kernel-fxtec-pro1x/drivers/mmc/core/core.c

2719 lines
66 KiB
C
Raw Normal View History

/*
* linux/drivers/mmc/core/core.c
*
* Copyright (C) 2003-2004 Russell King, All Rights Reserved.
* SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
* Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
* MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/completion.h>
#include <linux/device.h>
#include <linux/delay.h>
#include <linux/pagemap.h>
#include <linux/err.h>
#include <linux/leds.h>
#include <linux/scatterlist.h>
#include <linux/log2.h>
#include <linux/regulator/consumer.h>
#include <linux/pm_runtime.h>
#include <linux/pm_wakeup.h>
#include <linux/suspend.h>
#include <linux/fault-inject.h>
#include <linux/random.h>
#include <linux/slab.h>
#include <linux/of.h>
#include <linux/mmc/card.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/sd.h>
#include <linux/mmc/slot-gpio.h>
#include "core.h"
#include "bus.h"
#include "host.h"
#include "sdio_bus.h"
#include "mmc_ops.h"
#include "sd_ops.h"
#include "sdio_ops.h"
/* If the device is not responding */
#define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
/*
* Background operations can take a long time, depending on the housekeeping
* operations the card has to perform.
*/
#define MMC_BKOPS_MAX_TIMEOUT (4 * 60 * 1000) /* max time to wait in ms */
static struct workqueue_struct *workqueue;
static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
MMC core learns about SPI Teach the MMC/SD/SDIO core about using SPI mode. - Use mmc_host_is_spi() so enumeration works through SPI signaling and protocols, not just the native versions. - Provide the SPI response type flags with each request issued, including requests from the new lock/unlock code. - Understand that cmd->resp[0] and mmc_get_status() results for SPI return different values than for "native" MMC/SD protocol; this affects resetting, checking card lock status, and some others. - Understand that some commands act a bit differently ... notably: * OP_COND command doesn't return the OCR * APP_CMD status doesn't have an R1_APP_CMD analogue Those changes required some new and updated primitives: - Provide utilities to access two SPI-only requests, and one request that wasn't previously needed: * mmc_spi_read_ocr() ... SPI only * mmc_spi_set_crc() ... SPI only (override by module parm) * mmc_send_cid() ... for use without broadcast mode - Updated internal routines: * Previous mmc_send_csd() modified into mmc_send_cxd_native(); it uses native "R2" responses, which include 16 bytes of data. * Previous mmc_send_ext_csd() becomes new mmc_send_cxd_data() helper for command-and-data access * Bugfix to that mmc_send_cxd_data() code: dma-to-stack is unsafe/nonportable, so kmalloc a bounce buffer instead. - Modified mmc_send_ext_csd() now uses mmc_send_cxd_data() helper - Modified mmc_send_csd(), and new mmc_spi_send_cid(), routines use those helper routines based on whether they're native or SPI The newest categories of cards supported by the MMC stack aren't expected to work yet with SPI: MMC or SD cards with over 4GB data, and SDIO. All those cards support SPI mode, so eventually they should work too. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Signed-off-by: Pierre Ossman <drzeus@drzeus.cx>
2007-08-08 10:11:32 -06:00
/*
* Enabling software CRCs on the data blocks can be a significant (30%)
* performance cost, and for other reasons may not always be desired.
* So we allow it it to be disabled.
*/
bool use_spi_crc = 1;
MMC core learns about SPI Teach the MMC/SD/SDIO core about using SPI mode. - Use mmc_host_is_spi() so enumeration works through SPI signaling and protocols, not just the native versions. - Provide the SPI response type flags with each request issued, including requests from the new lock/unlock code. - Understand that cmd->resp[0] and mmc_get_status() results for SPI return different values than for "native" MMC/SD protocol; this affects resetting, checking card lock status, and some others. - Understand that some commands act a bit differently ... notably: * OP_COND command doesn't return the OCR * APP_CMD status doesn't have an R1_APP_CMD analogue Those changes required some new and updated primitives: - Provide utilities to access two SPI-only requests, and one request that wasn't previously needed: * mmc_spi_read_ocr() ... SPI only * mmc_spi_set_crc() ... SPI only (override by module parm) * mmc_send_cid() ... for use without broadcast mode - Updated internal routines: * Previous mmc_send_csd() modified into mmc_send_cxd_native(); it uses native "R2" responses, which include 16 bytes of data. * Previous mmc_send_ext_csd() becomes new mmc_send_cxd_data() helper for command-and-data access * Bugfix to that mmc_send_cxd_data() code: dma-to-stack is unsafe/nonportable, so kmalloc a bounce buffer instead. - Modified mmc_send_ext_csd() now uses mmc_send_cxd_data() helper - Modified mmc_send_csd(), and new mmc_spi_send_cid(), routines use those helper routines based on whether they're native or SPI The newest categories of cards supported by the MMC stack aren't expected to work yet with SPI: MMC or SD cards with over 4GB data, and SDIO. All those cards support SPI mode, so eventually they should work too. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Signed-off-by: Pierre Ossman <drzeus@drzeus.cx>
2007-08-08 10:11:32 -06:00
module_param(use_spi_crc, bool, 0);
/*
* Internal function. Schedule delayed work in the MMC work queue.
*/
static int mmc_schedule_delayed_work(struct delayed_work *work,
unsigned long delay)
{
return queue_delayed_work(workqueue, work, delay);
}
/*
* Internal function. Flush all scheduled work from the MMC work queue.
*/
static void mmc_flush_scheduled_work(void)
{
flush_workqueue(workqueue);
}
#ifdef CONFIG_FAIL_MMC_REQUEST
/*
* Internal function. Inject random data errors.
* If mmc_data is NULL no errors are injected.
*/
static void mmc_should_fail_request(struct mmc_host *host,
struct mmc_request *mrq)
{
struct mmc_command *cmd = mrq->cmd;
struct mmc_data *data = mrq->data;
static const int data_errors[] = {
-ETIMEDOUT,
-EILSEQ,
-EIO,
};
if (!data)
return;
if (cmd->error || data->error ||
!should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
return;
data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
}
#else /* CONFIG_FAIL_MMC_REQUEST */
static inline void mmc_should_fail_request(struct mmc_host *host,
struct mmc_request *mrq)
{
}
#endif /* CONFIG_FAIL_MMC_REQUEST */
/**
* mmc_request_done - finish processing an MMC request
* @host: MMC host which completed request
* @mrq: MMC request which request
*
* MMC drivers should call this function when they have completed
* their processing of a request.
*/
void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
{
struct mmc_command *cmd = mrq->cmd;
int err = cmd->error;
MMC core learns about SPI Teach the MMC/SD/SDIO core about using SPI mode. - Use mmc_host_is_spi() so enumeration works through SPI signaling and protocols, not just the native versions. - Provide the SPI response type flags with each request issued, including requests from the new lock/unlock code. - Understand that cmd->resp[0] and mmc_get_status() results for SPI return different values than for "native" MMC/SD protocol; this affects resetting, checking card lock status, and some others. - Understand that some commands act a bit differently ... notably: * OP_COND command doesn't return the OCR * APP_CMD status doesn't have an R1_APP_CMD analogue Those changes required some new and updated primitives: - Provide utilities to access two SPI-only requests, and one request that wasn't previously needed: * mmc_spi_read_ocr() ... SPI only * mmc_spi_set_crc() ... SPI only (override by module parm) * mmc_send_cid() ... for use without broadcast mode - Updated internal routines: * Previous mmc_send_csd() modified into mmc_send_cxd_native(); it uses native "R2" responses, which include 16 bytes of data. * Previous mmc_send_ext_csd() becomes new mmc_send_cxd_data() helper for command-and-data access * Bugfix to that mmc_send_cxd_data() code: dma-to-stack is unsafe/nonportable, so kmalloc a bounce buffer instead. - Modified mmc_send_ext_csd() now uses mmc_send_cxd_data() helper - Modified mmc_send_csd(), and new mmc_spi_send_cid(), routines use those helper routines based on whether they're native or SPI The newest categories of cards supported by the MMC stack aren't expected to work yet with SPI: MMC or SD cards with over 4GB data, and SDIO. All those cards support SPI mode, so eventually they should work too. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Signed-off-by: Pierre Ossman <drzeus@drzeus.cx>
2007-08-08 10:11:32 -06:00
if (err && cmd->retries && mmc_host_is_spi(host)) {
if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
cmd->retries = 0;
}
if (err && cmd->retries && !mmc_card_removed(host->card)) {
/*
* Request starter must handle retries - see
* mmc_wait_for_req_done().
*/
if (mrq->done)
mrq->done(mrq);
} else {
mmc_should_fail_request(host, mrq);
led_trigger_event(host->led, LED_OFF);
if (mrq->sbc) {
pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
mmc_hostname(host), mrq->sbc->opcode,
mrq->sbc->error,
mrq->sbc->resp[0], mrq->sbc->resp[1],
mrq->sbc->resp[2], mrq->sbc->resp[3]);
}
pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
mmc_hostname(host), cmd->opcode, err,
cmd->resp[0], cmd->resp[1],
cmd->resp[2], cmd->resp[3]);
if (mrq->data) {
pr_debug("%s: %d bytes transferred: %d\n",
mmc_hostname(host),
mrq->data->bytes_xfered, mrq->data->error);
}
if (mrq->stop) {
pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
mmc_hostname(host), mrq->stop->opcode,
mrq->stop->error,
mrq->stop->resp[0], mrq->stop->resp[1],
mrq->stop->resp[2], mrq->stop->resp[3]);
}
if (mrq->done)
mrq->done(mrq);
mmc_host_clk_release(host);
}
}
EXPORT_SYMBOL(mmc_request_done);
static void
mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
{
#ifdef CONFIG_MMC_DEBUG
unsigned int i, sz;
struct scatterlist *sg;
#endif
if (mrq->sbc) {
pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
mmc_hostname(host), mrq->sbc->opcode,
mrq->sbc->arg, mrq->sbc->flags);
}
pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
mmc_hostname(host), mrq->cmd->opcode,
mrq->cmd->arg, mrq->cmd->flags);
if (mrq->data) {
pr_debug("%s: blksz %d blocks %d flags %08x "
"tsac %d ms nsac %d\n",
mmc_hostname(host), mrq->data->blksz,
mrq->data->blocks, mrq->data->flags,
mrq->data->timeout_ns / 1000000,
mrq->data->timeout_clks);
}
if (mrq->stop) {
pr_debug("%s: CMD%u arg %08x flags %08x\n",
mmc_hostname(host), mrq->stop->opcode,
mrq->stop->arg, mrq->stop->flags);
}
WARN_ON(!host->claimed);
mrq->cmd->error = 0;
mrq->cmd->mrq = mrq;
if (mrq->sbc) {
mrq->sbc->error = 0;
mrq->sbc->mrq = mrq;
}
if (mrq->data) {
BUG_ON(mrq->data->blksz > host->max_blk_size);
BUG_ON(mrq->data->blocks > host->max_blk_count);
BUG_ON(mrq->data->blocks * mrq->data->blksz >
host->max_req_size);
#ifdef CONFIG_MMC_DEBUG
sz = 0;
for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
sz += sg->length;
BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
#endif
mrq->cmd->data = mrq->data;
mrq->data->error = 0;
mrq->data->mrq = mrq;
if (mrq->stop) {
mrq->data->stop = mrq->stop;
mrq->stop->error = 0;
mrq->stop->mrq = mrq;
}
}
mmc_host_clk_hold(host);
led_trigger_event(host->led, LED_FULL);
host->ops->request(host, mrq);
}
/**
* mmc_start_bkops - start BKOPS for supported cards
* @card: MMC card to start BKOPS
* @form_exception: A flag to indicate if this function was
* called due to an exception raised by the card
*
* Start background operations whenever requested.
* When the urgent BKOPS bit is set in a R1 command response
* then background operations should be started immediately.
*/
void mmc_start_bkops(struct mmc_card *card, bool from_exception)
{
int err;
int timeout;
bool use_busy_signal;
BUG_ON(!card);
if (!card->ext_csd.bkops_en || mmc_card_doing_bkops(card))
return;
err = mmc_read_bkops_status(card);
if (err) {
pr_err("%s: Failed to read bkops status: %d\n",
mmc_hostname(card->host), err);
return;
}
if (!card->ext_csd.raw_bkops_status)
return;
if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
from_exception)
return;
mmc_claim_host(card->host);
if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
timeout = MMC_BKOPS_MAX_TIMEOUT;
use_busy_signal = true;
} else {
timeout = 0;
use_busy_signal = false;
}
err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_BKOPS_START, 1, timeout,
use_busy_signal, true, false);
if (err) {
pr_warn("%s: Error %d starting bkops\n",
mmc_hostname(card->host), err);
goto out;
}
/*
* For urgent bkops status (LEVEL_2 and more)
* bkops executed synchronously, otherwise
* the operation is in progress
*/
if (!use_busy_signal)
mmc_card_set_doing_bkops(card);
out:
mmc_release_host(card->host);
}
EXPORT_SYMBOL(mmc_start_bkops);
/*
* mmc_wait_data_done() - done callback for data request
* @mrq: done data request
*
* Wakes up mmc context, passed as a callback to host controller driver
*/
static void mmc_wait_data_done(struct mmc_request *mrq)
{
mrq->host->context_info.is_done_rcv = true;
wake_up_interruptible(&mrq->host->context_info.wait);
}
static void mmc_wait_done(struct mmc_request *mrq)
{
mmc: core: add non-blocking mmc request function Previously there has only been one function mmc_wait_for_req() to start and wait for a request. This patch adds: * mmc_start_req() - starts a request wihtout waiting If there is on ongoing request wait for completion of that request and start the new one and return. Does not wait for the new command to complete. This patch also adds new function members in struct mmc_host_ops only called from core.c: * pre_req - asks the host driver to prepare for the next job * post_req - asks the host driver to clean up after a completed job The intention is to use pre_req() and post_req() to do cache maintenance while a request is active. pre_req() can be called while a request is active to minimize latency to start next job. post_req() can be used after the next job is started to clean up the request. This will minimize the host driver request end latency. post_req() is typically used before ending the block request and handing over the buffer to the block layer. Add a host-private member in mmc_data to be used by pre_req to mark the data. The host driver will then check this mark to see if the data is prepared or not. Signed-off-by: Per Forlin <per.forlin@linaro.org> Acked-by: Kyungmin Park <kyungmin.park@samsung.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Venkatraman S <svenkatr@ti.com> Tested-by: Sourav Poddar <sourav.poddar@ti.com> Tested-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-07-01 10:55:22 -06:00
complete(&mrq->completion);
}
/*
*__mmc_start_data_req() - starts data request
* @host: MMC host to start the request
* @mrq: data request to start
*
* Sets the done callback to be called when request is completed by the card.
* Starts data mmc request execution
*/
static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
{
mrq->done = mmc_wait_data_done;
mrq->host = host;
if (mmc_card_removed(host->card)) {
mrq->cmd->error = -ENOMEDIUM;
mmc_wait_data_done(mrq);
return -ENOMEDIUM;
}
mmc_start_request(host, mrq);
return 0;
}
static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
mmc: core: add non-blocking mmc request function Previously there has only been one function mmc_wait_for_req() to start and wait for a request. This patch adds: * mmc_start_req() - starts a request wihtout waiting If there is on ongoing request wait for completion of that request and start the new one and return. Does not wait for the new command to complete. This patch also adds new function members in struct mmc_host_ops only called from core.c: * pre_req - asks the host driver to prepare for the next job * post_req - asks the host driver to clean up after a completed job The intention is to use pre_req() and post_req() to do cache maintenance while a request is active. pre_req() can be called while a request is active to minimize latency to start next job. post_req() can be used after the next job is started to clean up the request. This will minimize the host driver request end latency. post_req() is typically used before ending the block request and handing over the buffer to the block layer. Add a host-private member in mmc_data to be used by pre_req to mark the data. The host driver will then check this mark to see if the data is prepared or not. Signed-off-by: Per Forlin <per.forlin@linaro.org> Acked-by: Kyungmin Park <kyungmin.park@samsung.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Venkatraman S <svenkatr@ti.com> Tested-by: Sourav Poddar <sourav.poddar@ti.com> Tested-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-07-01 10:55:22 -06:00
{
init_completion(&mrq->completion);
mrq->done = mmc_wait_done;
if (mmc_card_removed(host->card)) {
mrq->cmd->error = -ENOMEDIUM;
complete(&mrq->completion);
return -ENOMEDIUM;
}
mmc: core: add non-blocking mmc request function Previously there has only been one function mmc_wait_for_req() to start and wait for a request. This patch adds: * mmc_start_req() - starts a request wihtout waiting If there is on ongoing request wait for completion of that request and start the new one and return. Does not wait for the new command to complete. This patch also adds new function members in struct mmc_host_ops only called from core.c: * pre_req - asks the host driver to prepare for the next job * post_req - asks the host driver to clean up after a completed job The intention is to use pre_req() and post_req() to do cache maintenance while a request is active. pre_req() can be called while a request is active to minimize latency to start next job. post_req() can be used after the next job is started to clean up the request. This will minimize the host driver request end latency. post_req() is typically used before ending the block request and handing over the buffer to the block layer. Add a host-private member in mmc_data to be used by pre_req to mark the data. The host driver will then check this mark to see if the data is prepared or not. Signed-off-by: Per Forlin <per.forlin@linaro.org> Acked-by: Kyungmin Park <kyungmin.park@samsung.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Venkatraman S <svenkatr@ti.com> Tested-by: Sourav Poddar <sourav.poddar@ti.com> Tested-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-07-01 10:55:22 -06:00
mmc_start_request(host, mrq);
return 0;
mmc: core: add non-blocking mmc request function Previously there has only been one function mmc_wait_for_req() to start and wait for a request. This patch adds: * mmc_start_req() - starts a request wihtout waiting If there is on ongoing request wait for completion of that request and start the new one and return. Does not wait for the new command to complete. This patch also adds new function members in struct mmc_host_ops only called from core.c: * pre_req - asks the host driver to prepare for the next job * post_req - asks the host driver to clean up after a completed job The intention is to use pre_req() and post_req() to do cache maintenance while a request is active. pre_req() can be called while a request is active to minimize latency to start next job. post_req() can be used after the next job is started to clean up the request. This will minimize the host driver request end latency. post_req() is typically used before ending the block request and handing over the buffer to the block layer. Add a host-private member in mmc_data to be used by pre_req to mark the data. The host driver will then check this mark to see if the data is prepared or not. Signed-off-by: Per Forlin <per.forlin@linaro.org> Acked-by: Kyungmin Park <kyungmin.park@samsung.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Venkatraman S <svenkatr@ti.com> Tested-by: Sourav Poddar <sourav.poddar@ti.com> Tested-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-07-01 10:55:22 -06:00
}
/*
* mmc_wait_for_data_req_done() - wait for request completed
* @host: MMC host to prepare the command.
* @mrq: MMC request to wait for
*
* Blocks MMC context till host controller will ack end of data request
* execution or new request notification arrives from the block layer.
* Handles command retries.
*
* Returns enum mmc_blk_status after checking errors.
*/
static int mmc_wait_for_data_req_done(struct mmc_host *host,
struct mmc_request *mrq,
struct mmc_async_req *next_req)
{
struct mmc_command *cmd;
struct mmc_context_info *context_info = &host->context_info;
int err;
unsigned long flags;
while (1) {
wait_event_interruptible(context_info->wait,
(context_info->is_done_rcv ||
context_info->is_new_req));
spin_lock_irqsave(&context_info->lock, flags);
context_info->is_waiting_last_req = false;
spin_unlock_irqrestore(&context_info->lock, flags);
if (context_info->is_done_rcv) {
context_info->is_done_rcv = false;
context_info->is_new_req = false;
cmd = mrq->cmd;
if (!cmd->error || !cmd->retries ||
mmc_card_removed(host->card)) {
err = host->areq->err_check(host->card,
host->areq);
break; /* return err */
} else {
pr_info("%s: req failed (CMD%u): %d, retrying...\n",
mmc_hostname(host),
cmd->opcode, cmd->error);
cmd->retries--;
cmd->error = 0;
host->ops->request(host, mrq);
continue; /* wait for done/new event again */
}
} else if (context_info->is_new_req) {
context_info->is_new_req = false;
if (!next_req) {
err = MMC_BLK_NEW_REQUEST;
break; /* return err */
}
}
}
return err;
}
mmc: core: add non-blocking mmc request function Previously there has only been one function mmc_wait_for_req() to start and wait for a request. This patch adds: * mmc_start_req() - starts a request wihtout waiting If there is on ongoing request wait for completion of that request and start the new one and return. Does not wait for the new command to complete. This patch also adds new function members in struct mmc_host_ops only called from core.c: * pre_req - asks the host driver to prepare for the next job * post_req - asks the host driver to clean up after a completed job The intention is to use pre_req() and post_req() to do cache maintenance while a request is active. pre_req() can be called while a request is active to minimize latency to start next job. post_req() can be used after the next job is started to clean up the request. This will minimize the host driver request end latency. post_req() is typically used before ending the block request and handing over the buffer to the block layer. Add a host-private member in mmc_data to be used by pre_req to mark the data. The host driver will then check this mark to see if the data is prepared or not. Signed-off-by: Per Forlin <per.forlin@linaro.org> Acked-by: Kyungmin Park <kyungmin.park@samsung.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Venkatraman S <svenkatr@ti.com> Tested-by: Sourav Poddar <sourav.poddar@ti.com> Tested-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-07-01 10:55:22 -06:00
static void mmc_wait_for_req_done(struct mmc_host *host,
struct mmc_request *mrq)
{
struct mmc_command *cmd;
while (1) {
wait_for_completion(&mrq->completion);
cmd = mrq->cmd;
/*
* If host has timed out waiting for the sanitize
* to complete, card might be still in programming state
* so let's try to bring the card out of programming
* state.
*/
if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
if (!mmc_interrupt_hpi(host->card)) {
pr_warn("%s: %s: Interrupted sanitize\n",
mmc_hostname(host), __func__);
cmd->error = 0;
break;
} else {
pr_err("%s: %s: Failed to interrupt sanitize\n",
mmc_hostname(host), __func__);
}
}
if (!cmd->error || !cmd->retries ||
mmc_card_removed(host->card))
break;
pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
mmc_hostname(host), cmd->opcode, cmd->error);
cmd->retries--;
cmd->error = 0;
host->ops->request(host, mrq);
}
mmc: core: add non-blocking mmc request function Previously there has only been one function mmc_wait_for_req() to start and wait for a request. This patch adds: * mmc_start_req() - starts a request wihtout waiting If there is on ongoing request wait for completion of that request and start the new one and return. Does not wait for the new command to complete. This patch also adds new function members in struct mmc_host_ops only called from core.c: * pre_req - asks the host driver to prepare for the next job * post_req - asks the host driver to clean up after a completed job The intention is to use pre_req() and post_req() to do cache maintenance while a request is active. pre_req() can be called while a request is active to minimize latency to start next job. post_req() can be used after the next job is started to clean up the request. This will minimize the host driver request end latency. post_req() is typically used before ending the block request and handing over the buffer to the block layer. Add a host-private member in mmc_data to be used by pre_req to mark the data. The host driver will then check this mark to see if the data is prepared or not. Signed-off-by: Per Forlin <per.forlin@linaro.org> Acked-by: Kyungmin Park <kyungmin.park@samsung.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Venkatraman S <svenkatr@ti.com> Tested-by: Sourav Poddar <sourav.poddar@ti.com> Tested-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-07-01 10:55:22 -06:00
}
/**
* mmc_pre_req - Prepare for a new request
* @host: MMC host to prepare command
* @mrq: MMC request to prepare for
* @is_first_req: true if there is no previous started request
* that may run in parellel to this call, otherwise false
*
* mmc_pre_req() is called in prior to mmc_start_req() to let
* host prepare for the new request. Preparation of a request may be
* performed while another request is running on the host.
*/
static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
bool is_first_req)
{
if (host->ops->pre_req) {
mmc_host_clk_hold(host);
mmc: core: add non-blocking mmc request function Previously there has only been one function mmc_wait_for_req() to start and wait for a request. This patch adds: * mmc_start_req() - starts a request wihtout waiting If there is on ongoing request wait for completion of that request and start the new one and return. Does not wait for the new command to complete. This patch also adds new function members in struct mmc_host_ops only called from core.c: * pre_req - asks the host driver to prepare for the next job * post_req - asks the host driver to clean up after a completed job The intention is to use pre_req() and post_req() to do cache maintenance while a request is active. pre_req() can be called while a request is active to minimize latency to start next job. post_req() can be used after the next job is started to clean up the request. This will minimize the host driver request end latency. post_req() is typically used before ending the block request and handing over the buffer to the block layer. Add a host-private member in mmc_data to be used by pre_req to mark the data. The host driver will then check this mark to see if the data is prepared or not. Signed-off-by: Per Forlin <per.forlin@linaro.org> Acked-by: Kyungmin Park <kyungmin.park@samsung.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Venkatraman S <svenkatr@ti.com> Tested-by: Sourav Poddar <sourav.poddar@ti.com> Tested-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-07-01 10:55:22 -06:00
host->ops->pre_req(host, mrq, is_first_req);
mmc_host_clk_release(host);
}
mmc: core: add non-blocking mmc request function Previously there has only been one function mmc_wait_for_req() to start and wait for a request. This patch adds: * mmc_start_req() - starts a request wihtout waiting If there is on ongoing request wait for completion of that request and start the new one and return. Does not wait for the new command to complete. This patch also adds new function members in struct mmc_host_ops only called from core.c: * pre_req - asks the host driver to prepare for the next job * post_req - asks the host driver to clean up after a completed job The intention is to use pre_req() and post_req() to do cache maintenance while a request is active. pre_req() can be called while a request is active to minimize latency to start next job. post_req() can be used after the next job is started to clean up the request. This will minimize the host driver request end latency. post_req() is typically used before ending the block request and handing over the buffer to the block layer. Add a host-private member in mmc_data to be used by pre_req to mark the data. The host driver will then check this mark to see if the data is prepared or not. Signed-off-by: Per Forlin <per.forlin@linaro.org> Acked-by: Kyungmin Park <kyungmin.park@samsung.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Venkatraman S <svenkatr@ti.com> Tested-by: Sourav Poddar <sourav.poddar@ti.com> Tested-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-07-01 10:55:22 -06:00
}
/**
* mmc_post_req - Post process a completed request
* @host: MMC host to post process command
* @mrq: MMC request to post process for
* @err: Error, if non zero, clean up any resources made in pre_req
*
* Let the host post process a completed request. Post processing of
* a request may be performed while another reuqest is running.
*/
static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
int err)
{
if (host->ops->post_req) {
mmc_host_clk_hold(host);
mmc: core: add non-blocking mmc request function Previously there has only been one function mmc_wait_for_req() to start and wait for a request. This patch adds: * mmc_start_req() - starts a request wihtout waiting If there is on ongoing request wait for completion of that request and start the new one and return. Does not wait for the new command to complete. This patch also adds new function members in struct mmc_host_ops only called from core.c: * pre_req - asks the host driver to prepare for the next job * post_req - asks the host driver to clean up after a completed job The intention is to use pre_req() and post_req() to do cache maintenance while a request is active. pre_req() can be called while a request is active to minimize latency to start next job. post_req() can be used after the next job is started to clean up the request. This will minimize the host driver request end latency. post_req() is typically used before ending the block request and handing over the buffer to the block layer. Add a host-private member in mmc_data to be used by pre_req to mark the data. The host driver will then check this mark to see if the data is prepared or not. Signed-off-by: Per Forlin <per.forlin@linaro.org> Acked-by: Kyungmin Park <kyungmin.park@samsung.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Venkatraman S <svenkatr@ti.com> Tested-by: Sourav Poddar <sourav.poddar@ti.com> Tested-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-07-01 10:55:22 -06:00
host->ops->post_req(host, mrq, err);
mmc_host_clk_release(host);
}
}
mmc: core: add non-blocking mmc request function Previously there has only been one function mmc_wait_for_req() to start and wait for a request. This patch adds: * mmc_start_req() - starts a request wihtout waiting If there is on ongoing request wait for completion of that request and start the new one and return. Does not wait for the new command to complete. This patch also adds new function members in struct mmc_host_ops only called from core.c: * pre_req - asks the host driver to prepare for the next job * post_req - asks the host driver to clean up after a completed job The intention is to use pre_req() and post_req() to do cache maintenance while a request is active. pre_req() can be called while a request is active to minimize latency to start next job. post_req() can be used after the next job is started to clean up the request. This will minimize the host driver request end latency. post_req() is typically used before ending the block request and handing over the buffer to the block layer. Add a host-private member in mmc_data to be used by pre_req to mark the data. The host driver will then check this mark to see if the data is prepared or not. Signed-off-by: Per Forlin <per.forlin@linaro.org> Acked-by: Kyungmin Park <kyungmin.park@samsung.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Venkatraman S <svenkatr@ti.com> Tested-by: Sourav Poddar <sourav.poddar@ti.com> Tested-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-07-01 10:55:22 -06:00
/**
* mmc_start_req - start a non-blocking request
* @host: MMC host to start command
* @areq: async request to start
* @error: out parameter returns 0 for success, otherwise non zero
*
* Start a new MMC custom command request for a host.
* If there is on ongoing async request wait for completion
* of that request and start the new one and return.
* Does not wait for the new request to complete.
*
* Returns the completed request, NULL in case of none completed.
* Wait for the an ongoing request (previoulsy started) to complete and
* return the completed request. If there is no ongoing request, NULL
* is returned without waiting. NULL is not an error condition.
