kernel-fxtec-pro1x/include/linux/freezer.h

206 lines
5.8 KiB
C
Raw Normal View History

/* Freezer declarations */
#ifndef FREEZER_H_INCLUDED
#define FREEZER_H_INCLUDED
[PATCH] freezer.h uses task_struct fields freezer.h uses task_struct fields so it should include sched.h. CC [M] fs/jfs/jfs_txnmgr.o In file included from fs/jfs/jfs_txnmgr.c:49: include/linux/freezer.h: In function 'frozen': include/linux/freezer.h:9: error: dereferencing pointer to incomplete type include/linux/freezer.h:9: error: 'PF_FROZEN' undeclared (first use in this function) include/linux/freezer.h:9: error: (Each undeclared identifier is reported only once include/linux/freezer.h:9: error: for each function it appears in.) include/linux/freezer.h: In function 'freezing': include/linux/freezer.h:17: error: dereferencing pointer to incomplete type include/linux/freezer.h:17: error: 'PF_FREEZE' undeclared (first use in this function) include/linux/freezer.h: In function 'freeze': include/linux/freezer.h:26: error: dereferencing pointer to incomplete type include/linux/freezer.h:26: error: 'PF_FREEZE' undeclared (first use in this function) include/linux/freezer.h: In function 'do_not_freeze': include/linux/freezer.h:34: error: dereferencing pointer to incomplete type include/linux/freezer.h:34: error: 'PF_FREEZE' undeclared (first use in this function) include/linux/freezer.h: In function 'thaw_process': include/linux/freezer.h:43: error: dereferencing pointer to incomplete type include/linux/freezer.h:43: error: 'PF_FROZEN' undeclared (first use in this function) include/linux/freezer.h:44: warning: implicit declaration of function 'wake_up_process' include/linux/freezer.h: In function 'frozen_process': include/linux/freezer.h:55: error: dereferencing pointer to incomplete type include/linux/freezer.h:55: error: dereferencing pointer to incomplete type include/linux/freezer.h:55: error: 'PF_FREEZE' undeclared (first use in this function) include/linux/freezer.h:55: error: 'PF_FROZEN' undeclared (first use in this function) fs/jfs/jfs_txnmgr.c: In function 'freezing': include/linux/freezer.h:18: warning: control reaches end of non-void function make[2]: *** [fs/jfs/jfs_txnmgr.o] Error 1 Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Acked-by: Dave Kleikamp <shaggy@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-10 03:18:58 -07:00
#include <linux/sched.h>
#include <linux/wait.h>
freezer: make freezing() test freeze conditions in effect instead of TIF_FREEZE Using TIF_FREEZE for freezing worked when there was only single freezing condition (the PM one); however, now there is also the cgroup_freezer and single bit flag is getting clumsy. thaw_processes() is already testing whether cgroup freezing in in effect to avoid thawing tasks which were frozen by both PM and cgroup freezers. This is racy (nothing prevents race against cgroup freezing) and fragile. A much simpler way is to test actual freeze conditions from freezing() - ie. directly test whether PM or cgroup freezing is in effect. This patch adds variables to indicate whether and what type of freezing conditions are in effect and reimplements freezing() such that it directly tests whether any of the two freezing conditions is active and the task should freeze. On fast path, freezing() is still very cheap - it only tests system_freezing_cnt. This makes the clumsy dancing aroung TIF_FREEZE unnecessary and freeze/thaw operations more usual - updating state variables for the new state and nudging target tasks so that they notice the new state and comply. As long as the nudging happens after state update, it's race-free. * This allows use of freezing() in freeze_task(). Replace the open coded tests with freezing(). * p != current test is added to warning printing conditions in try_to_freeze_tasks() failure path. This is necessary as freezing() is now true for the task which initiated freezing too. -v2: Oleg pointed out that re-freezing FROZEN cgroup could increment system_freezing_cnt. Fixed. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Paul Menage <paul@paulmenage.org> (for the cgroup portions)
2011-11-21 13:32:25 -07:00
#include <linux/atomic.h>
