411 lines
10 KiB
C
411 lines
10 KiB
C
|
#ifndef _ASM_IA64_BITOPS_H
|
||
|
#define _ASM_IA64_BITOPS_H
|
||
|
|
||
|
/*
|
||
|
* Copyright (C) 1998-2003 Hewlett-Packard Co
|
||
|
* David Mosberger-Tang <davidm@hpl.hp.com>
|
||
|
*
|
||
|
* 02/06/02 find_next_bit() and find_first_bit() added from Erich Focht's ia64 O(1)
|
||
|
* scheduler patch
|
||
|
*/
|
||
|
|
||
|
#include <linux/compiler.h>
|
||
|
#include <linux/types.h>
|
||
|
#include <asm/bitops.h>
|
||
|
#include <asm/intrinsics.h>
|
||
|
|
||
|
/**
|
||
|
* set_bit - Atomically set a bit in memory
|
||
|
* @nr: the bit to set
|
||
|
* @addr: the address to start counting from
|
||
|
*
|
||
|
* This function is atomic and may not be reordered. See __set_bit()
|
||
|
* if you do not require the atomic guarantees.
|
||
|
* Note that @nr may be almost arbitrarily large; this function is not
|
||
|
* restricted to acting on a single-word quantity.
|
||
|
*
|
||
|
* The address must be (at least) "long" aligned.
|
||
|
* Note that there are driver (e.g., eepro100) which use these operations to operate on
|
||
|
* hw-defined data-structures, so we can't easily change these operations to force a
|
||
|
* bigger alignment.
|
||
|
*
|
||
|
* bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
|
||
|
*/
|
||
|
static __inline__ void
|
||
|
set_bit (int nr, volatile void *addr)
|
||
|
{
|
||
|
__u32 bit, old, new;
|
||
|
volatile __u32 *m;
|
||
|
CMPXCHG_BUGCHECK_DECL
|
||
|
|
||
|
m = (volatile __u32 *) addr + (nr >> 5);
|
||
|
bit = 1 << (nr & 31);
|
||
|
do {
|
||
|
CMPXCHG_BUGCHECK(m);
|
||
|
old = *m;
|
||
|
new = old | bit;
|
||
|
} while (cmpxchg_acq(m, old, new) != old);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* __set_bit - Set a bit in memory
|
||
|
* @nr: the bit to set
|
||
|
* @addr: the address to start counting from
|
||
|
*
|
||
|
* Unlike set_bit(), this function is non-atomic and may be reordered.
|
||
|
* If it's called on the same region of memory simultaneously, the effect
|
||
|
* may be that only one operation succeeds.
|
||
|
*/
|
||
|
static __inline__ void
|
||
|
__set_bit (int nr, volatile void *addr)
|
||
|
{
|
||
|
*((__u32 *) addr + (nr >> 5)) |= (1 << (nr & 31));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* clear_bit() has "acquire" semantics.
|
||
|
*/
|
||
|
#define smp_mb__before_clear_bit() smp_mb()
|
||
|
#define smp_mb__after_clear_bit() do { /* skip */; } while (0)
|
||
|
|
||
|
/**
|
||
|
* clear_bit - Clears a bit in memory
|
||
|
* @nr: Bit to clear
|
||
|
* @addr: Address to start counting from
|
||
|
*
|
||
|
* clear_bit() is atomic and may not be reordered. However, it does
|
||
|
* not contain a memory barrier, so if it is used for locking purposes,
|
||
|
* you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
|
||
|
* in order to ensure changes are visible on other processors.
|
||
|
*/
|
||
|
static __inline__ void
|
||
|
clear_bit (int nr, volatile void *addr)
|
||
|
{
|
||
|
__u32 mask, old, new;
|
||
|
volatile __u32 *m;
|
||
|
CMPXCHG_BUGCHECK_DECL
|
||
|
|
||
|
m = (volatile __u32 *) addr + (nr >> 5);
|
||
|
mask = ~(1 << (nr & 31));
|
||
|
do {
|
||
|
CMPXCHG_BUGCHECK(m);
|
||
|
old = *m;
|
||
|
new = old & mask;
|
||
|
} while (cmpxchg_acq(m, old, new) != old);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* __clear_bit - Clears a bit in memory (non-atomic version)
|
||
|
*/
|
||
|
static __inline__ void
|
||
|
__clear_bit (int nr, volatile void *addr)
|
||
|
{
|
||
|
volatile __u32 *p = (__u32 *) addr + (nr >> 5);
|
||
|
__u32 m = 1 << (nr & 31);
|
||
|
*p &= ~m;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* change_bit - Toggle a bit in memory
|
||
|
* @nr: Bit to clear
|
||
|
* @addr: Address to start counting from
|
||
|
*
|
||
|
* change_bit() is atomic and may not be reordered.