*/
struct mmc_async_req *mmc_start_req(struct mmc_host *host,
struct mmc_async_req *areq, int *error)
{
int err = 0;
int start_err = 0;
mmc: core: add non-blocking mmc request function Previously there has only been one function mmc_wait_for_req() to start and wait for a request. This patch adds: * mmc_start_req() - starts a request wihtout waiting If there is on ongoing request wait for completion of that request and start the new one and return. Does not wait for the new command to complete. This patch also adds new function members in struct mmc_host_ops only called from core.c: * pre_req - asks the host driver to prepare for the next job * post_req - asks the host driver to clean up after a completed job The intention is to use pre_req() and post_req() to do cache maintenance while a request is active. pre_req() can be called while a request is active to minimize latency to start next job. post_req() can be used after the next job is started to clean up the request. This will minimize the host driver request end latency. post_req() is typically used before ending the block request and handing over the buffer to the block layer. Add a host-private member in mmc_data to be used by pre_req to mark the data. The host driver will then check this mark to see if the data is prepared or not. Signed-off-by: Per Forlin <per.forlin@linaro.org> Acked-by: Kyungmin Park <kyungmin.park@samsung.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Venkatraman S <svenkatr@ti.com> Tested-by: Sourav Poddar <sourav.poddar@ti.com> Tested-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-07-01 10:55:22 -06:00
struct mmc_async_req *data = host->areq;
/* Prepare a new request */
if (areq)
mmc_pre_req(host, areq->mrq, !host->areq);
if (host->areq) {
err = mmc_wait_for_data_req_done(host, host->areq->mrq, areq);
if (err == MMC_BLK_NEW_REQUEST) {
if (error)
*error = err;
/*
* The previous request was not completed,
* nothing to return
*/
return NULL;
}
/*
* Check BKOPS urgency for each R1 response
*/
if (host->card && mmc_card_mmc(host->card) &&
((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
(mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
mmc: core: fix prepared requests while doing bkops While starting the bkops the previously prepared request should be canceled and restarted after the bkops. As the prepared resource might already setup the dma channels and ready to be started. Now with the arrival of bkops request this prepared request can be serviced ONLY after the bkops. So holding on to the prepared request in the host driver is confusing at this point in time, so it makes sense to cleanup such dangling requests and reissue this request once bkops is done. Canceling the prepared request would give opportunity to the host drivers to perform cleanup on the prepared request. Without this patch host drivers like mmci gets confused when a blocking request like send_ext_csd(CMD8) is issued while there is already a prepared request. With the help of this patch, the driver can better manage such blocking requests and cleanup the prepared requests which are not started yet. Without this patch I hit below crash on Qualcomm APQ8064 based IFC6410 board with mmci host driver. mmci-pl18x 12400000.sdcc: error during DMA transfer! Unable to handle kernel paging request at virtual address 40000000 pgd = c0204000 [40000000] *pgd=00000000 Internal error: Oops: 805 [#1] SMP ARM Modules linked in: ipv6 ath6kl_sdio ath6kl_core CPU: 0 PID: 0 Comm: swapper/0 Tainted: G W 3.17.0-rc7-linaro-multi-v7 #1 task: c0c9d7e0 ti: c0c92000 task.ti: c0c92000 PC is at v7_dma_inv_range+0x34/0x4c LR is at __dma_page_dev_to_cpu+0x80/0x100 pc : [<c021efc0>] lr : [<c021af18>] psr: 400f0193 sp : c0c93e20 ip : c0c9a478 fp : c08ea538 r10: c0c9f548 r9 : 00000002 r8 : e97d9000 r7 : 00000200 r6 : c0c9d504 r5 : c0db0880 r4 : 00000000 r3 : 0000003f r2 : 00000040 r1 : 40000200 r0 : 40000000 Flags: nZcv IRQs off FIQs on Mode SVC_32 ISA ARM Segment kernel Control: 10c5787d Table: a9ef406a DAC: 00000015 Process swapper/0 (pid: 0, stack limit = 0xc0c92250) Stack: (0xc0c93e20 to 0xc0c94000) 3e20: c021f058 e9a17178 e9a171bc e99dfd6c 00000001 00000001 e995de10 00000002 3e40: 00000000 c021b574 00000000 c04bc4a4 00000000 e9b49ac0 c0ce6e6c e99dfda4 3e60: 00000088 e9810780 c0d8291c c072ea58 00000000 c072d3fc 00000000 c072f534 3e80: 00000000 e9b49ac0 00000100 c0c9a444 00000088 c072f6b4 c072f5d4 e9d40080 3ea0: e98107dc 00000000 00000000 c0280a60 00000000 7d55bf61 e9810780 e98107dc 3ec0: 00000000 f0002000 c0d460e8 c0d460e8 c0c92000 c0280b60 e9810780 c0ce7190 3ee0: 00000000 c028369c c02835f4 00000088 00000088 c0280278 c0c8ec70 c020f080 3f00: f000200c c0c9a958 c0c93f28 c02088e4 c04bd630 c04bd5bc 200f0013 ffffffff 3f20: c0c93f5c c0212800 00000001 a987c000 c0c93f3c c04bd574 00000000 0000015b 3f40: ea7a0e40 00000000 c0d460e8 c0d460e8 c0c92000 c08ea538 29b12000 c0c93f70 3f60: c04bd630 c04bd5bc 200f0013 ffffffff c04bd574 c071bd24 7d50c9b4 c0719a44 3f80: 7d50c9b4 0000015b c0c9a498 c0c92028 c0c9a498 c0c9a4fc ea7a0e40 c0c8ee38 3fa0: c0d460e8 c0276198 00000000 c0d8291a 00000000 c0c9a400 00000000 c0be0bc4 3fc0: ffffffff ffffffff c0be05f8 00000000 00000000 c0c533d8 c0d82ed4 c0c9a47c 3fe0: c0c533d4 c0c9e870 8020406a 511f06f0 00000000 80208074 00000000 00000000 [<c021efc0>] (v7_dma_inv_range) from [<c021af18>] (__dma_page_dev_to_cpu+0x80/0x100) [<c021af18>] (__dma_page_dev_to_cpu) from [<c021b574>] (arm_dma_unmap_sg+0x5c/0x84) [<c021b574>] (arm_dma_unmap_sg) from [<c072ea58>] (mmci_dma_unmap.isra.16+0x60/0x74) [<c072ea58>] (mmci_dma_unmap.isra.16) from [<c072f534>] (mmci_data_irq+0x1fc/0x29c) [<c072f534>] (mmci_data_irq) from [<c072f6b4>] (mmci_irq+0xe0/0x114) [<c072f6b4>] (mmci_irq) from [<c0280a60>] (handle_irq_event_percpu+0x78/0x134) [<c0280a60>] (handle_irq_event_percpu) from [<c0280b60>] (handle_irq_event+0x44/0x64) [<c0280b60>] (handle_irq_event) from [<c028369c>] (handle_fasteoi_irq+0xa8/0x1a8) [<c028369c>] (handle_fasteoi_irq) from [<c0280278>] (generic_handle_irq+0x2c/0x3c) [<c0280278>] (generic_handle_irq) from [<c020f080>] (handle_IRQ+0x40/0x90) [<c020f080>] (handle_IRQ) from [<c02088e4>] (gic_handle_irq+0x38/0x68) [<c02088e4>] (gic_handle_irq) from [<c0212800>] (__irq_svc+0x40/0x54) Exception stack(0xc0c93f28 to 0xc0c93f70) 3f20: 00000001 a987c000 c0c93f3c c04bd574 00000000 0000015b 3f40: ea7a0e40 00000000 c0d460e8 c0d460e8 c0c92000 c08ea538 29b12000 c0c93f70 3f60: c04bd630 c04bd5bc 200f0013 ffffffff [<c0212800>] (__irq_svc) from [<c04bd5bc>] (msm_cpu_pm_enter_sleep+0x48/0x4c) [<c04bd5bc>] (msm_cpu_pm_enter_sleep) from [<c071bd24>] (qcom_lpm_enter_spc+0x20/0x2c) [<c071bd24>] (qcom_lpm_enter_spc) from [<c0719a44>] (cpuidle_enter_state+0x44/0xf0) [<c0719a44>] (cpuidle_enter_state) from [<c0276198>] (cpu_startup_entry+0x1f4/0x238) [<c0276198>] (cpu_startup_entry) from [<c0be0bc4>] (start_kernel+0x384/0x390) Code: 1e070f3e e1110003 e1c11003 1e071f3e (ee070f36) ---[ end trace cf6cb3f6432c9834 ]--- Kernel panic - not syncing: Fatal exception in interrupt Reported-by: Nicolas Dechesne <nicolas.dechesne@linaro.org> Signed-off-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org> Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2014-10-08 05:24:24 -06:00
(host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) {
/* Cancel the prepared request */
if (areq)
mmc_post_req(host, areq->mrq, -EINVAL);
mmc_start_bkops(host->card, true);
mmc: core: fix prepared requests while doing bkops While starting the bkops the previously prepared request should be canceled and restarted after the bkops. As the prepared resource might already setup the dma channels and ready to be started. Now with the arrival of bkops request this prepared request can be serviced ONLY after the bkops. So holding on to the prepared request in the host driver is confusing at this point in time, so it makes sense to cleanup such dangling requests and reissue this request once bkops is done. Canceling the prepared request would give opportunity to the host drivers to perform cleanup on the prepared request. Without this patch host drivers like mmci gets confused when a blocking request like send_ext_csd(CMD8) is issued while there is already a prepared request. With the help of this patch, the driver can better manage such blocking requests and cleanup the prepared requests which are not started yet. Without this patch I hit below crash on Qualcomm APQ8064 based IFC6410 board with mmci host driver. mmci-pl18x 12400000.sdcc: error during DMA transfer! Unable to handle kernel paging request at virtual address 40000000 pgd = c0204000 [40000000] *pgd=00000000 Internal error: Oops: 805 [#1] SMP ARM Modules linked in: ipv6 ath6kl_sdio ath6kl_core CPU: 0 PID: 0 Comm: swapper/0 Tainted: G W 3.17.0-rc7-linaro-multi-v7 #1 task: c0c9d7e0 ti: c0c92000 task.ti: c0c92000 PC is at v7_dma_inv_range+0x34/0x4c LR is at __dma_page_dev_to_cpu+0x80/0x100 pc : [<c021efc0>] lr : [<c021af18>] psr: 400f0193 sp : c0c93e20 ip : c0c9a478 fp : c08ea538 r10: c0c9f548 r9 : 00000002 r8 : e97d9000 r7 : 00000200 r6 : c0c9d504 r5 : c0db0880 r4 : 00000000 r3 : 0000003f r2 : 00000040 r1 : 40000200 r0 : 40000000 Flags: nZcv IRQs off FIQs on Mode SVC_32 ISA ARM Segment kernel Control: 10c5787d Table: a9ef406a DAC: 00000015 Process swapper/0 (pid: 0, stack limit = 0xc0c92250) Stack: (0xc0c93e20 to 0xc0c94000) 3e20: c021f058 e9a17178 e9a171bc e99dfd6c 00000001 00000001 e995de10 00000002 3e40: 00000000 c021b574 00000000 c04bc4a4 00000000 e9b49ac0 c0ce6e6c e99dfda4 3e60: 00000088 e9810780 c0d8291c c072ea58 00000000 c072d3fc 00000000 c072f534 3e80: 00000000 e9b49ac0 00000100 c0c9a444 00000088 c072f6b4 c072f5d4 e9d40080 3ea0: e98107dc 00000000 00000000 c0280a60 00000000 7d55bf61 e9810780 e98107dc 3ec0: 00000000 f0002000 c0d460e8 c0d460e8 c0c92000 c0280b60 e9810780 c0ce7190 3ee0: 00000000 c028369c c02835f4 00000088 00000088 c0280278 c0c8ec70 c020f080 3f00: f000200c c0c9a958 c0c93f28 c02088e4 c04bd630 c04bd5bc 200f0013 ffffffff 3f20: c0c93f5c c0212800 00000001 a987c000 c0c93f3c c04bd574 00000000 0000015b 3f40: ea7a0e40 00000000 c0d460e8 c0d460e8 c0c92000 c08ea538 29b12000 c0c93f70 3f60: c04bd630 c04bd5bc 200f0013 ffffffff c04bd574 c071bd24 7d50c9b4 c0719a44 3f80: 7d50c9b4 0000015b c0c9a498 c0c92028 c0c9a498 c0c9a4fc ea7a0e40 c0c8ee38 3fa0: c0d460e8 c0276198 00000000 c0d8291a 00000000 c0c9a400 00000000 c0be0bc4 3fc0: ffffffff ffffffff c0be05f8 00000000 00000000 c0c533d8 c0d82ed4 c0c9a47c 3fe0: c0c533d4 c0c9e870 8020406a 511f06f0 00000000 80208074 00000000 00000000 [<c021efc0>] (v7_dma_inv_range) from [<c021af18>] (__dma_page_dev_to_cpu+0x80/0x100) [<c021af18>] (__dma_page_dev_to_cpu) from [<c021b574>] (arm_dma_unmap_sg+0x5c/0x84) [<c021b574>] (arm_dma_unmap_sg) from [<c072ea58>] (mmci_dma_unmap.isra.16+0x60/0x74) [<c072ea58>] (mmci_dma_unmap.isra.16) from [<c072f534>] (mmci_data_irq+0x1fc/0x29c) [<c072f534>] (mmci_data_irq) from [<c072f6b4>] (mmci_irq+0xe0/0x114) [<c072f6b4>] (mmci_irq) from [<c0280a60>] (handle_irq_event_percpu+0x78/0x134) [<c0280a60>] (handle_irq_event_percpu) from [<c0280b60>] (handle_irq_event+0x44/0x64) [<c0280b60>] (handle_irq_event) from [<c028369c>] (handle_fasteoi_irq+0xa8/0x1a8) [<c028369c>] (handle_fasteoi_irq) from [<c0280278>] (generic_handle_irq+0x2c/0x3c) [<c0280278>] (generic_handle_irq) from [<c020f080>] (handle_IRQ+0x40/0x90) [<c020f080>] (handle_IRQ) from [<c02088e4>] (gic_handle_irq+0x38/0x68) [<c02088e4>] (gic_handle_irq) from [<c0212800>] (__irq_svc+0x40/0x54) Exception stack(0xc0c93f28 to 0xc0c93f70) 3f20: 00000001 a987c000 c0c93f3c c04bd574 00000000 0000015b 3f40: ea7a0e40 00000000 c0d460e8 c0d460e8 c0c92000 c08ea538 29b12000 c0c93f70 3f60: c04bd630 c04bd5bc 200f0013 ffffffff [<c0212800>] (__irq_svc) from [<c04bd5bc>] (msm_cpu_pm_enter_sleep+0x48/0x4c) [<c04bd5bc>] (msm_cpu_pm_enter_sleep) from [<c071bd24>] (qcom_lpm_enter_spc+0x20/0x2c) [<c071bd24>] (qcom_lpm_enter_spc) from [<c0719a44>] (cpuidle_enter_state+0x44/0xf0) [<c0719a44>] (cpuidle_enter_state) from [<c0276198>] (cpu_startup_entry+0x1f4/0x238) [<c0276198>] (cpu_startup_entry) from [<c0be0bc4>] (start_kernel+0x384/0x390) Code: 1e070f3e e1110003 e1c11003 1e071f3e (ee070f36) ---[ end trace cf6cb3f6432c9834 ]--- Kernel panic - not syncing: Fatal exception in interrupt Reported-by: Nicolas Dechesne <nicolas.dechesne@linaro.org> Signed-off-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org> Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2014-10-08 05:24:24 -06:00
/* prepare the request again */
if (areq)
mmc_pre_req(host, areq->mrq, !host->areq);
}
mmc: core: add non-blocking mmc request function Previously there has only been one function mmc_wait_for_req() to start and wait for a request. This patch adds: * mmc_start_req() - starts a request wihtout waiting If there is on ongoing request wait for completion of that request and start the new one and return. Does not wait for the new command to complete. This patch also adds new function members in struct mmc_host_ops only called from core.c: * pre_req - asks the host driver to prepare for the next job * post_req - asks the host driver to clean up after a completed job The intention is to use pre_req() and post_req() to do cache maintenance while a request is active. pre_req() can be called while a request is active to minimize latency to start next job. post_req() can be used after the next job is started to clean up the request. This will minimize the host driver request end latency. post_req() is typically used before ending the block request and handing over the buffer to the block layer. Add a host-private member in mmc_data to be used by pre_req to mark the data. The host driver will then check this mark to see if the data is prepared or not. Signed-off-by: Per Forlin <per.forlin@linaro.org> Acked-by: Kyungmin Park <kyungmin.park@samsung.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Venkatraman S <svenkatr@ti.com> Tested-by: Sourav Poddar <sourav.poddar@ti.com> Tested-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-07-01 10:55:22 -06:00
}
if (!err && areq)
start_err = __mmc_start_data_req(host, areq->mrq);
mmc: core: add non-blocking mmc request function Previously there has only been one function mmc_wait_for_req() to start and wait for a request. This patch adds: * mmc_start_req() - starts a request wihtout waiting If there is on ongoing request wait for completion of that request and start the new one and return. Does not wait for the new command to complete. This patch also adds new function members in struct mmc_host_ops only called from core.c: * pre_req - asks the host driver to prepare for the next job * post_req - asks the host driver to clean up after a completed job The intention is to use pre_req() and post_req() to do cache maintenance while a request is active. pre_req() can be called while a request is active to minimize latency to start next job. post_req() can be used after the next job is started to clean up the request. This will minimize the host driver request end latency. post_req() is typically used before ending the block request and handing over the buffer to the block layer. Add a host-private member in mmc_data to be used by pre_req to mark the data. The host driver will then check this mark to see if the data is prepared or not. Signed-off-by: Per Forlin <per.forlin@linaro.org> Acked-by: Kyungmin Park <kyungmin.park@samsung.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Venkatraman S <svenkatr@ti.com> Tested-by: Sourav Poddar <sourav.poddar@ti.com> Tested-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-07-01 10:55:22 -06:00
if (host->areq)
mmc_post_req(host, host->areq->mrq, 0);
/* Cancel a prepared request if it was not started. */
if ((err || start_err) && areq)
mmc_post_req(host, areq->mrq, -EINVAL);
if (err)
host->areq = NULL;
else
host->areq = areq;
mmc: core: add non-blocking mmc request function Previously there has only been one function mmc_wait_for_req() to start and wait for a request. This patch adds: * mmc_start_req() - starts a request wihtout waiting If there is on ongoing request wait for completion of that request and start the new one and return. Does not wait for the new command to complete. This patch also adds new function members in struct mmc_host_ops only called from core.c: * pre_req - asks the host driver to prepare for the next job * post_req - asks the host driver to clean up after a completed job The intention is to use pre_req() and post_req() to do cache maintenance while a request is active. pre_req() can be called while a request is active to minimize latency to start next job. post_req() can be used after the next job is started to clean up the request. This will minimize the host driver request end latency. post_req() is typically used before ending the block request and handing over the buffer to the block layer. Add a host-private member in mmc_data to be used by pre_req to mark the data. The host driver will then check this mark to see if the data is prepared or not. Signed-off-by: Per Forlin <per.forlin@linaro.org> Acked-by: Kyungmin Park <kyungmin.park@samsung.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Venkatraman S <svenkatr@ti.com> Tested-by: Sourav Poddar <sourav.poddar@ti.com> Tested-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-07-01 10:55:22 -06:00
if (error)
*error = err;
return data;
}
EXPORT_SYMBOL(mmc_start_req);
/**
* mmc_wait_for_req - start a request and wait for completion
* @host: MMC host to start command
* @mrq: MMC request to start
*
* Start a new MMC custom command request for a host, and wait
* for the command to complete. Does not attempt to parse the
* response.
*/
void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
{
mmc: core: add non-blocking mmc request function Previously there has only been one function mmc_wait_for_req() to start and wait for a request. This patch adds: * mmc_start_req() - starts a request wihtout waiting If there is on ongoing request wait for completion of that request and start the new one and return. Does not wait for the new command to complete. This patch also adds new function members in struct mmc_host_ops only called from core.c: * pre_req - asks the host driver to prepare for the next job * post_req - asks the host driver to clean up after a completed job The intention is to use pre_req() and post_req() to do cache maintenance while a request is active. pre_req() can be called while a request is active to minimize latency to start next job. post_req() can be used after the next job is started to clean up the request. This will minimize the host driver request end latency. post_req() is typically used before ending the block request and handing over the buffer to the block layer. Add a host-private member in mmc_data to be used by pre_req to mark the data. The host driver will then check this mark to see if the data is prepared or not. Signed-off-by: Per Forlin <per.forlin@linaro.org> Acked-by: Kyungmin Park <kyungmin.park@samsung.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Venkatraman S <svenkatr@ti.com> Tested-by: Sourav Poddar <sourav.poddar@ti.com> Tested-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-07-01 10:55:22 -06:00
__mmc_start_req(host, mrq);
mmc_wait_for_req_done(host, mrq);
}
EXPORT_SYMBOL(mmc_wait_for_req);
/**
* mmc_interrupt_hpi - Issue for High priority Interrupt
* @card: the MMC card associated with the HPI transfer
*
* Issued High Priority Interrupt, and check for card status
* until out-of prg-state.
*/
int mmc_interrupt_hpi(struct mmc_card *card)
{
int err;
u32 status;
unsigned long prg_wait;
BUG_ON(!card);
if (!card->ext_csd.hpi_en) {
pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
return 1;
}
mmc_claim_host(card->host);
err = mmc_send_status(card, &status);
if (err) {
pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
goto out;
}
switch (R1_CURRENT_STATE(status)) {
case R1_STATE_IDLE:
case R1_STATE_READY:
case R1_STATE_STBY:
case R1_STATE_TRAN:
/*
* In idle and transfer states, HPI is not needed and the caller
* can issue the next intended command immediately
*/
goto out;
case R1_STATE_PRG:
break;
default:
/* In all other states, it's illegal to issue HPI */
pr_debug("%s: HPI cannot be sent. Card state=%d\n",
mmc_hostname(card->host), R1_CURRENT_STATE(status));
err = -EINVAL;
goto out;
}
err = mmc_send_hpi_cmd(card, &status);
if (err)
goto out;
prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
do {
err = mmc_send_status(card, &status);
if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
break;
if (time_after(jiffies, prg_wait))
err = -ETIMEDOUT;
} while (!err);
out:
mmc_release_host(card->host);
return err;
}
EXPORT_SYMBOL(mmc_interrupt_hpi);
/**
* mmc_wait_for_cmd - start a command and wait for completion
* @host: MMC host to start command
* @cmd: MMC command to start
* @retries: maximum number of retries
*
* Start a new MMC command for a host, and wait for the command
* to complete. Return any error that occurred while the command
* was executing. Do not attempt to parse the response.
*/
int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
{
struct mmc_request mrq = {NULL};
WARN_ON(!host->claimed);
memset(cmd->resp, 0, sizeof(cmd->resp));
cmd->retries = retries;
mrq.cmd = cmd;
cmd->data = NULL;
mmc_wait_for_req(host, &mrq);
return cmd->error;
}
EXPORT_SYMBOL(mmc_wait_for_cmd);
/**
* mmc_stop_bkops - stop ongoing BKOPS
* @card: MMC card to check BKOPS
*
* Send HPI command to stop ongoing background operations to
* allow rapid servicing of foreground operations, e.g. read/
* writes. Wait until the card comes out of the programming state
* to avoid errors in servicing read/write requests.
*/
int mmc_stop_bkops(struct mmc_card *card)
{
int err = 0;
BUG_ON(!card);
err = mmc_interrupt_hpi(card);
/*
* If err is EINVAL, we can't issue an HPI.
* It should complete the BKOPS.
*/
if (!err || (err == -EINVAL)) {
mmc_card_clr_doing_bkops(card);
err = 0;
}
return err;
}
EXPORT_SYMBOL(mmc_stop_bkops);
int mmc_read_bkops_status(struct mmc_card *card)
{
int err;
u8 *ext_csd;
mmc_claim_host(card->host);
err = mmc_get_ext_csd(card, &ext_csd);
mmc_release_host(card->host);
if (err)
return err;
card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
kfree(ext_csd);
return 0;
}
EXPORT_SYMBOL(mmc_read_bkops_status);
/**
* mmc_set_data_timeout - set the timeout for a data command
* @data: data phase for command
* @card: the MMC card associated with the data transfer
*
* Computes the data timeout parameters according to the
* correct algorithm given the card type.
*/
void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
{
unsigned int mult;
/*
* SDIO cards only define an upper 1 s limit on access.
*/
if (mmc_card_sdio(card)) {
data->timeout_ns = 1000000000;
data->timeout_clks = 0;
return;
}
/*
* SD cards use a 100 multiplier rather than 10
*/
mult = mmc_card_sd(card) ? 100 : 10;
/*
* Scale up the multiplier (and therefore the timeout) by
* the r2w factor for writes.
*/
if (data->flags & MMC_DATA_WRITE)
mult <<= card->csd.r2w_factor;
data->timeout_ns = card->csd.tacc_ns * mult;
data->timeout_clks = card->csd.tacc_clks * mult;
/*
* SD cards also have an upper limit on the timeout.
*/
if (mmc_card_sd(card)) {
unsigned int timeout_us, limit_us;
timeout_us = data->timeout_ns / 1000;
if (mmc_host_clk_rate(card->host))
timeout_us += data->timeout_clks * 1000 /
(mmc_host_clk_rate(card->host) / 1000);
if (data->flags & MMC_DATA_WRITE)
/*
* The MMC spec "It is strongly recommended
* for hosts to implement more than 500ms
* timeout value even if the card indicates
* the 250ms maximum busy length." Even the
* previous value of 300ms is known to be
* insufficient for some cards.
*/
limit_us = 3000000;
else
limit_us = 100000;
/*
* SDHC cards always use these fixed values.
*/
if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
data->timeout_ns = limit_us * 1000;
data->timeout_clks = 0;
}
mmc: core: Use maximum timeout values in case TACC field is zero When plugging a specific micro SD card at MMC socket of a custom i.MX28 board, we get the following kernel warning: WARNING: CPU: 0 PID: 30 at drivers/mmc/host/mxs-mmc.c:342 mxs_mmc_start_cmd+0x34c/0x378() Modules linked in: CPU: 0 PID: 30 Comm: kworker/u2:1 Not tainted 3.14.0-rc5 #8 Workqueue: kmmcd mmc_rescan [<c0015420>] (unwind_backtrace) from [<c0012cb0>] (show_stack+0x10/0x14) [<c0012cb0>] (show_stack) from [<c001daf8>] (warn_slowpath_common+0x6c/0x8c) [<c001daf8>] (warn_slowpath_common) from [<c001db34>] (warn_slowpath_null+0x1c/0x24) [<c001db34>] (warn_slowpath_null) from [<c0349478>] (mxs_mmc_start_cmd+0x34c/0x378) [<c0349478>] (mxs_mmc_start_cmd) from [<c0338fa0>] (mmc_start_request+0xc4/0xf4) [<c0338fa0>] (mmc_start_request) from [<c03390b4>] (mmc_wait_for_req+0x50/0x164) [<c03390b4>] (mmc_wait_for_req) from [<c03405b8>] (mmc_app_send_scr+0x158/0x1c8) [<c03405b8>] (mmc_app_send_scr) from [<c033ee1c>] (mmc_sd_setup_card+0x80/0x3c8) [<c033ee1c>] (mmc_sd_setup_card) from [<c033f788>] (mmc_sd_init_card+0x124/0x66c) [<c033f788>] (mmc_sd_init_card) from [<c033fd7c>] (mmc_attach_sd+0xac/0x174) [<c033fd7c>] (mmc_attach_sd) from [<c033a658>] (mmc_rescan+0x25c/0x2d8) [<c033a658>] (mmc_rescan) from [<c003597c>] (process_one_work+0x1b4/0x4ec) [<c003597c>] (process_one_work) from [<c0035de4>] (worker_thread+0x130/0x464) [<c0035de4>] (worker_thread) from [<c003c824>] (kthread+0xb4/0xd0) [<c003c824>] (kthread) from [<c000f420>] (ret_from_fork+0x14/0x34) The error is due to an invalid value in CSD register of a specific 2GB micro SD card. The CSD version of this card is 1.0 but the TACC field has the invalid value 0. cid:0000005553442020000000000000583f csd:00000032535a83bfedb7ffbf1680003f date:08/2005 erase_size:512 fwrev:0x0 hwrev:0x0 manfid:0x000000 name:USD oemid:0x0000 preferred_erase_size:4194304 scr:0225000000000000 serial:0x00000000 type:SD Since the kernel is making use of this TACC field to calculate the SD card timeout, an invalid value 0 leads to a warning at mxs_ns_to_ssp_ticks() and later the following misleading error message appears in a loop: mxs-mmc 80010000.ssp: card claims to support voltages below defined range mxs-mmc 80010000.ssp: no support for card's volts mmc0: error -22 whilst initialising MMC card This error is only found on this 2GB SD card on mxs platform. On x86 this card works without any problems. The following patch based on the work of Peter Chan and Otavio Salvador. It catches the case that the determined timeout is still 0 and sets it to a valid value. Successful tested on a i.MX28 board. Signed-off-by: Stefan Wahren <stefan.wahren@i2se.com> Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org> Signed-off-by: Chris Ball <chris@printf.net>
2014-04-03 09:32:05 -06:00
/* assign limit value if invalid */
if (timeout_us == 0)
data->timeout_ns = limit_us * 1000;
}
/*
* Some cards require longer data read timeout than indicated in CSD.
* Address this by setting the read timeout to a "reasonably high"
* value. For the cards tested, 300ms has proven enough. If necessary,
* this value can be increased if other problematic cards require this.
*/
if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
data->timeout_ns = 300000000;
data->timeout_clks = 0;
}
/*
* Some cards need very high timeouts if driven in SPI mode.
* The worst observed timeout was 900ms after writing a
* continuous stream of data until the internal logic
* overflowed.
*/
if (mmc_host_is_spi(card->host)) {
if (data->flags & MMC_DATA_WRITE) {
if (data->timeout_ns < 1000000000)
data->timeout_ns = 1000000000; /* 1s */
} else {
if (data->timeout_ns < 100000000)
data->timeout_ns = 100000000; /* 100ms */
}
}
}
EXPORT_SYMBOL(mmc_set_data_timeout);
/**
* mmc_align_data_size - pads a transfer size to a more optimal value
* @card: the MMC card associated with the data transfer
* @sz: original transfer size
*
* Pads the original data size with a number of extra bytes in
* order to avoid controller bugs and/or performance hits
* (e.g. some controllers revert to PIO for certain sizes).
*
* Returns the improved size, which might be unmodified.
*
* Note that this function is only relevant when issuing a
* single scatter gather entry.
*/
unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
{
/*
* FIXME: We don't have a system for the controller to tell
* the core about its problems yet, so for now we just 32-bit
* align the size.
*/
sz = ((sz + 3) / 4) * 4;
return sz;
}
EXPORT_SYMBOL(mmc_align_data_size);
/**
* __mmc_claim_host - exclusively claim a host
* @host: mmc host to claim
* @abort: whether or not the operation should be aborted
*
* Claim a host for a set of operations. If @abort is non null and
* dereference a non-zero value then this will return prematurely with
* that non-zero value without acquiring the lock. Returns zero
* with the lock held otherwise.
*/
int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
{
DECLARE_WAITQUEUE(wait, current);
unsigned long flags;
int stop;
might_sleep();
add_wait_queue(&host->wq, &wait);
spin_lock_irqsave(&host->lock, flags);
while (1) {
set_current_state(TASK_UNINTERRUPTIBLE);
stop = abort ? atomic_read(abort) : 0;
if (stop || !host->claimed || host->claimer == current)
break;
spin_unlock_irqrestore(&host->lock, flags);
schedule();
spin_lock_irqsave(&host->lock, flags);
}
set_current_state(TASK_RUNNING);
if (!stop) {
host->claimed = 1;
host->claimer = current;
host->claim_cnt += 1;
} else
wake_up(&host->wq);
spin_unlock_irqrestore(&host->lock, flags);
remove_wait_queue(&host->wq, &wait);
if (host->ops->enable && !stop && host->claim_cnt == 1)
host->ops->enable(host);
return stop;
}
EXPORT_SYMBOL(__mmc_claim_host);
/**
* mmc_release_host - release a host
* @host: mmc host to release
*
* Release a MMC host, allowing others to claim the host
* for their operations.
*/
void mmc_release_host(struct mmc_host *host)
{
unsigned long flags;
WARN_ON(!host->claimed);
if (host->ops->disable && host->claim_cnt == 1)
host->ops->disable(host);
spin_lock_irqsave(&host->lock, flags);
if (--host->claim_cnt) {
/* Release for nested claim */
spin_unlock_irqrestore(&host->lock, flags);
} else {
host->claimed = 0;
host->claimer = NULL;
spin_unlock_irqrestore(&host->lock, flags);
wake_up(&host->wq);
}
}
EXPORT_SYMBOL(mmc_release_host);
/*
* This is a helper function, which fetches a runtime pm reference for the
* card device and also claims the host.
*/
void mmc_get_card(struct mmc_card *card)
{
pm_runtime_get_sync(&card->dev);
mmc_claim_host(card->host);
}
EXPORT_SYMBOL(mmc_get_card);
/*
* This is a helper function, which releases the host and drops the runtime
* pm reference for the card device.
*/
void mmc_put_card(struct mmc_card *card)
{
mmc_release_host(card->host);
pm_runtime_mark_last_busy(&card->dev);
pm_runtime_put_autosuspend(&card->dev);
}
EXPORT_SYMBOL(mmc_put_card);
/*
* Internal function that does the actual ios call to the host driver,
* optionally printing some debug output.
*/
static inline void mmc_set_ios(struct mmc_host *host)
{
struct mmc_ios *ios = &host->ios;
pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
"width %u timing %u\n",
mmc_hostname(host), ios->clock, ios->bus_mode,
ios->power_mode, ios->chip_select, ios->vdd,
ios->bus_width, ios->timing);
if (ios->clock > 0)
mmc_set_ungated(host);
host->ops->set_ios(host, ios);
}
/*
* Control chip select pin on a host.
*/
void mmc_set_chip_select(struct mmc_host *host, int mode)
{
mmc: core: prevent aggressive clock gating racing with ios updates We have seen at least two different races when clock gating kicks in in a middle of ios structure update. First one happens when ios->clock is changed outside of aggressive clock gating framework, for example via mmc_set_clock(). The race might happen when we run following code: mmc_set_ios(): ... if (ios->clock > 0) mmc_set_ungated(host); Now if gating kicks in right after the condition check we end up setting host->clk_gated to false even though we have just gated the clock. Next time a request is started we try to ungate and restore the clock in mmc_host_clk_hold(). However since we have host->clk_gated set to false the original clock is not restored. This eventually will cause the host controller to hang since its clock is disabled while we are trying to issue a request. For example on Intel Medfield platform we see: [ 13.818610] mmc2: Timeout waiting for hardware interrupt. [ 13.818698] sdhci: =========== REGISTER DUMP (mmc2)=========== [ 13.818753] sdhci: Sys addr: 0x00000000 | Version: 0x00008901 [ 13.818804] sdhci: Blk size: 0x00000000 | Blk cnt: 0x00000000 [ 13.818853] sdhci: Argument: 0x00000000 | Trn mode: 0x00000000 [ 13.818903] sdhci: Present: 0x1fff0000 | Host ctl: 0x00000001 [ 13.818951] sdhci: Power: 0x0000000d | Blk gap: 0x00000000 [ 13.819000] sdhci: Wake-up: 0x00000000 | Clock: 0x00000000 [ 13.819049] sdhci: Timeout: 0x00000000 | Int stat: 0x00000000 [ 13.819098] sdhci: Int enab: 0x00ff00c3 | Sig enab: 0x00ff00c3 [ 13.819147] sdhci: AC12 err: 0x00000000 | Slot int: 0x00000000 [ 13.819196] sdhci: Caps: 0x6bee32b2 | Caps_1: 0x00000000 [ 13.819245] sdhci: Cmd: 0x00000000 | Max curr: 0x00000000 [ 13.819292] sdhci: Host ctl2: 0x00000000 [ 13.819331] sdhci: ADMA Err: 0x00000000 | ADMA Ptr: 0x00000000 [ 13.819377] sdhci: =========================================== [ 13.919605] mmc2: Reset 0x2 never completed. and it never recovers. Second race might happen while running mmc_power_off(): static void mmc_power_off(struct mmc_host *host) { host->ios.clock = 0; host->ios.vdd = 0; [ clock gating kicks in here ] /* * Reset ocr mask to be the highest possible voltage supported for * this mmc host. This value will be used at next power up. */ host->ocr = 1 << (fls(host->ocr_avail) - 1); if (!mmc_host_is_spi(host)) { host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN; host->ios.chip_select = MMC_CS_DONTCARE; } host->ios.power_mode = MMC_POWER_OFF; host->ios.bus_width = MMC_BUS_WIDTH_1; host->ios.timing = MMC_TIMING_LEGACY; mmc_set_ios(host); } If the clock gating worker kicks in while we are only partially updated the ios structure the host controller gets incomplete ios and might not work as supposed. Again on Intel Medfield platform we get: [ 4.185349] kernel BUG at drivers/mmc/host/sdhci.c:1155! [ 4.185422] invalid opcode: 0000 [#1] PREEMPT SMP [ 4.185509] Modules linked in: [ 4.185565] [ 4.185608] Pid: 4, comm: kworker/0:0 Not tainted 3.0.0+ #240 Intel Corporation Medfield/iCDKA [ 4.185742] EIP: 0060:[<c136364e>] EFLAGS: 00010083 CPU: 0 [ 4.185827] EIP is at sdhci_set_power+0x3e/0xd0 [ 4.185891] EAX: f5ff98e0 EBX: f5ff98e0 ECX: 00000000 EDX: 00000001 [ 4.185970] ESI: f5ff977c EDI: f5ff9904 EBP: f644fe98 ESP: f644fe94 [ 4.186049] DS: 007b ES: 007b FS: 00d8 GS: 0000 SS: 0068 [ 4.186125] Process kworker/0:0 (pid: 4, ti=f644e000 task=f644c0e0 task.ti=f644e000) [ 4.186219] Stack: [ 4.186257] f5ff98e0 f644feb0 c1365173 00000282 f5ff9460 f5ff96e0 f5ff96e0 f644feec [ 4.186418] c1355bd8 f644c0e0 c1499c3d f5ff96e0 f644fed4 00000006 f5ff96e0 00000286 [ 4.186579] f644fedc c107922b f644feec 00000286 f5ff9460 f5ff9700 f644ff10 c135839e [ 4.186739] Call Trace: [ 4.186802] [<c1365173>] sdhci_set_ios+0x1c3/0x340 [ 4.186883] [<c1355bd8>] mmc_gate_clock+0x68/0x120 [ 4.186963] [<c1499c3d>] ? _raw_spin_unlock_irqrestore+0x4d/0x60 [ 4.187052] [<c107922b>] ? trace_hardirqs_on+0xb/0x10 [ 4.187134] [<c135839e>] mmc_host_clk_gate_delayed+0xbe/0x130 [ 4.187219] [<c105ec09>] ? process_one_work+0xf9/0x5b0 [ 4.187300] [<c135841d>] mmc_host_clk_gate_work+0xd/0x10 [ 4.187379] [<c105ec82>] process_one_work+0x172/0x5b0 [ 4.187457] [<c105ec09>] ? process_one_work+0xf9/0x5b0 [ 4.187538] [<c1358410>] ? mmc_host_clk_gate_delayed+0x130/0x130 [ 4.187625] [<c105f3c8>] worker_thread+0x118/0x330 [ 4.187700] [<c1496cee>] ? preempt_schedule+0x2e/0x50 [ 4.187779] [<c105f2b0>] ? rescuer_thread+0x1f0/0x1f0 [ 4.187857] [<c1062cf4>] kthread+0x74/0x80 [ 4.187931] [<c1062c80>] ? __init_kthread_worker+0x60/0x60 [ 4.188015] [<c149acfa>] kernel_thread_helper+0x6/0xd [ 4.188079] Code: 81 fa 00 00 04 00 0f 84 a7 00 00 00 7f 21 81 fa 80 00 00 00 0f 84 92 00 00 00 81 fa 00 00 0 [ 4.188780] EIP: [<c136364e>] sdhci_set_power+0x3e/0xd0 SS:ESP 0068:f644fe94 [ 4.188898] ---[ end trace a7b23eecc71777e4 ]--- This BUG() comes from the fact that ios.power_mode was still in previous value (MMC_POWER_ON) and ios.vdd was set to zero. We prevent these by inhibiting the clock gating while we update the ios structure. Both problems can be reproduced by simply running the device in a reboot loop. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Linus Walleij <linus.walleij@linaro.org> Tested-by: Chris Ball <cjb@laptop.org> Cc: <stable@kernel.org> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-08-18 06:23:48 -06:00
mmc_host_clk_hold(host);
host->ios.chip_select = mode;
mmc_set_ios(host);
mmc: core: prevent aggressive clock gating racing with ios updates We have seen at least two different races when clock gating kicks in in a middle of ios structure update. First one happens when ios->clock is changed outside of aggressive clock gating framework, for example via mmc_set_clock(). The race might happen when we run following code: mmc_set_ios(): ... if (ios->clock > 0) mmc_set_ungated(host); Now if gating kicks in right after the condition check we end up setting host->clk_gated to false even though we have just gated the clock. Next time a request is started we try to ungate and restore the clock in mmc_host_clk_hold(). However since we have host->clk_gated set to false the original clock is not restored. This eventually will cause the host controller to hang since its clock is disabled while we are trying to issue a request. For example on Intel Medfield platform we see: [ 13.818610] mmc2: Timeout waiting for hardware interrupt. [ 13.818698] sdhci: =========== REGISTER DUMP (mmc2)=========== [ 13.818753] sdhci: Sys addr: 0x00000000 | Version: 0x00008901 [ 13.818804] sdhci: Blk size: 0x00000000 | Blk cnt: 0x00000000 [ 13.818853] sdhci: Argument: 0x00000000 | Trn mode: 0x00000000 [ 13.818903] sdhci: Present: 0x1fff0000 | Host ctl: 0x00000001 [ 13.818951] sdhci: Power: 0x0000000d | Blk gap: 0x00000000 [ 13.819000] sdhci: Wake-up: 0x00000000 | Clock: 0x00000000 [ 13.819049] sdhci: Timeout: 0x00000000 | Int stat: 0x00000000 [ 13.819098] sdhci: Int enab: 0x00ff00c3 | Sig enab: 0x00ff00c3 [ 13.819147] sdhci: AC12 err: 0x00000000 | Slot int: 0x00000000 [ 13.819196] sdhci: Caps: 0x6bee32b2 | Caps_1: 0x00000000 [ 13.819245] sdhci: Cmd: 0x00000000 | Max curr: 0x00000000 [ 13.819292] sdhci: Host ctl2: 0x00000000 [ 13.819331] sdhci: ADMA Err: 0x00000000 | ADMA Ptr: 0x00000000 [ 13.819377] sdhci: =========================================== [ 13.919605] mmc2: Reset 0x2 never completed. and it never recovers. Second race might happen while running mmc_power_off(): static void mmc_power_off(struct mmc_host *host) { host->ios.clock = 0; host->ios.vdd = 0; [ clock gating kicks in here ] /* * Reset ocr mask to be the highest possible voltage supported for * this mmc host. This value will be used at next power up. */ host->ocr = 1 << (fls(host->ocr_avail) - 1); if (!mmc_host_is_spi(host)) { host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN; host->ios.chip_select = MMC_CS_DONTCARE; } host->ios.power_mode = MMC_POWER_OFF; host->ios.bus_width = MMC_BUS_WIDTH_1; host->ios.timing = MMC_TIMING_LEGACY; mmc_set_ios(host); } If the clock gating worker kicks in while we are only partially updated the ios structure the host controller gets incomplete ios and might not work as supposed. Again on Intel Medfield platform we get: [ 4.185349] kernel BUG at drivers/mmc/host/sdhci.c:1155! [ 4.185422] invalid opcode: 0000 [#1] PREEMPT SMP [ 4.185509] Modules linked in: [ 4.185565] [ 4.185608] Pid: 4, comm: kworker/0:0 Not tainted 3.0.0+ #240 Intel Corporation Medfield/iCDKA [ 4.185742] EIP: 0060:[<c136364e>] EFLAGS: 00010083 CPU: 0 [ 4.185827] EIP is at sdhci_set_power+0x3e/0xd0 [ 4.185891] EAX: f5ff98e0 EBX: f5ff98e0 ECX: 00000000 EDX: 00000001 [ 4.185970] ESI: f5ff977c EDI: f5ff9904 EBP: f644fe98 ESP: f644fe94 [ 4.186049] DS: 007b ES: 007b FS: 00d8 GS: 0000 SS: 0068 [ 4.186125] Process kworker/0:0 (pid: 4, ti=f644e000 task=f644c0e0 task.ti=f644e000) [ 4.186219] Stack: [ 4.186257] f5ff98e0 f644feb0 c1365173 00000282 f5ff9460 f5ff96e0 f5ff96e0 f644feec [ 4.186418] c1355bd8 f644c0e0 c1499c3d f5ff96e0 f644fed4 00000006 f5ff96e0 00000286 [ 4.186579] f644fedc c107922b f644feec 00000286 f5ff9460 f5ff9700 f644ff10 c135839e [ 4.186739] Call Trace: [ 4.186802] [<c1365173>] sdhci_set_ios+0x1c3/0x340 [ 4.186883] [<c1355bd8>] mmc_gate_clock+0x68/0x120 [ 4.186963] [<c1499c3d>] ? _raw_spin_unlock_irqrestore+0x4d/0x60 [ 4.187052] [<c107922b>] ? trace_hardirqs_on+0xb/0x10 [ 4.187134] [<c135839e>] mmc_host_clk_gate_delayed+0xbe/0x130 [ 4.187219] [<c105ec09>] ? process_one_work+0xf9/0x5b0 [ 4.187300] [<c135841d>] mmc_host_clk_gate_work+0xd/0x10 [ 4.187379] [<c105ec82>] process_one_work+0x172/0x5b0 [ 4.187457] [<c105ec09>] ? process_one_work+0xf9/0x5b0 [ 4.187538] [<c1358410>] ? mmc_host_clk_gate_delayed+0x130/0x130 [ 4.187625] [<c105f3c8>] worker_thread+0x118/0x330 [ 4.187700] [<c1496cee>] ? preempt_schedule+0x2e/0x50 [ 4.187779] [<c105f2b0>] ? rescuer_thread+0x1f0/0x1f0 [ 4.187857] [<c1062cf4>] kthread+0x74/0x80 [ 4.187931] [<c1062c80>] ? __init_kthread_worker+0x60/0x60 [ 4.188015] [<c149acfa>] kernel_thread_helper+0x6/0xd [ 4.188079] Code: 81 fa 00 00 04 00 0f 84 a7 00 00 00 7f 21 81 fa 80 00 00 00 0f 84 92 00 00 00 81 fa 00 00 0 [ 4.188780] EIP: [<c136364e>] sdhci_set_power+0x3e/0xd0 SS:ESP 0068:f644fe94 [ 4.188898] ---[ end trace a7b23eecc71777e4 ]--- This BUG() comes from the fact that ios.power_mode was still in previous value (MMC_POWER_ON) and ios.vdd was set to zero. We prevent these by inhibiting the clock gating while we update the ios structure. Both problems can be reproduced by simply running the device in a reboot loop. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Linus Walleij <linus.walleij@linaro.org> Tested-by: Chris Ball <cjb@laptop.org> Cc: <stable@kernel.org> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-08-18 06:23:48 -06:00
mmc_host_clk_release(host);
}
/*
* Sets the host clock to the highest possible frequency that
* is below "hz".