[PATCH] freezer.h uses task_struct fields freezer.h uses task_struct fields so it should include sched.h. CC [M] fs/jfs/jfs_txnmgr.o In file included from fs/jfs/jfs_txnmgr.c:49: include/linux/freezer.h: In function 'frozen': include/linux/freezer.h:9: error: dereferencing pointer to incomplete type include/linux/freezer.h:9: error: 'PF_FROZEN' undeclared (first use in this function) include/linux/freezer.h:9: error: (Each undeclared identifier is reported only once include/linux/freezer.h:9: error: for each function it appears in.) include/linux/freezer.h: In function 'freezing': include/linux/freezer.h:17: error: dereferencing pointer to incomplete type include/linux/freezer.h:17: error: 'PF_FREEZE' undeclared (first use in this function) include/linux/freezer.h: In function 'freeze': include/linux/freezer.h:26: error: dereferencing pointer to incomplete type include/linux/freezer.h:26: error: 'PF_FREEZE' undeclared (first use in this function) include/linux/freezer.h: In function 'do_not_freeze': include/linux/freezer.h:34: error: dereferencing pointer to incomplete type include/linux/freezer.h:34: error: 'PF_FREEZE' undeclared (first use in this function) include/linux/freezer.h: In function 'thaw_process': include/linux/freezer.h:43: error: dereferencing pointer to incomplete type include/linux/freezer.h:43: error: 'PF_FROZEN' undeclared (first use in this function) include/linux/freezer.h:44: warning: implicit declaration of function 'wake_up_process' include/linux/freezer.h: In function 'frozen_process': include/linux/freezer.h:55: error: dereferencing pointer to incomplete type include/linux/freezer.h:55: error: dereferencing pointer to incomplete type include/linux/freezer.h:55: error: 'PF_FREEZE' undeclared (first use in this function) include/linux/freezer.h:55: error: 'PF_FROZEN' undeclared (first use in this function) fs/jfs/jfs_txnmgr.c: In function 'freezing': include/linux/freezer.h:18: warning: control reaches end of non-void function make[2]: *** [fs/jfs/jfs_txnmgr.o] Error 1 Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Acked-by: Dave Kleikamp <shaggy@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-10 03:18:58 -07:00
#ifdef CONFIG_FREEZER
freezer: make freezing() test freeze conditions in effect instead of TIF_FREEZE Using TIF_FREEZE for freezing worked when there was only single freezing condition (the PM one); however, now there is also the cgroup_freezer and single bit flag is getting clumsy. thaw_processes() is already testing whether cgroup freezing in in effect to avoid thawing tasks which were frozen by both PM and cgroup freezers. This is racy (nothing prevents race against cgroup freezing) and fragile. A much simpler way is to test actual freeze conditions from freezing() - ie. directly test whether PM or cgroup freezing is in effect. This patch adds variables to indicate whether and what type of freezing conditions are in effect and reimplements freezing() such that it directly tests whether any of the two freezing conditions is active and the task should freeze. On fast path, freezing() is still very cheap - it only tests system_freezing_cnt. This makes the clumsy dancing aroung TIF_FREEZE unnecessary and freeze/thaw operations more usual - updating state variables for the new state and nudging target tasks so that they notice the new state and comply. As long as the nudging happens after state update, it's race-free. * This allows use of freezing() in freeze_task(). Replace the open coded tests with freezing(). * p != current test is added to warning printing conditions in try_to_freeze_tasks() failure path. This is necessary as freezing() is now true for the task which initiated freezing too. -v2: Oleg pointed out that re-freezing FROZEN cgroup could increment system_freezing_cnt. Fixed. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Paul Menage <paul@paulmenage.org> (for the cgroup portions)
2011-11-21 13:32:25 -07:00
extern atomic_t system_freezing_cnt; /* nr of freezing conds in effect */
extern bool pm_freezing; /* PM freezing in effect */
extern bool pm_nosig_freezing; /* PM nosig freezing in effect */
/*
* Check if a process has been frozen
*/
static inline bool frozen(struct task_struct *p)
{
return p->flags & PF_FROZEN;
}