|
||
|
* Note that @nr may be almost arbitrarily large; this function is not
|
||
|
* restricted to acting on a single-word quantity.
|
||
|
*/
|
||
|
static __inline__ void
|
||
|
change_bit (int nr, volatile void *addr)
|
||
|
{
|
||
|
__u32 bit, old, new;
|
||
|
volatile __u32 *m;
|
||
|
CMPXCHG_BUGCHECK_DECL
|
||
|
|
||
|
m = (volatile __u32 *) addr + (nr >> 5);
|
||
|
bit = (1 << (nr & 31));
|
||
|
do {
|
||
|
CMPXCHG_BUGCHECK(m);
|
||
|
old = *m;
|
||
|
new = old ^ bit;
|
||
|
} while (cmpxchg_acq(m, old, new) != old);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* __change_bit - Toggle a bit in memory
|
||
|
* @nr: the bit to set
|
||
|
* @addr: the address to start counting from
|
||
|
*
|
||
|
* Unlike change_bit(), this function is non-atomic and may be reordered.
|
||
|
* If it's called on the same region of memory simultaneously, the effect
|
||
|
* may be that only one operation succeeds.
|
||
|
*/
|
||
|
static __inline__ void
|
||
|
__change_bit (int nr, volatile void *addr)
|
||
|
{
|
||
|
*((__u32 *) addr + (nr >> 5)) ^= (1 << (nr & 31));
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* test_and_set_bit - Set a bit and return its old value
|
||
|
* @nr: Bit to set
|
||
|
* @addr: Address to count from
|
||
|
*
|
||
|
* This operation is atomic and cannot be reordered.
|
||
|
* It also implies a memory barrier.
|
||
|
*/
|
||
|
static __inline__ int
|
||
|
test_and_set_bit (int nr, volatile void *addr)
|
||
|
{
|
||
|
__u32 bit, old, new;
|
||
|
volatile __u32 *m;
|
||
|
CMPXCHG_BUGCHECK_DECL
|
||
|
|
||
|
m = (volatile __u32 *) addr + (nr >> 5);
|
||
|
bit = 1 << (nr & 31);
|
||
|
do {
|
||
|
CMPXCHG_BUGCHECK(m);
|
||
|
old = *m;
|
||
|
new = old | bit;
|
||
|
} while (cmpxchg_acq(m, old, new) != old);
|
||
|
return (old & bit) != 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* __test_and_set_bit - Set a bit and return its old value
|
||
|
* @nr: Bit to set
|
||
|
* @addr: Address to count from
|
||
|
*
|
||
|
* This operation is non-atomic and can be reordered.
|
||
|
* If two examples of this operation race, one can appear to succeed
|
||
|
* but actually fail. You must protect multiple accesses with a lock.
|
||
|
*/
|
||
|
static __inline__ int
|
||
|
__test_and_set_bit (int nr, volatile void *addr)
|
||
|
{
|
||
|
__u32 *p = (__u32 *) addr + (nr >> 5);
|
||
|
__u32 m = 1 << (nr & 31);
|
||
|
int oldbitset = (*p & m) != 0;
|
||
|
|
||
|
*p |= m;
|
||
|
return oldbitset;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* test_and_clear_bit - Clear a bit and return its old value
|
||
|
* @nr: Bit to set
|
||
|
* @addr: Address to count from
|
||
|
*
|
||
|
* This operation is atomic and cannot be reordered.
|
||
|
* It also implies a memory barrier.