*/
mmc: core: prevent aggressive clock gating racing with ios updates We have seen at least two different races when clock gating kicks in in a middle of ios structure update. First one happens when ios->clock is changed outside of aggressive clock gating framework, for example via mmc_set_clock(). The race might happen when we run following code: mmc_set_ios(): ... if (ios->clock > 0) mmc_set_ungated(host); Now if gating kicks in right after the condition check we end up setting host->clk_gated to false even though we have just gated the clock. Next time a request is started we try to ungate and restore the clock in mmc_host_clk_hold(). However since we have host->clk_gated set to false the original clock is not restored. This eventually will cause the host controller to hang since its clock is disabled while we are trying to issue a request. For example on Intel Medfield platform we see: [ 13.818610] mmc2: Timeout waiting for hardware interrupt. [ 13.818698] sdhci: =========== REGISTER DUMP (mmc2)=========== [ 13.818753] sdhci: Sys addr: 0x00000000 | Version: 0x00008901 [ 13.818804] sdhci: Blk size: 0x00000000 | Blk cnt: 0x00000000 [ 13.818853] sdhci: Argument: 0x00000000 | Trn mode: 0x00000000 [ 13.818903] sdhci: Present: 0x1fff0000 | Host ctl: 0x00000001 [ 13.818951] sdhci: Power: 0x0000000d | Blk gap: 0x00000000 [ 13.819000] sdhci: Wake-up: 0x00000000 | Clock: 0x00000000 [ 13.819049] sdhci: Timeout: 0x00000000 | Int stat: 0x00000000 [ 13.819098] sdhci: Int enab: 0x00ff00c3 | Sig enab: 0x00ff00c3 [ 13.819147] sdhci: AC12 err: 0x00000000 | Slot int: 0x00000000 [ 13.819196] sdhci: Caps: 0x6bee32b2 | Caps_1: 0x00000000 [ 13.819245] sdhci: Cmd: 0x00000000 | Max curr: 0x00000000 [ 13.819292] sdhci: Host ctl2: 0x00000000 [ 13.819331] sdhci: ADMA Err: 0x00000000 | ADMA Ptr: 0x00000000 [ 13.819377] sdhci: =========================================== [ 13.919605] mmc2: Reset 0x2 never completed. and it never recovers. Second race might happen while running mmc_power_off(): static void mmc_power_off(struct mmc_host *host) { host->ios.clock = 0; host->ios.vdd = 0; [ clock gating kicks in here ] /* * Reset ocr mask to be the highest possible voltage supported for * this mmc host. This value will be used at next power up. */ host->ocr = 1 << (fls(host->ocr_avail) - 1); if (!mmc_host_is_spi(host)) { host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN; host->ios.chip_select = MMC_CS_DONTCARE; } host->ios.power_mode = MMC_POWER_OFF; host->ios.bus_width = MMC_BUS_WIDTH_1; host->ios.timing = MMC_TIMING_LEGACY; mmc_set_ios(host); } If the clock gating worker kicks in while we are only partially updated the ios structure the host controller gets incomplete ios and might not work as supposed. Again on Intel Medfield platform we get: [ 4.185349] kernel BUG at drivers/mmc/host/sdhci.c:1155! [ 4.185422] invalid opcode: 0000 [#1] PREEMPT SMP [ 4.185509] Modules linked in: [ 4.185565] [ 4.185608] Pid: 4, comm: kworker/0:0 Not tainted 3.0.0+ #240 Intel Corporation Medfield/iCDKA [ 4.185742] EIP: 0060:[<c136364e>] EFLAGS: 00010083 CPU: 0 [ 4.185827] EIP is at sdhci_set_power+0x3e/0xd0 [ 4.185891] EAX: f5ff98e0 EBX: f5ff98e0 ECX: 00000000 EDX: 00000001 [ 4.185970] ESI: f5ff977c EDI: f5ff9904 EBP: f644fe98 ESP: f644fe94 [ 4.186049] DS: 007b ES: 007b FS: 00d8 GS: 0000 SS: 0068 [ 4.186125] Process kworker/0:0 (pid: 4, ti=f644e000 task=f644c0e0 task.ti=f644e000) [ 4.186219] Stack: [ 4.186257] f5ff98e0 f644feb0 c1365173 00000282 f5ff9460 f5ff96e0 f5ff96e0 f644feec [ 4.186418] c1355bd8 f644c0e0 c1499c3d f5ff96e0 f644fed4 00000006 f5ff96e0 00000286 [ 4.186579] f644fedc c107922b f644feec 00000286 f5ff9460 f5ff9700 f644ff10 c135839e [ 4.186739] Call Trace: [ 4.186802] [<c1365173>] sdhci_set_ios+0x1c3/0x340 [ 4.186883] [<c1355bd8>] mmc_gate_clock+0x68/0x120 [ 4.186963] [<c1499c3d>] ? _raw_spin_unlock_irqrestore+0x4d/0x60 [ 4.187052] [<c107922b>] ? trace_hardirqs_on+0xb/0x10 [ 4.187134] [<c135839e>] mmc_host_clk_gate_delayed+0xbe/0x130 [ 4.187219] [<c105ec09>] ? process_one_work+0xf9/0x5b0 [ 4.187300] [<c135841d>] mmc_host_clk_gate_work+0xd/0x10 [ 4.187379] [<c105ec82>] process_one_work+0x172/0x5b0 [ 4.187457] [<c105ec09>] ? process_one_work+0xf9/0x5b0 [ 4.187538] [<c1358410>] ? mmc_host_clk_gate_delayed+0x130/0x130 [ 4.187625] [<c105f3c8>] worker_thread+0x118/0x330 [ 4.187700] [<c1496cee>] ? preempt_schedule+0x2e/0x50 [ 4.187779] [<c105f2b0>] ? rescuer_thread+0x1f0/0x1f0 [ 4.187857] [<c1062cf4>] kthread+0x74/0x80 [ 4.187931] [<c1062c80>] ? __init_kthread_worker+0x60/0x60 [ 4.188015] [<c149acfa>] kernel_thread_helper+0x6/0xd [ 4.188079] Code: 81 fa 00 00 04 00 0f 84 a7 00 00 00 7f 21 81 fa 80 00 00 00 0f 84 92 00 00 00 81 fa 00 00 0 [ 4.188780] EIP: [<c136364e>] sdhci_set_power+0x3e/0xd0 SS:ESP 0068:f644fe94 [ 4.188898] ---[ end trace a7b23eecc71777e4 ]--- This BUG() comes from the fact that ios.power_mode was still in previous value (MMC_POWER_ON) and ios.vdd was set to zero. We prevent these by inhibiting the clock gating while we update the ios structure. Both problems can be reproduced by simply running the device in a reboot loop. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Linus Walleij <linus.walleij@linaro.org> Tested-by: Chris Ball <cjb@laptop.org> Cc: <stable@kernel.org> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-08-18 06:23:48 -06:00
static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
{
WARN_ON(hz && hz < host->f_min);
if (hz > host->f_max)
hz = host->f_max;
host->ios.clock = hz;
mmc_set_ios(host);
}
mmc: core: prevent aggressive clock gating racing with ios updates We have seen at least two different races when clock gating kicks in in a middle of ios structure update. First one happens when ios->clock is changed outside of aggressive clock gating framework, for example via mmc_set_clock(). The race might happen when we run following code: mmc_set_ios(): ... if (ios->clock > 0) mmc_set_ungated(host); Now if gating kicks in right after the condition check we end up setting host->clk_gated to false even though we have just gated the clock. Next time a request is started we try to ungate and restore the clock in mmc_host_clk_hold(). However since we have host->clk_gated set to false the original clock is not restored. This eventually will cause the host controller to hang since its clock is disabled while we are trying to issue a request. For example on Intel Medfield platform we see: [ 13.818610] mmc2: Timeout waiting for hardware interrupt. [ 13.818698] sdhci: =========== REGISTER DUMP (mmc2)=========== [ 13.818753] sdhci: Sys addr: 0x00000000 | Version: 0x00008901 [ 13.818804] sdhci: Blk size: 0x00000000 | Blk cnt: 0x00000000 [ 13.818853] sdhci: Argument: 0x00000000 | Trn mode: 0x00000000 [ 13.818903] sdhci: Present: 0x1fff0000 | Host ctl: 0x00000001 [ 13.818951] sdhci: Power: 0x0000000d | Blk gap: 0x00000000 [ 13.819000] sdhci: Wake-up: 0x00000000 | Clock: 0x00000000 [ 13.819049] sdhci: Timeout: 0x00000000 | Int stat: 0x00000000 [ 13.819098] sdhci: Int enab: 0x00ff00c3 | Sig enab: 0x00ff00c3 [ 13.819147] sdhci: AC12 err: 0x00000000 | Slot int: 0x00000000 [ 13.819196] sdhci: Caps: 0x6bee32b2 | Caps_1: 0x00000000 [ 13.819245] sdhci: Cmd: 0x00000000 | Max curr: 0x00000000 [ 13.819292] sdhci: Host ctl2: 0x00000000 [ 13.819331] sdhci: ADMA Err: 0x00000000 | ADMA Ptr: 0x00000000 [ 13.819377] sdhci: =========================================== [ 13.919605] mmc2: Reset 0x2 never completed. and it never recovers. Second race might happen while running mmc_power_off(): static void mmc_power_off(struct mmc_host *host) { host->ios.clock = 0; host->ios.vdd = 0; [ clock gating kicks in here ] /* * Reset ocr mask to be the highest possible voltage supported for * this mmc host. This value will be used at next power up. */ host->ocr = 1 << (fls(host->ocr_avail) - 1); if (!mmc_host_is_spi(host)) { host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN; host->ios.chip_select = MMC_CS_DONTCARE; } host->ios.power_mode = MMC_POWER_OFF; host->ios.bus_width = MMC_BUS_WIDTH_1; host->ios.timing = MMC_TIMING_LEGACY; mmc_set_ios(host); } If the clock gating worker kicks in while we are only partially updated the ios structure the host controller gets incomplete ios and might not work as supposed. Again on Intel Medfield platform we get: [ 4.185349] kernel BUG at drivers/mmc/host/sdhci.c:1155! [ 4.185422] invalid opcode: 0000 [#1] PREEMPT SMP [ 4.185509] Modules linked in: [ 4.185565] [ 4.185608] Pid: 4, comm: kworker/0:0 Not tainted 3.0.0+ #240 Intel Corporation Medfield/iCDKA [ 4.185742] EIP: 0060:[<c136364e>] EFLAGS: 00010083 CPU: 0 [ 4.185827] EIP is at sdhci_set_power+0x3e/0xd0 [ 4.185891] EAX: f5ff98e0 EBX: f5ff98e0 ECX: 00000000 EDX: 00000001 [ 4.185970] ESI: f5ff977c EDI: f5ff9904 EBP: f644fe98 ESP: f644fe94 [ 4.186049] DS: 007b ES: 007b FS: 00d8 GS: 0000 SS: 0068 [ 4.186125] Process kworker/0:0 (pid: 4, ti=f644e000 task=f644c0e0 task.ti=f644e000) [ 4.186219] Stack: [ 4.186257] f5ff98e0 f644feb0 c1365173 00000282 f5ff9460 f5ff96e0 f5ff96e0 f644feec [ 4.186418] c1355bd8 f644c0e0 c1499c3d f5ff96e0 f644fed4 00000006 f5ff96e0 00000286 [ 4.186579] f644fedc c107922b f644feec 00000286 f5ff9460 f5ff9700 f644ff10 c135839e [ 4.186739] Call Trace: [ 4.186802] [<c1365173>] sdhci_set_ios+0x1c3/0x340 [ 4.186883] [<c1355bd8>] mmc_gate_clock+0x68/0x120 [ 4.186963] [<c1499c3d>] ? _raw_spin_unlock_irqrestore+0x4d/0x60 [ 4.187052] [<c107922b>] ? trace_hardirqs_on+0xb/0x10 [ 4.187134] [<c135839e>] mmc_host_clk_gate_delayed+0xbe/0x130 [ 4.187219] [<c105ec09>] ? process_one_work+0xf9/0x5b0 [ 4.187300] [<c135841d>] mmc_host_clk_gate_work+0xd/0x10 [ 4.187379] [<c105ec82>] process_one_work+0x172/0x5b0 [ 4.187457] [<c105ec09>] ? process_one_work+0xf9/0x5b0 [ 4.187538] [<c1358410>] ? mmc_host_clk_gate_delayed+0x130/0x130 [ 4.187625] [<c105f3c8>] worker_thread+0x118/0x330 [ 4.187700] [<c1496cee>] ? preempt_schedule+0x2e/0x50 [ 4.187779] [<c105f2b0>] ? rescuer_thread+0x1f0/0x1f0 [ 4.187857] [<c1062cf4>] kthread+0x74/0x80 [ 4.187931] [<c1062c80>] ? __init_kthread_worker+0x60/0x60 [ 4.188015] [<c149acfa>] kernel_thread_helper+0x6/0xd [ 4.188079] Code: 81 fa 00 00 04 00 0f 84 a7 00 00 00 7f 21 81 fa 80 00 00 00 0f 84 92 00 00 00 81 fa 00 00 0 [ 4.188780] EIP: [<c136364e>] sdhci_set_power+0x3e/0xd0 SS:ESP 0068:f644fe94 [ 4.188898] ---[ end trace a7b23eecc71777e4 ]--- This BUG() comes from the fact that ios.power_mode was still in previous value (MMC_POWER_ON) and ios.vdd was set to zero. We prevent these by inhibiting the clock gating while we update the ios structure. Both problems can be reproduced by simply running the device in a reboot loop. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Linus Walleij <linus.walleij@linaro.org> Tested-by: Chris Ball <cjb@laptop.org> Cc: <stable@kernel.org> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-08-18 06:23:48 -06:00
void mmc_set_clock(struct mmc_host *host, unsigned int hz)
{
mmc_host_clk_hold(host);
__mmc_set_clock(host, hz);
mmc_host_clk_release(host);
}
#ifdef CONFIG_MMC_CLKGATE
/*
* This gates the clock by setting it to 0 Hz.
*/
void mmc_gate_clock(struct mmc_host *host)
{
unsigned long flags;
spin_lock_irqsave(&host->clk_lock, flags);
host->clk_old = host->ios.clock;
host->ios.clock = 0;
host->clk_gated = true;
spin_unlock_irqrestore(&host->clk_lock, flags);
mmc_set_ios(host);
}
/*
* This restores the clock from gating by using the cached
* clock value.
*/
void mmc_ungate_clock(struct mmc_host *host)
{
/*
* We should previously have gated the clock, so the clock shall
* be 0 here! The clock may however be 0 during initialization,
* when some request operations are performed before setting
* the frequency. When ungate is requested in that situation
* we just ignore the call.
*/
if (host->clk_old) {
BUG_ON(host->ios.clock);
/* This call will also set host->clk_gated to false */
mmc: core: prevent aggressive clock gating racing with ios updates We have seen at least two different races when clock gating kicks in in a middle of ios structure update. First one happens when ios->clock is changed outside of aggressive clock gating framework, for example via mmc_set_clock(). The race might happen when we run following code: mmc_set_ios(): ... if (ios->clock > 0) mmc_set_ungated(host); Now if gating kicks in right after the condition check we end up setting host->clk_gated to false even though we have just gated the clock. Next time a request is started we try to ungate and restore the clock in mmc_host_clk_hold(). However since we have host->clk_gated set to false the original clock is not restored. This eventually will cause the host controller to hang since its clock is disabled while we are trying to issue a request. For example on Intel Medfield platform we see: [ 13.818610] mmc2: Timeout waiting for hardware interrupt. [ 13.818698] sdhci: =========== REGISTER DUMP (mmc2)=========== [ 13.818753] sdhci: Sys addr: 0x00000000 | Version: 0x00008901 [ 13.818804] sdhci: Blk size: 0x00000000 | Blk cnt: 0x00000000 [ 13.818853] sdhci: Argument: 0x00000000 | Trn mode: 0x00000000 [ 13.818903] sdhci: Present: 0x1fff0000 | Host ctl: 0x00000001 [ 13.818951] sdhci: Power: 0x0000000d | Blk gap: 0x00000000 [ 13.819000] sdhci: Wake-up: 0x00000000 | Clock: 0x00000000 [ 13.819049] sdhci: Timeout: 0x00000000 | Int stat: 0x00000000 [ 13.819098] sdhci: Int enab: 0x00ff00c3 | Sig enab: 0x00ff00c3 [ 13.819147] sdhci: AC12 err: 0x00000000 | Slot int: 0x00000000 [ 13.819196] sdhci: Caps: 0x6bee32b2 | Caps_1: 0x00000000 [ 13.819245] sdhci: Cmd: 0x00000000 | Max curr: 0x00000000 [ 13.819292] sdhci: Host ctl2: 0x00000000 [ 13.819331] sdhci: ADMA Err: 0x00000000 | ADMA Ptr: 0x00000000 [ 13.819377] sdhci: =========================================== [ 13.919605] mmc2: Reset 0x2 never completed. and it never recovers. Second race might happen while running mmc_power_off(): static void mmc_power_off(struct mmc_host *host) { host->ios.clock = 0; host->ios.vdd = 0; [ clock gating kicks in here ] /* * Reset ocr mask to be the highest possible voltage supported for * this mmc host. This value will be used at next power up. */ host->ocr = 1 << (fls(host->ocr_avail) - 1); if (!mmc_host_is_spi(host)) { host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN; host->ios.chip_select = MMC_CS_DONTCARE; } host->ios.power_mode = MMC_POWER_OFF; host->ios.bus_width = MMC_BUS_WIDTH_1; host->ios.timing = MMC_TIMING_LEGACY; mmc_set_ios(host); } If the clock gating worker kicks in while we are only partially updated the ios structure the host controller gets incomplete ios and might not work as supposed. Again on Intel Medfield platform we get: [ 4.185349] kernel BUG at drivers/mmc/host/sdhci.c:1155! [ 4.185422] invalid opcode: 0000 [#1] PREEMPT SMP [ 4.185509] Modules linked in: [ 4.185565] [ 4.185608] Pid: 4, comm: kworker/0:0 Not tainted 3.0.0+ #240 Intel Corporation Medfield/iCDKA [ 4.185742] EIP: 0060:[<c136364e>] EFLAGS: 00010083 CPU: 0 [ 4.185827] EIP is at sdhci_set_power+0x3e/0xd0 [ 4.185891] EAX: f5ff98e0 EBX: f5ff98e0 ECX: 00000000 EDX: 00000001 [ 4.185970] ESI: f5ff977c EDI: f5ff9904 EBP: f644fe98 ESP: f644fe94 [ 4.186049] DS: 007b ES: 007b FS: 00d8 GS: 0000 SS: 0068 [ 4.186125] Process kworker/0:0 (pid: 4, ti=f644e000 task=f644c0e0 task.ti=f644e000) [ 4.186219] Stack: [ 4.186257] f5ff98e0 f644feb0 c1365173 00000282 f5ff9460 f5ff96e0 f5ff96e0 f644feec [ 4.186418] c1355bd8 f644c0e0 c1499c3d f5ff96e0 f644fed4 00000006 f5ff96e0 00000286 [ 4.186579] f644fedc c107922b f644feec 00000286 f5ff9460 f5ff9700 f644ff10 c135839e [ 4.186739] Call Trace: [ 4.186802] [<c1365173>] sdhci_set_ios+0x1c3/0x340 [ 4.186883] [<c1355bd8>] mmc_gate_clock+0x68/0x120 [ 4.186963] [<c1499c3d>] ? _raw_spin_unlock_irqrestore+0x4d/0x60 [ 4.187052] [<c107922b>] ? trace_hardirqs_on+0xb/0x10 [ 4.187134] [<c135839e>] mmc_host_clk_gate_delayed+0xbe/0x130 [ 4.187219] [<c105ec09>] ? process_one_work+0xf9/0x5b0 [ 4.187300] [<c135841d>] mmc_host_clk_gate_work+0xd/0x10 [ 4.187379] [<c105ec82>] process_one_work+0x172/0x5b0 [ 4.187457] [<c105ec09>] ? process_one_work+0xf9/0x5b0 [ 4.187538] [<c1358410>] ? mmc_host_clk_gate_delayed+0x130/0x130 [ 4.187625] [<c105f3c8>] worker_thread+0x118/0x330 [ 4.187700] [<c1496cee>] ? preempt_schedule+0x2e/0x50 [ 4.187779] [<c105f2b0>] ? rescuer_thread+0x1f0/0x1f0 [ 4.187857] [<c1062cf4>] kthread+0x74/0x80 [ 4.187931] [<c1062c80>] ? __init_kthread_worker+0x60/0x60 [ 4.188015] [<c149acfa>] kernel_thread_helper+0x6/0xd [ 4.188079] Code: 81 fa 00 00 04 00 0f 84 a7 00 00 00 7f 21 81 fa 80 00 00 00 0f 84 92 00 00 00 81 fa 00 00 0 [ 4.188780] EIP: [<c136364e>] sdhci_set_power+0x3e/0xd0 SS:ESP 0068:f644fe94 [ 4.188898] ---[ end trace a7b23eecc71777e4 ]--- This BUG() comes from the fact that ios.power_mode was still in previous value (MMC_POWER_ON) and ios.vdd was set to zero. We prevent these by inhibiting the clock gating while we update the ios structure. Both problems can be reproduced by simply running the device in a reboot loop. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Linus Walleij <linus.walleij@linaro.org> Tested-by: Chris Ball <cjb@laptop.org> Cc: <stable@kernel.org> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-08-18 06:23:48 -06:00
__mmc_set_clock(host, host->clk_old);
}
}
void mmc_set_ungated(struct mmc_host *host)
{
unsigned long flags;
/*
* We've been given a new frequency while the clock is gated,
* so make sure we regard this as ungating it.
*/
spin_lock_irqsave(&host->clk_lock, flags);
host->clk_gated = false;
spin_unlock_irqrestore(&host->clk_lock, flags);
}
#else
void mmc_set_ungated(struct mmc_host *host)
{
}
#endif
/*
* Change the bus mode (open drain/push-pull) of a host.
*/
void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
{
mmc: core: prevent aggressive clock gating racing with ios updates We have seen at least two different races when clock gating kicks in in a middle of ios structure update. First one happens when ios->clock is changed outside of aggressive clock gating framework, for example via mmc_set_clock(). The race might happen when we run following code: mmc_set_ios(): ... if (ios->clock > 0) mmc_set_ungated(host); Now if gating kicks in right after the condition check we end up setting host->clk_gated to false even though we have just gated the clock. Next time a request is started we try to ungate and restore the clock in mmc_host_clk_hold(). However since we have host->clk_gated set to false the original clock is not restored. This eventually will cause the host controller to hang since its clock is disabled while we are trying to issue a request. For example on Intel Medfield platform we see: [ 13.818610] mmc2: Timeout waiting for hardware interrupt. [ 13.818698] sdhci: =========== REGISTER DUMP (mmc2)=========== [ 13.818753] sdhci: Sys addr: 0x00000000 | Version: 0x00008901 [ 13.818804] sdhci: Blk size: 0x00000000 | Blk cnt: 0x00000000 [ 13.818853] sdhci: Argument: 0x00000000 | Trn mode: 0x00000000 [ 13.818903] sdhci: Present: 0x1fff0000 | Host ctl: 0x00000001 [ 13.818951] sdhci: Power: 0x0000000d | Blk gap: 0x00000000 [ 13.819000] sdhci: Wake-up: 0x00000000 | Clock: 0x00000000 [ 13.819049] sdhci: Timeout: 0x00000000 | Int stat: 0x00000000 [ 13.819098] sdhci: Int enab: 0x00ff00c3 | Sig enab: 0x00ff00c3 [ 13.819147] sdhci: AC12 err: 0x00000000 | Slot int: 0x00000000 [ 13.819196] sdhci: Caps: 0x6bee32b2 | Caps_1: 0x00000000 [ 13.819245] sdhci: Cmd: 0x00000000 | Max curr: 0x00000000 [ 13.819292] sdhci: Host ctl2: 0x00000000 [ 13.819331] sdhci: ADMA Err: 0x00000000 | ADMA Ptr: 0x00000000 [ 13.819377] sdhci: =========================================== [ 13.919605] mmc2: Reset 0x2 never completed. and it never recovers. Second race might happen while running mmc_power_off(): static void mmc_power_off(struct mmc_host *host) { host->ios.clock = 0; host->ios.vdd = 0; [ clock gating kicks in here ] /* * Reset ocr mask to be the highest possible voltage supported for * this mmc host. This value will be used at next power up. */ host->ocr = 1 << (fls(host->ocr_avail) - 1); if (!mmc_host_is_spi(host)) { host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN; host->ios.chip_select = MMC_CS_DONTCARE; } host->ios.power_mode = MMC_POWER_OFF; host->ios.bus_width = MMC_BUS_WIDTH_1; host->ios.timing = MMC_TIMING_LEGACY; mmc_set_ios(host); } If the clock gating worker kicks in while we are only partially updated the ios structure the host controller gets incomplete ios and might not work as supposed. Again on Intel Medfield platform we get: [ 4.185349] kernel BUG at drivers/mmc/host/sdhci.c:1155! [ 4.185422] invalid opcode: 0000 [#1] PREEMPT SMP [ 4.185509] Modules linked in: [ 4.185565] [ 4.185608] Pid: 4, comm: kworker/0:0 Not tainted 3.0.0+ #240 Intel Corporation Medfield/iCDKA [ 4.185742] EIP: 0060:[<c136364e>] EFLAGS: 00010083 CPU: 0 [ 4.185827] EIP is at sdhci_set_power+0x3e/0xd0 [ 4.185891] EAX: f5ff98e0 EBX: f5ff98e0 ECX: 00000000 EDX: 00000001 [ 4.185970] ESI: f5ff977c EDI: f5ff9904 EBP: f644fe98 ESP: f644fe94 [ 4.186049] DS: 007b ES: 007b FS: 00d8 GS: 0000 SS: 0068 [ 4.186125] Process kworker/0:0 (pid: 4, ti=f644e000 task=f644c0e0 task.ti=f644e000) [ 4.186219] Stack: [ 4.186257] f5ff98e0 f644feb0 c1365173 00000282 f5ff9460 f5ff96e0 f5ff96e0 f644feec [ 4.186418] c1355bd8 f644c0e0 c1499c3d f5ff96e0 f644fed4 00000006 f5ff96e0 00000286 [ 4.186579] f644fedc c107922b f644feec 00000286 f5ff9460 f5ff9700 f644ff10 c135839e [ 4.186739] Call Trace: [ 4.186802] [<c1365173>] sdhci_set_ios+0x1c3/0x340 [ 4.186883] [<c1355bd8>] mmc_gate_clock+0x68/0x120 [ 4.186963] [<c1499c3d>] ? _raw_spin_unlock_irqrestore+0x4d/0x60 [ 4.187052] [<c107922b>] ? trace_hardirqs_on+0xb/0x10 [ 4.187134] [<c135839e>] mmc_host_clk_gate_delayed+0xbe/0x130 [ 4.187219] [<c105ec09>] ? process_one_work+0xf9/0x5b0 [ 4.187300] [<c135841d>] mmc_host_clk_gate_work+0xd/0x10 [ 4.187379] [<c105ec82>] process_one_work+0x172/0x5b0 [ 4.187457] [<c105ec09>] ? process_one_work+0xf9/0x5b0 [ 4.187538] [<c1358410>] ? mmc_host_clk_gate_delayed+0x130/0x130 [ 4.187625] [<c105f3c8>] worker_thread+0x118/0x330 [ 4.187700] [<c1496cee>] ? preempt_schedule+0x2e/0x50 [ 4.187779] [<c105f2b0>] ? rescuer_thread+0x1f0/0x1f0 [ 4.187857] [<c1062cf4>] kthread+0x74/0x80 [ 4.187931] [<c1062c80>] ? __init_kthread_worker+0x60/0x60 [ 4.188015] [<c149acfa>] kernel_thread_helper+0x6/0xd [ 4.188079] Code: 81 fa 00 00 04 00 0f 84 a7 00 00 00 7f 21 81 fa 80 00 00 00 0f 84 92 00 00 00 81 fa 00 00 0 [ 4.188780] EIP: [<c136364e>] sdhci_set_power+0x3e/0xd0 SS:ESP 0068:f644fe94 [ 4.188898] ---[ end trace a7b23eecc71777e4 ]--- This BUG() comes from the fact that ios.power_mode was still in previous value (MMC_POWER_ON) and ios.vdd was set to zero. We prevent these by inhibiting the clock gating while we update the ios structure. Both problems can be reproduced by simply running the device in a reboot loop. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Linus Walleij <linus.walleij@linaro.org> Tested-by: Chris Ball <cjb@laptop.org> Cc: <stable@kernel.org> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-08-18 06:23:48 -06:00
mmc_host_clk_hold(host);
host->ios.bus_mode = mode;
mmc_set_ios(host);
mmc: core: prevent aggressive clock gating racing with ios updates We have seen at least two different races when clock gating kicks in in a middle of ios structure update. First one happens when ios->clock is changed outside of aggressive clock gating framework, for example via mmc_set_clock(). The race might happen when we run following code: mmc_set_ios(): ... if (ios->clock > 0) mmc_set_ungated(host); Now if gating kicks in right after the condition check we end up setting host->clk_gated to false even though we have just gated the clock. Next time a request is started we try to ungate and restore the clock in mmc_host_clk_hold(). However since we have host->clk_gated set to false the original clock is not restored. This eventually will cause the host controller to hang since its clock is disabled while we are trying to issue a request. For example on Intel Medfield platform we see: [ 13.818610] mmc2: Timeout waiting for hardware interrupt. [ 13.818698] sdhci: =========== REGISTER DUMP (mmc2)=========== [ 13.818753] sdhci: Sys addr: 0x00000000 | Version: 0x00008901 [ 13.818804] sdhci: Blk size: 0x00000000 | Blk cnt: 0x00000000 [ 13.818853] sdhci: Argument: 0x00000000 | Trn mode: 0x00000000 [ 13.818903] sdhci: Present: 0x1fff0000 | Host ctl: 0x00000001 [ 13.818951] sdhci: Power: 0x0000000d | Blk gap: 0x00000000 [ 13.819000] sdhci: Wake-up: 0x00000000 | Clock: 0x00000000 [ 13.819049] sdhci: Timeout: 0x00000000 | Int stat: 0x00000000 [ 13.819098] sdhci: Int enab: 0x00ff00c3 | Sig enab: 0x00ff00c3 [ 13.819147] sdhci: AC12 err: 0x00000000 | Slot int: 0x00000000 [ 13.819196] sdhci: Caps: 0x6bee32b2 | Caps_1: 0x00000000 [ 13.819245] sdhci: Cmd: 0x00000000 | Max curr: 0x00000000 [ 13.819292] sdhci: Host ctl2: 0x00000000 [ 13.819331] sdhci: ADMA Err: 0x00000000 | ADMA Ptr: 0x00000000 [ 13.819377] sdhci: =========================================== [ 13.919605] mmc2: Reset 0x2 never completed. and it never recovers. Second race might happen while running mmc_power_off(): static void mmc_power_off(struct mmc_host *host) { host->ios.clock = 0; host->ios.vdd = 0; [ clock gating kicks in here ] /* * Reset ocr mask to be the highest possible voltage supported for * this mmc host. This value will be used at next power up. */ host->ocr = 1 << (fls(host->ocr_avail) - 1); if (!mmc_host_is_spi(host)) { host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN; host->ios.chip_select = MMC_CS_DONTCARE; } host->ios.power_mode = MMC_POWER_OFF; host->ios.bus_width = MMC_BUS_WIDTH_1; host->ios.timing = MMC_TIMING_LEGACY; mmc_set_ios(host); } If the clock gating worker kicks in while we are only partially updated the ios structure the host controller gets incomplete ios and might not work as supposed. Again on Intel Medfield platform we get: [ 4.185349] kernel BUG at drivers/mmc/host/sdhci.c:1155! [ 4.185422] invalid opcode: 0000 [#1] PREEMPT SMP [ 4.185509] Modules linked in: [ 4.185565] [ 4.185608] Pid: 4, comm: kworker/0:0 Not tainted 3.0.0+ #240 Intel Corporation Medfield/iCDKA [ 4.185742] EIP: 0060:[<c136364e>] EFLAGS: 00010083 CPU: 0 [ 4.185827] EIP is at sdhci_set_power+0x3e/0xd0 [ 4.185891] EAX: f5ff98e0 EBX: f5ff98e0 ECX: 00000000 EDX: 00000001 [ 4.185970] ESI: f5ff977c EDI: f5ff9904 EBP: f644fe98 ESP: f644fe94 [ 4.186049] DS: 007b ES: 007b FS: 00d8 GS: 0000 SS: 0068 [ 4.186125] Process kworker/0:0 (pid: 4, ti=f644e000 task=f644c0e0 task.ti=f644e000) [ 4.186219] Stack: [ 4.186257] f5ff98e0 f644feb0 c1365173 00000282 f5ff9460 f5ff96e0 f5ff96e0 f644feec [ 4.186418] c1355bd8 f644c0e0 c1499c3d f5ff96e0 f644fed4 00000006 f5ff96e0 00000286 [ 4.186579] f644fedc c107922b f644feec 00000286 f5ff9460 f5ff9700 f644ff10 c135839e [ 4.186739] Call Trace: [ 4.186802] [<c1365173>] sdhci_set_ios+0x1c3/0x340 [ 4.186883] [<c1355bd8>] mmc_gate_clock+0x68/0x120 [ 4.186963] [<c1499c3d>] ? _raw_spin_unlock_irqrestore+0x4d/0x60 [ 4.187052] [<c107922b>] ? trace_hardirqs_on+0xb/0x10 [ 4.187134] [<c135839e>] mmc_host_clk_gate_delayed+0xbe/0x130 [ 4.187219] [<c105ec09>] ? process_one_work+0xf9/0x5b0 [ 4.187300] [<c135841d>] mmc_host_clk_gate_work+0xd/0x10 [ 4.187379] [<c105ec82>] process_one_work+0x172/0x5b0 [ 4.187457] [<c105ec09>] ? process_one_work+0xf9/0x5b0 [ 4.187538] [<c1358410>] ? mmc_host_clk_gate_delayed+0x130/0x130 [ 4.187625] [<c105f3c8>] worker_thread+0x118/0x330 [ 4.187700] [<c1496cee>] ? preempt_schedule+0x2e/0x50 [ 4.187779] [<c105f2b0>] ? rescuer_thread+0x1f0/0x1f0 [ 4.187857] [<c1062cf4>] kthread+0x74/0x80 [ 4.187931] [<c1062c80>] ? __init_kthread_worker+0x60/0x60 [ 4.188015] [<c149acfa>] kernel_thread_helper+0x6/0xd [ 4.188079] Code: 81 fa 00 00 04 00 0f 84 a7 00 00 00 7f 21 81 fa 80 00 00 00 0f 84 92 00 00 00 81 fa 00 00 0 [ 4.188780] EIP: [<c136364e>] sdhci_set_power+0x3e/0xd0 SS:ESP 0068:f644fe94 [ 4.188898] ---[ end trace a7b23eecc71777e4 ]--- This BUG() comes from the fact that ios.power_mode was still in previous value (MMC_POWER_ON) and ios.vdd was set to zero. We prevent these by inhibiting the clock gating while we update the ios structure. Both problems can be reproduced by simply running the device in a reboot loop. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Linus Walleij <linus.walleij@linaro.org> Tested-by: Chris Ball <cjb@laptop.org> Cc: <stable@kernel.org> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-08-18 06:23:48 -06:00
mmc_host_clk_release(host);
}
/*
* Change data bus width of a host.