freezer: make freezing() test freeze conditions in effect instead of TIF_FREEZE Using TIF_FREEZE for freezing worked when there was only single freezing condition (the PM one); however, now there is also the cgroup_freezer and single bit flag is getting clumsy. thaw_processes() is already testing whether cgroup freezing in in effect to avoid thawing tasks which were frozen by both PM and cgroup freezers. This is racy (nothing prevents race against cgroup freezing) and fragile. A much simpler way is to test actual freeze conditions from freezing() - ie. directly test whether PM or cgroup freezing is in effect. This patch adds variables to indicate whether and what type of freezing conditions are in effect and reimplements freezing() such that it directly tests whether any of the two freezing conditions is active and the task should freeze. On fast path, freezing() is still very cheap - it only tests system_freezing_cnt. This makes the clumsy dancing aroung TIF_FREEZE unnecessary and freeze/thaw operations more usual - updating state variables for the new state and nudging target tasks so that they notice the new state and comply. As long as the nudging happens after state update, it's race-free. * This allows use of freezing() in freeze_task(). Replace the open coded tests with freezing(). * p != current test is added to warning printing conditions in try_to_freeze_tasks() failure path. This is necessary as freezing() is now true for the task which initiated freezing too. -v2: Oleg pointed out that re-freezing FROZEN cgroup could increment system_freezing_cnt. Fixed. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Paul Menage <paul@paulmenage.org> (for the cgroup portions)
2011-11-21 13:32:25 -07:00
extern bool freezing_slow_path(struct task_struct *p);
/*
freezer: make freezing() test freeze conditions in effect instead of TIF_FREEZE Using TIF_FREEZE for freezing worked when there was only single freezing condition (the PM one); however, now there is also the cgroup_freezer and single bit flag is getting clumsy. thaw_processes() is already testing whether cgroup freezing in in effect to avoid thawing tasks which were frozen by both PM and cgroup freezers. This is racy (nothing prevents race against cgroup freezing) and fragile. A much simpler way is to test actual freeze conditions from freezing() - ie. directly test whether PM or cgroup freezing is in effect. This patch adds variables to indicate whether and what type of freezing conditions are in effect and reimplements freezing() such that it directly tests whether any of the two freezing conditions is active and the task should freeze. On fast path, freezing() is still very cheap - it only tests system_freezing_cnt. This makes the clumsy dancing aroung TIF_FREEZE unnecessary and freeze/thaw operations more usual - updating state variables for the new state and nudging target tasks so that they notice the new state and comply. As long as the nudging happens after state update, it's race-free. * This allows use of freezing() in freeze_task(). Replace the open coded tests with freezing(). * p != current test is added to warning printing conditions in try_to_freeze_tasks() failure path. This is necessary as freezing() is now true for the task which initiated freezing too. -v2: Oleg pointed out that re-freezing FROZEN cgroup could increment system_freezing_cnt. Fixed. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Paul Menage <paul@paulmenage.org> (for the cgroup portions)
2011-11-21 13:32:25 -07:00
* Check if there is a request to freeze a process
*/
freezer: make freezing() test freeze conditions in effect instead of TIF_FREEZE Using TIF_FREEZE for freezing worked when there was only single freezing condition (the PM one); however, now there is also the cgroup_freezer and single bit flag is getting clumsy. thaw_processes() is already testing whether cgroup freezing in in effect to avoid thawing tasks which were frozen by both PM and cgroup freezers. This is racy (nothing prevents race against cgroup freezing) and fragile. A much simpler way is to test actual freeze conditions from freezing() - ie. directly test whether PM or cgroup freezing is in effect. This patch adds variables to indicate whether and what type of freezing conditions are in effect and reimplements freezing() such that it directly tests whether any of the two freezing conditions is active and the task should freeze. On fast path, freezing() is still very cheap - it only tests system_freezing_cnt. This makes the clumsy dancing aroung TIF_FREEZE unnecessary and freeze/thaw operations more usual - updating state variables for the new state and nudging target tasks so that they notice the new state and comply. As long as the nudging happens after state update, it's race-free. * This allows use of freezing() in freeze_task(). Replace the open coded tests with freezing(). * p != current test is added to warning printing conditions in try_to_freeze_tasks() failure path. This is necessary as freezing() is now true for the task which initiated freezing too. -v2: Oleg pointed out that re-freezing FROZEN cgroup could increment system_freezing_cnt. Fixed. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Paul Menage <paul@paulmenage.org> (for the cgroup portions)