|
||
|
*/
|
||
|
static __inline__ int
|
||
|
test_and_clear_bit (int nr, volatile void *addr)
|
||
|
{
|
||
|
__u32 mask, old, new;
|
||
|
volatile __u32 *m;
|
||
|
CMPXCHG_BUGCHECK_DECL
|
||
|
|
||
|
m = (volatile __u32 *) addr + (nr >> 5);
|
||
|
mask = ~(1 << (nr & 31));
|
||
|
do {
|
||
|
CMPXCHG_BUGCHECK(m);
|
||
|
old = *m;
|
||
|
new = old & mask;
|
||
|
} while (cmpxchg_acq(m, old, new) != old);
|
||
|
return (old & ~mask) != 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* __test_and_clear_bit - Clear a bit and return its old value
|
||
|
* @nr: Bit to set
|
||
|
* @addr: Address to count from
|
||
|
*
|
||
|
* This operation is non-atomic and can be reordered.
|
||
|
* If two examples of this operation race, one can appear to succeed
|
||
|
* but actually fail. You must protect multiple accesses with a lock.
|
||
|
*/
|
||
|
static __inline__ int
|
||
|
__test_and_clear_bit(int nr, volatile void * addr)
|
||
|
{
|
||
|
__u32 *p = (__u32 *) addr + (nr >> 5);
|
||
|
__u32 m = 1 << (nr & 31);
|
||
|
int oldbitset = *p & m;
|
||
|
|
||
|
*p &= ~m;
|
||
|
return oldbitset;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* test_and_change_bit - Change a bit and return its old value
|
||
|
* @nr: Bit to set
|
||
|
* @addr: Address to count from
|
||
|
*
|
||
|
* This operation is atomic and cannot be reordered.
|
||
|
* It also implies a memory barrier.
|
||
|
*/
|
||
|
static __inline__ int
|
||
|
test_and_change_bit (int nr, volatile void *addr)
|
||
|
{
|
||
|
__u32 bit, old, new;
|
||
|
volatile __u32 *m;
|
||
|
CMPXCHG_BUGCHECK_DECL
|
||
|
|
||
|
m = (volatile __u32 *) addr + (nr >> 5);
|
||
|
bit = (1 << (nr & 31));
|
||
|
do {
|
||
|
CMPXCHG_BUGCHECK(m);
|
||
|
old = *m;
|
||
|
new = old ^ bit;
|
||
|
} while (cmpxchg_acq(m, old, new) != old);
|
||
|
return (old & bit) != 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* WARNING: non atomic version.
|
||
|
*/
|
||
|
static __inline__ int
|
||
|
__test_and_change_bit (int nr, void *addr)
|
||
|
{
|
||
|
__u32 old, bit = (1 << (nr & 31));
|
||
|
__u32 *m = (__u32 *) addr + (nr >> 5);
|
||
|
|
||
|
old = *m;
|
||
|
*m = old ^ bit;
|
||
|
return (old & bit) != 0;
|
||
|
}
|
||
|
|
||
|
static __inline__ int
|
||
|
test_bit (int nr, const volatile void *addr)
|
||
|
{
|
||
|
return 1 & (((const volatile __u32 *) addr)[nr >> 5] >> (nr & 31));
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ffz - find the first zero bit in a long word
|
||
|
* @x: The long word to find the bit in
|
||
|
*
|
||
|
* Returns the bit-number (0..63) of the first (least significant) zero bit. Undefined if
|
||
|
* no zero exists, so code should check against ~0UL first...
|
||
|
*/
|
||
|
static inline unsigned long
|
||
|
ffz (unsigned long x)
|
||
|
{
|
||
|
unsigned long result;
|
||
|
|
||
|
result = ia64_popcnt(x & (~x - 1));
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* __ffs - find first bit in word.
|
||
|
* @x: The word to search
|
||
|
*
|
||
|
* Undefined if no bit exists, so code should check against 0 first.
