kernel-fxtec-pro1x/drivers/video/fbcvt.c

380 lines
9.3 KiB
C
Raw Normal View History

2005-09-09 14:09:58 -06:00
/*
* linux/drivers/video/fbcvt.c - VESA(TM) Coordinated Video Timings
*
* Copyright (C) 2005 Antonino Daplas <adaplas@pol.net>
*
* Based from the VESA(TM) Coordinated Video Timing Generator by
* Graham Loveridge April 9, 2003 available at
* http://www.vesa.org/public/CVT/CVTd6r1.xls
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file COPYING in the main directory of this archive
* for more details.
*
*/
#include <linux/fb.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 02:04:11 -06:00
#include <linux/slab.h>
2005-09-09 14:09:58 -06:00
#define FB_CVT_CELLSIZE 8
#define FB_CVT_GTF_C 40
#define FB_CVT_GTF_J 20
#define FB_CVT_GTF_K 128
#define FB_CVT_GTF_M 600
#define FB_CVT_MIN_VSYNC_BP 550
#define FB_CVT_MIN_VPORCH 3
#define FB_CVT_MIN_BPORCH 6
#define FB_CVT_RB_MIN_VBLANK 460
#define FB_CVT_RB_HBLANK 160
#define FB_CVT_RB_V_FPORCH 3
#define FB_CVT_FLAG_REDUCED_BLANK 1
#define FB_CVT_FLAG_MARGINS 2
#define FB_CVT_FLAG_INTERLACED 4
struct fb_cvt_data {
u32 xres;
u32 yres;
u32 refresh;
u32 f_refresh;
u32 pixclock;
u32 hperiod;
u32 hblank;
u32 hfreq;
u32 htotal;
u32 vtotal;
u32 vsync;
u32 hsync;
u32 h_front_porch;
u32 h_back_porch;
u32 v_front_porch;
u32 v_back_porch;
u32 h_margin;
u32 v_margin;
u32 interlace;
u32 aspect_ratio;
u32 active_pixels;
u32 flags;
u32 status;
};
static const unsigned char fb_cvt_vbi_tab[] = {
2005-09-09 14:09:58 -06:00
4, /* 4:3 */
5, /* 16:9 */
6, /* 16:10 */
7, /* 5:4 */
7, /* 15:9 */
8, /* reserved */
9, /* reserved */
10 /* custom */
};
/* returns hperiod * 1000 */
static u32 fb_cvt_hperiod(struct fb_cvt_data *cvt)
{
u32 num = 1000000000/cvt->f_refresh;
u32 den;
if (cvt->flags & FB_CVT_FLAG_REDUCED_BLANK) {
num -= FB_CVT_RB_MIN_VBLANK * 1000;
den = 2 * (cvt->yres/cvt->interlace + 2 * cvt->v_margin);
} else {
num -= FB_CVT_MIN_VSYNC_BP * 1000;
den = 2 * (cvt->yres/cvt->interlace + cvt->v_margin * 2
+ FB_CVT_MIN_VPORCH + cvt->interlace/2);
}
return 2 * (num/den);
}
/* returns ideal duty cycle * 1000 */
static u32 fb_cvt_ideal_duty_cycle(struct fb_cvt_data *cvt)
{
u32 c_prime = (FB_CVT_GTF_C - FB_CVT_GTF_J) *
(FB_CVT_GTF_K) + 256 * FB_CVT_GTF_J;
u32 m_prime = (FB_CVT_GTF_K * FB_CVT_GTF_M);
u32 h_period_est = cvt->hperiod;
return (1000 * c_prime - ((m_prime * h_period_est)/1000))/256;
}
static u32 fb_cvt_hblank(struct fb_cvt_data *cvt)
{
u32 hblank = 0;
if (cvt->flags & FB_CVT_FLAG_REDUCED_BLANK)
hblank = FB_CVT_RB_HBLANK;
else {
u32 ideal_duty_cycle = fb_cvt_ideal_duty_cycle(cvt);
u32 active_pixels = cvt->active_pixels;
if (ideal_duty_cycle < 20000)
hblank = (active_pixels * 20000)/
(100000 - 20000);
else {
hblank = (active_pixels * ideal_duty_cycle)/
(100000 - ideal_duty_cycle);
}
}
hblank &= ~((2 * FB_CVT_CELLSIZE) - 1);
return hblank;
}
static u32 fb_cvt_hsync(struct fb_cvt_data *cvt)
{
u32 hsync;
if (cvt->flags & FB_CVT_FLAG_REDUCED_BLANK)
hsync = 32;
else
hsync = (FB_CVT_CELLSIZE * cvt->htotal)/100;