2011-11-21 13:32:25 -07:00
static inline bool freezing(struct task_struct *p)
{
freezer: make freezing() test freeze conditions in effect instead of TIF_FREEZE Using TIF_FREEZE for freezing worked when there was only single freezing condition (the PM one); however, now there is also the cgroup_freezer and single bit flag is getting clumsy. thaw_processes() is already testing whether cgroup freezing in in effect to avoid thawing tasks which were frozen by both PM and cgroup freezers. This is racy (nothing prevents race against cgroup freezing) and fragile. A much simpler way is to test actual freeze conditions from freezing() - ie. directly test whether PM or cgroup freezing is in effect. This patch adds variables to indicate whether and what type of freezing conditions are in effect and reimplements freezing() such that it directly tests whether any of the two freezing conditions is active and the task should freeze. On fast path, freezing() is still very cheap - it only tests system_freezing_cnt. This makes the clumsy dancing aroung TIF_FREEZE unnecessary and freeze/thaw operations more usual - updating state variables for the new state and nudging target tasks so that they notice the new state and comply. As long as the nudging happens after state update, it's race-free. * This allows use of freezing() in freeze_task(). Replace the open coded tests with freezing(). * p != current test is added to warning printing conditions in try_to_freeze_tasks() failure path. This is necessary as freezing() is now true for the task which initiated freezing too. -v2: Oleg pointed out that re-freezing FROZEN cgroup could increment system_freezing_cnt. Fixed. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Paul Menage <paul@paulmenage.org> (for the cgroup portions)
2011-11-21 13:32:25 -07:00
if (likely(!atomic_read(&system_freezing_cnt)))
return false;
return freezing_slow_path(p);
}
container freezer: implement freezer cgroup subsystem This patch implements a new freezer subsystem in the control groups framework. It provides a way to stop and resume execution of all tasks in a cgroup by writing in the cgroup filesystem. The freezer subsystem in the container filesystem defines a file named freezer.state. Writing "FROZEN" to the state file will freeze all tasks in the cgroup. Subsequently writing "RUNNING" will unfreeze the tasks in the cgroup. Reading will return the current state. * Examples of usage : # mkdir /containers/freezer # mount -t cgroup -ofreezer freezer /containers # mkdir /containers/0 # echo $some_pid > /containers/0/tasks to get status of the freezer subsystem : # cat /containers/0/freezer.state RUNNING to freeze all tasks in the container : # echo FROZEN > /containers/0/freezer.state # cat /containers/0/freezer.state FREEZING # cat /containers/0/freezer.state FROZEN to unfreeze all tasks in the container : # echo RUNNING > /containers/0/freezer.state # cat /containers/0/freezer.state RUNNING This is the basic mechanism which should do the right thing for user space task in a simple scenario. It's important to note that freezing can be incomplete. In that case we return EBUSY. This means that some tasks in the cgroup are busy doing something that prevents us from completely freezing the cgroup at this time. After EBUSY, the cgroup will remain partially frozen -- reflected by freezer.state reporting "FREEZING" when read. The state will remain "FREEZING" until one of these things happens: 1) Userspace cancels the freezing operation by writing "RUNNING" to the freezer.state file 2) Userspace retries the freezing operation by writing "FROZEN" to the freezer.state file (writing "FREEZING" is not legal and returns EIO) 3) The tasks that blocked the cgroup from entering the "FROZEN" state disappear from the cgroup's set of tasks. [akpm@linux-foundation.org: coding-style fixes] [akpm@linux-foundation.org: export thaw_process] Signed-off-by: Cedric Le Goater <clg@fr.ibm.com> Signed-off-by: Matt Helsley <matthltc@us.ibm.com> Acked-by: Serge E. Hallyn <serue@us.ibm.com> Tested-by: Matt Helsley <matthltc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-18 21:27:21 -06:00