*/
void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
{
mmc: core: prevent aggressive clock gating racing with ios updates We have seen at least two different races when clock gating kicks in in a middle of ios structure update. First one happens when ios->clock is changed outside of aggressive clock gating framework, for example via mmc_set_clock(). The race might happen when we run following code: mmc_set_ios(): ... if (ios->clock > 0) mmc_set_ungated(host); Now if gating kicks in right after the condition check we end up setting host->clk_gated to false even though we have just gated the clock. Next time a request is started we try to ungate and restore the clock in mmc_host_clk_hold(). However since we have host->clk_gated set to false the original clock is not restored. This eventually will cause the host controller to hang since its clock is disabled while we are trying to issue a request. For example on Intel Medfield platform we see: [ 13.818610] mmc2: Timeout waiting for hardware interrupt. [ 13.818698] sdhci: =========== REGISTER DUMP (mmc2)=========== [ 13.818753] sdhci: Sys addr: 0x00000000 | Version: 0x00008901 [ 13.818804] sdhci: Blk size: 0x00000000 | Blk cnt: 0x00000000 [ 13.818853] sdhci: Argument: 0x00000000 | Trn mode: 0x00000000 [ 13.818903] sdhci: Present: 0x1fff0000 | Host ctl: 0x00000001 [ 13.818951] sdhci: Power: 0x0000000d | Blk gap: 0x00000000 [ 13.819000] sdhci: Wake-up: 0x00000000 | Clock: 0x00000000 [ 13.819049] sdhci: Timeout: 0x00000000 | Int stat: 0x00000000 [ 13.819098] sdhci: Int enab: 0x00ff00c3 | Sig enab: 0x00ff00c3 [ 13.819147] sdhci: AC12 err: 0x00000000 | Slot int: 0x00000000 [ 13.819196] sdhci: Caps: 0x6bee32b2 | Caps_1: 0x00000000 [ 13.819245] sdhci: Cmd: 0x00000000 | Max curr: 0x00000000 [ 13.819292] sdhci: Host ctl2: 0x00000000 [ 13.819331] sdhci: ADMA Err: 0x00000000 | ADMA Ptr: 0x00000000 [ 13.819377] sdhci: =========================================== [ 13.919605] mmc2: Reset 0x2 never completed. and it never recovers. Second race might happen while running mmc_power_off(): static void mmc_power_off(struct mmc_host *host) { host->ios.clock = 0; host->ios.vdd = 0; [ clock gating kicks in here ] /* * Reset ocr mask to be the highest possible voltage supported for * this mmc host. This value will be used at next power up. */ host->ocr = 1 << (fls(host->ocr_avail) - 1); if (!mmc_host_is_spi(host)) { host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN; host->ios.chip_select = MMC_CS_DONTCARE; } host->ios.power_mode = MMC_POWER_OFF; host->ios.bus_width = MMC_BUS_WIDTH_1; host->ios.timing = MMC_TIMING_LEGACY; mmc_set_ios(host); } If the clock gating worker kicks in while we are only partially updated the ios structure the host controller gets incomplete ios and might not work as supposed. Again on Intel Medfield platform we get: [ 4.185349] kernel BUG at drivers/mmc/host/sdhci.c:1155! [ 4.185422] invalid opcode: 0000 [#1] PREEMPT SMP [ 4.185509] Modules linked in: [ 4.185565] [ 4.185608] Pid: 4, comm: kworker/0:0 Not tainted 3.0.0+ #240 Intel Corporation Medfield/iCDKA [ 4.185742] EIP: 0060:[<c136364e>] EFLAGS: 00010083 CPU: 0 [ 4.185827] EIP is at sdhci_set_power+0x3e/0xd0 [ 4.185891] EAX: f5ff98e0 EBX: f5ff98e0 ECX: 00000000 EDX: 00000001 [ 4.185970] ESI: f5ff977c EDI: f5ff9904 EBP: f644fe98 ESP: f644fe94 [ 4.186049] DS: 007b ES: 007b FS: 00d8 GS: 0000 SS: 0068 [ 4.186125] Process kworker/0:0 (pid: 4, ti=f644e000 task=f644c0e0 task.ti=f644e000) [ 4.186219] Stack: [ 4.186257] f5ff98e0 f644feb0 c1365173 00000282 f5ff9460 f5ff96e0 f5ff96e0 f644feec [ 4.186418] c1355bd8 f644c0e0 c1499c3d f5ff96e0 f644fed4 00000006 f5ff96e0 00000286 [ 4.186579] f644fedc c107922b f644feec 00000286 f5ff9460 f5ff9700 f644ff10 c135839e [ 4.186739] Call Trace: [ 4.186802] [<c1365173>] sdhci_set_ios+0x1c3/0x340 [ 4.186883] [<c1355bd8>] mmc_gate_clock+0x68/0x120 [ 4.186963] [<c1499c3d>] ? _raw_spin_unlock_irqrestore+0x4d/0x60 [ 4.187052] [<c107922b>] ? trace_hardirqs_on+0xb/0x10 [ 4.187134] [<c135839e>] mmc_host_clk_gate_delayed+0xbe/0x130 [ 4.187219] [<c105ec09>] ? process_one_work+0xf9/0x5b0 [ 4.187300] [<c135841d>] mmc_host_clk_gate_work+0xd/0x10 [ 4.187379] [<c105ec82>] process_one_work+0x172/0x5b0 [ 4.187457] [<c105ec09>] ? process_one_work+0xf9/0x5b0 [ 4.187538] [<c1358410>] ? mmc_host_clk_gate_delayed+0x130/0x130 [ 4.187625] [<c105f3c8>] worker_thread+0x118/0x330 [ 4.187700] [<c1496cee>] ? preempt_schedule+0x2e/0x50 [ 4.187779] [<c105f2b0>] ? rescuer_thread+0x1f0/0x1f0 [ 4.187857] [<c1062cf4>] kthread+0x74/0x80 [ 4.187931] [<c1062c80>] ? __init_kthread_worker+0x60/0x60 [ 4.188015] [<c149acfa>] kernel_thread_helper+0x6/0xd [ 4.188079] Code: 81 fa 00 00 04 00 0f 84 a7 00 00 00 7f 21 81 fa 80 00 00 00 0f 84 92 00 00 00 81 fa 00 00 0 [ 4.188780] EIP: [<c136364e>] sdhci_set_power+0x3e/0xd0 SS:ESP 0068:f644fe94 [ 4.188898] ---[ end trace a7b23eecc71777e4 ]--- This BUG() comes from the fact that ios.power_mode was still in previous value (MMC_POWER_ON) and ios.vdd was set to zero. We prevent these by inhibiting the clock gating while we update the ios structure. Both problems can be reproduced by simply running the device in a reboot loop. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Linus Walleij <linus.walleij@linaro.org> Tested-by: Chris Ball <cjb@laptop.org> Cc: <stable@kernel.org> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-08-18 06:23:48 -06:00
mmc_host_clk_hold(host);
host->ios.bus_width = width;
mmc_set_ios(host);
mmc: core: prevent aggressive clock gating racing with ios updates We have seen at least two different races when clock gating kicks in in a middle of ios structure update. First one happens when ios->clock is changed outside of aggressive clock gating framework, for example via mmc_set_clock(). The race might happen when we run following code: mmc_set_ios(): ... if (ios->clock > 0) mmc_set_ungated(host); Now if gating kicks in right after the condition check we end up setting host->clk_gated to false even though we have just gated the clock. Next time a request is started we try to ungate and restore the clock in mmc_host_clk_hold(). However since we have host->clk_gated set to false the original clock is not restored. This eventually will cause the host controller to hang since its clock is disabled while we are trying to issue a request. For example on Intel Medfield platform we see: [ 13.818610] mmc2: Timeout waiting for hardware interrupt. [ 13.818698] sdhci: =========== REGISTER DUMP (mmc2)=========== [ 13.818753] sdhci: Sys addr: 0x00000000 | Version: 0x00008901 [ 13.818804] sdhci: Blk size: 0x00000000 | Blk cnt: 0x00000000 [ 13.818853] sdhci: Argument: 0x00000000 | Trn mode: 0x00000000 [ 13.818903] sdhci: Present: 0x1fff0000 | Host ctl: 0x00000001 [ 13.818951] sdhci: Power: 0x0000000d | Blk gap: 0x00000000 [ 13.819000] sdhci: Wake-up: 0x00000000 | Clock: 0x00000000 [ 13.819049] sdhci: Timeout: 0x00000000 | Int stat: 0x00000000 [ 13.819098] sdhci: Int enab: 0x00ff00c3 | Sig enab: 0x00ff00c3 [ 13.819147] sdhci: AC12 err: 0x00000000 | Slot int: 0x00000000 [ 13.819196] sdhci: Caps: 0x6bee32b2 | Caps_1: 0x00000000 [ 13.819245] sdhci: Cmd: 0x00000000 | Max curr: 0x00000000 [ 13.819292] sdhci: Host ctl2: 0x00000000 [ 13.819331] sdhci: ADMA Err: 0x00000000 | ADMA Ptr: 0x00000000 [ 13.819377] sdhci: =========================================== [ 13.919605] mmc2: Reset 0x2 never completed. and it never recovers. Second race might happen while running mmc_power_off(): static void mmc_power_off(struct mmc_host *host) { host->ios.clock = 0; host->ios.vdd = 0; [ clock gating kicks in here ] /* * Reset ocr mask to be the highest possible voltage supported for * this mmc host. This value will be used at next power up. */ host->ocr = 1 << (fls(host->ocr_avail) - 1); if (!mmc_host_is_spi(host)) { host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN; host->ios.chip_select = MMC_CS_DONTCARE; } host->ios.power_mode = MMC_POWER_OFF; host->ios.bus_width = MMC_BUS_WIDTH_1; host->ios.timing = MMC_TIMING_LEGACY; mmc_set_ios(host); } If the clock gating worker kicks in while we are only partially updated the ios structure the host controller gets incomplete ios and might not work as supposed. Again on Intel Medfield platform we get: [ 4.185349] kernel BUG at drivers/mmc/host/sdhci.c:1155! [ 4.185422] invalid opcode: 0000 [#1] PREEMPT SMP [ 4.185509] Modules linked in: [ 4.185565] [ 4.185608] Pid: 4, comm: kworker/0:0 Not tainted 3.0.0+ #240 Intel Corporation Medfield/iCDKA [ 4.185742] EIP: 0060:[<c136364e>] EFLAGS: 00010083 CPU: 0 [ 4.185827] EIP is at sdhci_set_power+0x3e/0xd0 [ 4.185891] EAX: f5ff98e0 EBX: f5ff98e0 ECX: 00000000 EDX: 00000001 [ 4.185970] ESI: f5ff977c EDI: f5ff9904 EBP: f644fe98 ESP: f644fe94 [ 4.186049] DS: 007b ES: 007b FS: 00d8 GS: 0000 SS: 0068 [ 4.186125] Process kworker/0:0 (pid: 4, ti=f644e000 task=f644c0e0 task.ti=f644e000) [ 4.186219] Stack: [ 4.186257] f5ff98e0 f644feb0 c1365173 00000282 f5ff9460 f5ff96e0 f5ff96e0 f644feec [ 4.186418] c1355bd8 f644c0e0 c1499c3d f5ff96e0 f644fed4 00000006 f5ff96e0 00000286 [ 4.186579] f644fedc c107922b f644feec 00000286 f5ff9460 f5ff9700 f644ff10 c135839e [ 4.186739] Call Trace: [ 4.186802] [<c1365173>] sdhci_set_ios+0x1c3/0x340 [ 4.186883] [<c1355bd8>] mmc_gate_clock+0x68/0x120 [ 4.186963] [<c1499c3d>] ? _raw_spin_unlock_irqrestore+0x4d/0x60 [ 4.187052] [<c107922b>] ? trace_hardirqs_on+0xb/0x10 [ 4.187134] [<c135839e>] mmc_host_clk_gate_delayed+0xbe/0x130 [ 4.187219] [<c105ec09>] ? process_one_work+0xf9/0x5b0 [ 4.187300] [<c135841d>] mmc_host_clk_gate_work+0xd/0x10 [ 4.187379] [<c105ec82>] process_one_work+0x172/0x5b0 [ 4.187457] [<c105ec09>] ? process_one_work+0xf9/0x5b0 [ 4.187538] [<c1358410>] ? mmc_host_clk_gate_delayed+0x130/0x130 [ 4.187625] [<c105f3c8>] worker_thread+0x118/0x330 [ 4.187700] [<c1496cee>] ? preempt_schedule+0x2e/0x50 [ 4.187779] [<c105f2b0>] ? rescuer_thread+0x1f0/0x1f0 [ 4.187857] [<c1062cf4>] kthread+0x74/0x80 [ 4.187931] [<c1062c80>] ? __init_kthread_worker+0x60/0x60 [ 4.188015] [<c149acfa>] kernel_thread_helper+0x6/0xd [ 4.188079] Code: 81 fa 00 00 04 00 0f 84 a7 00 00 00 7f 21 81 fa 80 00 00 00 0f 84 92 00 00 00 81 fa 00 00 0 [ 4.188780] EIP: [<c136364e>] sdhci_set_power+0x3e/0xd0 SS:ESP 0068:f644fe94 [ 4.188898] ---[ end trace a7b23eecc71777e4 ]--- This BUG() comes from the fact that ios.power_mode was still in previous value (MMC_POWER_ON) and ios.vdd was set to zero. We prevent these by inhibiting the clock gating while we update the ios structure. Both problems can be reproduced by simply running the device in a reboot loop. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Linus Walleij <linus.walleij@linaro.org> Tested-by: Chris Ball <cjb@laptop.org> Cc: <stable@kernel.org> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-08-18 06:23:48 -06:00
mmc_host_clk_release(host);
}
/*
* Set initial state after a power cycle or a hw_reset.
*/
void mmc_set_initial_state(struct mmc_host *host)
{
if (mmc_host_is_spi(host))
host->ios.chip_select = MMC_CS_HIGH;
else
host->ios.chip_select = MMC_CS_DONTCARE;
host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
host->ios.bus_width = MMC_BUS_WIDTH_1;
host->ios.timing = MMC_TIMING_LEGACY;
mmc_set_ios(host);
}
/**
* mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
* @vdd: voltage (mV)
* @low_bits: prefer low bits in boundary cases
*
* This function returns the OCR bit number according to the provided @vdd
* value. If conversion is not possible a negative errno value returned.
*
* Depending on the @low_bits flag the function prefers low or high OCR bits
* on boundary voltages. For example,
* with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
* with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
*
* Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
*/
static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
{
const int max_bit = ilog2(MMC_VDD_35_36);
int bit;
if (vdd < 1650 || vdd > 3600)
return -EINVAL;
if (vdd >= 1650 && vdd <= 1950)
return ilog2(MMC_VDD_165_195);
if (low_bits)
vdd -= 1;
/* Base 2000 mV, step 100 mV, bit's base 8. */
bit = (vdd - 2000) / 100 + 8;
if (bit > max_bit)
return max_bit;
return bit;
}
/**
* mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
* @vdd_min: minimum voltage value (mV)
* @vdd_max: maximum voltage value (mV)
*
* This function returns the OCR mask bits according to the provided @vdd_min
* and @vdd_max values. If conversion is not possible the function returns 0.
*
* Notes wrt boundary cases:
* This function sets the OCR bits for all boundary voltages, for example
* [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
* MMC_VDD_34_35 mask.
*/
u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
{
u32 mask = 0;
if (vdd_max < vdd_min)
return 0;
/* Prefer high bits for the boundary vdd_max values. */
vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
if (vdd_max < 0)
return 0;
/* Prefer low bits for the boundary vdd_min values. */
vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
if (vdd_min < 0)
return 0;
/* Fill the mask, from max bit to min bit. */
while (vdd_max >= vdd_min)
mask |= 1 << vdd_max--;
return mask;
}
EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
#ifdef CONFIG_OF
/**
* mmc_of_parse_voltage - return mask of supported voltages
* @np: The device node need to be parsed.
* @mask: mask of voltages available for MMC/SD/SDIO
*
* 1. Return zero on success.
* 2. Return negative errno: voltage-range is invalid.
*/
int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
{
const u32 *voltage_ranges;
int num_ranges, i;
voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
if (!voltage_ranges || !num_ranges) {
pr_info("%s: voltage-ranges unspecified\n", np->full_name);
return -EINVAL;
}
for (i = 0; i < num_ranges; i++) {
const int j = i * 2;
u32 ocr_mask;
ocr_mask = mmc_vddrange_to_ocrmask(
be32_to_cpu(voltage_ranges[j]),
be32_to_cpu(voltage_ranges[j + 1]));
if (!ocr_mask) {
pr_err("%s: voltage-range #%d is invalid\n",
np->full_name, i);
return -EINVAL;
}
*mask |= ocr_mask;
}
return 0;
}
EXPORT_SYMBOL(mmc_of_parse_voltage);
#endif /* CONFIG_OF */
#ifdef CONFIG_REGULATOR
/**
* mmc_regulator_get_ocrmask - return mask of supported voltages
* @supply: regulator to use
*
* This returns either a negative errno, or a mask of voltages that
* can be provided to MMC/SD/SDIO devices using the specified voltage
* regulator. This would normally be called before registering the
* MMC host adapter.
*/
int mmc_regulator_get_ocrmask(struct regulator *supply)
{
int result = 0;
int count;
int i;
int vdd_uV;
int vdd_mV;
count = regulator_count_voltages(supply);
if (count < 0)
return count;
for (i = 0; i < count; i++) {
vdd_uV = regulator_list_voltage(supply, i);
if (vdd_uV <= 0)
continue;
vdd_mV = vdd_uV / 1000;
result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
}
if (!result) {
vdd_uV = regulator_get_voltage(supply);
if (vdd_uV <= 0)
return vdd_uV;
vdd_mV = vdd_uV / 1000;
result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
}
return result;
}
EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
/**
* mmc_regulator_set_ocr - set regulator to match host->ios voltage
* @mmc: the host to regulate
* @supply: regulator to use
* @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
*
* Returns zero on success, else negative errno.
*
* MMC host drivers may use this to enable or disable a regulator using
* a particular supply voltage. This would normally be called from the
* set_ios() method.
*/
int mmc_regulator_set_ocr(struct mmc_host *mmc,
struct regulator *supply,
unsigned short vdd_bit)
{
int result = 0;
int min_uV, max_uV;
if (vdd_bit) {
int tmp;
/*
* REVISIT mmc_vddrange_to_ocrmask() may have set some
* bits this regulator doesn't quite support ... don't
* be too picky, most cards and regulators are OK with
* a 0.1V range goof (it's a small error percentage).
*/
tmp = vdd_bit - ilog2(MMC_VDD_165_195);
if (tmp == 0) {
min_uV = 1650 * 1000;
max_uV = 1950 * 1000;
} else {
min_uV = 1900 * 1000 + tmp * 100 * 1000;
max_uV = min_uV + 100 * 1000;
}
result = regulator_set_voltage(supply, min_uV, max_uV);
if (result == 0 && !mmc->regulator_enabled) {
result = regulator_enable(supply);
if (!result)
mmc->regulator_enabled = true;
}
} else if (mmc->regulator_enabled) {
result = regulator_disable(supply);
if (result == 0)
mmc->regulator_enabled = false;
}
if (result)
dev_err(mmc_dev(mmc),
"could not set regulator OCR (%d)\n", result);
return result;
}
EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
#endif /* CONFIG_REGULATOR */
int mmc_regulator_get_supply(struct mmc_host *mmc)
{
struct device *dev = mmc_dev(mmc);
int ret;
mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
if (IS_ERR(mmc->supply.vmmc)) {
if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
return -EPROBE_DEFER;
dev_info(dev, "No vmmc regulator found\n");
} else {
ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
if (ret > 0)
mmc->ocr_avail = ret;
else
dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
}
if (IS_ERR(mmc->supply.vqmmc)) {
if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
return -EPROBE_DEFER;
dev_info(dev, "No vqmmc regulator found\n");
}
return 0;
}
EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
/*
* Mask off any voltages we don't support and select
* the lowest voltage
*/
u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
{
int bit;
/*
* Sanity check the voltages that the card claims to
* support.
*/
if (ocr & 0x7F) {
dev_warn(mmc_dev(host),
"card claims to support voltages below defined range\n");
ocr &= ~0x7F;
}
ocr &= host->ocr_avail;
if (!ocr) {
dev_warn(mmc_dev(host), "no support for card's volts\n");
return 0;
}
if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
bit = ffs(ocr) - 1;
ocr &= 3 << bit;
mmc_power_cycle(host, ocr);
} else {
bit = fls(ocr) - 1;
ocr &= 3 << bit;
if (bit != host->ios.vdd)
dev_warn(mmc_dev(host), "exceeding card's volts\n");
}
return ocr;
}
int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
{
int err = 0;
int old_signal_voltage = host->ios.signal_voltage;
host->ios.signal_voltage = signal_voltage;
if (host->ops->start_signal_voltage_switch) {
mmc_host_clk_hold(host);
err = host->ops->start_signal_voltage_switch(host, &host->ios);
mmc_host_clk_release(host);
}
if (err)
host->ios.signal_voltage = old_signal_voltage;
return err;
}
int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr)
mmc: sd: add support for signal voltage switch procedure Host Controller v3.00 adds another Capabilities register. Apart from other things, this new register indicates whether the Host Controller supports SDR50, SDR104, and DDR50 UHS-I modes. The spec doesn't mention about explicit support for SDR12 and SDR25 UHS-I modes, so the Host Controller v3.00 should support them by default. Also if the controller supports SDR104 mode, it will also support SDR50 mode as well. So depending on the host support, we set the corresponding MMC_CAP_* flags. One more new register. Host Control2 is added in v3.00, which is used during Signal Voltage Switch procedure described below. Since as per v3.00 spec, UHS-I supported hosts should set S18R to 1, we set S18R (bit 24) of OCR before sending ACMD41. We also need to set XPC (bit 28) of OCR in case the host can supply >150mA. This support is indicated by the Maximum Current Capabilities register of the Host Controller. If the response of ACMD41 has both CCS and S18A set, we start the signal voltage switch procedure, which if successfull, will switch the card from 3.3V signalling to 1.8V signalling. Signal voltage switch procedure adds support for a new command CMD11 in the Physical Layer Spec v3.01. As part of this procedure, we need to set 1.8V Signalling Enable (bit 3) of Host Control2 register, which if remains set after 5ms, means the switch to 1.8V signalling is successfull. Otherwise, we clear bit 24 of OCR and retry the initialization sequence. When we remove the card, and insert the same or another card, we need to make sure that we start with 3.3V signalling voltage. So we call mmc_set_signal_voltage() with MMC_SIGNAL_VOLTAGE_330 set so that we are back to 3.3V signalling voltage before we actually start initializing the card. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 00:48:57 -06:00
{
struct mmc_command cmd = {0};
int err = 0;
u32 clock;
mmc: sd: add support for signal voltage switch procedure Host Controller v3.00 adds another Capabilities register. Apart from other things, this new register indicates whether the Host Controller supports SDR50, SDR104, and DDR50 UHS-I modes. The spec doesn't mention about explicit support for SDR12 and SDR25 UHS-I modes, so the Host Controller v3.00 should support them by default. Also if the controller supports SDR104 mode, it will also support SDR50 mode as well. So depending on the host support, we set the corresponding MMC_CAP_* flags. One more new register. Host Control2 is added in v3.00, which is used during Signal Voltage Switch procedure described below. Since as per v3.00 spec, UHS-I supported hosts should set S18R to 1, we set S18R (bit 24) of OCR before sending ACMD41. We also need to set XPC (bit 28) of OCR in case the host can supply >150mA. This support is indicated by the Maximum Current Capabilities register of the Host Controller. If the response of ACMD41 has both CCS and S18A set, we start the signal voltage switch procedure, which if successfull, will switch the card from 3.3V signalling to 1.8V signalling. Signal voltage switch procedure adds support for a new command CMD11 in the Physical Layer Spec v3.01. As part of this procedure, we need to set 1.8V Signalling Enable (bit 3) of Host Control2 register, which if remains set after 5ms, means the switch to 1.8V signalling is successfull. Otherwise, we clear bit 24 of OCR and retry the initialization sequence. When we remove the card, and insert the same or another card, we need to make sure that we start with 3.3V signalling voltage. So we call mmc_set_signal_voltage() with MMC_SIGNAL_VOLTAGE_330 set so that we are back to 3.3V signalling voltage before we actually start initializing the card. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 00:48:57 -06:00
BUG_ON(!host);
/*
* Send CMD11 only if the request is to switch the card to
* 1.8V signalling.
*/
if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
return __mmc_set_signal_voltage(host, signal_voltage);
mmc: sd: add support for signal voltage switch procedure Host Controller v3.00 adds another Capabilities register. Apart from other things, this new register indicates whether the Host Controller supports SDR50, SDR104, and DDR50 UHS-I modes. The spec doesn't mention about explicit support for SDR12 and SDR25 UHS-I modes, so the Host Controller v3.00 should support them by default. Also if the controller supports SDR104 mode, it will also support SDR50 mode as well. So depending on the host support, we set the corresponding MMC_CAP_* flags. One more new register. Host Control2 is added in v3.00, which is used during Signal Voltage Switch procedure described below. Since as per v3.00 spec, UHS-I supported hosts should set S18R to 1, we set S18R (bit 24) of OCR before sending ACMD41. We also need to set XPC (bit 28) of OCR in case the host can supply >150mA. This support is indicated by the Maximum Current Capabilities register of the Host Controller. If the response of ACMD41 has both CCS and S18A set, we start the signal voltage switch procedure, which if successfull, will switch the card from 3.3V signalling to 1.8V signalling. Signal voltage switch procedure adds support for a new command CMD11 in the Physical Layer Spec v3.01. As part of this procedure, we need to set 1.8V Signalling Enable (bit 3) of Host Control2 register, which if remains set after 5ms, means the switch to 1.8V signalling is successfull. Otherwise, we clear bit 24 of OCR and retry the initialization sequence. When we remove the card, and insert the same or another card, we need to make sure that we start with 3.3V signalling voltage. So we call mmc_set_signal_voltage() with MMC_SIGNAL_VOLTAGE_330 set so that we are back to 3.3V signalling voltage before we actually start initializing the card. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 00:48:57 -06:00
/*
* If we cannot switch voltages, return failure so the caller
* can continue without UHS mode
*/
if (!host->ops->start_signal_voltage_switch)
return -EPERM;
if (!host->ops->card_busy)
pr_warn("%s: cannot verify signal voltage switch\n",
mmc_hostname(host));
cmd.opcode = SD_SWITCH_VOLTAGE;
cmd.arg = 0;
cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
err = mmc_wait_for_cmd(host, &cmd, 0);
if (err)
return err;
if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
return -EIO;
mmc_host_clk_hold(host);
/*
* The card should drive cmd and dat[0:3] low immediately
* after the response of cmd11, but wait 1 ms to be sure
*/
mmc_delay(1);
if (host->ops->card_busy && !host->ops->card_busy(host)) {
err = -EAGAIN;
goto power_cycle;
}
/*
* During a signal voltage level switch, the clock must be gated
* for 5 ms according to the SD spec
*/
clock = host->ios.clock;
host->ios.clock = 0;
mmc_set_ios(host);
mmc: sd: add support for signal voltage switch procedure Host Controller v3.00 adds another Capabilities register. Apart from other things, this new register indicates whether the Host Controller supports SDR50, SDR104, and DDR50 UHS-I modes. The spec doesn't mention about explicit support for SDR12 and SDR25 UHS-I modes, so the Host Controller v3.00 should support them by default. Also if the controller supports SDR104 mode, it will also support SDR50 mode as well. So depending on the host support, we set the corresponding MMC_CAP_* flags. One more new register. Host Control2 is added in v3.00, which is used during Signal Voltage Switch procedure described below. Since as per v3.00 spec, UHS-I supported hosts should set S18R to 1, we set S18R (bit 24) of OCR before sending ACMD41. We also need to set XPC (bit 28) of OCR in case the host can supply >150mA. This support is indicated by the Maximum Current Capabilities register of the Host Controller. If the response of ACMD41 has both CCS and S18A set, we start the signal voltage switch procedure, which if successfull, will switch the card from 3.3V signalling to 1.8V signalling. Signal voltage switch procedure adds support for a new command CMD11 in the Physical Layer Spec v3.01. As part of this procedure, we need to set 1.8V Signalling Enable (bit 3) of Host Control2 register, which if remains set after 5ms, means the switch to 1.8V signalling is successfull. Otherwise, we clear bit 24 of OCR and retry the initialization sequence. When we remove the card, and insert the same or another card, we need to make sure that we start with 3.3V signalling voltage. So we call mmc_set_signal_voltage() with MMC_SIGNAL_VOLTAGE_330 set so that we are back to 3.3V signalling voltage before we actually start initializing the card. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 00:48:57 -06:00
if (__mmc_set_signal_voltage(host, signal_voltage)) {
/*
* Voltages may not have been switched, but we've already
* sent CMD11, so a power cycle is required anyway
*/
err = -EAGAIN;
goto power_cycle;
mmc: sd: add support for signal voltage switch procedure Host Controller v3.00 adds another Capabilities register. Apart from other things, this new register indicates whether the Host Controller supports SDR50, SDR104, and DDR50 UHS-I modes. The spec doesn't mention about explicit support for SDR12 and SDR25 UHS-I modes, so the Host Controller v3.00 should support them by default. Also if the controller supports SDR104 mode, it will also support SDR50 mode as well. So depending on the host support, we set the corresponding MMC_CAP_* flags. One more new register. Host Control2 is added in v3.00, which is used during Signal Voltage Switch procedure described below. Since as per v3.00 spec, UHS-I supported hosts should set S18R to 1, we set S18R (bit 24) of OCR before sending ACMD41. We also need to set XPC (bit 28) of OCR in case the host can supply >150mA. This support is indicated by the Maximum Current Capabilities register of the Host Controller. If the response of ACMD41 has both CCS and S18A set, we start the signal voltage switch procedure, which if successfull, will switch the card from 3.3V signalling to 1.8V signalling. Signal voltage switch procedure adds support for a new command CMD11 in the Physical Layer Spec v3.01. As part of this procedure, we need to set 1.8V Signalling Enable (bit 3) of Host Control2 register, which if remains set after 5ms, means the switch to 1.8V signalling is successfull. Otherwise, we clear bit 24 of OCR and retry the initialization sequence. When we remove the card, and insert the same or another card, we need to make sure that we start with 3.3V signalling voltage. So we call mmc_set_signal_voltage() with MMC_SIGNAL_VOLTAGE_330 set so that we are back to 3.3V signalling voltage before we actually start initializing the card. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 00:48:57 -06:00
}
/* Keep clock gated for at least 5 ms */
mmc_delay(5);
host->ios.clock = clock;
mmc_set_ios(host);
/* Wait for at least 1 ms according to spec */
mmc_delay(1);
/*
* Failure to switch is indicated by the card holding
* dat[0:3] low
*/
if (host->ops->card_busy && host->ops->card_busy(host))
err = -EAGAIN;
power_cycle:
if (err) {
pr_debug("%s: Signal voltage switch failed, "
"power cycling card\n", mmc_hostname(host));
mmc_power_cycle(host, ocr);
}
mmc_host_clk_release(host);
return err;
mmc: sd: add support for signal voltage switch procedure Host Controller v3.00 adds another Capabilities register. Apart from other things, this new register indicates whether the Host Controller supports SDR50, SDR104, and DDR50 UHS-I modes. The spec doesn't mention about explicit support for SDR12 and SDR25 UHS-I modes, so the Host Controller v3.00 should support them by default. Also if the controller supports SDR104 mode, it will also support SDR50 mode as well. So depending on the host support, we set the corresponding MMC_CAP_* flags. One more new register. Host Control2 is added in v3.00, which is used during Signal Voltage Switch procedure described below. Since as per v3.00 spec, UHS-I supported hosts should set S18R to 1, we set S18R (bit 24) of OCR before sending ACMD41. We also need to set XPC (bit 28) of OCR in case the host can supply >150mA. This support is indicated by the Maximum Current Capabilities register of the Host Controller. If the response of ACMD41 has both CCS and S18A set, we start the signal voltage switch procedure, which if successfull, will switch the card from 3.3V signalling to 1.8V signalling. Signal voltage switch procedure adds support for a new command CMD11 in the Physical Layer Spec v3.01. As part of this procedure, we need to set 1.8V Signalling Enable (bit 3) of Host Control2 register, which if remains set after 5ms, means the switch to 1.8V signalling is successfull. Otherwise, we clear bit 24 of OCR and retry the initialization sequence. When we remove the card, and insert the same or another card, we need to make sure that we start with 3.3V signalling voltage. So we call mmc_set_signal_voltage() with MMC_SIGNAL_VOLTAGE_330 set so that we are back to 3.3V signalling voltage before we actually start initializing the card. Tested by Zhangfei Gao with a Toshiba uhs card and general hs card, on mmp2 in SDMA mode. Signed-off-by: Arindam Nath <arindam.nath@amd.com> Reviewed-by: Philip Rakity <prakity@marvell.com> Tested-by: Philip Rakity <prakity@marvell.com> Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-05-05 00:48:57 -06:00
}
/*
* Select timing parameters for host.