|
||
|
*/
|
||
|
static __inline__ unsigned long
|
||
|
__ffs (unsigned long x)
|
||
|
{
|
||
|
unsigned long result;
|
||
|
|
||
|
result = ia64_popcnt((x-1) & ~x);
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
#ifdef __KERNEL__
|
||
|
|
||
|
/*
|
||
|
* find_last_zero_bit - find the last zero bit in a 64 bit quantity
|
||
|
* @x: The value to search
|
||
|
*/
|
||
|
static inline unsigned long
|
||
|
ia64_fls (unsigned long x)
|
||
|
{
|
||
|
long double d = x;
|
||
|
long exp;
|
||
|
|
||
|
exp = ia64_getf_exp(d);
|
||
|
return exp - 0xffff;
|
||
|
}
|
||
|
|
||
|
static inline int
|
||
|
fls (int x)
|
||
|
{
|
||
|
return ia64_fls((unsigned int) x);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* ffs: find first bit set. This is defined the same way as the libc and compiler builtin
|
||
|
* ffs routines, therefore differs in spirit from the above ffz (man ffs): it operates on
|
||
|
* "int" values only and the result value is the bit number + 1. ffs(0) is defined to
|
||
|
* return zero.
|
||
|
*/
|
||
|
#define ffs(x) __builtin_ffs(x)
|
||
|
|
||
|
/*
|
||
|
* hweightN: returns the hamming weight (i.e. the number
|
||
|
* of bits set) of a N-bit word
|
||
|
*/
|
||
|
static __inline__ unsigned long
|
||
|
hweight64 (unsigned long x)
|
||
|
{
|
||
|
unsigned long result;
|
||
|
result = ia64_popcnt(x);
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
#define hweight32(x) (unsigned int) hweight64((x) & 0xfffffffful)
|
||
|
#define hweight16(x) (unsigned int) hweight64((x) & 0xfffful)
|
||
|
#define hweight8(x) (unsigned int) hweight64((x) & 0xfful)
|
||
|
|
||
|
#endif /* __KERNEL__ */
|
||
|
|
||
|
extern int __find_next_zero_bit (const void *addr, unsigned long size,
|
||
|
unsigned long offset);
|
||
|
extern int __find_next_bit(const void *addr, unsigned long size,
|
||
|
unsigned long offset);
|
||
|
|
||
|
#define find_next_zero_bit(addr, size, offset) \
|
||
|
__find_next_zero_bit((addr), (size), (offset))
|
||
|
#define find_next_bit(addr, size, offset) \
|
||
|
__find_next_bit((addr), (size), (offset))
|
||
|
|
||
|
/*
|
||
|
* The optimizer actually does good code for this case..
|
||
|
*/
|
||
|
#define find_first_zero_bit(addr, size) find_next_zero_bit((addr), (size), 0)
|
||
|
|
||
|
#define find_first_bit(addr, size) find_next_bit((addr), (size), 0)
|
||
|
|
||
|
#ifdef __KERNEL__
|
||
|
|
||
|
#define __clear_bit(nr, addr) clear_bit(nr, addr)
|
||
|
|
||
|
#define ext2_set_bit test_and_set_bit
|
||
|
#define ext2_set_bit_atomic(l,n,a) test_and_set_bit(n,a)
|
||
|
#define ext2_clear_bit test_and_clear_bit
|
||
|
#define ext2_clear_bit_atomic(l,n,a) test_and_clear_bit(n,a)
|
||
|
#define ext2_test_bit test_bit
|
||
|
#define ext2_find_first_zero_bit find_first_zero_bit
|
||
|
#define ext2_find_next_zero_bit find_next_zero_bit
|
||
|
|
||
|
/* Bitmap functions for the minix filesystem. */
|
||
|
#define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr)
|
||
|
#define minix_set_bit(nr,addr) set_bit(nr,addr)
|
||
|
#define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr)
|
||
|
#define minix_test_bit(nr,addr) test_bit(nr,addr)
|
||
|
#define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
|
||
|
|
||
|
static inline int
|
||
|
sched_find_first_bit (unsigned long *b)
|
||
|
{
|
||
|
if (unlikely(b[0]))
|
||
|
return __ffs(b[0]);
|
||
|
if (unlikely(b[1]))
|
||
|
return 64 + __ffs(b[1]);
|
||
|
return __ffs(b[2]) + 128;
|
||
|
}
|
||
|
|
||
|
#endif /* __KERNEL__ */
|
||
|
|
||
|
#endif /* _ASM_IA64_BITOPS_H */
|