/* Takes and releases task alloc lock using task_lock() */
extern void __thaw_task(struct task_struct *t);
extern bool __refrigerator(bool check_kthr_stop);
extern int freeze_processes(void);
extern int freeze_kernel_threads(void);
extern void thaw_processes(void);
static inline bool try_to_freeze(void)
{
might_sleep();
if (likely(!freezing(current)))
return false;
return __refrigerator(false);
}
extern bool freeze_task(struct task_struct *p);
extern bool set_freezable(void);
container freezer: implement freezer cgroup subsystem This patch implements a new freezer subsystem in the control groups framework. It provides a way to stop and resume execution of all tasks in a cgroup by writing in the cgroup filesystem. The freezer subsystem in the container filesystem defines a file named freezer.state. Writing "FROZEN" to the state file will freeze all tasks in the cgroup. Subsequently writing "RUNNING" will unfreeze the tasks in the cgroup. Reading will return the current state. * Examples of usage : # mkdir /containers/freezer # mount -t cgroup -ofreezer freezer /containers # mkdir /containers/0 # echo $some_pid > /containers/0/tasks to get status of the freezer subsystem : # cat /containers/0/freezer.state RUNNING to freeze all tasks in the container : # echo FROZEN > /containers/0/freezer.state # cat /containers/0/freezer.state FREEZING # cat /containers/0/freezer.state FROZEN to unfreeze all tasks in the container : # echo RUNNING > /containers/0/freezer.state # cat /containers/0/freezer.state RUNNING This is the basic mechanism which should do the right thing for user space task in a simple scenario. It's important to note that freezing can be incomplete. In that case we return EBUSY. This means that some tasks in the cgroup are busy doing something that prevents us from completely freezing the cgroup at this time. After EBUSY, the cgroup will remain partially frozen -- reflected by freezer.state reporting "FREEZING" when read. The state will remain "FREEZING" until one of these things happens: 1) Userspace cancels the freezing operation by writing "RUNNING" to the freezer.state file 2) Userspace retries the freezing operation by writing "FROZEN" to the freezer.state file (writing "FREEZING" is not legal and returns EIO) 3) The tasks that blocked the cgroup from entering the "FROZEN" state disappear from the cgroup's set of tasks. [akpm@linux-foundation.org: coding-style fixes] [akpm@linux-foundation.org: export thaw_process] Signed-off-by: Cedric Le Goater <clg@fr.ibm.com> Signed-off-by: Matt Helsley <matthltc@us.ibm.com> Acked-by: Serge E. Hallyn <serue@us.ibm.com> Tested-by: Matt Helsley <matthltc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-18 21:27:21 -06:00
#ifdef CONFIG_CGROUP_FREEZER
extern bool cgroup_freezing(struct task_struct *task);
container freezer: implement freezer cgroup subsystem This patch implements a new freezer subsystem in the control groups framework. It provides a way to stop and resume execution of all tasks in a cgroup by writing in the cgroup filesystem. The freezer subsystem in the container filesystem defines a file named freezer.state. Writing "FROZEN" to the state file will freeze all tasks in the cgroup. Subsequently writing "RUNNING" will unfreeze the tasks in the cgroup. Reading will return the current state. * Examples of usage : # mkdir /containers/freezer # mount -t cgroup -ofreezer freezer /containers # mkdir /containers/0 # echo $some_pid > /containers/0/tasks to get status of the freezer subsystem : # cat /containers/0/freezer.state RUNNING to freeze all tasks in the container : # echo FROZEN > /containers/0/freezer.state # cat /containers/0/freezer.state FREEZING # cat /containers/0/freezer.state FROZEN to unfreeze all tasks in the container : # echo RUNNING > /containers/0/freezer.state # cat /containers/0/freezer.state RUNNING This is the basic mechanism which should do the right thing for user space task in a simple scenario. It's important to note that freezing can be incomplete. In