kernel-fxtec-pro1x/drivers/w1/masters/ds2490.c

948 lines
20 KiB
C
Raw Normal View History

/*
* dscore.c
*
* Copyright (c) 2004 Evgeniy Polyakov <johnpol@2ka.mipt.ru>
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/mod_devicetable.h>
#include <linux/usb.h>
#include "../w1_int.h"
#include "../w1.h"
/* COMMAND TYPE CODES */
#define CONTROL_CMD 0x00
#define COMM_CMD 0x01
#define MODE_CMD 0x02
/* CONTROL COMMAND CODES */
#define CTL_RESET_DEVICE 0x0000
#define CTL_START_EXE 0x0001
#define CTL_RESUME_EXE 0x0002
#define CTL_HALT_EXE_IDLE 0x0003
#define CTL_HALT_EXE_DONE 0x0004
#define CTL_FLUSH_COMM_CMDS 0x0007
#define CTL_FLUSH_RCV_BUFFER 0x0008
#define CTL_FLUSH_XMT_BUFFER 0x0009
#define CTL_GET_COMM_CMDS 0x000A
/* MODE COMMAND CODES */
#define MOD_PULSE_EN 0x0000
#define MOD_SPEED_CHANGE_EN 0x0001
#define MOD_1WIRE_SPEED 0x0002
#define MOD_STRONG_PU_DURATION 0x0003
#define MOD_PULLDOWN_SLEWRATE 0x0004
#define MOD_PROG_PULSE_DURATION 0x0005
#define MOD_WRITE1_LOWTIME 0x0006
#define MOD_DSOW0_TREC 0x0007
/* COMMUNICATION COMMAND CODES */
#define COMM_ERROR_ESCAPE 0x0601
#define COMM_SET_DURATION 0x0012
#define COMM_BIT_IO 0x0020
#define COMM_PULSE 0x0030
#define COMM_1_WIRE_RESET 0x0042
#define COMM_BYTE_IO 0x0052
#define COMM_MATCH_ACCESS 0x0064
#define COMM_BLOCK_IO 0x0074
#define COMM_READ_STRAIGHT 0x0080
#define COMM_DO_RELEASE 0x6092
#define COMM_SET_PATH 0x00A2
#define COMM_WRITE_SRAM_PAGE 0x00B2
#define COMM_WRITE_EPROM 0x00C4
#define COMM_READ_CRC_PROT_PAGE 0x00D4
#define COMM_READ_REDIRECT_PAGE_CRC 0x21E4
#define COMM_SEARCH_ACCESS 0x00F4
/* Communication command bits */
#define COMM_TYPE 0x0008
#define COMM_SE 0x0008
#define COMM_D 0x0008
#define COMM_Z 0x0008
#define COMM_CH 0x0008
#define COMM_SM 0x0008
#define COMM_R 0x0008
#define COMM_IM 0x0001
#define COMM_PS 0x4000
#define COMM_PST 0x4000
#define COMM_CIB 0x4000
#define COMM_RTS 0x4000
#define COMM_DT 0x2000
#define COMM_SPU 0x1000
#define COMM_F 0x0800
#define COMM_NTP 0x0400
#define COMM_ICP 0x0200
#define COMM_RST 0x0100
#define PULSE_PROG 0x01
#define PULSE_SPUE 0x02
#define BRANCH_MAIN 0xCC
#define BRANCH_AUX 0x33
/*
* Duration of the strong pull-up pulse in milliseconds.