*/
void mmc_set_timing(struct mmc_host *host, unsigned int timing)
{
mmc: core: prevent aggressive clock gating racing with ios updates We have seen at least two different races when clock gating kicks in in a middle of ios structure update. First one happens when ios->clock is changed outside of aggressive clock gating framework, for example via mmc_set_clock(). The race might happen when we run following code: mmc_set_ios(): ... if (ios->clock > 0) mmc_set_ungated(host); Now if gating kicks in right after the condition check we end up setting host->clk_gated to false even though we have just gated the clock. Next time a request is started we try to ungate and restore the clock in mmc_host_clk_hold(). However since we have host->clk_gated set to false the original clock is not restored. This eventually will cause the host controller to hang since its clock is disabled while we are trying to issue a request. For example on Intel Medfield platform we see: [ 13.818610] mmc2: Timeout waiting for hardware interrupt. [ 13.818698] sdhci: =========== REGISTER DUMP (mmc2)=========== [ 13.818753] sdhci: Sys addr: 0x00000000 | Version: 0x00008901 [ 13.818804] sdhci: Blk size: 0x00000000 | Blk cnt: 0x00000000 [ 13.818853] sdhci: Argument: 0x00000000 | Trn mode: 0x00000000 [ 13.818903] sdhci: Present: 0x1fff0000 | Host ctl: 0x00000001 [ 13.818951] sdhci: Power: 0x0000000d | Blk gap: 0x00000000 [ 13.819000] sdhci: Wake-up: 0x00000000 | Clock: 0x00000000 [ 13.819049] sdhci: Timeout: 0x00000000 | Int stat: 0x00000000 [ 13.819098] sdhci: Int enab: 0x00ff00c3 | Sig enab: 0x00ff00c3 [ 13.819147] sdhci: AC12 err: 0x00000000 | Slot int: 0x00000000 [ 13.819196] sdhci: Caps: 0x6bee32b2 | Caps_1: 0x00000000 [ 13.819245] sdhci: Cmd: 0x00000000 | Max curr: 0x00000000 [ 13.819292] sdhci: Host ctl2: 0x00000000 [ 13.819331] sdhci: ADMA Err: 0x00000000 | ADMA Ptr: 0x00000000 [ 13.819377] sdhci: =========================================== [ 13.919605] mmc2: Reset 0x2 never completed. and it never recovers. Second race might happen while running mmc_power_off(): static void mmc_power_off(struct mmc_host *host) { host->ios.clock = 0; host->ios.vdd = 0; [ clock gating kicks in here ] /* * Reset ocr mask to be the highest possible voltage supported for * this mmc host. This value will be used at next power up. */ host->ocr = 1 << (fls(host->ocr_avail) - 1); if (!mmc_host_is_spi(host)) { host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN; host->ios.chip_select = MMC_CS_DONTCARE; } host->ios.power_mode = MMC_POWER_OFF; host->ios.bus_width = MMC_BUS_WIDTH_1; host->ios.timing = MMC_TIMING_LEGACY; mmc_set_ios(host); } If the clock gating worker kicks in while we are only partially updated the ios structure the host controller gets incomplete ios and might not work as supposed. Again on Intel Medfield platform we get: [ 4.185349] kernel BUG at drivers/mmc/host/sdhci.c:1155! [ 4.185422] invalid opcode: 0000 [#1] PREEMPT SMP [ 4.185509] Modules linked in: [ 4.185565] [ 4.185608] Pid: 4, comm: kworker/0:0 Not tainted 3.0.0+ #240 Intel Corporation Medfield/iCDKA [ 4.185742] EIP: 0060:[<c136364e>] EFLAGS: 00010083 CPU: 0 [ 4.185827] EIP is at sdhci_set_power+0x3e/0xd0 [ 4.185891] EAX: f5ff98e0 EBX: f5ff98e0 ECX: 00000000 EDX: 00000001 [ 4.185970] ESI: f5ff977c EDI: f5ff9904 EBP: f644fe98 ESP: f644fe94 [ 4.186049] DS: 007b ES: 007b FS: 00d8 GS: 0000 SS: 0068 [ 4.186125] Process kworker/0:0 (pid: 4, ti=f644e000 task=f644c0e0 task.ti=f644e000) [ 4.186219] Stack: [ 4.186257] f5ff98e0 f644feb0 c1365173 00000282 f5ff9460 f5ff96e0 f5ff96e0 f644feec [ 4.186418] c1355bd8 f644c0e0 c1499c3d f5ff96e0 f644fed4 00000006 f5ff96e0 00000286 [ 4.186579] f644fedc c107922b f644feec 00000286 f5ff9460 f5ff9700 f644ff10 c135839e [ 4.186739] Call Trace: [ 4.186802] [<c1365173>] sdhci_set_ios+0x1c3/0x340 [ 4.186883] [<c1355bd8>] mmc_gate_clock+0x68/0x120 [ 4.186963] [<c1499c3d>] ? _raw_spin_unlock_irqrestore+0x4d/0x60 [ 4.187052] [<c107922b>] ? trace_hardirqs_on+0xb/0x10 [ 4.187134] [<c135839e>] mmc_host_clk_gate_delayed+0xbe/0x130 [ 4.187219] [<c105ec09>] ? process_one_work+0xf9/0x5b0 [ 4.187300] [<c135841d>] mmc_host_clk_gate_work+0xd/0x10 [ 4.187379] [<c105ec82>] process_one_work+0x172/0x5b0 [ 4.187457] [<c105ec09>] ? process_one_work+0xf9/0x5b0 [ 4.187538] [<c1358410>] ? mmc_host_clk_gate_delayed+0x130/0x130 [ 4.187625] [<c105f3c8>] worker_thread+0x118/0x330 [ 4.187700] [<c1496cee>] ? preempt_schedule+0x2e/0x50 [ 4.187779] [<c105f2b0>] ? rescuer_thread+0x1f0/0x1f0 [ 4.187857] [<c1062cf4>] kthread+0x74/0x80 [ 4.187931] [<c1062c80>] ? __init_kthread_worker+0x60/0x60 [ 4.188015] [<c149acfa>] kernel_thread_helper+0x6/0xd [ 4.188079] Code: 81 fa 00 00 04 00 0f 84 a7 00 00 00 7f 21 81 fa 80 00 00 00 0f 84 92 00 00 00 81 fa 00 00 0 [ 4.188780] EIP: [<c136364e>] sdhci_set_power+0x3e/0xd0 SS:ESP 0068:f644fe94 [ 4.188898] ---[ end trace a7b23eecc71777e4 ]--- This BUG() comes from the fact that ios.power_mode was still in previous value (MMC_POWER_ON) and ios.vdd was set to zero. We prevent these by inhibiting the clock gating while we update the ios structure. Both problems can be reproduced by simply running the device in a reboot loop. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Linus Walleij <linus.walleij@linaro.org> Tested-by: Chris Ball <cjb@laptop.org> Cc: <stable@kernel.org> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-08-18 06:23:48 -06:00
mmc_host_clk_hold(host);
host->ios.timing = timing;
mmc_set_ios(host);
mmc: core: prevent aggressive clock gating racing with ios updates We have seen at least two different races when clock gating kicks in in a middle of ios structure update. First one happens when ios->clock is changed outside of aggressive clock gating framework, for example via mmc_set_clock(). The race might happen when we run following code: mmc_set_ios(): ... if (ios->clock > 0) mmc_set_ungated(host); Now if gating kicks in right after the condition check we end up setting host->clk_gated to false even though we have just gated the clock. Next time a request is started we try to ungate and restore the clock in mmc_host_clk_hold(). However since we have host->clk_gated set to false the original clock is not restored. This eventually will cause the host controller to hang since its clock is disabled while we are trying to issue a request. For example on Intel Medfield platform we see: [ 13.818610] mmc2: Timeout waiting for hardware interrupt. [ 13.818698] sdhci: =========== REGISTER DUMP (mmc2)=========== [ 13.818753] sdhci: Sys addr: 0x00000000 | Version: 0x00008901 [ 13.818804] sdhci: Blk size: 0x00000000 | Blk cnt: 0x00000000 [ 13.818853] sdhci: Argument: 0x00000000 | Trn mode: 0x00000000 [ 13.818903] sdhci: Present: 0x1fff0000 | Host ctl: 0x00000001 [ 13.818951] sdhci: Power: 0x0000000d | Blk gap: 0x00000000 [ 13.819000] sdhci: Wake-up: 0x00000000 | Clock: 0x00000000 [ 13.819049] sdhci: Timeout: 0x00000000 | Int stat: 0x00000000 [ 13.819098] sdhci: Int enab: 0x00ff00c3 | Sig enab: 0x00ff00c3 [ 13.819147] sdhci: AC12 err: 0x00000000 | Slot int: 0x00000000 [ 13.819196] sdhci: Caps: 0x6bee32b2 | Caps_1: 0x00000000 [ 13.819245] sdhci: Cmd: 0x00000000 | Max curr: 0x00000000 [ 13.819292] sdhci: Host ctl2: 0x00000000 [ 13.819331] sdhci: ADMA Err: 0x00000000 | ADMA Ptr: 0x00000000 [ 13.819377] sdhci: =========================================== [ 13.919605] mmc2: Reset 0x2 never completed. and it never recovers. Second race might happen while running mmc_power_off(): static void mmc_power_off(struct mmc_host *host) { host->ios.clock = 0; host->ios.vdd = 0; [ clock gating kicks in here ] /* * Reset ocr mask to be the highest possible voltage supported for * this mmc host. This value will be used at next power up. */ host->ocr = 1 << (fls(host->ocr_avail) - 1); if (!mmc_host_is_spi(host)) { host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN; host->ios.chip_select = MMC_CS_DONTCARE; } host->ios.power_mode = MMC_POWER_OFF; host->ios.bus_width = MMC_BUS_WIDTH_1; host->ios.timing = MMC_TIMING_LEGACY; mmc_set_ios(host); } If the clock gating worker kicks in while we are only partially updated the ios structure the host controller gets incomplete ios and might not work as supposed. Again on Intel Medfield platform we get: [ 4.185349] kernel BUG at drivers/mmc/host/sdhci.c:1155! [ 4.185422] invalid opcode: 0000 [#1] PREEMPT SMP [ 4.185509] Modules linked in: [ 4.185565] [ 4.185608] Pid: 4, comm: kworker/0:0 Not tainted 3.0.0+ #240 Intel Corporation Medfield/iCDKA [ 4.185742] EIP: 0060:[<c136364e>] EFLAGS: 00010083 CPU: 0 [ 4.185827] EIP is at sdhci_set_power+0x3e/0xd0 [ 4.185891] EAX: f5ff98e0 EBX: f5ff98e0 ECX: 00000000 EDX: 00000001 [ 4.185970] ESI: f5ff977c EDI: f5ff9904 EBP: f644fe98 ESP: f644fe94 [ 4.186049] DS: 007b ES: 007b FS: 00d8 GS: 0000 SS: 0068 [ 4.186125] Process kworker/0:0 (pid: 4, ti=f644e000 task=f644c0e0 task.ti=f644e000) [ 4.186219] Stack: [ 4.186257] f5ff98e0 f644feb0 c1365173 00000282 f5ff9460 f5ff96e0 f5ff96e0 f644feec [ 4.186418] c1355bd8 f644c0e0 c1499c3d f5ff96e0 f644fed4 00000006 f5ff96e0 00000286 [ 4.186579] f644fedc c107922b f644feec 00000286 f5ff9460 f5ff9700 f644ff10 c135839e [ 4.186739] Call Trace: [ 4.186802] [<c1365173>] sdhci_set_ios+0x1c3/0x340 [ 4.186883] [<c1355bd8>] mmc_gate_clock+0x68/0x120 [ 4.186963] [<c1499c3d>] ? _raw_spin_unlock_irqrestore+0x4d/0x60 [ 4.187052] [<c107922b>] ? trace_hardirqs_on+0xb/0x10 [ 4.187134] [<c135839e>] mmc_host_clk_gate_delayed+0xbe/0x130 [ 4.187219] [<c105ec09>] ? process_one_work+0xf9/0x5b0 [ 4.187300] [<c135841d>] mmc_host_clk_gate_work+0xd/0x10 [ 4.187379] [<c105ec82>] process_one_work+0x172/0x5b0 [ 4.187457] [<c105ec09>] ? process_one_work+0xf9/0x5b0 [ 4.187538] [<c1358410>] ? mmc_host_clk_gate_delayed+0x130/0x130 [ 4.187625] [<c105f3c8>] worker_thread+0x118/0x330 [ 4.187700] [<c1496cee>] ? preempt_schedule+0x2e/0x50 [ 4.187779] [<c105f2b0>] ? rescuer_thread+0x1f0/0x1f0 [ 4.187857] [<c1062cf4>] kthread+0x74/0x80 [ 4.187931] [<c1062c80>] ? __init_kthread_worker+0x60/0x60 [ 4.188015] [<c149acfa>] kernel_thread_helper+0x6/0xd [ 4.188079] Code: 81 fa 00 00 04 00 0f 84 a7 00 00 00 7f 21 81 fa 80 00 00 00 0f 84 92 00 00 00 81 fa 00 00 0 [ 4.188780] EIP: [<c136364e>] sdhci_set_power+0x3e/0xd0 SS:ESP 0068:f644fe94 [ 4.188898] ---[ end trace a7b23eecc71777e4 ]--- This BUG() comes from the fact that ios.power_mode was still in previous value (MMC_POWER_ON) and ios.vdd was set to zero. We prevent these by inhibiting the clock gating while we update the ios structure. Both problems can be reproduced by simply running the device in a reboot loop. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Linus Walleij <linus.walleij@linaro.org> Tested-by: Chris Ball <cjb@laptop.org> Cc: <stable@kernel.org> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-08-18 06:23:48 -06:00
mmc_host_clk_release(host);
}
/*
* Select appropriate driver type for host.
*/
void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
{
mmc: core: prevent aggressive clock gating racing with ios updates We have seen at least two different races when clock gating kicks in in a middle of ios structure update. First one happens when ios->clock is changed outside of aggressive clock gating framework, for example via mmc_set_clock(). The race might happen when we run following code: mmc_set_ios(): ... if (ios->clock > 0) mmc_set_ungated(host); Now if gating kicks in right after the condition check we end up setting host->clk_gated to false even though we have just gated the clock. Next time a request is started we try to ungate and restore the clock in mmc_host_clk_hold(). However since we have host->clk_gated set to false the original clock is not restored. This eventually will cause the host controller to hang since its clock is disabled while we are trying to issue a request. For example on Intel Medfield platform we see: [ 13.818610] mmc2: Timeout waiting for hardware interrupt. [ 13.818698] sdhci: =========== REGISTER DUMP (mmc2)=========== [ 13.818753] sdhci: Sys addr: 0x00000000 | Version: 0x00008901 [ 13.818804] sdhci: Blk size: 0x00000000 | Blk cnt: 0x00000000 [ 13.818853] sdhci: Argument: 0x00000000 | Trn mode: 0x00000000 [ 13.818903] sdhci: Present: 0x1fff0000 | Host ctl: 0x00000001 [ 13.818951] sdhci: Power: 0x0000000d | Blk gap: 0x00000000 [ 13.819000] sdhci: Wake-up: 0x00000000 | Clock: 0x00000000 [ 13.819049] sdhci: Timeout: 0x00000000 | Int stat: 0x00000000 [ 13.819098] sdhci: Int enab: 0x00ff00c3 | Sig enab: 0x00ff00c3 [ 13.819147] sdhci: AC12 err: 0x00000000 | Slot int: 0x00000000 [ 13.819196] sdhci: Caps: 0x6bee32b2 | Caps_1: 0x00000000 [ 13.819245] sdhci: Cmd: 0x00000000 | Max curr: 0x00000000 [ 13.819292] sdhci: Host ctl2: 0x00000000 [ 13.819331] sdhci: ADMA Err: 0x00000000 | ADMA Ptr: 0x00000000 [ 13.819377] sdhci: =========================================== [ 13.919605] mmc2: Reset 0x2 never completed. and it never recovers. Second race might happen while running mmc_power_off(): static void mmc_power_off(struct mmc_host *host) { host->ios.clock = 0; host->ios.vdd = 0; [ clock gating kicks in here ] /* * Reset ocr mask to be the highest possible voltage supported for * this mmc host. This value will be used at next power up. */ host->ocr = 1 << (fls(host->ocr_avail) - 1); if (!mmc_host_is_spi(host)) { host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN; host->ios.chip_select = MMC_CS_DONTCARE; } host->ios.power_mode = MMC_POWER_OFF; host->ios.bus_width = MMC_BUS_WIDTH_1; host->ios.timing = MMC_TIMING_LEGACY; mmc_set_ios(host); } If the clock gating worker kicks in while we are only partially updated the ios structure the host controller gets incomplete ios and might not work as supposed. Again on Intel Medfield platform we get: [ 4.185349] kernel BUG at drivers/mmc/host/sdhci.c:1155! [ 4.185422] invalid opcode: 0000 [#1] PREEMPT SMP [ 4.185509] Modules linked in: [ 4.185565] [ 4.185608] Pid: 4, comm: kworker/0:0 Not tainted 3.0.0+ #240 Intel Corporation Medfield/iCDKA [ 4.185742] EIP: 0060:[<c136364e>] EFLAGS: 00010083 CPU: 0 [ 4.185827] EIP is at sdhci_set_power+0x3e/0xd0 [ 4.185891] EAX: f5ff98e0 EBX: f5ff98e0 ECX: 00000000 EDX: 00000001 [ 4.185970] ESI: f5ff977c EDI: f5ff9904 EBP: f644fe98 ESP: f644fe94 [ 4.186049] DS: 007b ES: 007b FS: 00d8 GS: 0000 SS: 0068 [ 4.186125] Process kworker/0:0 (pid: 4, ti=f644e000 task=f644c0e0 task.ti=f644e000) [ 4.186219] Stack: [ 4.186257] f5ff98e0 f644feb0 c1365173 00000282 f5ff9460 f5ff96e0 f5ff96e0 f644feec [ 4.186418] c1355bd8 f644c0e0 c1499c3d f5ff96e0 f644fed4 00000006 f5ff96e0 00000286 [ 4.186579] f644fedc c107922b f644feec 00000286 f5ff9460 f5ff9700 f644ff10 c135839e [ 4.186739] Call Trace: [ 4.186802] [<c1365173>] sdhci_set_ios+0x1c3/0x340 [ 4.186883] [<c1355bd8>] mmc_gate_clock+0x68/0x120 [ 4.186963] [<c1499c3d>] ? _raw_spin_unlock_irqrestore+0x4d/0x60 [ 4.187052] [<c107922b>] ? trace_hardirqs_on+0xb/0x10 [ 4.187134] [<c135839e>] mmc_host_clk_gate_delayed+0xbe/0x130 [ 4.187219] [<c105ec09>] ? process_one_work+0xf9/0x5b0 [ 4.187300] [<c135841d>] mmc_host_clk_gate_work+0xd/0x10 [ 4.187379] [<c105ec82>] process_one_work+0x172/0x5b0 [ 4.187457] [<c105ec09>] ? process_one_work+0xf9/0x5b0 [ 4.187538] [<c1358410>] ? mmc_host_clk_gate_delayed+0x130/0x130 [ 4.187625] [<c105f3c8>] worker_thread+0x118/0x330 [ 4.187700] [<c1496cee>] ? preempt_schedule+0x2e/0x50 [ 4.187779] [<c105f2b0>] ? rescuer_thread+0x1f0/0x1f0 [ 4.187857] [<c1062cf4>] kthread+0x74/0x80 [ 4.187931] [<c1062c80>] ? __init_kthread_worker+0x60/0x60 [ 4.188015] [<c149acfa>] kernel_thread_helper+0x6/0xd [ 4.188079] Code: 81 fa 00 00 04 00 0f 84 a7 00 00 00 7f 21 81 fa 80 00 00 00 0f 84 92 00 00 00 81 fa 00 00 0 [ 4.188780] EIP: [<c136364e>] sdhci_set_power+0x3e/0xd0 SS:ESP 0068:f644fe94 [ 4.188898] ---[ end trace a7b23eecc71777e4 ]--- This BUG() comes from the fact that ios.power_mode was still in previous value (MMC_POWER_ON) and ios.vdd was set to zero. We prevent these by inhibiting the clock gating while we update the ios structure. Both problems can be reproduced by simply running the device in a reboot loop. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Linus Walleij <linus.walleij@linaro.org> Tested-by: Chris Ball <cjb@laptop.org> Cc: <stable@kernel.org> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-08-18 06:23:48 -06:00
mmc_host_clk_hold(host);
host->ios.drv_type = drv_type;
mmc_set_ios(host);
mmc: core: prevent aggressive clock gating racing with ios updates We have seen at least two different races when clock gating kicks in in a middle of ios structure update. First one happens when ios->clock is changed outside of aggressive clock gating framework, for example via mmc_set_clock(). The race might happen when we run following code: mmc_set_ios(): ... if (ios->clock > 0) mmc_set_ungated(host); Now if gating kicks in right after the condition check we end up setting host->clk_gated to false even though we have just gated the clock. Next time a request is started we try to ungate and restore the clock in mmc_host_clk_hold(). However since we have host->clk_gated set to false the original clock is not restored. This eventually will cause the host controller to hang since its clock is disabled while we are trying to issue a request. For example on Intel Medfield platform we see: [ 13.818610] mmc2: Timeout waiting for hardware interrupt. [ 13.818698] sdhci: =========== REGISTER DUMP (mmc2)=========== [ 13.818753] sdhci: Sys addr: 0x00000000 | Version: 0x00008901 [ 13.818804] sdhci: Blk size: 0x00000000 | Blk cnt: 0x00000000 [ 13.818853] sdhci: Argument: 0x00000000 | Trn mode: 0x00000000 [ 13.818903] sdhci: Present: 0x1fff0000 | Host ctl: 0x00000001 [ 13.818951] sdhci: Power: 0x0000000d | Blk gap: 0x00000000 [ 13.819000] sdhci: Wake-up: 0x00000000 | Clock: 0x00000000 [ 13.819049] sdhci: Timeout: 0x00000000 | Int stat: 0x00000000 [ 13.819098] sdhci: Int enab: 0x00ff00c3 | Sig enab: 0x00ff00c3 [ 13.819147] sdhci: AC12 err: 0x00000000 | Slot int: 0x00000000 [ 13.819196] sdhci: Caps: 0x6bee32b2 | Caps_1: 0x00000000 [ 13.819245] sdhci: Cmd: 0x00000000 | Max curr: 0x00000000 [ 13.819292] sdhci: Host ctl2: 0x00000000 [ 13.819331] sdhci: ADMA Err: 0x00000000 | ADMA Ptr: 0x00000000 [ 13.819377] sdhci: =========================================== [ 13.919605] mmc2: Reset 0x2 never completed. and it never recovers. Second race might happen while running mmc_power_off(): static void mmc_power_off(struct mmc_host *host) { host->ios.clock = 0; host->ios.vdd = 0; [ clock gating kicks in here ] /* * Reset ocr mask to be the highest possible voltage supported for * this mmc host. This value will be used at next power up. */ host->ocr = 1 << (fls(host->ocr_avail) - 1); if (!mmc_host_is_spi(host)) { host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN; host->ios.chip_select = MMC_CS_DONTCARE; } host->ios.power_mode = MMC_POWER_OFF; host->ios.bus_width = MMC_BUS_WIDTH_1; host->ios.timing = MMC_TIMING_LEGACY; mmc_set_ios(host); } If the clock gating worker kicks in while we are only partially updated the ios structure the host controller gets incomplete ios and might not work as supposed. Again on Intel Medfield platform we get: [ 4.185349] kernel BUG at drivers/mmc/host/sdhci.c:1155! [ 4.185422] invalid opcode: 0000 [#1] PREEMPT SMP [ 4.185509] Modules linked in: [ 4.185565] [ 4.185608] Pid: 4, comm: kworker/0:0 Not tainted 3.0.0+ #240 Intel Corporation Medfield/iCDKA [ 4.185742] EIP: 0060:[<c136364e>] EFLAGS: 00010083 CPU: 0 [ 4.185827] EIP is at sdhci_set_power+0x3e/0xd0 [ 4.185891] EAX: f5ff98e0 EBX: f5ff98e0 ECX: 00000000 EDX: 00000001 [ 4.185970] ESI: f5ff977c EDI: f5ff9904 EBP: f644fe98 ESP: f644fe94 [ 4.186049] DS: 007b ES: 007b FS: 00d8 GS: 0000 SS: 0068 [ 4.186125] Process kworker/0:0 (pid: 4, ti=f644e000 task=f644c0e0 task.ti=f644e000) [ 4.186219] Stack: [ 4.186257] f5ff98e0 f644feb0 c1365173 00000282 f5ff9460 f5ff96e0 f5ff96e0 f644feec [ 4.186418] c1355bd8 f644c0e0 c1499c3d f5ff96e0 f644fed4 00000006 f5ff96e0 00000286 [ 4.186579] f644fedc c107922b f644feec 00000286 f5ff9460 f5ff9700 f644ff10 c135839e [ 4.186739] Call Trace: [ 4.186802] [<c1365173>] sdhci_set_ios+0x1c3/0x340 [ 4.186883] [<c1355bd8>] mmc_gate_clock+0x68/0x120 [ 4.186963] [<c1499c3d>] ? _raw_spin_unlock_irqrestore+0x4d/0x60 [ 4.187052] [<c107922b>] ? trace_hardirqs_on+0xb/0x10 [ 4.187134] [<c135839e>] mmc_host_clk_gate_delayed+0xbe/0x130 [ 4.187219] [<c105ec09>] ? process_one_work+0xf9/0x5b0 [ 4.187300] [<c135841d>] mmc_host_clk_gate_work+0xd/0x10 [ 4.187379] [<c105ec82>] process_one_work+0x172/0x5b0 [ 4.187457] [<c105ec09>] ? process_one_work+0xf9/0x5b0 [ 4.187538] [<c1358410>] ? mmc_host_clk_gate_delayed+0x130/0x130 [ 4.187625] [<c105f3c8>] worker_thread+0x118/0x330 [ 4.187700] [<c1496cee>] ? preempt_schedule+0x2e/0x50 [ 4.187779] [<c105f2b0>] ? rescuer_thread+0x1f0/0x1f0 [ 4.187857] [<c1062cf4>] kthread+0x74/0x80 [ 4.187931] [<c1062c80>] ? __init_kthread_worker+0x60/0x60 [ 4.188015] [<c149acfa>] kernel_thread_helper+0x6/0xd [ 4.188079] Code: 81 fa 00 00 04 00 0f 84 a7 00 00 00 7f 21 81 fa 80 00 00 00 0f 84 92 00 00 00 81 fa 00 00 0 [ 4.188780] EIP: [<c136364e>] sdhci_set_power+0x3e/0xd0 SS:ESP 0068:f644fe94 [ 4.188898] ---[ end trace a7b23eecc71777e4 ]--- This BUG() comes from the fact that ios.power_mode was still in previous value (MMC_POWER_ON) and ios.vdd was set to zero. We prevent these by inhibiting the clock gating while we update the ios structure. Both problems can be reproduced by simply running the device in a reboot loop. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Linus Walleij <linus.walleij@linaro.org> Tested-by: Chris Ball <cjb@laptop.org> Cc: <stable@kernel.org> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-08-18 06:23:48 -06:00
mmc_host_clk_release(host);
}
/*
* Apply power to the MMC stack. This is a two-stage process.
* First, we enable power to the card without the clock running.
* We then wait a bit for the power to stabilise. Finally,
* enable the bus drivers and clock to the card.
*
* We must _NOT_ enable the clock prior to power stablising.
*
* If a host does all the power sequencing itself, ignore the
* initial MMC_POWER_UP stage.
*/
void mmc_power_up(struct mmc_host *host, u32 ocr)
{
if (host->ios.power_mode == MMC_POWER_ON)
return;
mmc: core: prevent aggressive clock gating racing with ios updates We have seen at least two different races when clock gating kicks in in a middle of ios structure update. First one happens when ios->clock is changed outside of aggressive clock gating framework, for example via mmc_set_clock(). The race might happen when we run following code: mmc_set_ios(): ... if (ios->clock > 0) mmc_set_ungated(host); Now if gating kicks in right after the condition check we end up setting host->clk_gated to false even though we have just gated the clock. Next time a request is started we try to ungate and restore the clock in mmc_host_clk_hold(). However since we have host->clk_gated set to false the original clock is not restored. This eventually will cause the host controller to hang since its clock is disabled while we are trying to issue a request. For example on Intel Medfield platform we see: [ 13.818610] mmc2: Timeout waiting for hardware interrupt. [ 13.818698] sdhci: =========== REGISTER DUMP (mmc2)=========== [ 13.818753] sdhci: Sys addr: 0x00000000 | Version: 0x00008901 [ 13.818804] sdhci: Blk size: 0x00000000 | Blk cnt: 0x00000000 [ 13.818853] sdhci: Argument: 0x00000000 | Trn mode: 0x00000000 [ 13.818903] sdhci: Present: 0x1fff0000 | Host ctl: 0x00000001 [ 13.818951] sdhci: Power: 0x0000000d | Blk gap: 0x00000000 [ 13.819000] sdhci: Wake-up: 0x00000000 | Clock: 0x00000000 [ 13.819049] sdhci: Timeout: 0x00000000 | Int stat: 0x00000000 [ 13.819098] sdhci: Int enab: 0x00ff00c3 | Sig enab: 0x00ff00c3 [ 13.819147] sdhci: AC12 err: 0x00000000 | Slot int: 0x00000000 [ 13.819196] sdhci: Caps: 0x6bee32b2 | Caps_1: 0x00000000 [ 13.819245] sdhci: Cmd: 0x00000000 | Max curr: 0x00000000 [ 13.819292] sdhci: Host ctl2: 0x00000000 [ 13.819331] sdhci: ADMA Err: 0x00000000 | ADMA Ptr: 0x00000000 [ 13.819377] sdhci: =========================================== [ 13.919605] mmc2: Reset 0x2 never completed. and it never recovers. Second race might happen while running mmc_power_off(): static void mmc_power_off(struct mmc_host *host) { host->ios.clock = 0; host->ios.vdd = 0; [ clock gating kicks in here ] /* * Reset ocr mask to be the highest possible voltage supported for * this mmc host. This value will be used at next power up. */ host->ocr = 1 << (fls(host->ocr_avail) - 1); if (!mmc_host_is_spi(host)) { host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN; host->ios.chip_select = MMC_CS_DONTCARE; } host->ios.power_mode = MMC_POWER_OFF; host->ios.bus_width = MMC_BUS_WIDTH_1; host->ios.timing = MMC_TIMING_LEGACY; mmc_set_ios(host); } If the clock gating worker kicks in while we are only partially updated the ios structure the host controller gets incomplete ios and might not work as supposed. Again on Intel Medfield platform we get: [ 4.185349] kernel BUG at drivers/mmc/host/sdhci.c:1155! [ 4.185422] invalid opcode: 0000 [#1] PREEMPT SMP [ 4.185509] Modules linked in: [ 4.185565] [ 4.185608] Pid: 4, comm: kworker/0:0 Not tainted 3.0.0+ #240 Intel Corporation Medfield/iCDKA [ 4.185742] EIP: 0060:[<c136364e>] EFLAGS: 00010083 CPU: 0 [ 4.185827] EIP is at sdhci_set_power+0x3e/0xd0 [ 4.185891] EAX: f5ff98e0 EBX: f5ff98e0 ECX: 00000000 EDX: 00000001 [ 4.185970] ESI: f5ff977c EDI: f5ff9904 EBP: f644fe98 ESP: f644fe94 [ 4.186049] DS: 007b ES: 007b FS: 00d8 GS: 0000 SS: 0068 [ 4.186125] Process kworker/0:0 (pid: 4, ti=f644e000 task=f644c0e0 task.ti=f644e000) [ 4.186219] Stack: [ 4.186257] f5ff98e0 f644feb0 c1365173 00000282 f5ff9460 f5ff96e0 f5ff96e0 f644feec [ 4.186418] c1355bd8 f644c0e0 c1499c3d f5ff96e0 f644fed4 00000006 f5ff96e0 00000286 [ 4.186579] f644fedc c107922b f644feec 00000286 f5ff9460 f5ff9700 f644ff10 c135839e [ 4.186739] Call Trace: [ 4.186802] [<c1365173>] sdhci_set_ios+0x1c3/0x340 [ 4.186883] [<c1355bd8>] mmc_gate_clock+0x68/0x120 [ 4.186963] [<c1499c3d>] ? _raw_spin_unlock_irqrestore+0x4d/0x60 [ 4.187052] [<c107922b>] ? trace_hardirqs_on+0xb/0x10 [ 4.187134] [<c135839e>] mmc_host_clk_gate_delayed+0xbe/0x130 [ 4.187219] [<c105ec09>] ? process_one_work+0xf9/0x5b0 [ 4.187300] [<c135841d>] mmc_host_clk_gate_work+0xd/0x10 [ 4.187379] [<c105ec82>] process_one_work+0x172/0x5b0 [ 4.187457] [<c105ec09>] ? process_one_work+0xf9/0x5b0 [ 4.187538] [<c1358410>] ? mmc_host_clk_gate_delayed+0x130/0x130 [ 4.187625] [<c105f3c8>] worker_thread+0x118/0x330 [ 4.187700] [<c1496cee>] ? preempt_schedule+0x2e/0x50 [ 4.187779] [<c105f2b0>] ? rescuer_thread+0x1f0/0x1f0 [ 4.187857] [<c1062cf4>] kthread+0x74/0x80 [ 4.187931] [<c1062c80>] ? __init_kthread_worker+0x60/0x60 [ 4.188015] [<c149acfa>] kernel_thread_helper+0x6/0xd [ 4.188079] Code: 81 fa 00 00 04 00 0f 84 a7 00 00 00 7f 21 81 fa 80 00 00 00 0f 84 92 00 00 00 81 fa 00 00 0 [ 4.188780] EIP: [<c136364e>] sdhci_set_power+0x3e/0xd0 SS:ESP 0068:f644fe94 [ 4.188898] ---[ end trace a7b23eecc71777e4 ]--- This BUG() comes from the fact that ios.power_mode was still in previous value (MMC_POWER_ON) and ios.vdd was set to zero. We prevent these by inhibiting the clock gating while we update the ios structure. Both problems can be reproduced by simply running the device in a reboot loop. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Linus Walleij <linus.walleij@linaro.org> Tested-by: Chris Ball <cjb@laptop.org> Cc: <stable@kernel.org> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-08-18 06:23:48 -06:00
mmc_host_clk_hold(host);
host->ios.vdd = fls(ocr) - 1;
host->ios.power_mode = MMC_POWER_UP;
/* Set initial state and call mmc_set_ios */
mmc_set_initial_state(host);
/* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330) == 0)
dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180) == 0)
dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120) == 0)
dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
/*
* This delay should be sufficient to allow the power supply
* to reach the minimum voltage.
*/
mmc_delay(10);
host->ios.clock = host->f_init;
host->ios.power_mode = MMC_POWER_ON;
mmc_set_ios(host);
/*
* This delay must be at least 74 clock sizes, or 1 ms, or the
* time required to reach a stable voltage.