that case we return EBUSY. This means that some tasks in the cgroup are busy doing something that prevents us from completely freezing the cgroup at this time. After EBUSY, the cgroup will remain partially frozen -- reflected by freezer.state reporting "FREEZING" when read. The state will remain "FREEZING" until one of these things happens: 1) Userspace cancels the freezing operation by writing "RUNNING" to the freezer.state file 2) Userspace retries the freezing operation by writing "FROZEN" to the freezer.state file (writing "FREEZING" is not legal and returns EIO) 3) The tasks that blocked the cgroup from entering the "FROZEN" state disappear from the cgroup's set of tasks. [akpm@linux-foundation.org: coding-style fixes] [akpm@linux-foundation.org: export thaw_process] Signed-off-by: Cedric Le Goater <clg@fr.ibm.com> Signed-off-by: Matt Helsley <matthltc@us.ibm.com> Acked-by: Serge E. Hallyn <serue@us.ibm.com> Tested-by: Matt Helsley <matthltc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-18 21:27:21 -06:00
#else /* !CONFIG_CGROUP_FREEZER */
static inline bool cgroup_freezing(struct task_struct *task)
Freezer: Fix buggy resume test for tasks frozen with cgroup freezer When the cgroup freezer is used to freeze tasks we do not want to thaw those tasks during resume. Currently we test the cgroup freezer state of the resuming tasks to see if the cgroup is FROZEN. If so then we don't thaw the task. However, the FREEZING state also indicates that the task should remain frozen. This also avoids a problem pointed out by Oren Ladaan: the freezer state transition from FREEZING to FROZEN is updated lazily when userspace reads or writes the freezer.state file in the cgroup filesystem. This means that resume will thaw tasks in cgroups which should be in the FROZEN state if there is no read/write of the freezer.state file to trigger this transition before suspend. NOTE: Another "simple" solution would be to always update the cgroup freezer state during resume. However it's a bad choice for several reasons: Updating the cgroup freezer state is somewhat expensive because it requires walking all the tasks in the cgroup and checking if they are each frozen. Worse, this could easily make resume run in N^2 time where N is the number of tasks in the cgroup. Finally, updating the freezer state from this code path requires trickier locking because of the way locks must be ordered. Instead of updating the freezer state we rely on the fact that lazy updates only manage the transition from FREEZING to FROZEN. We know that a cgroup with the FREEZING state may actually be FROZEN so test for that state too. This makes sense in the resume path even for partially-frozen cgroups -- those that really are FREEZING but not FROZEN. Reported-by: Oren Ladaan <orenl@cs.columbia.edu> Signed-off-by: Matt Helsley <matthltc@us.ibm.com> Cc: stable@kernel.org Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
2010-03-26 16:51:44 -06:00
{
return false;
Freezer: Fix buggy resume test for tasks frozen with cgroup freezer When the cgroup freezer is used to freeze tasks we do not want to thaw those tasks during resume. Currently we test the cgroup freezer state of the resuming tasks to see if the cgroup is FROZEN. If so then we don't thaw the task. However, the FREEZING state also indicates that the task should remain frozen. This also avoids a problem pointed out by Oren Ladaan: the freezer state transition from FREEZING to FROZEN is updated lazily when userspace reads or writes the freezer.state file in the cgroup filesystem. This means that resume will thaw tasks in cgroups which should be in the FROZEN state if there is no read/write of the freezer.state file to trigger this transition before suspend. NOTE: Another "simple" solution would be to always update the cgroup freezer state during resume. However it's a bad choice for several reasons: Updating the cgroup freezer state is somewhat expensive because it requires walking all the tasks in the cgroup and checking if they are each frozen. Worse, this could easily make resume run in N^2 time where N is the number of tasks in the cgroup. Finally, updating the freezer state from this code path requires trickier locking because of the way locks must be ordered. Instead of updating the freezer state we rely on the fact that lazy updates only manage the transition from FREEZING to FROZEN. We know that a cgroup with the FREEZING state may actually be FROZEN so test for that state too. This makes sense in the resume path even for partially-frozen cgroups -- those that really are FREEZING but not FROZEN. Reported-by: Oren Ladaan <orenl@cs.columbia.edu> Signed-off-by: Matt Helsley <matthltc@us.ibm.com> Cc: stable@kernel.org Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