*/
#define PULLUP_PULSE_DURATION 750
/* Status flags */
#define ST_SPUA 0x01 /* Strong Pull-up is active */
#define ST_PRGA 0x02 /* 12V programming pulse is being generated */
#define ST_12VP 0x04 /* external 12V programming voltage is present */
#define ST_PMOD 0x08 /* DS2490 powered from USB and external sources */
#define ST_HALT 0x10 /* DS2490 is currently halted */
#define ST_IDLE 0x20 /* DS2490 is currently idle */
#define ST_EPOF 0x80
#define SPEED_NORMAL 0x00
#define SPEED_FLEXIBLE 0x01
#define SPEED_OVERDRIVE 0x02
#define NUM_EP 4
#define EP_CONTROL 0
#define EP_STATUS 1
#define EP_DATA_OUT 2
#define EP_DATA_IN 3
struct ds_device
{
struct list_head ds_entry;
struct usb_device *udev;
struct usb_interface *intf;
int ep[NUM_EP];
struct w1_bus_master master;
};
struct ds_status
{
u8 enable;
u8 speed;
u8 pullup_dur;
u8 ppuls_dur;
u8 pulldown_slew;
u8 write1_time;
u8 write0_time;
u8 reserved0;
u8 status;
u8 command0;
u8 command1;
u8 command_buffer_status;
u8 data_out_buffer_status;
u8 data_in_buffer_status;
u8 reserved1;
u8 reserved2;
};
static struct usb_device_id ds_id_table [] = {
{ USB_DEVICE(0x04fa, 0x2490) },
{ },
};
MODULE_DEVICE_TABLE(usb, ds_id_table);
static int ds_probe(struct usb_interface *, const struct usb_device_id *);
static void ds_disconnect(struct usb_interface *);
static inline void ds_dump_status(unsigned char *, unsigned char *, int);
static int ds_send_control(struct ds_device *, u16, u16);
static int ds_send_control_cmd(struct ds_device *, u16, u16);
static LIST_HEAD(ds_devices);
static DEFINE_MUTEX(ds_mutex);
static struct usb_driver ds_driver = {
.name = "DS9490R",
.probe = ds_probe,
.disconnect = ds_disconnect,
.id_table = ds_id_table,
};
static int ds_send_control_cmd(struct ds_device *dev, u16 value, u16 index)
{
int err;
err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
CONTROL_CMD, 0x40, value, index, NULL, 0, 1000);
if (err < 0) {
printk(KERN_ERR "Failed to send command control message %x.%x: err=%d.\n",
value, index, err);
return err;
}
return err;
}
#if 0
static int ds_send_control_mode(struct ds_device *dev, u16 value, u16 index)
{
int err;
err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
MODE_CMD, 0x40, value, index, NULL, 0, 1000);
if (err < 0) {
printk(KERN_ERR "Failed to send mode control message %x.%x: err=%d.\n",
value, index, err);
return err;
}
return err;
}
#endif
static int ds_send_control(struct ds_device *dev, u16 value, u16 index)
{
int err;
err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
COMM_CMD, 0x40, value, index, NULL, 0, 1000);
if (err < 0) {
printk(KERN_ERR "Failed to send control message %x.%x: err=%d.\n",
value, index, err);
return err;
}
return err;
}
static inline void ds_dump_status(unsigned char *buf, unsigned char *str, int off)
{
printk("%45s: %8x\n", str, buf[off]);
}
static int ds_recv_status_nodump(struct ds_device *dev, struct ds_status *st,
unsigned char *buf, int size)
{
int count, err;
memset(st, 0, sizeof(*st));
count = 0;
err = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_STATUS]), buf, size, &count, 100);
if (err < 0) {
printk(KERN_ERR "Failed to read 1-wire data from 0x%x: err=%d.\n", dev->ep[EP_STATUS], err);
return err;
}
if (count >= sizeof(*st))
memcpy(st, buf, sizeof(*st));
return count;
}
static int ds_recv_status(struct ds_device *dev, struct ds_status *st)
{
unsigned char buf[64];
int count, err = 0, i;
memcpy(st, buf, sizeof(*st));
count = ds_recv_status_nodump(dev, st, buf, sizeof(buf));
if (count < 0)
return err;