*/
mmc_delay(10);
mmc: core: prevent aggressive clock gating racing with ios updates We have seen at least two different races when clock gating kicks in in a middle of ios structure update. First one happens when ios->clock is changed outside of aggressive clock gating framework, for example via mmc_set_clock(). The race might happen when we run following code: mmc_set_ios(): ... if (ios->clock > 0) mmc_set_ungated(host); Now if gating kicks in right after the condition check we end up setting host->clk_gated to false even though we have just gated the clock. Next time a request is started we try to ungate and restore the clock in mmc_host_clk_hold(). However since we have host->clk_gated set to false the original clock is not restored. This eventually will cause the host controller to hang since its clock is disabled while we are trying to issue a request. For example on Intel Medfield platform we see: [ 13.818610] mmc2: Timeout waiting for hardware interrupt. [ 13.818698] sdhci: =========== REGISTER DUMP (mmc2)=========== [ 13.818753] sdhci: Sys addr: 0x00000000 | Version: 0x00008901 [ 13.818804] sdhci: Blk size: 0x00000000 | Blk cnt: 0x00000000 [ 13.818853] sdhci: Argument: 0x00000000 | Trn mode: 0x00000000 [ 13.818903] sdhci: Present: 0x1fff0000 | Host ctl: 0x00000001 [ 13.818951] sdhci: Power: 0x0000000d | Blk gap: 0x00000000 [ 13.819000] sdhci: Wake-up: 0x00000000 | Clock: 0x00000000 [ 13.819049] sdhci: Timeout: 0x00000000 | Int stat: 0x00000000 [ 13.819098] sdhci: Int enab: 0x00ff00c3 | Sig enab: 0x00ff00c3 [ 13.819147] sdhci: AC12 err: 0x00000000 | Slot int: 0x00000000 [ 13.819196] sdhci: Caps: 0x6bee32b2 | Caps_1: 0x00000000 [ 13.819245] sdhci: Cmd: 0x00000000 | Max curr: 0x00000000 [ 13.819292] sdhci: Host ctl2: 0x00000000 [ 13.819331] sdhci: ADMA Err: 0x00000000 | ADMA Ptr: 0x00000000 [ 13.819377] sdhci: =========================================== [ 13.919605] mmc2: Reset 0x2 never completed. and it never recovers. Second race might happen while running mmc_power_off(): static void mmc_power_off(struct mmc_host *host) { host->ios.clock = 0; host->ios.vdd = 0; [ clock gating kicks in here ] /* * Reset ocr mask to be the highest possible voltage supported for * this mmc host. This value will be used at next power up. */ host->ocr = 1 << (fls(host->ocr_avail) - 1); if (!mmc_host_is_spi(host)) { host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN; host->ios.chip_select = MMC_CS_DONTCARE; } host->ios.power_mode = MMC_POWER_OFF; host->ios.bus_width = MMC_BUS_WIDTH_1; host->ios.timing = MMC_TIMING_LEGACY; mmc_set_ios(host); } If the clock gating worker kicks in while we are only partially updated the ios structure the host controller gets incomplete ios and might not work as supposed. Again on Intel Medfield platform we get: [ 4.185349] kernel BUG at drivers/mmc/host/sdhci.c:1155! [ 4.185422] invalid opcode: 0000 [#1] PREEMPT SMP [ 4.185509] Modules linked in: [ 4.185565] [ 4.185608] Pid: 4, comm: kworker/0:0 Not tainted 3.0.0+ #240 Intel Corporation Medfield/iCDKA [ 4.185742] EIP: 0060:[<c136364e>] EFLAGS: 00010083 CPU: 0 [ 4.185827] EIP is at sdhci_set_power+0x3e/0xd0 [ 4.185891] EAX: f5ff98e0 EBX: f5ff98e0 ECX: 00000000 EDX: 00000001 [ 4.185970] ESI: f5ff977c EDI: f5ff9904 EBP: f644fe98 ESP: f644fe94 [ 4.186049] DS: 007b ES: 007b FS: 00d8 GS: 0000 SS: 0068 [ 4.186125] Process kworker/0:0 (pid: 4, ti=f644e000 task=f644c0e0 task.ti=f644e000) [ 4.186219] Stack: [ 4.186257] f5ff98e0 f644feb0 c1365173 00000282 f5ff9460 f5ff96e0 f5ff96e0 f644feec [ 4.186418] c1355bd8 f644c0e0 c1499c3d f5ff96e0 f644fed4 00000006 f5ff96e0 00000286 [ 4.186579] f644fedc c107922b f644feec 00000286 f5ff9460 f5ff9700 f644ff10 c135839e [ 4.186739] Call Trace: [ 4.186802] [<c1365173>] sdhci_set_ios+0x1c3/0x340 [ 4.186883] [<c1355bd8>] mmc_gate_clock+0x68/0x120 [ 4.186963] [<c1499c3d>] ? _raw_spin_unlock_irqrestore+0x4d/0x60 [ 4.187052] [<c107922b>] ? trace_hardirqs_on+0xb/0x10 [ 4.187134] [<c135839e>] mmc_host_clk_gate_delayed+0xbe/0x130 [ 4.187219] [<c105ec09>] ? process_one_work+0xf9/0x5b0 [ 4.187300] [<c135841d>] mmc_host_clk_gate_work+0xd/0x10 [ 4.187379] [<c105ec82>] process_one_work+0x172/0x5b0 [ 4.187457] [<c105ec09>] ? process_one_work+0xf9/0x5b0 [ 4.187538] [<c1358410>] ? mmc_host_clk_gate_delayed+0x130/0x130 [ 4.187625] [<c105f3c8>] worker_thread+0x118/0x330 [ 4.187700] [<c1496cee>] ? preempt_schedule+0x2e/0x50 [ 4.187779] [<c105f2b0>] ? rescuer_thread+0x1f0/0x1f0 [ 4.187857] [<c1062cf4>] kthread+0x74/0x80 [ 4.187931] [<c1062c80>] ? __init_kthread_worker+0x60/0x60 [ 4.188015] [<c149acfa>] kernel_thread_helper+0x6/0xd [ 4.188079] Code: 81 fa 00 00 04 00 0f 84 a7 00 00 00 7f 21 81 fa 80 00 00 00 0f 84 92 00 00 00 81 fa 00 00 0 [ 4.188780] EIP: [<c136364e>] sdhci_set_power+0x3e/0xd0 SS:ESP 0068:f644fe94 [ 4.188898] ---[ end trace a7b23eecc71777e4 ]--- This BUG() comes from the fact that ios.power_mode was still in previous value (MMC_POWER_ON) and ios.vdd was set to zero. We prevent these by inhibiting the clock gating while we update the ios structure. Both problems can be reproduced by simply running the device in a reboot loop. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Linus Walleij <linus.walleij@linaro.org> Tested-by: Chris Ball <cjb@laptop.org> Cc: <stable@kernel.org> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-08-18 06:23:48 -06:00
mmc_host_clk_release(host);
}
void mmc_power_off(struct mmc_host *host)
{
if (host->ios.power_mode == MMC_POWER_OFF)
return;
mmc: core: prevent aggressive clock gating racing with ios updates We have seen at least two different races when clock gating kicks in in a middle of ios structure update. First one happens when ios->clock is changed outside of aggressive clock gating framework, for example via mmc_set_clock(). The race might happen when we run following code: mmc_set_ios(): ... if (ios->clock > 0) mmc_set_ungated(host); Now if gating kicks in right after the condition check we end up setting host->clk_gated to false even though we have just gated the clock. Next time a request is started we try to ungate and restore the clock in mmc_host_clk_hold(). However since we have host->clk_gated set to false the original clock is not restored. This eventually will cause the host controller to hang since its clock is disabled while we are trying to issue a request. For example on Intel Medfield platform we see: [ 13.818610] mmc2: Timeout waiting for hardware interrupt. [ 13.818698] sdhci: =========== REGISTER DUMP (mmc2)=========== [ 13.818753] sdhci: Sys addr: 0x00000000 | Version: 0x00008901 [ 13.818804] sdhci: Blk size: 0x00000000 | Blk cnt: 0x00000000 [ 13.818853] sdhci: Argument: 0x00000000 | Trn mode: 0x00000000 [ 13.818903] sdhci: Present: 0x1fff0000 | Host ctl: 0x00000001 [ 13.818951] sdhci: Power: 0x0000000d | Blk gap: 0x00000000 [ 13.819000] sdhci: Wake-up: 0x00000000 | Clock: 0x00000000 [ 13.819049] sdhci: Timeout: 0x00000000 | Int stat: 0x00000000 [ 13.819098] sdhci: Int enab: 0x00ff00c3 | Sig enab: 0x00ff00c3 [ 13.819147] sdhci: AC12 err: 0x00000000 | Slot int: 0x00000000 [ 13.819196] sdhci: Caps: 0x6bee32b2 | Caps_1: 0x00000000 [ 13.819245] sdhci: Cmd: 0x00000000 | Max curr: 0x00000000 [ 13.819292] sdhci: Host ctl2: 0x00000000 [ 13.819331] sdhci: ADMA Err: 0x00000000 | ADMA Ptr: 0x00000000 [ 13.819377] sdhci: =========================================== [ 13.919605] mmc2: Reset 0x2 never completed. and it never recovers. Second race might happen while running mmc_power_off(): static void mmc_power_off(struct mmc_host *host) { host->ios.clock = 0; host->ios.vdd = 0; [ clock gating kicks in here ] /* * Reset ocr mask to be the highest possible voltage supported for * this mmc host. This value will be used at next power up. */ host->ocr = 1 << (fls(host->ocr_avail) - 1); if (!mmc_host_is_spi(host)) { host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN; host->ios.chip_select = MMC_CS_DONTCARE; } host->ios.power_mode = MMC_POWER_OFF; host->ios.bus_width = MMC_BUS_WIDTH_1; host->ios.timing = MMC_TIMING_LEGACY; mmc_set_ios(host); } If the clock gating worker kicks in while we are only partially updated the ios structure the host controller gets incomplete ios and might not work as supposed. Again on Intel Medfield platform we get: [ 4.185349] kernel BUG at drivers/mmc/host/sdhci.c:1155! [ 4.185422] invalid opcode: 0000 [#1] PREEMPT SMP [ 4.185509] Modules linked in: [ 4.185565] [ 4.185608] Pid: 4, comm: kworker/0:0 Not tainted 3.0.0+ #240 Intel Corporation Medfield/iCDKA [ 4.185742] EIP: 0060:[<c136364e>] EFLAGS: 00010083 CPU: 0 [ 4.185827] EIP is at sdhci_set_power+0x3e/0xd0 [ 4.185891] EAX: f5ff98e0 EBX: f5ff98e0 ECX: 00000000 EDX: 00000001 [ 4.185970] ESI: f5ff977c EDI: f5ff9904 EBP: f644fe98 ESP: f644fe94 [ 4.186049] DS: 007b ES: 007b FS: 00d8 GS: 0000 SS: 0068 [ 4.186125] Process kworker/0:0 (pid: 4, ti=f644e000 task=f644c0e0 task.ti=f644e000) [ 4.186219] Stack: [ 4.186257] f5ff98e0 f644feb0 c1365173 00000282 f5ff9460 f5ff96e0 f5ff96e0 f644feec [ 4.186418] c1355bd8 f644c0e0 c1499c3d f5ff96e0 f644fed4 00000006 f5ff96e0 00000286 [ 4.186579] f644fedc c107922b f644feec 00000286 f5ff9460 f5ff9700 f644ff10 c135839e [ 4.186739] Call Trace: [ 4.186802] [<c1365173>] sdhci_set_ios+0x1c3/0x340 [ 4.186883] [<c1355bd8>] mmc_gate_clock+0x68/0x120 [ 4.186963] [<c1499c3d>] ? _raw_spin_unlock_irqrestore+0x4d/0x60 [ 4.187052] [<c107922b>] ? trace_hardirqs_on+0xb/0x10 [ 4.187134] [<c135839e>] mmc_host_clk_gate_delayed+0xbe/0x130 [ 4.187219] [<c105ec09>] ? process_one_work+0xf9/0x5b0 [ 4.187300] [<c135841d>] mmc_host_clk_gate_work+0xd/0x10 [ 4.187379] [<c105ec82>] process_one_work+0x172/0x5b0 [ 4.187457] [<c105ec09>] ? process_one_work+0xf9/0x5b0 [ 4.187538] [<c1358410>] ? mmc_host_clk_gate_delayed+0x130/0x130 [ 4.187625] [<c105f3c8>] worker_thread+0x118/0x330 [ 4.187700] [<c1496cee>] ? preempt_schedule+0x2e/0x50 [ 4.187779] [<c105f2b0>] ? rescuer_thread+0x1f0/0x1f0 [ 4.187857] [<c1062cf4>] kthread+0x74/0x80 [ 4.187931] [<c1062c80>] ? __init_kthread_worker+0x60/0x60 [ 4.188015] [<c149acfa>] kernel_thread_helper+0x6/0xd [ 4.188079] Code: 81 fa 00 00 04 00 0f 84 a7 00 00 00 7f 21 81 fa 80 00 00 00 0f 84 92 00 00 00 81 fa 00 00 0 [ 4.188780] EIP: [<c136364e>] sdhci_set_power+0x3e/0xd0 SS:ESP 0068:f644fe94 [ 4.188898] ---[ end trace a7b23eecc71777e4 ]--- This BUG() comes from the fact that ios.power_mode was still in previous value (MMC_POWER_ON) and ios.vdd was set to zero. We prevent these by inhibiting the clock gating while we update the ios structure. Both problems can be reproduced by simply running the device in a reboot loop. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Linus Walleij <linus.walleij@linaro.org> Tested-by: Chris Ball <cjb@laptop.org> Cc: <stable@kernel.org> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-08-18 06:23:48 -06:00
mmc_host_clk_hold(host);
host->ios.clock = 0;
host->ios.vdd = 0;
host->ios.power_mode = MMC_POWER_OFF;
/* Set initial state and call mmc_set_ios */
mmc_set_initial_state(host);
mmc: core: prevent aggressive clock gating racing with ios updates We have seen at least two different races when clock gating kicks in in a middle of ios structure update. First one happens when ios->clock is changed outside of aggressive clock gating framework, for example via mmc_set_clock(). The race might happen when we run following code: mmc_set_ios(): ... if (ios->clock > 0) mmc_set_ungated(host); Now if gating kicks in right after the condition check we end up setting host->clk_gated to false even though we have just gated the clock. Next time a request is started we try to ungate and restore the clock in mmc_host_clk_hold(). However since we have host->clk_gated set to false the original clock is not restored. This eventually will cause the host controller to hang since its clock is disabled while we are trying to issue a request. For example on Intel Medfield platform we see: [ 13.818610] mmc2: Timeout waiting for hardware interrupt. [ 13.818698] sdhci: =========== REGISTER DUMP (mmc2)=========== [ 13.818753] sdhci: Sys addr: 0x00000000 | Version: 0x00008901 [ 13.818804] sdhci: Blk size: 0x00000000 | Blk cnt: 0x00000000 [ 13.818853] sdhci: Argument: 0x00000000 | Trn mode: 0x00000000 [ 13.818903] sdhci: Present: 0x1fff0000 | Host ctl: 0x00000001 [ 13.818951] sdhci: Power: 0x0000000d | Blk gap: 0x00000000 [ 13.819000] sdhci: Wake-up: 0x00000000 | Clock: 0x00000000 [ 13.819049] sdhci: Timeout: 0x00000000 | Int stat: 0x00000000 [ 13.819098] sdhci: Int enab: 0x00ff00c3 | Sig enab: 0x00ff00c3 [ 13.819147] sdhci: AC12 err: 0x00000000 | Slot int: 0x00000000 [ 13.819196] sdhci: Caps: 0x6bee32b2 | Caps_1: 0x00000000 [ 13.819245] sdhci: Cmd: 0x00000000 | Max curr: 0x00000000 [ 13.819292] sdhci: Host ctl2: 0x00000000 [ 13.819331] sdhci: ADMA Err: 0x00000000 | ADMA Ptr: 0x00000000 [ 13.819377] sdhci: =========================================== [ 13.919605] mmc2: Reset 0x2 never completed. and it never recovers. Second race might happen while running mmc_power_off(): static void mmc_power_off(struct mmc_host *host) { host->ios.clock = 0; host->ios.vdd = 0; [ clock gating kicks in here ] /* * Reset ocr mask to be the highest possible voltage supported for * this mmc host. This value will be used at next power up. */ host->ocr = 1 << (fls(host->ocr_avail) - 1); if (!mmc_host_is_spi(host)) { host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN; host->ios.chip_select = MMC_CS_DONTCARE; } host->ios.power_mode = MMC_POWER_OFF; host->ios.bus_width = MMC_BUS_WIDTH_1; host->ios.timing = MMC_TIMING_LEGACY; mmc_set_ios(host); } If the clock gating worker kicks in while we are only partially updated the ios structure the host controller gets incomplete ios and might not work as supposed. Again on Intel Medfield platform we get: [ 4.185349] kernel BUG at drivers/mmc/host/sdhci.c:1155! [ 4.185422] invalid opcode: 0000 [#1] PREEMPT SMP [ 4.185509] Modules linked in: [ 4.185565] [ 4.185608] Pid: 4, comm: kworker/0:0 Not tainted 3.0.0+ #240 Intel Corporation Medfield/iCDKA [ 4.185742] EIP: 0060:[<c136364e>] EFLAGS: 00010083 CPU: 0 [ 4.185827] EIP is at sdhci_set_power+0x3e/0xd0 [ 4.185891] EAX: f5ff98e0 EBX: f5ff98e0 ECX: 00000000 EDX: 00000001 [ 4.185970] ESI: f5ff977c EDI: f5ff9904 EBP: f644fe98 ESP: f644fe94 [ 4.186049] DS: 007b ES: 007b FS: 00d8 GS: 0000 SS: 0068 [ 4.186125] Process kworker/0:0 (pid: 4, ti=f644e000 task=f644c0e0 task.ti=f644e000) [ 4.186219] Stack: [ 4.186257] f5ff98e0 f644feb0 c1365173 00000282 f5ff9460 f5ff96e0 f5ff96e0 f644feec [ 4.186418] c1355bd8 f644c0e0 c1499c3d f5ff96e0 f644fed4 00000006 f5ff96e0 00000286 [ 4.186579] f644fedc c107922b f644feec 00000286 f5ff9460 f5ff9700 f644ff10 c135839e [ 4.186739] Call Trace: [ 4.186802] [<c1365173>] sdhci_set_ios+0x1c3/0x340 [ 4.186883] [<c1355bd8>] mmc_gate_clock+0x68/0x120 [ 4.186963] [<c1499c3d>] ? _raw_spin_unlock_irqrestore+0x4d/0x60 [ 4.187052] [<c107922b>] ? trace_hardirqs_on+0xb/0x10 [ 4.187134] [<c135839e>] mmc_host_clk_gate_delayed+0xbe/0x130 [ 4.187219] [<c105ec09>] ? process_one_work+0xf9/0x5b0 [ 4.187300] [<c135841d>] mmc_host_clk_gate_work+0xd/0x10 [ 4.187379] [<c105ec82>] process_one_work+0x172/0x5b0 [ 4.187457] [<c105ec09>] ? process_one_work+0xf9/0x5b0 [ 4.187538] [<c1358410>] ? mmc_host_clk_gate_delayed+0x130/0x130 [ 4.187625] [<c105f3c8>] worker_thread+0x118/0x330 [ 4.187700] [<c1496cee>] ? preempt_schedule+0x2e/0x50 [ 4.187779] [<c105f2b0>] ? rescuer_thread+0x1f0/0x1f0 [ 4.187857] [<c1062cf4>] kthread+0x74/0x80 [ 4.187931] [<c1062c80>] ? __init_kthread_worker+0x60/0x60 [ 4.188015] [<c149acfa>] kernel_thread_helper+0x6/0xd [ 4.188079] Code: 81 fa 00 00 04 00 0f 84 a7 00 00 00 7f 21 81 fa 80 00 00 00 0f 84 92 00 00 00 81 fa 00 00 0 [ 4.188780] EIP: [<c136364e>] sdhci_set_power+0x3e/0xd0 SS:ESP 0068:f644fe94 [ 4.188898] ---[ end trace a7b23eecc71777e4 ]--- This BUG() comes from the fact that ios.power_mode was still in previous value (MMC_POWER_ON) and ios.vdd was set to zero. We prevent these by inhibiting the clock gating while we update the ios structure. Both problems can be reproduced by simply running the device in a reboot loop. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Linus Walleij <linus.walleij@linaro.org> Tested-by: Chris Ball <cjb@laptop.org> Cc: <stable@kernel.org> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-08-18 06:23:48 -06:00
/*
* Some configurations, such as the 802.11 SDIO card in the OLPC
* XO-1.5, require a short delay after poweroff before the card
* can be successfully turned on again.
*/
mmc_delay(1);
mmc: core: prevent aggressive clock gating racing with ios updates We have seen at least two different races when clock gating kicks in in a middle of ios structure update. First one happens when ios->clock is changed outside of aggressive clock gating framework, for example via mmc_set_clock(). The race might happen when we run following code: mmc_set_ios(): ... if (ios->clock > 0) mmc_set_ungated(host); Now if gating kicks in right after the condition check we end up setting host->clk_gated to false even though we have just gated the clock. Next time a request is started we try to ungate and restore the clock in mmc_host_clk_hold(). However since we have host->clk_gated set to false the original clock is not restored. This eventually will cause the host controller to hang since its clock is disabled while we are trying to issue a request. For example on Intel Medfield platform we see: [ 13.818610] mmc2: Timeout waiting for hardware interrupt. [ 13.818698] sdhci: =========== REGISTER DUMP (mmc2)=========== [ 13.818753] sdhci: Sys addr: 0x00000000 | Version: 0x00008901 [ 13.818804] sdhci: Blk size: 0x00000000 | Blk cnt: 0x00000000 [ 13.818853] sdhci: Argument: 0x00000000 | Trn mode: 0x00000000 [ 13.818903] sdhci: Present: 0x1fff0000 | Host ctl: 0x00000001 [ 13.818951] sdhci: Power: 0x0000000d | Blk gap: 0x00000000 [ 13.819000] sdhci: Wake-up: 0x00000000 | Clock: 0x00000000 [ 13.819049] sdhci: Timeout: 0x00000000 | Int stat: 0x00000000 [ 13.819098] sdhci: Int enab: 0x00ff00c3 | Sig enab: 0x00ff00c3 [ 13.819147] sdhci: AC12 err: 0x00000000 | Slot int: 0x00000000 [ 13.819196] sdhci: Caps: 0x6bee32b2 | Caps_1: 0x00000000 [ 13.819245] sdhci: Cmd: 0x00000000 | Max curr: 0x00000000 [ 13.819292] sdhci: Host ctl2: 0x00000000 [ 13.819331] sdhci: ADMA Err: 0x00000000 | ADMA Ptr: 0x00000000 [ 13.819377] sdhci: =========================================== [ 13.919605] mmc2: Reset 0x2 never completed. and it never recovers. Second race might happen while running mmc_power_off(): static void mmc_power_off(struct mmc_host *host) { host->ios.clock = 0; host->ios.vdd = 0; [ clock gating kicks in here ] /* * Reset ocr mask to be the highest possible voltage supported for * this mmc host. This value will be used at next power up. */ host->ocr = 1 << (fls(host->ocr_avail) - 1); if (!mmc_host_is_spi(host)) { host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN; host->ios.chip_select = MMC_CS_DONTCARE; } host->ios.power_mode = MMC_POWER_OFF; host->ios.bus_width = MMC_BUS_WIDTH_1; host->ios.timing = MMC_TIMING_LEGACY; mmc_set_ios(host); } If the clock gating worker kicks in while we are only partially updated the ios structure the host controller gets incomplete ios and might not work as supposed. Again on Intel Medfield platform we get: [ 4.185349] kernel BUG at drivers/mmc/host/sdhci.c:1155! [ 4.185422] invalid opcode: 0000 [#1] PREEMPT SMP [ 4.185509] Modules linked in: [ 4.185565] [ 4.185608] Pid: 4, comm: kworker/0:0 Not tainted 3.0.0+ #240 Intel Corporation Medfield/iCDKA [ 4.185742] EIP: 0060:[<c136364e>] EFLAGS: 00010083 CPU: 0 [ 4.185827] EIP is at sdhci_set_power+0x3e/0xd0 [ 4.185891] EAX: f5ff98e0 EBX: f5ff98e0 ECX: 00000000 EDX: 00000001 [ 4.185970] ESI: f5ff977c EDI: f5ff9904 EBP: f644fe98 ESP: f644fe94 [ 4.186049] DS: 007b ES: 007b FS: 00d8 GS: 0000 SS: 0068 [ 4.186125] Process kworker/0:0 (pid: 4, ti=f644e000 task=f644c0e0 task.ti=f644e000) [ 4.186219] Stack: [ 4.186257] f5ff98e0 f644feb0 c1365173 00000282 f5ff9460 f5ff96e0 f5ff96e0 f644feec [ 4.186418] c1355bd8 f644c0e0 c1499c3d f5ff96e0 f644fed4 00000006 f5ff96e0 00000286 [ 4.186579] f644fedc c107922b f644feec 00000286 f5ff9460 f5ff9700 f644ff10 c135839e [ 4.186739] Call Trace: [ 4.186802] [<c1365173>] sdhci_set_ios+0x1c3/0x340 [ 4.186883] [<c1355bd8>] mmc_gate_clock+0x68/0x120 [ 4.186963] [<c1499c3d>] ? _raw_spin_unlock_irqrestore+0x4d/0x60 [ 4.187052] [<c107922b>] ? trace_hardirqs_on+0xb/0x10 [ 4.187134] [<c135839e>] mmc_host_clk_gate_delayed+0xbe/0x130 [ 4.187219] [<c105ec09>] ? process_one_work+0xf9/0x5b0 [ 4.187300] [<c135841d>] mmc_host_clk_gate_work+0xd/0x10 [ 4.187379] [<c105ec82>] process_one_work+0x172/0x5b0 [ 4.187457] [<c105ec09>] ? process_one_work+0xf9/0x5b0 [ 4.187538] [<c1358410>] ? mmc_host_clk_gate_delayed+0x130/0x130 [ 4.187625] [<c105f3c8>] worker_thread+0x118/0x330 [ 4.187700] [<c1496cee>] ? preempt_schedule+0x2e/0x50 [ 4.187779] [<c105f2b0>] ? rescuer_thread+0x1f0/0x1f0 [ 4.187857] [<c1062cf4>] kthread+0x74/0x80 [ 4.187931] [<c1062c80>] ? __init_kthread_worker+0x60/0x60 [ 4.188015] [<c149acfa>] kernel_thread_helper+0x6/0xd [ 4.188079] Code: 81 fa 00 00 04 00 0f 84 a7 00 00 00 7f 21 81 fa 80 00 00 00 0f 84 92 00 00 00 81 fa 00 00 0 [ 4.188780] EIP: [<c136364e>] sdhci_set_power+0x3e/0xd0 SS:ESP 0068:f644fe94 [ 4.188898] ---[ end trace a7b23eecc71777e4 ]--- This BUG() comes from the fact that ios.power_mode was still in previous value (MMC_POWER_ON) and ios.vdd was set to zero. We prevent these by inhibiting the clock gating while we update the ios structure. Both problems can be reproduced by simply running the device in a reboot loop. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Linus Walleij <linus.walleij@linaro.org> Tested-by: Chris Ball <cjb@laptop.org> Cc: <stable@kernel.org> Signed-off-by: Chris Ball <cjb@laptop.org>
2011-08-18 06:23:48 -06:00
mmc_host_clk_release(host);
}
void mmc_power_cycle(struct mmc_host *host, u32 ocr)
{
mmc_power_off(host);
/* Wait at least 1 ms according to SD spec */
mmc_delay(1);
mmc_power_up(host, ocr);
}
/*
* Cleanup when the last reference to the bus operator is dropped.
*/
static void __mmc_release_bus(struct mmc_host *host)
{
BUG_ON(!host);
BUG_ON(host->bus_refs);
BUG_ON(!host->bus_dead);
host->bus_ops = NULL;
}
/*
* Increase reference count of bus operator
*/
static inline void mmc_bus_get(struct mmc_host *host)
{
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
host->bus_refs++;
spin_unlock_irqrestore(&host->lock, flags);
}
/*
* Decrease reference count of bus operator and free it if
* it is the last reference.
*/
static inline void mmc_bus_put(struct mmc_host *host)
{
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
host->bus_refs--;
if ((host->bus_refs == 0) && host->bus_ops)
__mmc_release_bus(host);
spin_unlock_irqrestore(&host->lock, flags);
}
/*
* Assign a mmc bus handler to a host. Only one bus handler may control a
* host at any given time.
*/
void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
{
unsigned long flags;
BUG_ON(!host);
BUG_ON(!ops);
WARN_ON(!host->claimed);
spin_lock_irqsave(&host->lock, flags);
BUG_ON(host->bus_ops);
BUG_ON(host->bus_refs);
host->bus_ops = ops;
host->bus_refs = 1;
host->bus_dead = 0;
spin_unlock_irqrestore(&host->lock, flags);
}
/*
* Remove the current bus handler from a host.
*/
void mmc_detach_bus(struct mmc_host *host)
{
unsigned long flags;
BUG_ON(!host);
WARN_ON(!host->claimed);
WARN_ON(!host->bus_ops);
spin_lock_irqsave(&host->lock, flags);
host->bus_dead = 1;
spin_unlock_irqrestore(&host->lock, flags);
mmc_bus_put(host);
}
static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
bool cd_irq)
{
#ifdef CONFIG_MMC_DEBUG
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
WARN_ON(host->removed);
spin_unlock_irqrestore(&host->lock, flags);
#endif
/*
* If the device is configured as wakeup, we prevent a new sleep for
* 5 s to give provision for user space to consume the event.
*/
if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
device_can_wakeup(mmc_dev(host)))
pm_wakeup_event(mmc_dev(host), 5000);
host->detect_change = 1;
mmc_schedule_delayed_work(&host->detect, delay);
}
/**
* mmc_detect_change - process change of state on a MMC socket
* @host: host which changed state.
* @delay: optional delay to wait before detection (jiffies)
*
* MMC drivers should call this when they detect a card has been
* inserted or removed. The MMC layer will confirm that any
* present card is still functional, and initialize any newly
* inserted.
*/
void mmc_detect_change(struct mmc_host *host, unsigned long delay)
{
_mmc_detect_change(host, delay, true);
}
EXPORT_SYMBOL(mmc_detect_change);
mmc: add erase, secure erase, trim and secure trim operations SD/MMC cards tend to support an erase operation. In addition, eMMC v4.4 cards can support secure erase, trim and secure trim operations that are all variants of the basic erase command. SD/MMC device attributes "erase_size" and "preferred_erase_size" have been added. "erase_size" is the minimum size, in bytes, of an erase operation. For MMC, "erase_size" is the erase group size reported by the card. Note that "erase_size" does not apply to trim or secure trim operations where the minimum size is always one 512 byte sector. For SD, "erase_size" is 512 if the card is block-addressed, 0 otherwise. SD/MMC cards can erase an arbitrarily large area up to and including the whole card. When erasing a large area it may be desirable to do it in smaller chunks for three reasons: 1. A single erase command will make all other I/O on the card wait. This is not a problem if the whole card is being erased, but erasing one partition will make I/O for another partition on the same card wait for the duration of the erase - which could be a several minutes. 2. To be able to inform the user of erase progress. 3. The erase timeout becomes too large to be very useful. Because the erase timeout contains a margin which is multiplied by the size of the erase area, the value can end up being several minutes for large areas. "erase_size" is not the most efficient unit to erase (especially for SD where it is just one sector), hence "preferred_erase_size" provides a good chunk size for erasing large areas. For MMC, "preferred_erase_size" is the high-capacity erase size if a card specifies one, otherwise it is based on the capacity of the card. For SD, "preferred_erase_size" is the allocation unit size specified by the card. "preferred_erase_size" is in bytes. Signed-off-by: Adrian Hunter <adrian.hunter@nokia.com> Acked-by: Jens Axboe <axboe@kernel.dk> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Madhusudhan Chikkature <madhu.cr@ti.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Ben Gardiner <bengardiner@nanometrics.ca> Cc: <linux-mmc@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-11 15:17:46 -06:00
void mmc_init_erase(struct mmc_card *card)
{
unsigned int sz;
if (is_power_of_2(card->erase_size))
card->erase_shift = ffs(card->erase_size) - 1;
else
card->erase_shift = 0;
/*
* It is possible to erase an arbitrarily large area of an SD or MMC
* card. That is not desirable because it can take a long time
* (minutes) potentially delaying more important I/O, and also the
* timeout calculations become increasingly hugely over-estimated.
* Consequently, 'pref_erase' is defined as a guide to limit erases
* to that size and alignment.
*
* For SD cards that define Allocation Unit size, limit erases to one
* Allocation Unit at a time. For MMC cards that define High Capacity
* Erase Size, whether it is switched on or not, limit to that size.
* Otherwise just have a stab at a good value. For modern cards it
* will end up being 4MiB. Note that if the value is too small, it
* can end up taking longer to erase.