2010-03-26 16:51:44 -06:00
}
container freezer: implement freezer cgroup subsystem This patch implements a new freezer subsystem in the control groups framework. It provides a way to stop and resume execution of all tasks in a cgroup by writing in the cgroup filesystem. The freezer subsystem in the container filesystem defines a file named freezer.state. Writing "FROZEN" to the state file will freeze all tasks in the cgroup. Subsequently writing "RUNNING" will unfreeze the tasks in the cgroup. Reading will return the current state. * Examples of usage : # mkdir /containers/freezer # mount -t cgroup -ofreezer freezer /containers # mkdir /containers/0 # echo $some_pid > /containers/0/tasks to get status of the freezer subsystem : # cat /containers/0/freezer.state RUNNING to freeze all tasks in the container : # echo FROZEN > /containers/0/freezer.state # cat /containers/0/freezer.state FREEZING # cat /containers/0/freezer.state FROZEN to unfreeze all tasks in the container : # echo RUNNING > /containers/0/freezer.state # cat /containers/0/freezer.state RUNNING This is the basic mechanism which should do the right thing for user space task in a simple scenario. It's important to note that freezing can be incomplete. In that case we return EBUSY. This means that some tasks in the cgroup are busy doing something that prevents us from completely freezing the cgroup at this time. After EBUSY, the cgroup will remain partially frozen -- reflected by freezer.state reporting "FREEZING" when read. The state will remain "FREEZING" until one of these things happens: 1) Userspace cancels the freezing operation by writing "RUNNING" to the freezer.state file 2) Userspace retries the freezing operation by writing "FROZEN" to the freezer.state file (writing "FREEZING" is not legal and returns EIO) 3) The tasks that blocked the cgroup from entering the "FROZEN" state disappear from the cgroup's set of tasks. [akpm@linux-foundation.org: coding-style fixes] [akpm@linux-foundation.org: export thaw_process] Signed-off-by: Cedric Le Goater <clg@fr.ibm.com> Signed-off-by: Matt Helsley <matthltc@us.ibm.com> Acked-by: Serge E. Hallyn <serue@us.ibm.com> Tested-by: Matt Helsley <matthltc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-18 21:27:21 -06:00
#endif /* !CONFIG_CGROUP_FREEZER */
/*
* The PF_FREEZER_SKIP flag should be set by a vfork parent right before it
* calls wait_for_completion(&vfork) and reset right after it returns from this
* function. Next, the parent should call try_to_freeze() to freeze itself
* appropriately in case the child has exited before the freezing of tasks is
* complete. However, we don't want kernel threads to be frozen in unexpected
* places, so we allow them to block freeze_processes() instead or to set
* PF_NOFREEZE if needed and PF_FREEZER_SKIP is only set for userland vfork
* parents. Fortunately, in the ____call_usermodehelper() case the parent won't
* really block freeze_processes(), since ____call_usermodehelper() (the child)
* does a little before exec/exit and it can't be frozen before waking up the
* parent.
*/
/*
* If the current task is a user space one, tell the freezer not to count it as
* freezable.
*/
static inline void freezer_do_not_count(void)
{
if (current->mm)
current->flags |= PF_FREEZER_SKIP;
}
/*
* If the current task is a user space one, tell the freezer to count it as
* freezable again and try to freeze it.
*/
static inline void freezer_count(void)
{
if (current->mm) {
current->flags &= ~PF_FREEZER_SKIP;
try_to_freeze();
}
}
/*
* Check if the task should be counted as freezable by the freezer
*/
static inline int freezer_should_skip(struct task_struct *p)
{
return !!(p->flags & PF_FREEZER_SKIP);
}
/*
* These macros are intended to be used whenever you want allow a task that's
* sleeping in TASK_UNINTERRUPTIBLE or TASK_KILLABLE state to be frozen. Note
* that neither return any clear indication of whether a freeze event happened
* while in this function.