hsync &= ~(FB_CVT_CELLSIZE - 1);
return hsync;
}
static u32 fb_cvt_vbi_lines(struct fb_cvt_data *cvt)
{
u32 vbi_lines, min_vbi_lines, act_vbi_lines;
if (cvt->flags & FB_CVT_FLAG_REDUCED_BLANK) {
vbi_lines = (1000 * FB_CVT_RB_MIN_VBLANK)/cvt->hperiod + 1;
min_vbi_lines = FB_CVT_RB_V_FPORCH + cvt->vsync +
FB_CVT_MIN_BPORCH;
} else {
vbi_lines = (FB_CVT_MIN_VSYNC_BP * 1000)/cvt->hperiod + 1 +
FB_CVT_MIN_VPORCH;
min_vbi_lines = cvt->vsync + FB_CVT_MIN_BPORCH +
FB_CVT_MIN_VPORCH;
}
if (vbi_lines < min_vbi_lines)
act_vbi_lines = min_vbi_lines;
else
act_vbi_lines = vbi_lines;
return act_vbi_lines;
}
static u32 fb_cvt_vtotal(struct fb_cvt_data *cvt)
{
u32 vtotal = cvt->yres/cvt->interlace;
vtotal += 2 * cvt->v_margin + cvt->interlace/2 + fb_cvt_vbi_lines(cvt);
vtotal |= cvt->interlace/2;
return vtotal;
}
static u32 fb_cvt_pixclock(struct fb_cvt_data *cvt)
{
u32 pixclock;
if (cvt->flags & FB_CVT_FLAG_REDUCED_BLANK)
pixclock = (cvt->f_refresh * cvt->vtotal * cvt->htotal)/1000;
else
pixclock = (cvt->htotal * 1000000)/cvt->hperiod;
pixclock /= 250;
pixclock *= 250;
pixclock *= 1000;
return pixclock;
}
static u32 fb_cvt_aspect_ratio(struct fb_cvt_data *cvt)
{
u32 xres = cvt->xres;
u32 yres = cvt->yres;
u32 aspect = -1;
if (xres == (yres * 4)/3 && !((yres * 4) % 3))
aspect = 0;
else if (xres == (yres * 16)/9 && !((yres * 16) % 9))
aspect = 1;
else if (xres == (yres * 16)/10 && !((yres * 16) % 10))
aspect = 2;
else if (xres == (yres * 5)/4 && !((yres * 5) % 4))
aspect = 3;
else if (xres == (yres * 15)/9 && !((yres * 15) % 9))
aspect = 4;
else {
printk(KERN_INFO "fbcvt: Aspect ratio not CVT "
"standard\n");
aspect = 7;
cvt->status = 1;
}
return aspect;
}
static void fb_cvt_print_name(struct fb_cvt_data *cvt)
{
u32 pixcount, pixcount_mod;
int cnt = 255, offset = 0, read = 0;
u8 *buf = kzalloc(256, GFP_KERNEL);
2005-09-09 14:09:58 -06:00
if (!buf)
return;
pixcount = (cvt->xres * (cvt->yres/cvt->interlace))/1000000;
pixcount_mod = (cvt->xres * (cvt->yres/cvt->interlace)) % 1000000;
pixcount_mod /= 1000;
read = snprintf(buf+offset, cnt, "fbcvt: %dx%d@%d: CVT Name - ",
cvt->xres, cvt->yres, cvt->refresh);
offset += read;
cnt -= read;
if (cvt->status)
snprintf(buf+offset, cnt, "Not a CVT standard - %d.%03d Mega "
"Pixel Image\n", pixcount, pixcount_mod);
else {
if (pixcount) {
read = snprintf(buf+offset, cnt, "%d", pixcount);
cnt -= read;
offset += read;
}
read = snprintf(buf+offset, cnt, ".%03dM", pixcount_mod);
cnt -= read;
offset += read;
if (cvt->aspect_ratio == 0)
read = snprintf(buf+offset, cnt, "3");
else if (cvt->aspect_ratio == 3)
read = snprintf(buf+offset, cnt, "4");
else if (cvt->aspect_ratio == 1 || cvt->aspect_ratio == 4)
read = snprintf(buf+offset, cnt, "9");
else if (cvt->aspect_ratio == 2)
read = snprintf(buf+offset, cnt, "A");
else
read = 0;
cnt -= read;
offset += read;
if (cvt->flags & FB_CVT_FLAG_REDUCED_BLANK) {
read = snprintf(buf+offset, cnt, "-R");
cnt -= read;
offset += read;
}
}
printk(KERN_INFO "%s\n", buf);
kfree(buf);
}
static void fb_cvt_convert_to_mode(struct fb_cvt_data *cvt,