*/
if (mmc_card_sd(card) && card->ssr.au) {
card->pref_erase = card->ssr.au;
card->erase_shift = ffs(card->ssr.au) - 1;
} else if (card->ext_csd.hc_erase_size) {
card->pref_erase = card->ext_csd.hc_erase_size;
mmc: core: resolve divded by zero panic With one special SD card, below divide by zero error observed: ... [ 2.144300] divide error: 0000 [#1] PREEMPT SMP [ 2.148860] Modules linked in: [ 2.151898] [ 2.152685] Set up 4031 stolen pages starting at 0x0001f000, GTT offset 0K [ 2.157330] Set up 0 CI stolen pages starting at 0x00000000, GTT offset 131072K [ 2.167581] Pid: 5, comm: kworker/u:0 Not tainted 3.0.8-138216-g974a2ab #1 [ 2.169506] [drm] PSB GTT mem manager ready, tt_start 4031, tt_size 28737 pages [ 2.169906] [drm] SGX core id = 0x00000000 [ 2.169920] [drm] SGX core rev major = 0x00, minor = 0x00 [ 2.169934] [drm] SGX core rev maintenance = 0x00, designer = 0x00 [ 2.197370] Intel Corporation Medfield/iCDKB [ 2.201716] EIP: 0060:[<c1697ca6>] EFLAGS: 00010246 CPU: 1 [ 2.207198] EIP is at mmc_init_erase+0x76/0x150 [ 2.211704] EAX: 00002000 EBX: dcd1b400 ECX: 00002000 EDX: 00000000 [ 2.217957] ESI: 00000000 EDI: dcd5c800 EBP: dd867e84 ESP: dd867e7c [ 2.224214] DS: 007b ES: 007b FS: 00d8 GS: 0000 SS: 0068 [ 2.229605] Process kworker/u:0 (pid: 5, ti=dd866000 task=dd868000 task.ti=dd866000) [ 2.237325] Stack: [ 2.239322] dcd1b400 00000000 dd867eb0 c16a06da c1ab7c44 dd995aa8 00000003 00000000 [ 2.247054] 00000000 00000000 dcd5c800 00000000 dcd1b400 dd867ef8 c16a1012 c1698b00 [ 2.254785] 00000029 00000001 c194eb80 dcd5c9ec dd867e00 c1239b00 00000000 00000000 [ 2.262519] Call Trace: [ 2.264975] [<c16a06da>] mmc_sd_setup_card+0x1da/0x4f0 [ 2.270183] [<c16a1012>] mmc_sd_init_card+0x192/0xc40 [ 2.275304] [<c1698b00>] ? __mmc_claim_host+0x160/0x160 [ 2.280610] [<c1239b00>] ? __schedule_bug+0x50/0x80 [ 2.285556] [<c16a1b89>] mmc_attach_sd+0xc9/0x230 [ 2.290333] [<c169b6ef>] mmc_rescan+0x25f/0x2c0 [ 2.294943] [<c1274223>] process_one_work+0x103/0x400 [ 2.300065] [<c12670fd>] ? mod_timer+0x1ad/0x3c0 [ 2.304756] [<c169b490>] ? mmc_suspend_host+0x1a0/0x1a0 [ 2.310056] [<c127502d>] worker_thread+0x12d/0x4a0 [ 2.314921] [<c18fcfbd>] ? preempt_schedule+0x2d/0x50 [ 2.320047] [<c1274f00[ 2.323976] ---[ end trace 5398ec2720494438 ]--- ... So, seems this bad SD card does not set valid value in related SSR / CSD register fields. And then the driver will set card->erase_size to 0. Then it triggered this divided by zero error when calculate card->pref_erase. Submit this patch to fix the issue. Signed-off-by: Yunpeng Gao <yunpeng.gao@intel.com> Signed-off-by: Chuanxiao Dong <chuanxiao.dong@intel.com> Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2014-08-14 04:29:24 -06:00
} else if (card->erase_size) {
mmc: add erase, secure erase, trim and secure trim operations SD/MMC cards tend to support an erase operation. In addition, eMMC v4.4 cards can support secure erase, trim and secure trim operations that are all variants of the basic erase command. SD/MMC device attributes "erase_size" and "preferred_erase_size" have been added. "erase_size" is the minimum size, in bytes, of an erase operation. For MMC, "erase_size" is the erase group size reported by the card. Note that "erase_size" does not apply to trim or secure trim operations where the minimum size is always one 512 byte sector. For SD, "erase_size" is 512 if the card is block-addressed, 0 otherwise. SD/MMC cards can erase an arbitrarily large area up to and including the whole card. When erasing a large area it may be desirable to do it in smaller chunks for three reasons: 1. A single erase command will make all other I/O on the card wait. This is not a problem if the whole card is being erased, but erasing one partition will make I/O for another partition on the same card wait for the duration of the erase - which could be a several minutes. 2. To be able to inform the user of erase progress. 3. The erase timeout becomes too large to be very useful. Because the erase timeout contains a margin which is multiplied by the size of the erase area, the value can end up being several minutes for large areas. "erase_size" is not the most efficient unit to erase (especially for SD where it is just one sector), hence "preferred_erase_size" provides a good chunk size for erasing large areas. For MMC, "preferred_erase_size" is the high-capacity erase size if a card specifies one, otherwise it is based on the capacity of the card. For SD, "preferred_erase_size" is the allocation unit size specified by the card. "preferred_erase_size" is in bytes. Signed-off-by: Adrian Hunter <adrian.hunter@nokia.com> Acked-by: Jens Axboe <axboe@kernel.dk> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Madhusudhan Chikkature <madhu.cr@ti.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Ben Gardiner <bengardiner@nanometrics.ca> Cc: <linux-mmc@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-11 15:17:46 -06:00
sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
if (sz < 128)
card->pref_erase = 512 * 1024 / 512;
else if (sz < 512)
card->pref_erase = 1024 * 1024 / 512;
else if (sz < 1024)
card->pref_erase = 2 * 1024 * 1024 / 512;
else
card->pref_erase = 4 * 1024 * 1024 / 512;
if (card->pref_erase < card->erase_size)
card->pref_erase = card->erase_size;
else {
sz = card->pref_erase % card->erase_size;
if (sz)
card->pref_erase += card->erase_size - sz;
}
mmc: core: resolve divded by zero panic With one special SD card, below divide by zero error observed: ... [ 2.144300] divide error: 0000 [#1] PREEMPT SMP [ 2.148860] Modules linked in: [ 2.151898] [ 2.152685] Set up 4031 stolen pages starting at 0x0001f000, GTT offset 0K [ 2.157330] Set up 0 CI stolen pages starting at 0x00000000, GTT offset 131072K [ 2.167581] Pid: 5, comm: kworker/u:0 Not tainted 3.0.8-138216-g974a2ab #1 [ 2.169506] [drm] PSB GTT mem manager ready, tt_start 4031, tt_size 28737 pages [ 2.169906] [drm] SGX core id = 0x00000000 [ 2.169920] [drm] SGX core rev major = 0x00, minor = 0x00 [ 2.169934] [drm] SGX core rev maintenance = 0x00, designer = 0x00 [ 2.197370] Intel Corporation Medfield/iCDKB [ 2.201716] EIP: 0060:[<c1697ca6>] EFLAGS: 00010246 CPU: 1 [ 2.207198] EIP is at mmc_init_erase+0x76/0x150 [ 2.211704] EAX: 00002000 EBX: dcd1b400 ECX: 00002000 EDX: 00000000 [ 2.217957] ESI: 00000000 EDI: dcd5c800 EBP: dd867e84 ESP: dd867e7c [ 2.224214] DS: 007b ES: 007b FS: 00d8 GS: 0000 SS: 0068 [ 2.229605] Process kworker/u:0 (pid: 5, ti=dd866000 task=dd868000 task.ti=dd866000) [ 2.237325] Stack: [ 2.239322] dcd1b400 00000000 dd867eb0 c16a06da c1ab7c44 dd995aa8 00000003 00000000 [ 2.247054] 00000000 00000000 dcd5c800 00000000 dcd1b400 dd867ef8 c16a1012 c1698b00 [ 2.254785] 00000029 00000001 c194eb80 dcd5c9ec dd867e00 c1239b00 00000000 00000000 [ 2.262519] Call Trace: [ 2.264975] [<c16a06da>] mmc_sd_setup_card+0x1da/0x4f0 [ 2.270183] [<c16a1012>] mmc_sd_init_card+0x192/0xc40 [ 2.275304] [<c1698b00>] ? __mmc_claim_host+0x160/0x160 [ 2.280610] [<c1239b00>] ? __schedule_bug+0x50/0x80 [ 2.285556] [<c16a1b89>] mmc_attach_sd+0xc9/0x230 [ 2.290333] [<c169b6ef>] mmc_rescan+0x25f/0x2c0 [ 2.294943] [<c1274223>] process_one_work+0x103/0x400 [ 2.300065] [<c12670fd>] ? mod_timer+0x1ad/0x3c0 [ 2.304756] [<c169b490>] ? mmc_suspend_host+0x1a0/0x1a0 [ 2.310056] [<c127502d>] worker_thread+0x12d/0x4a0 [ 2.314921] [<c18fcfbd>] ? preempt_schedule+0x2d/0x50 [ 2.320047] [<c1274f00[ 2.323976] ---[ end trace 5398ec2720494438 ]--- ... So, seems this bad SD card does not set valid value in related SSR / CSD register fields. And then the driver will set card->erase_size to 0. Then it triggered this divided by zero error when calculate card->pref_erase. Submit this patch to fix the issue. Signed-off-by: Yunpeng Gao <yunpeng.gao@intel.com> Signed-off-by: Chuanxiao Dong <chuanxiao.dong@intel.com> Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2014-08-14 04:29:24 -06:00
} else
card->pref_erase = 0;
mmc: add erase, secure erase, trim and secure trim operations SD/MMC cards tend to support an erase operation. In addition, eMMC v4.4 cards can support secure erase, trim and secure trim operations that are all variants of the basic erase command. SD/MMC device attributes "erase_size" and "preferred_erase_size" have been added. "erase_size" is the minimum size, in bytes, of an erase operation. For MMC, "erase_size" is the erase group size reported by the card. Note that "erase_size" does not apply to trim or secure trim operations where the minimum size is always one 512 byte sector. For SD, "erase_size" is 512 if the card is block-addressed, 0 otherwise. SD/MMC cards can erase an arbitrarily large area up to and including the whole card. When erasing a large area it may be desirable to do it in smaller chunks for three reasons: 1. A single erase command will make all other I/O on the card wait. This is not a problem if the whole card is being erased, but erasing one partition will make I/O for another partition on the same card wait for the duration of the erase - which could be a several minutes. 2. To be able to inform the user of erase progress. 3. The erase timeout becomes too large to be very useful. Because the erase timeout contains a margin which is multiplied by the size of the erase area, the value can end up being several minutes for large areas. "erase_size" is not the most efficient unit to erase (especially for SD where it is just one sector), hence "preferred_erase_size" provides a good chunk size for erasing large areas. For MMC, "preferred_erase_size" is the high-capacity erase size if a card specifies one, otherwise it is based on the capacity of the card. For SD, "preferred_erase_size" is the allocation unit size specified by the card. "preferred_erase_size" is in bytes. Signed-off-by: Adrian Hunter <adrian.hunter@nokia.com> Acked-by: Jens Axboe <axboe@kernel.dk> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Madhusudhan Chikkature <madhu.cr@ti.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Ben Gardiner <bengardiner@nanometrics.ca> Cc: <linux-mmc@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-11 15:17:46 -06:00
}
static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
unsigned int arg, unsigned int qty)
mmc: add erase, secure erase, trim and secure trim operations SD/MMC cards tend to support an erase operation. In addition, eMMC v4.4 cards can support secure erase, trim and secure trim operations that are all variants of the basic erase command. SD/MMC device attributes "erase_size" and "preferred_erase_size" have been added. "erase_size" is the minimum size, in bytes, of an erase operation. For MMC, "erase_size" is the erase group size reported by the card. Note that "erase_size" does not apply to trim or secure trim operations where the minimum size is always one 512 byte sector. For SD, "erase_size" is 512 if the card is block-addressed, 0 otherwise. SD/MMC cards can erase an arbitrarily large area up to and including the whole card. When erasing a large area it may be desirable to do it in smaller chunks for three reasons: 1. A single erase command will make all other I/O on the card wait. This is not a problem if the whole card is being erased, but erasing one partition will make I/O for another partition on the same card wait for the duration of the erase - which could be a several minutes. 2. To be able to inform the user of erase progress. 3. The erase timeout becomes too large to be very useful. Because the erase timeout contains a margin which is multiplied by the size of the erase area, the value can end up being several minutes for large areas. "erase_size" is not the most efficient unit to erase (especially for SD where it is just one sector), hence "preferred_erase_size" provides a good chunk size for erasing large areas. For MMC, "preferred_erase_size" is the high-capacity erase size if a card specifies one, otherwise it is based on the capacity of the card. For SD, "preferred_erase_size" is the allocation unit size specified by the card. "preferred_erase_size" is in bytes. Signed-off-by: Adrian Hunter <adrian.hunter@nokia.com> Acked-by: Jens Axboe <axboe@kernel.dk> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Madhusudhan Chikkature <madhu.cr@ti.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Ben Gardiner <bengardiner@nanometrics.ca> Cc: <linux-mmc@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-11 15:17:46 -06:00
{
unsigned int erase_timeout;
if (arg == MMC_DISCARD_ARG ||
(arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
erase_timeout = card->ext_csd.trim_timeout;
} else if (card->ext_csd.erase_group_def & 1) {
mmc: add erase, secure erase, trim and secure trim operations SD/MMC cards tend to support an erase operation. In addition, eMMC v4.4 cards can support secure erase, trim and secure trim operations that are all variants of the basic erase command. SD/MMC device attributes "erase_size" and "preferred_erase_size" have been added. "erase_size" is the minimum size, in bytes, of an erase operation. For MMC, "erase_size" is the erase group size reported by the card. Note that "erase_size" does not apply to trim or secure trim operations where the minimum size is always one 512 byte sector. For SD, "erase_size" is 512 if the card is block-addressed, 0 otherwise. SD/MMC cards can erase an arbitrarily large area up to and including the whole card. When erasing a large area it may be desirable to do it in smaller chunks for three reasons: 1. A single erase command will make all other I/O on the card wait. This is not a problem if the whole card is being erased, but erasing one partition will make I/O for another partition on the same card wait for the duration of the erase - which could be a several minutes. 2. To be able to inform the user of erase progress. 3. The erase timeout becomes too large to be very useful. Because the erase timeout contains a margin which is multiplied by the size of the erase area, the value can end up being several minutes for large areas. "erase_size" is not the most efficient unit to erase (especially for SD where it is just one sector), hence "preferred_erase_size" provides a good chunk size for erasing large areas. For MMC, "preferred_erase_size" is the high-capacity erase size if a card specifies one, otherwise it is based on the capacity of the card. For SD, "preferred_erase_size" is the allocation unit size specified by the card. "preferred_erase_size" is in bytes. Signed-off-by: Adrian Hunter <adrian.hunter@nokia.com> Acked-by: Jens Axboe <axboe@kernel.dk> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Madhusudhan Chikkature <madhu.cr@ti.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Ben Gardiner <bengardiner@nanometrics.ca> Cc: <linux-mmc@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-11 15:17:46 -06:00
/* High Capacity Erase Group Size uses HC timeouts */
if (arg == MMC_TRIM_ARG)
erase_timeout = card->ext_csd.trim_timeout;
else
erase_timeout = card->ext_csd.hc_erase_timeout;
} else {
/* CSD Erase Group Size uses write timeout */
unsigned int mult = (10 << card->csd.r2w_factor);
unsigned int timeout_clks = card->csd.tacc_clks * mult;
unsigned int timeout_us;
/* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
if (card->csd.tacc_ns < 1000000)
timeout_us = (card->csd.tacc_ns * mult) / 1000;
else
timeout_us = (card->csd.tacc_ns / 1000) * mult;
/*
* ios.clock is only a target. The real clock rate might be
* less but not that much less, so fudge it by multiplying by 2.
*/
timeout_clks <<= 1;
timeout_us += (timeout_clks * 1000) /
(mmc_host_clk_rate(card->host) / 1000);
mmc: add erase, secure erase, trim and secure trim operations SD/MMC cards tend to support an erase operation. In addition, eMMC v4.4 cards can support secure erase, trim and secure trim operations that are all variants of the basic erase command. SD/MMC device attributes "erase_size" and "preferred_erase_size" have been added. "erase_size" is the minimum size, in bytes, of an erase operation. For MMC, "erase_size" is the erase group size reported by the card. Note that "erase_size" does not apply to trim or secure trim operations where the minimum size is always one 512 byte sector. For SD, "erase_size" is 512 if the card is block-addressed, 0 otherwise. SD/MMC cards can erase an arbitrarily large area up to and including the whole card. When erasing a large area it may be desirable to do it in smaller chunks for three reasons: 1. A single erase command will make all other I/O on the card wait. This is not a problem if the whole card is being erased, but erasing one partition will make I/O for another partition on the same card wait for the duration of the erase - which could be a several minutes. 2. To be able to inform the user of erase progress. 3. The erase timeout becomes too large to be very useful. Because the erase timeout contains a margin which is multiplied by the size of the erase area, the value can end up being several minutes for large areas. "erase_size" is not the most efficient unit to erase (especially for SD where it is just one sector), hence "preferred_erase_size" provides a good chunk size for erasing large areas. For MMC, "preferred_erase_size" is the high-capacity erase size if a card specifies one, otherwise it is based on the capacity of the card. For SD, "preferred_erase_size" is the allocation unit size specified by the card. "preferred_erase_size" is in bytes. Signed-off-by: Adrian Hunter <adrian.hunter@nokia.com> Acked-by: Jens Axboe <axboe@kernel.dk> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Madhusudhan Chikkature <madhu.cr@ti.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Ben Gardiner <bengardiner@nanometrics.ca> Cc: <linux-mmc@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-11 15:17:46 -06:00
erase_timeout = timeout_us / 1000;
/*
* Theoretically, the calculation could underflow so round up
* to 1ms in that case.
*/
if (!erase_timeout)
erase_timeout = 1;
}
/* Multiplier for secure operations */
if (arg & MMC_SECURE_ARGS) {
if (arg == MMC_SECURE_ERASE_ARG)
erase_timeout *= card->ext_csd.sec_erase_mult;
else
erase_timeout *= card->ext_csd.sec_trim_mult;
}
erase_timeout *= qty;
/*
* Ensure at least a 1 second timeout for SPI as per
* 'mmc_set_data_timeout()'
*/
if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
erase_timeout = 1000;
return erase_timeout;
mmc: add erase, secure erase, trim and secure trim operations SD/MMC cards tend to support an erase operation. In addition, eMMC v4.4 cards can support secure erase, trim and secure trim operations that are all variants of the basic erase command. SD/MMC device attributes "erase_size" and "preferred_erase_size" have been added. "erase_size" is the minimum size, in bytes, of an erase operation. For MMC, "erase_size" is the erase group size reported by the card. Note that "erase_size" does not apply to trim or secure trim operations where the minimum size is always one 512 byte sector. For SD, "erase_size" is 512 if the card is block-addressed, 0 otherwise. SD/MMC cards can erase an arbitrarily large area up to and including the whole card. When erasing a large area it may be desirable to do it in smaller chunks for three reasons: 1. A single erase command will make all other I/O on the card wait. This is not a problem if the whole card is being erased, but erasing one partition will make I/O for another partition on the same card wait for the duration of the erase - which could be a several minutes. 2. To be able to inform the user of erase progress. 3. The erase timeout becomes too large to be very useful. Because the erase timeout contains a margin which is multiplied by the size of the erase area, the value can end up being several minutes for large areas. "erase_size" is not the most efficient unit to erase (especially for SD where it is just one sector), hence "preferred_erase_size" provides a good chunk size for erasing large areas. For MMC, "preferred_erase_size" is the high-capacity erase size if a card specifies one, otherwise it is based on the capacity of the card. For SD, "preferred_erase_size" is the allocation unit size specified by the card. "preferred_erase_size" is in bytes. Signed-off-by: Adrian Hunter <adrian.hunter@nokia.com> Acked-by: Jens Axboe <axboe@kernel.dk> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Madhusudhan Chikkature <madhu.cr@ti.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Ben Gardiner <bengardiner@nanometrics.ca> Cc: <linux-mmc@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-11 15:17:46 -06:00
}
static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
unsigned int arg,
unsigned int qty)
mmc: add erase, secure erase, trim and secure trim operations SD/MMC cards tend to support an erase operation. In addition, eMMC v4.4 cards can support secure erase, trim and secure trim operations that are all variants of the basic erase command. SD/MMC device attributes "erase_size" and "preferred_erase_size" have been added. "erase_size" is the minimum size, in bytes, of an erase operation. For MMC, "erase_size" is the erase group size reported by the card. Note that "erase_size" does not apply to trim or secure trim operations where the minimum size is always one 512 byte sector. For SD, "erase_size" is 512 if the card is block-addressed, 0 otherwise. SD/MMC cards can erase an arbitrarily large area up to and including the whole card. When erasing a large area it may be desirable to do it in smaller chunks for three reasons: 1. A single erase command will make all other I/O on the card wait. This is not a problem if the whole card is being erased, but erasing one partition will make I/O for another partition on the same card wait for the duration of the erase - which could be a several minutes. 2. To be able to inform the user of erase progress. 3. The erase timeout becomes too large to be very useful. Because the erase timeout contains a margin which is multiplied by the size of the erase area, the value can end up being several minutes for large areas. "erase_size" is not the most efficient unit to erase (especially for SD where it is just one sector), hence "preferred_erase_size" provides a good chunk size for erasing large areas. For MMC, "preferred_erase_size" is the high-capacity erase size if a card specifies one, otherwise it is based on the capacity of the card. For SD, "preferred_erase_size" is the allocation unit size specified by the card. "preferred_erase_size" is in bytes. Signed-off-by: Adrian Hunter <adrian.hunter@nokia.com> Acked-by: Jens Axboe <axboe@kernel.dk> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Madhusudhan Chikkature <madhu.cr@ti.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Ben Gardiner <bengardiner@nanometrics.ca> Cc: <linux-mmc@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-11 15:17:46 -06:00
{
unsigned int erase_timeout;
mmc: add erase, secure erase, trim and secure trim operations SD/MMC cards tend to support an erase operation. In addition, eMMC v4.4 cards can support secure erase, trim and secure trim operations that are all variants of the basic erase command. SD/MMC device attributes "erase_size" and "preferred_erase_size" have been added. "erase_size" is the minimum size, in bytes, of an erase operation. For MMC, "erase_size" is the erase group size reported by the card. Note that "erase_size" does not apply to trim or secure trim operations where the minimum size is always one 512 byte sector. For SD, "erase_size" is 512 if the card is block-addressed, 0 otherwise. SD/MMC cards can erase an arbitrarily large area up to and including the whole card. When erasing a large area it may be desirable to do it in smaller chunks for three reasons: 1. A single erase command will make all other I/O on the card wait. This is not a problem if the whole card is being erased, but erasing one partition will make I/O for another partition on the same card wait for the duration of the erase - which could be a several minutes. 2. To be able to inform the user of erase progress. 3. The erase timeout becomes too large to be very useful. Because the erase timeout contains a margin which is multiplied by the size of the erase area, the value can end up being several minutes for large areas. "erase_size" is not the most efficient unit to erase (especially for SD where it is just one sector), hence "preferred_erase_size" provides a good chunk size for erasing large areas. For MMC, "preferred_erase_size" is the high-capacity erase size if a card specifies one, otherwise it is based on the capacity of the card. For SD, "preferred_erase_size" is the allocation unit size specified by the card. "preferred_erase_size" is in bytes. Signed-off-by: Adrian Hunter <adrian.hunter@nokia.com> Acked-by: Jens Axboe <axboe@kernel.dk> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Madhusudhan Chikkature <madhu.cr@ti.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Ben Gardiner <bengardiner@nanometrics.ca> Cc: <linux-mmc@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-11 15:17:46 -06:00
if (card->ssr.erase_timeout) {
/* Erase timeout specified in SD Status Register (SSR) */
erase_timeout = card->ssr.erase_timeout * qty +
card->ssr.erase_offset;
mmc: add erase, secure erase, trim and secure trim operations SD/MMC cards tend to support an erase operation. In addition, eMMC v4.4 cards can support secure erase, trim and secure trim operations that are all variants of the basic erase command. SD/MMC device attributes "erase_size" and "preferred_erase_size" have been added. "erase_size" is the minimum size, in bytes, of an erase operation. For MMC, "erase_size" is the erase group size reported by the card. Note that "erase_size" does not apply to trim or secure trim operations where the minimum size is always one 512 byte sector. For SD, "erase_size" is 512 if the card is block-addressed, 0 otherwise. SD/MMC cards can erase an arbitrarily large area up to and including the whole card. When erasing a large area it may be desirable to do it in smaller chunks for three reasons: 1. A single erase command will make all other I/O on the card wait. This is not a problem if the whole card is being erased, but erasing one partition will make I/O for another partition on the same card wait for the duration of the erase - which could be a several minutes. 2. To be able to inform the user of erase progress. 3. The erase timeout becomes too large to be very useful. Because the erase timeout contains a margin which is multiplied by the size of the erase area, the value can end up being several minutes for large areas. "erase_size" is not the most efficient unit to erase (especially for SD where it is just one sector), hence "preferred_erase_size" provides a good chunk size for erasing large areas. For MMC, "preferred_erase_size" is the high-capacity erase size if a card specifies one, otherwise it is based on the capacity of the card. For SD, "preferred_erase_size" is the allocation unit size specified by the card. "preferred_erase_size" is in bytes. Signed-off-by: Adrian Hunter <adrian.hunter@nokia.com> Acked-by: Jens Axboe <axboe@kernel.dk> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Madhusudhan Chikkature <madhu.cr@ti.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Ben Gardiner <bengardiner@nanometrics.ca> Cc: <linux-mmc@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-11 15:17:46 -06:00
} else {
/*
* Erase timeout not specified in SD Status Register (SSR) so
* use 250ms per write block.
*/
erase_timeout = 250 * qty;
mmc: add erase, secure erase, trim and secure trim operations SD/MMC cards tend to support an erase operation. In addition, eMMC v4.4 cards can support secure erase, trim and secure trim operations that are all variants of the basic erase command. SD/MMC device attributes "erase_size" and "preferred_erase_size" have been added. "erase_size" is the minimum size, in bytes, of an erase operation. For MMC, "erase_size" is the erase group size reported by the card. Note that "erase_size" does not apply to trim or secure trim operations where the minimum size is always one 512 byte sector. For SD, "erase_size" is 512 if the card is block-addressed, 0 otherwise. SD/MMC cards can erase an arbitrarily large area up to and including the whole card. When erasing a large area it may be desirable to do it in smaller chunks for three reasons: 1. A single erase command will make all other I/O on the card wait. This is not a problem if the whole card is being erased, but erasing one partition will make I/O for another partition on the same card wait for the duration of the erase - which could be a several minutes. 2. To be able to inform the user of erase progress. 3. The erase timeout becomes too large to be very useful. Because the erase timeout contains a margin which is multiplied by the size of the erase area, the value can end up being several minutes for large areas. "erase_size" is not the most efficient unit to erase (especially for SD where it is just one sector), hence "preferred_erase_size" provides a good chunk size for erasing large areas. For MMC, "preferred_erase_size" is the high-capacity erase size if a card specifies one, otherwise it is based on the capacity of the card. For SD, "preferred_erase_size" is the allocation unit size specified by the card. "preferred_erase_size" is in bytes. Signed-off-by: Adrian Hunter <adrian.hunter@nokia.com> Acked-by: Jens Axboe <axboe@kernel.dk> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Madhusudhan Chikkature <madhu.cr@ti.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Ben Gardiner <bengardiner@nanometrics.ca> Cc: <linux-mmc@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-11 15:17:46 -06:00
}
/* Must not be less than 1 second */
if (erase_timeout < 1000)
erase_timeout = 1000;
return erase_timeout;
mmc: add erase, secure erase, trim and secure trim operations SD/MMC cards tend to support an erase operation. In addition, eMMC v4.4 cards can support secure erase, trim and secure trim operations that are all variants of the basic erase command. SD/MMC device attributes "erase_size" and "preferred_erase_size" have been added. "erase_size" is the minimum size, in bytes, of an erase operation. For MMC, "erase_size" is the erase group size reported by the card. Note that "erase_size" does not apply to trim or secure trim operations where the minimum size is always one 512 byte sector. For SD, "erase_size" is 512 if the card is block-addressed, 0 otherwise. SD/MMC cards can erase an arbitrarily large area up to and including the whole card. When erasing a large area it may be desirable to do it in smaller chunks for three reasons: 1. A single erase command will make all other I/O on the card wait. This is not a problem if the whole card is being erased, but erasing one partition will make I/O for another partition on the same card wait for the duration of the erase - which could be a several minutes. 2. To be able to inform the user of erase progress. 3. The erase timeout becomes too large to be very useful. Because the erase timeout contains a margin which is multiplied by the size of the erase area, the value can end up being several minutes for large areas. "erase_size" is not the most efficient unit to erase (especially for SD where it is just one sector), hence "preferred_erase_size" provides a good chunk size for erasing large areas. For MMC, "preferred_erase_size" is the high-capacity erase size if a card specifies one, otherwise it is based on the capacity of the card. For SD, "preferred_erase_size" is the allocation unit size specified by the card. "preferred_erase_size" is in bytes. Signed-off-by: Adrian Hunter <adrian.hunter@nokia.com> Acked-by: Jens Axboe <axboe@kernel.dk> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Madhusudhan Chikkature <madhu.cr@ti.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Ben Gardiner <bengardiner@nanometrics.ca> Cc: <linux-mmc@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-11 15:17:46 -06:00
}
static unsigned int mmc_erase_timeout(struct mmc_card *card,
unsigned int arg,
unsigned int qty)
mmc: add erase, secure erase, trim and secure trim operations SD/MMC cards tend to support an erase operation. In addition, eMMC v4.4 cards can support secure erase, trim and secure trim operations that are all variants of the basic erase command. SD/MMC device attributes "erase_size" and "preferred_erase_size" have been added. "erase_size" is the minimum size, in bytes, of an erase operation. For MMC, "erase_size" is the erase group size reported by the card. Note that "erase_size" does not apply to trim or secure trim operations where the minimum size is always one 512 byte sector. For SD, "erase_size" is 512 if the card is block-addressed, 0 otherwise. SD/MMC cards can erase an arbitrarily large area up to and including the whole card. When erasing a large area it may be desirable to do it in smaller chunks for three reasons: 1. A single erase command will make all other I/O on the card wait. This is not a problem if the whole card is being erased, but erasing one partition will make I/O for another partition on the same card wait for the duration of the erase - which could be a several minutes. 2. To be able to inform the user of erase progress. 3. The erase timeout becomes too large to be very useful. Because the erase timeout contains a margin which is multiplied by the size of the erase area, the value can end up being several minutes for large areas. "erase_size" is not the most efficient unit to erase (especially for SD where it is just one sector), hence "preferred_erase_size" provides a good chunk size for erasing large areas. For MMC, "preferred_erase_size" is the high-capacity erase size if a card specifies one, otherwise it is based on the capacity of the card. For SD, "preferred_erase_size" is the allocation unit size specified by the card. "preferred_erase_size" is in bytes. Signed-off-by: Adrian Hunter <adrian.hunter@nokia.com> Acked-by: Jens Axboe <axboe@kernel.dk> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Madhusudhan Chikkature <madhu.cr@ti.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Ben Gardiner <bengardiner@nanometrics.ca> Cc: <linux-mmc@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-11 15:17:46 -06:00
{
if (mmc_card_sd(card))
return mmc_sd_erase_timeout(card, arg, qty);
mmc: add erase, secure erase, trim and secure trim operations SD/MMC cards tend to support an erase operation. In addition, eMMC v4.4 cards can support secure erase, trim and secure trim operations that are all variants of the basic erase command. SD/MMC device attributes "erase_size" and "preferred_erase_size" have been added. "erase_size" is the minimum size, in bytes, of an erase operation. For MMC, "erase_size" is the erase group size reported by the card. Note that "erase_size" does not apply to trim or secure trim operations where the minimum size is always one 512 byte sector. For SD, "erase_size" is 512 if the card is block-addressed, 0 otherwise. SD/MMC cards can erase an arbitrarily large area up to and including the whole card. When erasing a large area it may be desirable to do it in smaller chunks for three reasons: 1. A single erase command will make all other I/O on the card wait. This is not a problem if the whole card is being erased, but erasing one partition will make I/O for another partition on the same card wait for the duration of the erase - which could be a several minutes. 2. To be able to inform the user of erase progress. 3. The erase timeout becomes too large to be very useful. Because the erase timeout contains a margin which is multiplied by the size of the erase area, the value can end up being several minutes for large areas. "erase_size" is not the most efficient unit to erase (especially for SD where it is just one sector), hence "preferred_erase_size" provides a good chunk size for erasing large areas. For MMC, "preferred_erase_size" is the high-capacity erase size if a card specifies one, otherwise it is based on the capacity of the card. For SD, "preferred_erase_size" is the allocation unit size specified by the card. "preferred_erase_size" is in bytes. Signed-off-by: Adrian Hunter <adrian.hunter@nokia.com> Acked-by: Jens Axboe <axboe@kernel.dk> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Madhusudhan Chikkature <madhu.cr@ti.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Ben Gardiner <bengardiner@nanometrics.ca> Cc: <linux-mmc@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-11 15:17:46 -06:00
else
return mmc_mmc_erase_timeout(card, arg, qty);
mmc: add erase, secure erase, trim and secure trim operations SD/MMC cards tend to support an erase operation. In addition, eMMC v4.4 cards can support secure erase, trim and secure trim operations that are all variants of the basic erase command. SD/MMC device attributes "erase_size" and "preferred_erase_size" have been added. "erase_size" is the minimum size, in bytes, of an erase operation. For MMC, "erase_size" is the erase group size reported by the card. Note that "erase_size" does not apply to trim or secure trim operations where the minimum size is always one 512 byte sector. For SD, "erase_size" is 512 if the card is block-addressed, 0 otherwise. SD/MMC cards can erase an arbitrarily large area up to and including the whole card. When erasing a large area it may be desirable to do it in smaller chunks for three reasons: 1. A single erase command will make all other I/O on the card wait. This is not a problem if the whole card is being erased, but erasing one partition will make I/O for another partition on the same card wait for the duration of the erase - which could be a several minutes. 2. To be able to inform the user of erase progress. 3. The erase timeout becomes too large to be very useful. Because the erase timeout contains a margin which is multiplied by the size of the erase area, the value can end up being several minutes for large areas. "erase_size" is not the most efficient unit to erase (especially for SD where it is just one sector), hence "preferred_erase_size" provides a good chunk size for erasing large areas. For MMC, "preferred_erase_size" is the high-capacity erase size if a card specifies one, otherwise it is based on the capacity of the card. For SD, "preferred_erase_size" is the allocation unit size specified by the card. "preferred_erase_size" is in bytes. Signed-off-by: Adrian Hunter <adrian.hunter@nokia.com> Acked-by: Jens Axboe <axboe@kernel.dk> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Madhusudhan Chikkature <madhu.cr@ti.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Ben Gardiner <bengardiner@nanometrics.ca> Cc: <linux-mmc@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-11 15:17:46 -06:00
}
static int mmc_do_erase(struct mmc_card *card, unsigned int from,
unsigned int to, unsigned int arg)
{
struct mmc_command cmd = {0};
mmc: add erase, secure erase, trim and secure trim operations SD/MMC cards tend to support an erase operation. In addition, eMMC v4.4 cards can support secure erase, trim and secure trim operations that are all variants of the basic erase command. SD/MMC device attributes "erase_size" and "preferred_erase_size" have been added. "erase_size" is the minimum size, in bytes, of an erase operation. For MMC, "erase_size" is the erase group size reported by the card. Note that "erase_size" does not apply to trim or secure trim operations where the minimum size is always one 512 byte sector. For SD, "erase_size" is 512 if the card is block-addressed, 0 otherwise. SD/MMC cards can erase an arbitrarily large area up to and including the whole card. When erasing a large area it may be desirable to do it in smaller chunks for three reasons: 1. A single erase command will make all other I/O on the card wait. This is not a problem if the whole card is being erased, but erasing one partition will make I/O for another partition on the same card wait for the duration of the erase - which could be a several minutes. 2. To be able to inform the user of erase progress. 3. The erase timeout becomes too large to be very useful. Because the erase timeout contains a margin which is multiplied by the size of the erase area, the value can end up being several minutes for large areas. "erase_size" is not the most efficient unit to erase (especially for SD where it is just one sector), hence "preferred_erase_size" provides a good chunk size for erasing large areas. For MMC, "preferred_erase_size" is the high-capacity erase size if a card specifies one, otherwise it is based on the capacity of the card. For SD, "preferred_erase_size" is the allocation unit size specified by the card. "preferred_erase_size" is in bytes. Signed-off-by: Adrian Hunter <adrian.hunter@nokia.com> Acked-by: Jens Axboe <axboe@kernel.dk> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Madhusudhan Chikkature <madhu.cr@ti.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Ben Gardiner <bengardiner@nanometrics.ca> Cc: <linux-mmc@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-11 15:17:46 -06:00
unsigned int qty = 0;
unsigned long timeout;
mmc: add erase, secure erase, trim and secure trim operations SD/MMC cards tend to support an erase operation. In addition, eMMC v4.4 cards can support secure erase, trim and secure trim operations that are all variants of the basic erase command. SD/MMC device attributes "erase_size" and "preferred_erase_size" have been added. "erase_size" is the minimum size, in bytes, of an erase operation. For MMC, "erase_size" is the erase group size reported by the card. Note that "erase_size" does not apply to trim or secure trim operations where the minimum size is always one 512 byte sector. For SD, "erase_size" is 512 if the card is block-addressed, 0 otherwise. SD/MMC cards can erase an arbitrarily large area up to and including the whole card. When erasing a large area it may be desirable to do it in smaller chunks for three reasons: 1. A single erase command will make all other I/O on the card wait. This is not a problem if the whole card is being erased, but erasing one partition will make I/O for another partition on the same card wait for the duration of the erase - which could be a several minutes. 2. To be able to inform the user of erase progress. 3. The erase timeout becomes too large to be very useful. Because the erase timeout contains a margin which is multiplied by the size of the erase area, the value can end up being several minutes for large areas. "erase_size" is not the most efficient unit to erase (especially for SD where it is just one sector), hence "preferred_erase_size" provides a good chunk size for erasing large areas. For MMC, "preferred_erase_size" is the high-capacity erase size if a card specifies one, otherwise it is based on the capacity of the card. For SD, "preferred_erase_size" is the allocation unit size specified by the card. "preferred_erase_size" is in bytes. Signed-off-by: Adrian Hunter <adrian.hunter@nokia.com> Acked-by: Jens Axboe <axboe@kernel.dk> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Madhusudhan Chikkature <madhu.cr@ti.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Ben Gardiner <bengardiner@nanometrics.ca> Cc: <linux-mmc@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-11 15:17:46 -06:00
int err;
/*
* qty is used to calculate the erase timeout which depends on how many
* erase groups (or allocation units in SD terminology) are affected.
* We count erasing part of an erase group as one erase group.
* For SD, the allocation units are always a power of 2. For MMC, the
* erase group size is almost certainly also power of 2, but it does not
* seem to insist on that in the JEDEC standard, so we fall back to
* division in that case. SD may not specify an allocation unit size,
* in which case the timeout is based on the number of write blocks.
*
* Note that the timeout for secure trim 2 will only be correct if the
* number of erase groups specified is the same as the total of all
* preceding secure trim 1 commands. Since the power may have been
* lost since the secure trim 1 commands occurred, it is generally
* impossible to calculate the secure trim 2 timeout correctly.