*/
/* Like schedule(), but should not block the freezer. */
#define freezable_schedule() \
({ \
freezer_do_not_count(); \
schedule(); \
freezer_count(); \
})
/* Like schedule_timeout_killable(), but should not block the freezer. */
#define freezable_schedule_timeout_killable(timeout) \
({ \
freezer_do_not_count(); \
schedule_timeout_killable(timeout); \
freezer_count(); \
})
/*
* Freezer-friendly wrappers around wait_event_interruptible(),
* wait_event_killable() and wait_event_interruptible_timeout(), originally
* defined in <linux/wait.h>
*/
#define wait_event_freezekillable(wq, condition) \
({ \
int __retval; \
freezer_do_not_count(); \
__retval = wait_event_killable(wq, (condition)); \
freezer_count(); \
__retval; \
})
#define wait_event_freezable(wq, condition) \
({ \
int __retval; \
for (;;) { \
__retval = wait_event_interruptible(wq, \
(condition) || freezing(current)); \
if (__retval || (condition)) \
break; \
try_to_freeze(); \
} \
__retval; \
})
#define wait_event_freezable_timeout(wq, condition, timeout) \
({ \
long __retval = timeout; \
for (;;) { \
__retval = wait_event_interruptible_timeout(wq, \
(condition) || freezing(current), \
__retval); \
if (__retval <= 0 || (condition)) \
break; \
try_to_freeze(); \
} \
__retval; \
})
#else /* !CONFIG_FREEZER */
static inline bool frozen(struct task_struct *p) { return false; }
freezer: make freezing() test freeze conditions in effect instead of TIF_FREEZE Using TIF_FREEZE for freezing worked when there was only single freezing condition (the PM one); however, now there is also the cgroup_freezer and single bit flag is getting clumsy. thaw_processes() is already testing whether cgroup freezing in in effect to avoid thawing tasks which were frozen by both PM and cgroup freezers. This is racy (nothing prevents race against cgroup freezing) and fragile. A much simpler way is to test actual freeze conditions from freezing() - ie. directly test whether PM or cgroup freezing is in effect. This patch adds variables to indicate whether and what type of freezing conditions are in effect and reimplements freezing() such that it directly tests whether any of the two freezing conditions is active and the task should freeze. On fast path, freezing() is still very cheap - it only tests system_freezing_cnt. This makes the clumsy dancing aroung TIF_FREEZE unnecessary and freeze/thaw operations more usual - updating state variables for the new state and nudging target tasks so that they notice the new state and comply. As long as the nudging happens after state update, it's race-free. * This allows use of freezing() in freeze_task(). Replace the open coded tests with freezing(). * p != current test is added to warning printing conditions in try_to_freeze_tasks() failure path. This is necessary as freezing() is now true for the task which initiated freezing too. -v2: Oleg pointed out that re-freezing FROZEN cgroup could increment system_freezing_cnt. Fixed. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Paul Menage <paul@paulmenage.org> (for the cgroup portions)
2011-11-21 13:32:25 -07:00
static inline bool freezing(struct task_struct *p) { return false; }
static inline void __thaw_task(struct task_struct *t) {}
static inline bool __refrigerator(bool check_kthr_stop) { return false; }
static inline int freeze_processes(void) { return -ENOSYS; }
static inline int freeze_kernel_threads(void) { return -ENOSYS; }
static inline void thaw_processes(void) {}
static inline bool try_to_freeze(void) { return false; }
static inline void freezer_do_not_count(void) {}
static inline void freezer_count(void) {}
static inline int freezer_should_skip(struct task_struct *p) { return 0; }
static inline void set_freezable(void) {}
#define freezable_schedule() schedule()
#define freezable_schedule_timeout_killable(timeout) \
schedule_timeout_killable(timeout)
#define wait_event_freezable(wq, condition) \
wait_event_interruptible(wq, condition)
#define wait_event_freezable_timeout(wq, condition, timeout) \
wait_event_interruptible_timeout(wq, condition, timeout)
#define wait_event_freezekillable(wq, condition) \
wait_event_killable(wq, condition)
#endif /* !CONFIG_FREEZER */
#endif /* FREEZER_H_INCLUDED */