struct fb_videomode *mode)
{
mode->refresh = cvt->f_refresh;
mode->pixclock = KHZ2PICOS(cvt->pixclock/1000);
mode->left_margin = cvt->h_back_porch;
mode->right_margin = cvt->h_front_porch;
2005-09-09 14:09:58 -06:00
mode->hsync_len = cvt->hsync;
mode->upper_margin = cvt->v_back_porch;
mode->lower_margin = cvt->v_front_porch;
2005-09-09 14:09:58 -06:00
mode->vsync_len = cvt->vsync;
mode->sync &= ~(FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT);
if (cvt->flags & FB_CVT_FLAG_REDUCED_BLANK)
mode->sync |= FB_SYNC_HOR_HIGH_ACT;
else
mode->sync |= FB_SYNC_VERT_HIGH_ACT;
}
/*
* fb_find_mode_cvt - calculate mode using VESA(TM) CVT
* @mode: pointer to fb_videomode; xres, yres, refresh and vmode must be
* pre-filled with the desired values
* @margins: add margin to calculation (1.8% of xres and yres)
* @rb: compute with reduced blanking (for flatpanels)
*
* RETURNS:
* 0 for success
* @mode is filled with computed values. If interlaced, the refresh field
* will be filled with the field rate (2x the frame rate)
*
* DESCRIPTION:
* Computes video timings using VESA(TM) Coordinated Video Timings
*/
int fb_find_mode_cvt(struct fb_videomode *mode, int margins, int rb)
{
struct fb_cvt_data cvt;
memset(&cvt, 0, sizeof(cvt));
if (margins)
cvt.flags |= FB_CVT_FLAG_MARGINS;
if (rb)
cvt.flags |= FB_CVT_FLAG_REDUCED_BLANK;
if (mode->vmode & FB_VMODE_INTERLACED)
cvt.flags |= FB_CVT_FLAG_INTERLACED;
cvt.xres = mode->xres;
cvt.yres = mode->yres;
cvt.refresh = mode->refresh;
cvt.f_refresh = cvt.refresh;
cvt.interlace = 1;
if (!cvt.xres || !cvt.yres || !cvt.refresh) {
printk(KERN_INFO "fbcvt: Invalid input parameters\n");
return 1;
}
if (!(cvt.refresh == 50 || cvt.refresh == 60 || cvt.refresh == 70 ||
cvt.refresh == 85)) {
printk(KERN_INFO "fbcvt: Refresh rate not CVT "
"standard\n");
cvt.status = 1;
}
cvt.xres &= ~(FB_CVT_CELLSIZE - 1);
if (cvt.flags & FB_CVT_FLAG_INTERLACED) {
cvt.interlace = 2;
cvt.f_refresh *= 2;
}
if (cvt.flags & FB_CVT_FLAG_REDUCED_BLANK) {
if (cvt.refresh != 60) {
printk(KERN_INFO "fbcvt: 60Hz refresh rate "
"advised for reduced blanking\n");
cvt.status = 1;
}
}
if (cvt.flags & FB_CVT_FLAG_MARGINS) {
cvt.h_margin = (cvt.xres * 18)/1000;
cvt.h_margin &= ~(FB_CVT_CELLSIZE - 1);
cvt.v_margin = ((cvt.yres/cvt.interlace)* 18)/1000;
}
cvt.aspect_ratio = fb_cvt_aspect_ratio(&cvt);
cvt.active_pixels = cvt.xres + 2 * cvt.h_margin;
cvt.hperiod = fb_cvt_hperiod(&cvt);
cvt.vsync = fb_cvt_vbi_tab[cvt.aspect_ratio];
cvt.vtotal = fb_cvt_vtotal(&cvt);
cvt.hblank = fb_cvt_hblank(&cvt);
cvt.htotal = cvt.active_pixels + cvt.hblank;
cvt.hsync = fb_cvt_hsync(&cvt);
cvt.pixclock = fb_cvt_pixclock(&cvt);
cvt.hfreq = cvt.pixclock/cvt.htotal;
cvt.h_back_porch = cvt.hblank/2 + cvt.h_margin;
cvt.h_front_porch = cvt.hblank - cvt.hsync - cvt.h_back_porch +
2 * cvt.h_margin;
cvt.v_back_porch = 3 + cvt.v_margin;
cvt.v_front_porch = cvt.vtotal - cvt.yres/cvt.interlace -
cvt.v_back_porch - cvt.vsync;
fb_cvt_print_name(&cvt);
fb_cvt_convert_to_mode(&cvt, mode);
return 0;
}