*/
if (card->erase_shift)
qty += ((to >> card->erase_shift) -
(from >> card->erase_shift)) + 1;
else if (mmc_card_sd(card))
qty += to - from + 1;
else
qty += ((to / card->erase_size) -
(from / card->erase_size)) + 1;
if (!mmc_card_blockaddr(card)) {
from <<= 9;
to <<= 9;
}
if (mmc_card_sd(card))
cmd.opcode = SD_ERASE_WR_BLK_START;
else
cmd.opcode = MMC_ERASE_GROUP_START;
cmd.arg = from;
cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
err = mmc_wait_for_cmd(card->host, &cmd, 0);
if (err) {
pr_err("mmc_erase: group start error %d, "
mmc: add erase, secure erase, trim and secure trim operations SD/MMC cards tend to support an erase operation. In addition, eMMC v4.4 cards can support secure erase, trim and secure trim operations that are all variants of the basic erase command. SD/MMC device attributes "erase_size" and "preferred_erase_size" have been added. "erase_size" is the minimum size, in bytes, of an erase operation. For MMC, "erase_size" is the erase group size reported by the card. Note that "erase_size" does not apply to trim or secure trim operations where the minimum size is always one 512 byte sector. For SD, "erase_size" is 512 if the card is block-addressed, 0 otherwise. SD/MMC cards can erase an arbitrarily large area up to and including the whole card. When erasing a large area it may be desirable to do it in smaller chunks for three reasons: 1. A single erase command will make all other I/O on the card wait. This is not a problem if the whole card is being erased, but erasing one partition will make I/O for another partition on the same card wait for the duration of the erase - which could be a several minutes. 2. To be able to inform the user of erase progress. 3. The erase timeout becomes too large to be very useful. Because the erase timeout contains a margin which is multiplied by the size of the erase area, the value can end up being several minutes for large areas. "erase_size" is not the most efficient unit to erase (especially for SD where it is just one sector), hence "preferred_erase_size" provides a good chunk size for erasing large areas. For MMC, "preferred_erase_size" is the high-capacity erase size if a card specifies one, otherwise it is based on the capacity of the card. For SD, "preferred_erase_size" is the allocation unit size specified by the card. "preferred_erase_size" is in bytes. Signed-off-by: Adrian Hunter <adrian.hunter@nokia.com> Acked-by: Jens Axboe <axboe@kernel.dk> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Madhusudhan Chikkature <madhu.cr@ti.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Ben Gardiner <bengardiner@nanometrics.ca> Cc: <linux-mmc@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-11 15:17:46 -06:00
"status %#x\n", err, cmd.resp[0]);
err = -EIO;
mmc: add erase, secure erase, trim and secure trim operations SD/MMC cards tend to support an erase operation. In addition, eMMC v4.4 cards can support secure erase, trim and secure trim operations that are all variants of the basic erase command. SD/MMC device attributes "erase_size" and "preferred_erase_size" have been added. "erase_size" is the minimum size, in bytes, of an erase operation. For MMC, "erase_size" is the erase group size reported by the card. Note that "erase_size" does not apply to trim or secure trim operations where the minimum size is always one 512 byte sector. For SD, "erase_size" is 512 if the card is block-addressed, 0 otherwise. SD/MMC cards can erase an arbitrarily large area up to and including the whole card. When erasing a large area it may be desirable to do it in smaller chunks for three reasons: 1. A single erase command will make all other I/O on the card wait. This is not a problem if the whole card is being erased, but erasing one partition will make I/O for another partition on the same card wait for the duration of the erase - which could be a several minutes. 2. To be able to inform the user of erase progress. 3. The erase timeout becomes too large to be very useful. Because the erase timeout contains a margin which is multiplied by the size of the erase area, the value can end up being several minutes for large areas. "erase_size" is not the most efficient unit to erase (especially for SD where it is just one sector), hence "preferred_erase_size" provides a good chunk size for erasing large areas. For MMC, "preferred_erase_size" is the high-capacity erase size if a card specifies one, otherwise it is based on the capacity of the card. For SD, "preferred_erase_size" is the allocation unit size specified by the card. "preferred_erase_size" is in bytes. Signed-off-by: Adrian Hunter <adrian.hunter@nokia.com> Acked-by: Jens Axboe <axboe@kernel.dk> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Madhusudhan Chikkature <madhu.cr@ti.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Ben Gardiner <bengardiner@nanometrics.ca> Cc: <linux-mmc@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-11 15:17:46 -06:00
goto out;
}
memset(&cmd, 0, sizeof(struct mmc_command));
if (mmc_card_sd(card))
cmd.opcode = SD_ERASE_WR_BLK_END;
else
cmd.opcode = MMC_ERASE_GROUP_END;
cmd.arg = to;
cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
err = mmc_wait_for_cmd(card->host, &cmd, 0);
if (err) {
pr_err("mmc_erase: group end error %d, status %#x\n",
mmc: add erase, secure erase, trim and secure trim operations SD/MMC cards tend to support an erase operation. In addition, eMMC v4.4 cards can support secure erase, trim and secure trim operations that are all variants of the basic erase command. SD/MMC device attributes "erase_size" and "preferred_erase_size" have been added. "erase_size" is the minimum size, in bytes, of an erase operation. For MMC, "erase_size" is the erase group size reported by the card. Note that "erase_size" does not apply to trim or secure trim operations where the minimum size is always one 512 byte sector. For SD, "erase_size" is 512 if the card is block-addressed, 0 otherwise. SD/MMC cards can erase an arbitrarily large area up to and including the whole card. When erasing a large area it may be desirable to do it in smaller chunks for three reasons: 1. A single erase command will make all other I/O on the card wait. This is not a problem if the whole card is being erased, but erasing one partition will make I/O for another partition on the same card wait for the duration of the erase - which could be a several minutes. 2. To be able to inform the user of erase progress. 3. The erase timeout becomes too large to be very useful. Because the erase timeout contains a margin which is multiplied by the size of the erase area, the value can end up being several minutes for large areas. "erase_size" is not the most efficient unit to erase (especially for SD where it is just one sector), hence "preferred_erase_size" provides a good chunk size for erasing large areas. For MMC, "preferred_erase_size" is the high-capacity erase size if a card specifies one, otherwise it is based on the capacity of the card. For SD, "preferred_erase_size" is the allocation unit size specified by the card. "preferred_erase_size" is in bytes. Signed-off-by: Adrian Hunter <adrian.hunter@nokia.com> Acked-by: Jens Axboe <axboe@kernel.dk> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Madhusudhan Chikkature <madhu.cr@ti.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Ben Gardiner <bengardiner@nanometrics.ca> Cc: <linux-mmc@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-11 15:17:46 -06:00
err, cmd.resp[0]);
err = -EIO;
mmc: add erase, secure erase, trim and secure trim operations SD/MMC cards tend to support an erase operation. In addition, eMMC v4.4 cards can support secure erase, trim and secure trim operations that are all variants of the basic erase command. SD/MMC device attributes "erase_size" and "preferred_erase_size" have been added. "erase_size" is the minimum size, in bytes, of an erase operation. For MMC, "erase_size" is the erase group size reported by the card. Note that "erase_size" does not apply to trim or secure trim operations where the minimum size is always one 512 byte sector. For SD, "erase_size" is 512 if the card is block-addressed, 0 otherwise. SD/MMC cards can erase an arbitrarily large area up to and including the whole card. When erasing a large area it may be desirable to do it in smaller chunks for three reasons: 1. A single erase command will make all other I/O on the card wait. This is not a problem if the whole card is being erased, but erasing one partition will make I/O for another partition on the same card wait for the duration of the erase - which could be a several minutes. 2. To be able to inform the user of erase progress. 3. The erase timeout becomes too large to be very useful. Because the erase timeout contains a margin which is multiplied by the size of the erase area, the value can end up being several minutes for large areas. "erase_size" is not the most efficient unit to erase (especially for SD where it is just one sector), hence "preferred_erase_size" provides a good chunk size for erasing large areas. For MMC, "preferred_erase_size" is the high-capacity erase size if a card specifies one, otherwise it is based on the capacity of the card. For SD, "preferred_erase_size" is the allocation unit size specified by the card. "preferred_erase_size" is in bytes. Signed-off-by: Adrian Hunter <adrian.hunter@nokia.com> Acked-by: Jens Axboe <axboe@kernel.dk> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Madhusudhan Chikkature <madhu.cr@ti.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Ben Gardiner <bengardiner@nanometrics.ca> Cc: <linux-mmc@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-11 15:17:46 -06:00
goto out;
}
memset(&cmd, 0, sizeof(struct mmc_command));
cmd.opcode = MMC_ERASE;
cmd.arg = arg;
cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
cmd.busy_timeout = mmc_erase_timeout(card, arg, qty);
mmc: add erase, secure erase, trim and secure trim operations SD/MMC cards tend to support an erase operation. In addition, eMMC v4.4 cards can support secure erase, trim and secure trim operations that are all variants of the basic erase command. SD/MMC device attributes "erase_size" and "preferred_erase_size" have been added. "erase_size" is the minimum size, in bytes, of an erase operation. For MMC, "erase_size" is the erase group size reported by the card. Note that "erase_size" does not apply to trim or secure trim operations where the minimum size is always one 512 byte sector. For SD, "erase_size" is 512 if the card is block-addressed, 0 otherwise. SD/MMC cards can erase an arbitrarily large area up to and including the whole card. When erasing a large area it may be desirable to do it in smaller chunks for three reasons: 1. A single erase command will make all other I/O on the card wait. This is not a problem if the whole card is being erased, but erasing one partition will make I/O for another partition on the same card wait for the duration of the erase - which could be a several minutes. 2. To be able to inform the user of erase progress. 3. The erase timeout becomes too large to be very useful. Because the erase timeout contains a margin which is multiplied by the size of the erase area, the value can end up being several minutes for large areas. "erase_size" is not the most efficient unit to erase (especially for SD where it is just one sector), hence "preferred_erase_size" provides a good chunk size for erasing large areas. For MMC, "preferred_erase_size" is the high-capacity erase size if a card specifies one, otherwise it is based on the capacity of the card. For SD, "preferred_erase_size" is the allocation unit size specified by the card. "preferred_erase_size" is in bytes. Signed-off-by: Adrian Hunter <adrian.hunter@nokia.com> Acked-by: Jens Axboe <axboe@kernel.dk> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Madhusudhan Chikkature <madhu.cr@ti.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Ben Gardiner <bengardiner@nanometrics.ca> Cc: <linux-mmc@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-11 15:17:46 -06:00
err = mmc_wait_for_cmd(card->host, &cmd, 0);
if (err) {
pr_err("mmc_erase: erase error %d, status %#x\n",
mmc: add erase, secure erase, trim and secure trim operations SD/MMC cards tend to support an erase operation. In addition, eMMC v4.4 cards can support secure erase, trim and secure trim operations that are all variants of the basic erase command. SD/MMC device attributes "erase_size" and "preferred_erase_size" have been added. "erase_size" is the minimum size, in bytes, of an erase operation. For MMC, "erase_size" is the erase group size reported by the card. Note that "erase_size" does not apply to trim or secure trim operations where the minimum size is always one 512 byte sector. For SD, "erase_size" is 512 if the card is block-addressed, 0 otherwise. SD/MMC cards can erase an arbitrarily large area up to and including the whole card. When erasing a large area it may be desirable to do it in smaller chunks for three reasons: 1. A single erase command will make all other I/O on the card wait. This is not a problem if the whole card is being erased, but erasing one partition will make I/O for another partition on the same card wait for the duration of the erase - which could be a several minutes. 2. To be able to inform the user of erase progress. 3. The erase timeout becomes too large to be very useful. Because the erase timeout contains a margin which is multiplied by the size of the erase area, the value can end up being several minutes for large areas. "erase_size" is not the most efficient unit to erase (especially for SD where it is just one sector), hence "preferred_erase_size" provides a good chunk size for erasing large areas. For MMC, "preferred_erase_size" is the high-capacity erase size if a card specifies one, otherwise it is based on the capacity of the card. For SD, "preferred_erase_size" is the allocation unit size specified by the card. "preferred_erase_size" is in bytes. Signed-off-by: Adrian Hunter <adrian.hunter@nokia.com> Acked-by: Jens Axboe <axboe@kernel.dk> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Madhusudhan Chikkature <madhu.cr@ti.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Ben Gardiner <bengardiner@nanometrics.ca> Cc: <linux-mmc@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-11 15:17:46 -06:00
err, cmd.resp[0]);
err = -EIO;
goto out;
}
if (mmc_host_is_spi(card->host))
goto out;
timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS);
mmc: add erase, secure erase, trim and secure trim operations SD/MMC cards tend to support an erase operation. In addition, eMMC v4.4 cards can support secure erase, trim and secure trim operations that are all variants of the basic erase command. SD/MMC device attributes "erase_size" and "preferred_erase_size" have been added. "erase_size" is the minimum size, in bytes, of an erase operation. For MMC, "erase_size" is the erase group size reported by the card. Note that "erase_size" does not apply to trim or secure trim operations where the minimum size is always one 512 byte sector. For SD, "erase_size" is 512 if the card is block-addressed, 0 otherwise. SD/MMC cards can erase an arbitrarily large area up to and including the whole card. When erasing a large area it may be desirable to do it in smaller chunks for three reasons: 1. A single erase command will make all other I/O on the card wait. This is not a problem if the whole card is being erased, but erasing one partition will make I/O for another partition on the same card wait for the duration of the erase - which could be a several minutes. 2. To be able to inform the user of erase progress. 3. The erase timeout becomes too large to be very useful. Because the erase timeout contains a margin which is multiplied by the size of the erase area, the value can end up being several minutes for large areas. "erase_size" is not the most efficient unit to erase (especially for SD where it is just one sector), hence "preferred_erase_size" provides a good chunk size for erasing large areas. For MMC, "preferred_erase_size" is the high-capacity erase size if a card specifies one, otherwise it is based on the capacity of the card. For SD, "preferred_erase_size" is the allocation unit size specified by the card. "preferred_erase_size" is in bytes. Signed-off-by: Adrian Hunter <adrian.hunter@nokia.com> Acked-by: Jens Axboe <axboe@kernel.dk> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Madhusudhan Chikkature <madhu.cr@ti.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Ben Gardiner <bengardiner@nanometrics.ca> Cc: <linux-mmc@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-11 15:17:46 -06:00
do {
memset(&cmd, 0, sizeof(struct mmc_command));
cmd.opcode = MMC_SEND_STATUS;
cmd.arg = card->rca << 16;
cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
/* Do not retry else we can't see errors */
err = mmc_wait_for_cmd(card->host, &cmd, 0);
if (err || (cmd.resp[0] & 0xFDF92000)) {
pr_err("error %d requesting status %#x\n",
mmc: add erase, secure erase, trim and secure trim operations SD/MMC cards tend to support an erase operation. In addition, eMMC v4.4 cards can support secure erase, trim and secure trim operations that are all variants of the basic erase command. SD/MMC device attributes "erase_size" and "preferred_erase_size" have been added. "erase_size" is the minimum size, in bytes, of an erase operation. For MMC, "erase_size" is the erase group size reported by the card. Note that "erase_size" does not apply to trim or secure trim operations where the minimum size is always one 512 byte sector. For SD, "erase_size" is 512 if the card is block-addressed, 0 otherwise. SD/MMC cards can erase an arbitrarily large area up to and including the whole card. When erasing a large area it may be desirable to do it in smaller chunks for three reasons: 1. A single erase command will make all other I/O on the card wait. This is not a problem if the whole card is being erased, but erasing one partition will make I/O for another partition on the same card wait for the duration of the erase - which could be a several minutes. 2. To be able to inform the user of erase progress. 3. The erase timeout becomes too large to be very useful. Because the erase timeout contains a margin which is multiplied by the size of the erase area, the value can end up being several minutes for large areas. "erase_size" is not the most efficient unit to erase (especially for SD where it is just one sector), hence "preferred_erase_size" provides a good chunk size for erasing large areas. For MMC, "preferred_erase_size" is the high-capacity erase size if a card specifies one, otherwise it is based on the capacity of the card. For SD, "preferred_erase_size" is the allocation unit size specified by the card. "preferred_erase_size" is in bytes. Signed-off-by: Adrian Hunter <adrian.hunter@nokia.com> Acked-by: Jens Axboe <axboe@kernel.dk> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Madhusudhan Chikkature <madhu.cr@ti.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Ben Gardiner <bengardiner@nanometrics.ca> Cc: <linux-mmc@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-11 15:17:46 -06:00
err, cmd.resp[0]);
err = -EIO;
goto out;
}
/* Timeout if the device never becomes ready for data and
* never leaves the program state.
*/
if (time_after(jiffies, timeout)) {
pr_err("%s: Card stuck in programming state! %s\n",
mmc_hostname(card->host), __func__);
err = -EIO;
goto out;
}
mmc: add erase, secure erase, trim and secure trim operations SD/MMC cards tend to support an erase operation. In addition, eMMC v4.4 cards can support secure erase, trim and secure trim operations that are all variants of the basic erase command. SD/MMC device attributes "erase_size" and "preferred_erase_size" have been added. "erase_size" is the minimum size, in bytes, of an erase operation. For MMC, "erase_size" is the erase group size reported by the card. Note that "erase_size" does not apply to trim or secure trim operations where the minimum size is always one 512 byte sector. For SD, "erase_size" is 512 if the card is block-addressed, 0 otherwise. SD/MMC cards can erase an arbitrarily large area up to and including the whole card. When erasing a large area it may be desirable to do it in smaller chunks for three reasons: 1. A single erase command will make all other I/O on the card wait. This is not a problem if the whole card is being erased, but erasing one partition will make I/O for another partition on the same card wait for the duration of the erase - which could be a several minutes. 2. To be able to inform the user of erase progress. 3. The erase timeout becomes too large to be very useful. Because the erase timeout contains a margin which is multiplied by the size of the erase area, the value can end up being several minutes for large areas. "erase_size" is not the most efficient unit to erase (especially for SD where it is just one sector), hence "preferred_erase_size" provides a good chunk size for erasing large areas. For MMC, "preferred_erase_size" is the high-capacity erase size if a card specifies one, otherwise it is based on the capacity of the card. For SD, "preferred_erase_size" is the allocation unit size specified by the card. "preferred_erase_size" is in bytes. Signed-off-by: Adrian Hunter <adrian.hunter@nokia.com> Acked-by: Jens Axboe <axboe@kernel.dk> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Madhusudhan Chikkature <madhu.cr@ti.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Ben Gardiner <bengardiner@nanometrics.ca> Cc: <linux-mmc@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-11 15:17:46 -06:00
} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
(R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
mmc: add erase, secure erase, trim and secure trim operations SD/MMC cards tend to support an erase operation. In addition, eMMC v4.4 cards can support secure erase, trim and secure trim operations that are all variants of the basic erase command. SD/MMC device attributes "erase_size" and "preferred_erase_size" have been added. "erase_size" is the minimum size, in bytes, of an erase operation. For MMC, "erase_size" is the erase group size reported by the card. Note that "erase_size" does not apply to trim or secure trim operations where the minimum size is always one 512 byte sector. For SD, "erase_size" is 512 if the card is block-addressed, 0 otherwise. SD/MMC cards can erase an arbitrarily large area up to and including the whole card. When erasing a large area it may be desirable to do it in smaller chunks for three reasons: 1. A single erase command will make all other I/O on the card wait. This is not a problem if the whole card is being erased, but erasing one partition will make I/O for another partition on the same card wait for the duration of the erase - which could be a several minutes. 2. To be able to inform the user of erase progress. 3. The erase timeout becomes too large to be very useful. Because the erase timeout contains a margin which is multiplied by the size of the erase area, the value can end up being several minutes for large areas. "erase_size" is not the most efficient unit to erase (especially for SD where it is just one sector), hence "preferred_erase_size" provides a good chunk size for erasing large areas. For MMC, "preferred_erase_size" is the high-capacity erase size if a card specifies one, otherwise it is based on the capacity of the card. For SD, "preferred_erase_size" is the allocation unit size specified by the card. "preferred_erase_size" is in bytes. Signed-off-by: Adrian Hunter <adrian.hunter@nokia.com> Acked-by: Jens Axboe <axboe@kernel.dk> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Madhusudhan Chikkature <madhu.cr@ti.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Ben Gardiner <bengardiner@nanometrics.ca> Cc: <linux-mmc@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-11 15:17:46 -06:00
out:
return err;
}
/**
* mmc_erase - erase sectors.
* @card: card to erase
* @from: first sector to erase
* @nr: number of sectors to erase
* @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
*
* Caller must claim host before calling this function.
*/
int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
unsigned int arg)
{
unsigned int rem, to = from + nr;
if (!(card->host->caps & MMC_CAP_ERASE) ||
!(card->csd.cmdclass & CCC_ERASE))
return -EOPNOTSUPP;
if (!card->erase_size)
return -EOPNOTSUPP;
if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
return -EOPNOTSUPP;
if ((arg & MMC_SECURE_ARGS) &&
!(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
return -EOPNOTSUPP;
if ((arg & MMC_TRIM_ARGS) &&
!(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
return -EOPNOTSUPP;
if (arg == MMC_SECURE_ERASE_ARG) {
if (from % card->erase_size || nr % card->erase_size)
return -EINVAL;
}
if (arg == MMC_ERASE_ARG) {
rem = from % card->erase_size;
if (rem) {
rem = card->erase_size - rem;
from += rem;
if (nr > rem)
nr -= rem;
else
return 0;
}
rem = nr % card->erase_size;
if (rem)
nr -= rem;
}
if (nr == 0)
return 0;
to = from + nr;
if (to <= from)
return -EINVAL;
/* 'from' and 'to' are inclusive */
to -= 1;
return mmc_do_erase(card, from, to, arg);
}
EXPORT_SYMBOL(mmc_erase);
int mmc_can_erase(struct mmc_card *card)
{
if ((card->host->caps & MMC_CAP_ERASE) &&
(card->csd.cmdclass & CCC_ERASE) && card->erase_size)
return 1;
return 0;
}
EXPORT_SYMBOL(mmc_can_erase);
int mmc_can_trim(struct mmc_card *card)
{
if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
return 1;
return 0;
}
EXPORT_SYMBOL(mmc_can_trim);
int mmc_can_discard(struct mmc_card *card)
{
/*
* As there's no way to detect the discard support bit at v4.5
* use the s/w feature support filed.
*/
if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
return 1;
return 0;
}
EXPORT_SYMBOL(mmc_can_discard);
int mmc_can_sanitize(struct mmc_card *card)
{
if (!mmc_can_trim(card) && !mmc_can_erase(card))
return 0;
if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
return 1;
return 0;
}
EXPORT_SYMBOL(mmc_can_sanitize);
mmc: add erase, secure erase, trim and secure trim operations SD/MMC cards tend to support an erase operation. In addition, eMMC v4.4 cards can support secure erase, trim and secure trim operations that are all variants of the basic erase command. SD/MMC device attributes "erase_size" and "preferred_erase_size" have been added. "erase_size" is the minimum size, in bytes, of an erase operation. For MMC, "erase_size" is the erase group size reported by the card. Note that "erase_size" does not apply to trim or secure trim operations where the minimum size is always one 512 byte sector. For SD, "erase_size" is 512 if the card is block-addressed, 0 otherwise. SD/MMC cards can erase an arbitrarily large area up to and including the whole card. When erasing a large area it may be desirable to do it in smaller chunks for three reasons: 1. A single erase command will make all other I/O on the card wait. This is not a problem if the whole card is being erased, but erasing one partition will make I/O for another partition on the same card wait for the duration of the erase - which could be a several minutes. 2. To be able to inform the user of erase progress. 3. The erase timeout becomes too large to be very useful. Because the erase timeout contains a margin which is multiplied by the size of the erase area, the value can end up being several minutes for large areas. "erase_size" is not the most efficient unit to erase (especially for SD where it is just one sector), hence "preferred_erase_size" provides a good chunk size for erasing large areas. For MMC, "preferred_erase_size" is the high-capacity erase size if a card specifies one, otherwise it is based on the capacity of the card. For SD, "preferred_erase_size" is the allocation unit size specified by the card. "preferred_erase_size" is in bytes. Signed-off-by: Adrian Hunter <adrian.hunter@nokia.com> Acked-by: Jens Axboe <axboe@kernel.dk> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Madhusudhan Chikkature <madhu.cr@ti.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Ben Gardiner <bengardiner@nanometrics.ca> Cc: <linux-mmc@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-11 15:17:46 -06:00
int mmc_can_secure_erase_trim(struct mmc_card *card)
{
if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
!(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
mmc: add erase, secure erase, trim and secure trim operations SD/MMC cards tend to support an erase operation. In addition, eMMC v4.4 cards can support secure erase, trim and secure trim operations that are all variants of the basic erase command. SD/MMC device attributes "erase_size" and "preferred_erase_size" have been added. "erase_size" is the minimum size, in bytes, of an erase operation. For MMC, "erase_size" is the erase group size reported by the card. Note that "erase_size" does not apply to trim or secure trim operations where the minimum size is always one 512 byte sector. For SD, "erase_size" is 512 if the card is block-addressed, 0 otherwise. SD/MMC cards can erase an arbitrarily large area up to and including the whole card. When erasing a large area it may be desirable to do it in smaller chunks for three reasons: 1. A single erase command will make all other I/O on the card wait. This is not a problem if the whole card is being erased, but erasing one partition will make I/O for another partition on the same card wait for the duration of the erase - which could be a several minutes. 2. To be able to inform the user of erase progress. 3. The erase timeout becomes too large to be very useful. Because the erase timeout contains a margin which is multiplied by the size of the erase area, the value can end up being several minutes for large areas. "erase_size" is not the most efficient unit to erase (especially for SD where it is just one sector), hence "preferred_erase_size" provides a good chunk size for erasing large areas. For MMC, "preferred_erase_size" is the high-capacity erase size if a card specifies one, otherwise it is based on the capacity of the card. For SD, "preferred_erase_size" is the allocation unit size specified by the card. "preferred_erase_size" is in bytes. Signed-off-by: Adrian Hunter <adrian.hunter@nokia.com> Acked-by: Jens Axboe <axboe@kernel.dk> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Madhusudhan Chikkature <madhu.cr@ti.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Ben Gardiner <bengardiner@nanometrics.ca> Cc: <linux-mmc@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-11 15:17:46 -06:00
return 1;
return 0;
}
EXPORT_SYMBOL(mmc_can_secure_erase_trim);
int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
unsigned int nr)
{
if (!card->erase_size)
return 0;
if (from % card->erase_size || nr % card->erase_size)
return 0;
return 1;
}
EXPORT_SYMBOL(mmc_erase_group_aligned);
static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
unsigned int arg)
{
struct mmc_host *host = card->host;
unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
unsigned int last_timeout = 0;
if (card->erase_shift)
max_qty = UINT_MAX >> card->erase_shift;
else if (mmc_card_sd(card))
max_qty = UINT_MAX;
else
max_qty = UINT_MAX / card->erase_size;
/* Find the largest qty with an OK timeout */
do {
y = 0;
for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
timeout = mmc_erase_timeout(card, arg, qty + x);
if (timeout > host->max_busy_timeout)
break;
if (timeout < last_timeout)
break;
last_timeout = timeout;
y = x;
}
qty += y;
} while (y);
if (!qty)
return 0;
if (qty == 1)
return 1;
/* Convert qty to sectors */
if (card->erase_shift)
max_discard = --qty << card->erase_shift;
else if (mmc_card_sd(card))
max_discard = qty;
else
max_discard = --qty * card->erase_size;
return max_discard;
}
unsigned int mmc_calc_max_discard(struct mmc_card *card)
{
struct mmc_host *host = card->host;
unsigned int max_discard, max_trim;
if (!host->max_busy_timeout)
return UINT_MAX;
/*
* Without erase_group_def set, MMC erase timeout depends on clock
* frequence which can change. In that case, the best choice is
* just the preferred erase size.
*/
if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
return card->pref_erase;
max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
if (mmc_can_trim(card)) {
max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
if (max_trim < max_discard)
max_discard = max_trim;
} else if (max_discard < card->erase_size) {
max_discard = 0;
}
pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
mmc_hostname(host), max_discard, host->max_busy_timeout);
return max_discard;
}
EXPORT_SYMBOL(mmc_calc_max_discard);
int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
{
struct mmc_command cmd = {0};
if (mmc_card_blockaddr(card) || mmc_card_ddr52(card))
return 0;
cmd.opcode = MMC_SET_BLOCKLEN;
cmd.arg = blocklen;
cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
return mmc_wait_for_cmd(card->host, &cmd, 5);
}
EXPORT_SYMBOL(mmc_set_blocklen);
int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
bool is_rel_write)
{
struct mmc_command cmd = {0};
cmd.opcode = MMC_SET_BLOCK_COUNT;
cmd.arg = blockcount & 0x0000FFFF;
if (is_rel_write)
cmd.arg |= 1 << 31;
cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
return mmc_wait_for_cmd(card->host, &cmd, 5);
}
EXPORT_SYMBOL(mmc_set_blockcount);
static void mmc_hw_reset_for_init(struct mmc_host *host)
{
if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
return;
mmc_host_clk_hold(host);
host->ops->hw_reset(host);
mmc_host_clk_release(host);
}
int mmc_can_reset(struct mmc_card *card)
{
u8 rst_n_function;
if (!mmc_card_mmc(card))
return 0;
rst_n_function = card->ext_csd.rst_n_function;
if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
return 0;
return 1;
}
EXPORT_SYMBOL(mmc_can_reset);
static int mmc_do_hw_reset(struct mmc_host *host, int check)
{
struct mmc_card *card = host->card;
if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
return -EOPNOTSUPP;
if (!card)
return -EINVAL;
if (!mmc_can_reset(card))
return -EOPNOTSUPP;
mmc_host_clk_hold(host);
mmc_set_clock(host, host->f_init);
host->ops->hw_reset(host);
/* If the reset has happened, then a status command will fail */
if (check) {
u32 status;
if (!mmc_send_status(card, &status)) {
mmc_host_clk_release(host);
return -ENOSYS;
}
}
/* Set initial state and call mmc_set_ios */
mmc_set_initial_state(host);
mmc_host_clk_release(host);
return host->bus_ops->power_restore(host);
}
int mmc_hw_reset(struct mmc_host *host)
{
return mmc_do_hw_reset(host, 0);
}
EXPORT_SYMBOL(mmc_hw_reset);
int mmc_hw_reset_check(struct mmc_host *host)
{
return mmc_do_hw_reset(host, 1);
}
EXPORT_SYMBOL(mmc_hw_reset_check);
static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
{
host->f_init = freq;
#ifdef CONFIG_MMC_DEBUG
pr_info("%s: %s: trying to init card at %u Hz\n",
mmc_hostname(host), __func__, host->f_init);
#endif
mmc_power_up(host, host->ocr_avail);
/*
* Some eMMCs (with VCCQ always on) may not be reset after power up, so
* do a hardware reset if possible.
*/
mmc_hw_reset_for_init(host);
/*
* sdio_reset sends CMD52 to reset card. Since we do not know
* if the card is being re-initialized, just send it. CMD52
* should be ignored by SD/eMMC cards.
*/
sdio_reset(host);
mmc_go_idle(host);
mmc_send_if_cond(host, host->ocr_avail);
/* Order's important: probe SDIO, then SD, then MMC */
if (!mmc_attach_sdio(host))
return 0;
if (!mmc_attach_sd(host))
return 0;
if (!mmc_attach_mmc(host))
return 0;
mmc_power_off(host);
return -EIO;
}
int _mmc_detect_card_removed(struct mmc_host *host)
{
int ret;
if (host->caps & MMC_CAP_NONREMOVABLE)
return 0;
if (!host->card || mmc_card_removed(host->card))
return 1;
ret = host->bus_ops->alive(host);
mmc: core: enhance card removal judgement for slow removal Function _mmc_detect_card_removed will be called to know whether the card is still present when host->bus_ops->detect is called. In current code, the return value of this function generally only depend on the result of sending cmd13 to card, which may not safe for card with detection support like slot gpio detection. Because the communication status between host and card may out of sync with the detect status if remove the card slowly or hands shake during the process. The direct reason is the async between card detect switch and card/slot pad contaction in hardware, which is defined by spec. The spec define card insert/remove sequence as below (both standard size SD card and MicroSD card have the same sequence): "Part 1 Standard Size SD Card Mechanical Addendum Ver4.00 Final, Appendix C: Card Detection Switch" (Take normally open type as example) a)SD card insertion sequence: The card detection switch should be turned on after all SD card contact pads are connected to the host connector contact pads. b)SD removal sequence: The card detection switch should be turned off when the SD card is just going to be removed and before any SD card contact pad is disconnected from the host connector contact pad. Below is the sequence when this issue occur (Take slot gpio detection as example and remove the card slowly during the process): 1. gpio level changed and card detect interrupt triggered. 2. mmc_rescan was launched. 3. the card pads were still contacted with the slot pads because of slow removal. So _mmc_detect_card_removed and mmc_rescan think card was still present (cmd13 succeed). 4. card pads were discontacted from the card slot pads. So the card was actually removed finally but the card removal event has been missed by system. The interval length between step 1 and step 4 depends on the card removal speed. If it's longer than the detect work schedule delay which is 200ms, this issue will likely happen. This patch add the card detect status check in function _mmc_detect_card_removed if cmd13 check succeed and host->ops->get_cd provided. If get_cd detect no card present then schedule another detect work 200ms later. Signed-off-by: Kevin Liu <kliu5@marvell.com> Tested-by: Johan Rudholm <johan.rudholm@stericsson.com> Reviewed-by: Philip Rakity <prakity@nvidia.com> Acked-by: Ulf Hansson <ulf.hansson@linaro.org> Signed-off-by: Chris Ball <cjb@laptop.org>
2013-02-28 00:29:29 -07:00
/*
* Card detect status and alive check may be out of sync if card is
* removed slowly, when card detect switch changes while card/slot
* pads are still contacted in hardware (refer to "SD Card Mechanical
* Addendum, Appendix C: Card Detection Switch"). So reschedule a
* detect work 200ms later for this case.
*/
if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
mmc_detect_change(host, msecs_to_jiffies(200));
pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
}
if (ret) {
mmc_card_set_removed(host->card);
pr_debug("%s: card remove detected\n", mmc_hostname(host));
}
return ret;
}
int mmc_detect_card_removed(struct mmc_host *host)
{
struct mmc_card *card = host->card;
int ret;
WARN_ON(!host->claimed);
if (!card)
return 1;
ret = mmc_card_removed(card);
/*
* The card will be considered unchanged unless we have been asked to
* detect a change or host requires polling to provide card detection.
*/
if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
return ret;
host->detect_change = 0;
if (!ret) {
ret = _mmc_detect_card_removed(host);
if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
/*
* Schedule a detect work as soon as possible to let a
* rescan handle the card removal.
*/
cancel_delayed_work(&host->detect);
_mmc_detect_change(host, 0, false);
}
}
return ret;
}
EXPORT_SYMBOL(mmc_detect_card_removed);
void mmc_rescan(struct work_struct *work)
{
struct mmc_host *host =
container_of(work, struct mmc_host, detect.work);
int i;
if (host->trigger_card_event && host->ops->card_event) {
host->ops->card_event(host);
host->trigger_card_event = false;
}
if (host->rescan_disable)
return;
/* If there is a non-removable card registered, only scan once */
if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered)
return;
host->rescan_entered = 1;
mmc_bus_get(host);
/*
* if there is a _removable_ card registered, check whether it is
* still present
*/
if (host->bus_ops && !host->bus_dead
&& !(host->caps & MMC_CAP_NONREMOVABLE))
host->bus_ops->detect(host);
host->detect_change = 0;
/*
* Let mmc_bus_put() free the bus/bus_ops if we've found that
* the card is no longer present.
*/
mmc_bus_put(host);
mmc_bus_get(host);
/* if there still is a card present, stop here */
if (host->bus_ops != NULL) {
mmc_bus_put(host);
goto out;
}
/*
* Only we can add a new handler, so it's safe to
* release the lock here.
*/
mmc_bus_put(host);
if (!(host->caps & MMC_CAP_NONREMOVABLE) && host->ops->get_cd &&
host->ops->get_cd(host) == 0) {
mmc_claim_host(host);
mmc_power_off(host);
mmc_release_host(host);
goto out;
}
mmc_claim_host(host);
for (i = 0; i < ARRAY_SIZE(freqs); i++) {
if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
break;
if (freqs[i] <= host->f_min)
break;
}
mmc_release_host(host);
out:
if (host->caps & MMC_CAP_NEEDS_POLL)
mmc_schedule_delayed_work(&host->detect, HZ);
}
void mmc_start_host(struct mmc_host *host)
{
host->f_init = max(freqs[0], host->f_min);
host->rescan_disable = 0;
host->ios.power_mode = MMC_POWER_UNDEFINED;
if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)
mmc_power_off(host);
else
mmc_power_up(host, host->ocr_avail);
mmc_gpiod_request_cd_irq(host);
_mmc_detect_change(host, 0, false);
}
void mmc_stop_host(struct mmc_host *host)
{
#ifdef CONFIG_MMC_DEBUG
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
host->removed = 1;
spin_unlock_irqrestore(&host->lock, flags);
#endif
if (host->slot.cd_irq >= 0)
disable_irq(host->slot.cd_irq);
host->rescan_disable = 1;
cancel_delayed_work_sync(&host->detect);
mmc_flush_scheduled_work();
/* clear pm flags now and let card drivers set them as needed */
host->pm_flags = 0;
mmc_bus_get(host);
if (host->bus_ops && !host->bus_dead) {
/* Calling bus_ops->remove() with a claimed host can deadlock */
host->bus_ops->remove(host);
mmc_claim_host(host);
mmc_detach_bus(host);
mmc_power_off(host);
mmc_release_host(host);
mmc_bus_put(host);
return;
}
mmc_bus_put(host);
BUG_ON(host->card);
mmc_power_off(host);
}
int mmc_power_save_host(struct mmc_host *host)
{
int ret = 0;
#ifdef CONFIG_MMC_DEBUG
pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
#endif
mmc_bus_get(host);
if (!host->bus_ops || host->bus_dead) {
mmc_bus_put(host);
return -EINVAL;
}
if (host->bus_ops->power_save)
ret = host->bus_ops->power_save(host);
mmc_bus_put(host);
mmc_power_off(host);
return ret;
}
EXPORT_SYMBOL(mmc_power_save_host);
int mmc_power_restore_host(struct mmc_host *host)
{
int ret;
#ifdef CONFIG_MMC_DEBUG
pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
#endif
mmc_bus_get(host);
if (!host->bus_ops || host->bus_dead) {
mmc_bus_put(host);
return -EINVAL;
}
mmc_power_up(host, host->card->ocr);
ret = host->bus_ops->power_restore(host);
mmc_bus_put(host);
return ret;
}
EXPORT_SYMBOL(mmc_power_restore_host);
/*
* Flush the cache to the non-volatile storage.
*/
int mmc_flush_cache(struct mmc_card *card)
{
int err = 0;
if (mmc_card_mmc(card) &&
(card->ext_csd.cache_size > 0) &&
(card->ext_csd.cache_ctrl & 1)) {
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_FLUSH_CACHE, 1, 0);
if (err)
pr_err("%s: cache flush error %d\n",
mmc_hostname(card->host), err);
}
return err;
}
EXPORT_SYMBOL(mmc_flush_cache);
#ifdef CONFIG_PM
/* Do the card removal on suspend if card is assumed removeable
* Do that in pm notifier while userspace isn't yet frozen, so we will be able
to sync the card.
*/
int mmc_pm_notify(struct notifier_block *notify_block,
unsigned long mode, void *unused)
{
struct mmc_host *host = container_of(
notify_block, struct mmc_host, pm_notify);
unsigned long flags;
int err = 0;
switch (mode) {
case PM_HIBERNATION_PREPARE:
case PM_SUSPEND_PREPARE:
spin_lock_irqsave(&host->lock, flags);
host->rescan_disable = 1;
spin_unlock_irqrestore(&host->lock, flags);
cancel_delayed_work_sync(&host->detect);
if (!host->bus_ops)
break;
/* Validate prerequisites for suspend */
if (host->bus_ops->pre_suspend)
err = host->bus_ops->pre_suspend(host);
if (!err)
break;
/* Calling bus_ops->remove() with a claimed host can deadlock */
host->bus_ops->remove(host);
mmc_claim_host(host);
mmc_detach_bus(host);
mmc_power_off(host);
mmc_release_host(host);
host->pm_flags = 0;
break;
case PM_POST_SUSPEND:
case PM_POST_HIBERNATION:
case PM_POST_RESTORE:
spin_lock_irqsave(&host->lock, flags);
host->rescan_disable = 0;
spin_unlock_irqrestore(&host->lock, flags);
_mmc_detect_change(host, 0, false);
}
return 0;
}
#endif
/**
* mmc_init_context_info() - init synchronization context
* @host: mmc host
*
* Init struct context_info needed to implement asynchronous
* request mechanism, used by mmc core, host driver and mmc requests
* supplier.
*/
void mmc_init_context_info(struct mmc_host *host)
{
spin_lock_init(&host->context_info.lock);
host->context_info.is_new_req = false;
host->context_info.is_done_rcv = false;
host->context_info.is_waiting_last_req = false;
init_waitqueue_head(&host->context_info.wait);
}
static int __init mmc_init(void)
{
int ret;
workqueue = alloc_ordered_workqueue("kmmcd", 0);
if (!workqueue)
return -ENOMEM;
ret = mmc_register_bus();
if (ret)
goto destroy_workqueue;
ret = mmc_register_host_class();
if (ret)
goto unregister_bus;
ret = sdio_register_bus();
if (ret)
goto unregister_host_class;
return 0;
unregister_host_class:
mmc_unregister_host_class();
unregister_bus:
mmc_unregister_bus();
destroy_workqueue:
destroy_workqueue(workqueue);
return ret;
}
static void __exit mmc_exit(void)
{
sdio_unregister_bus();
mmc_unregister_host_class();
mmc_unregister_bus();
destroy_workqueue(workqueue);
}
subsys_initcall(mmc_init);
module_exit(mmc_exit);
MODULE_LICENSE("GPL");