =
cpu_to_scr(SCR_REG_REG(gpreg, SCR_AND, 0xfe));
}
/*
* Look for the target control block of this nexus.
* For i = 0 to 3
* JUMP ^ IFTRUE (MASK (i, 3)), @(next_lcb)
*/
for (i = 0 ; i < 4 ; i++) {
np->jump_tcb[i].l_cmd =
cpu_to_scr((SCR_JUMP ^ IFTRUE (MASK (i, 3))));
np->jump_tcb[i].l_paddr =
cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_target));
}
ncr_chip_reset(np, 100);
/* Now check the cache handling of the chipset. */
if (ncr_snooptest(np)) {
printk(KERN_ERR "CACHE INCORRECTLY CONFIGURED.\n");
goto attach_error;
}
/* Install the interrupt handler. */
np->irq = device->slot.irq;
/* Initialize the fixed part of the default ccb. */
ncr_init_ccb(np, np->ccb);
/*
* After SCSI devices have been opened, we cannot reset the bus
* safely, so we do it here. Interrupt handler does the real work.
* Process the reset exception if interrupts are not enabled yet.
* Then enable disconnects.
*/
spin_lock_irqsave(&np->smp_lock, flags);
if (ncr_reset_scsi_bus(np, 0, driver_setup.settle_delay) != 0) {
printk(KERN_ERR "%s: FATAL ERROR: CHECK SCSI BUS - CABLES, TERMINATION, DEVICE POWER etc.!\n", ncr_name(np));
spin_unlock_irqrestore(&np->smp_lock, flags);
goto attach_error;
}
ncr_exception(np);
np->disc = 1;
/*
* The middle-level SCSI driver does not wait for devices to settle.
* Wait synchronously if more than 2 seconds.
*/
if (driver_setup.settle_delay > 2) {
printk(KERN_INFO "%s: waiting %d seconds for scsi devices to settle...\n",
ncr_name(np), driver_setup.settle_delay);
mdelay(1000 * driver_setup.settle_delay);
}
/* start the timeout daemon */
np->lasttime=0;
ncr_timeout (np);
/* use SIMPLE TAG messages by default */
#ifdef SCSI_NCR_ALWAYS_SIMPLE_TAG
np->order = SIMPLE_QUEUE_TAG;
#endif
spin_unlock_irqrestore(&np->smp_lock, flags);
return instance;
attach_error:
if (!instance)
return NULL;
printk(KERN_INFO "%s: detaching...\n", ncr_name(np));
if (!np)
goto unregister;
if (np->scripth0)
m_free_dma(np->scripth0, sizeof(struct scripth), "SCRIPTH");
if (np->script0)
m_free_dma(np->script0, sizeof(struct script), "SCRIPT");
if (np->ccb)
m_free_dma(np->ccb, sizeof(struct ccb), "CCB");
m_free_dma(np, sizeof(struct ncb), "NCB");
host_data->ncb = NULL;
unregister:
scsi_host_put(instance);
return NULL;
}
void ncr53c8xx_release(struct Scsi_Host *host)
{
struct host_data *host_data = shost_priv(host);
#ifdef DEBUG_NCR53C8XX
printk("ncr53c8xx: release\n");
#endif
if (host_data->ncb)
ncr_detach(host_data->ncb);
scsi_host_put(host);
}
static void ncr53c8xx_set_period(struct scsi_target *starget, int period)
{
struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
struct tcb *tp = &np->target[starget->id];
if (period > np->maxsync)
period = np->maxsync;
else if (period < np->minsync)
period = np->minsync;
tp->usrsync = period;
ncr_negotiate(np, tp);
}
static void ncr53c8xx_set_offset(struct scsi_target *starget, int offset)
{
struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
struct tcb *tp = &np->target[starget->id];
if (offset > np->maxoffs)
offset = np->maxoffs;
else if (offset < 0)
offset = 0;
tp->maxoffs = offset;
ncr_negotiate(np, tp);
}
static void ncr53c8xx_set_width(struct scsi_target *starget, int width)
{
struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
struct tcb *tp = &np->target[starget->id];
if (width > np->maxwide)
width = np->maxwide;
else if (width < 0)
width = 0;
tp->usrwide = width;
ncr_negotiate(np, tp);
}
static void ncr53c8xx_get_signalling(struct Scsi_Host *shost)
{
struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
enum spi_signal_type type;
switch (np->scsi_mode) {
case SMODE_SE:
type = SPI_SIGNAL_SE;
break;
case SMODE_HVD:
type = SPI_SIGNAL_HVD;
break;
default:
type = SPI_SIGNAL_UNKNOWN;
break;
}
spi_signalling(shost) = type;
}
static struct spi_function_template ncr53c8xx_transport_functions = {
.set_period = ncr53c8xx_set_period,
.show_period = 1,
.set_offset = ncr53c8xx_set_offset,
.show_offset = 1,
.set_width = ncr53c8xx_set_width,
.show_width = 1,
.get_signalling = ncr53c8xx_get_signalling,
};
int __init ncr53c8xx_init(void)
{
ncr53c8xx_transport_template = spi_attach_transport(&ncr53c8xx_transport_functions);
if (!ncr53c8xx_transport_template)
return -ENODEV;
return 0;
}
void ncr53c8xx_exit(void)
{
spi_release_transport(ncr53c8xx_transport_template);
}