printk("0x%x: count=%d, status: ", dev->ep[EP_STATUS], count);
for (i=0; i<count; ++i)
printk("%02x ", buf[i]);
printk("\n");
if (count >= 16) {
ds_dump_status(buf, "enable flag", 0);
ds_dump_status(buf, "1-wire speed", 1);
ds_dump_status(buf, "strong pullup duration", 2);
ds_dump_status(buf, "programming pulse duration", 3);
ds_dump_status(buf, "pulldown slew rate control", 4);
ds_dump_status(buf, "write-1 low time", 5);
ds_dump_status(buf, "data sample offset/write-0 recovery time", 6);
ds_dump_status(buf, "reserved (test register)", 7);
ds_dump_status(buf, "device status flags", 8);
ds_dump_status(buf, "communication command byte 1", 9);
ds_dump_status(buf, "communication command byte 2", 10);
ds_dump_status(buf, "communication command buffer status", 11);
ds_dump_status(buf, "1-wire data output buffer status", 12);
ds_dump_status(buf, "1-wire data input buffer status", 13);
ds_dump_status(buf, "reserved", 14);
ds_dump_status(buf, "reserved", 15);
}
memcpy(st, buf, sizeof(*st));
if (st->status & ST_EPOF) {
printk(KERN_INFO "Resetting device after ST_EPOF.\n");
err = ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
if (err)
return err;
count = ds_recv_status_nodump(dev, st, buf, sizeof(buf));
if (count < 0)
return err;
}
#if 0
if (st->status & ST_IDLE) {
printk(KERN_INFO "Resetting pulse after ST_IDLE.\n");
err = ds_start_pulse(dev, PULLUP_PULSE_DURATION);
if (err)
return err;
}
#endif
return err;
}
static int ds_recv_data(struct ds_device *dev, unsigned char *buf, int size)
{
int count, err;
struct ds_status st;
count = 0;
err = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]),
buf, size, &count, 1000);
if (err < 0) {
printk(KERN_INFO "Clearing ep0x%x.\n", dev->ep[EP_DATA_IN]);
usb_clear_halt(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]));
ds_recv_status(dev, &st);
return err;
}
#if 0
{
int i;
printk("%s: count=%d: ", __func__, count);
for (i=0; i<count; ++i)
printk("%02x ", buf[i]);
printk("\n");
}
#endif
return count;
}
static int ds_send_data(struct ds_device *dev, unsigned char *buf, int len)
{
int count, err;
count = 0;
err = usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, dev->ep[EP_DATA_OUT]), buf, len, &count, 1000);
if (err < 0) {
printk(KERN_ERR "Failed to read 1-wire data from 0x02: err=%d.\n", err);
return err;
}
return err;
}
#if 0
int ds_stop_pulse(struct ds_device *dev, int limit)
{
struct ds_status st;
int count = 0, err = 0;
u8 buf[0x20];
do {
err = ds_send_control(dev, CTL_HALT_EXE_IDLE, 0);
if (err)
break;
err = ds_send_control(dev, CTL_RESUME_EXE, 0);
if (err)
break;
err = ds_recv_status_nodump(dev, &st, buf, sizeof(buf));
if (err)
break;
if ((st.status & ST_SPUA) == 0) {
err = ds_send_control_mode(dev, MOD_PULSE_EN, 0);
if (err)
break;
}
} while(++count < limit);
return err;
}
int ds_detect(struct ds_device *dev, struct ds_status *st)
{
int err;
err = ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
if (err)
return err;
err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, 0);
if (err)
return err;
err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM | COMM_TYPE, 0x40);
if (err)
return err;
err = ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_PROG);
if (err)
return err;
err = ds_recv_status(dev, st);
return err;
}
#endif /* 0 */
static int ds_wait_status(struct ds_device *dev, struct ds_status *st)
{
u8 buf[0x20];
int err, count = 0;
do {
err = ds_recv_status_nodump(dev, st, buf, sizeof(buf));
#if 0
if (err >= 0) {
int i;
printk("0x%x: count=%d, status: ", dev->ep[EP_STATUS], err);
for (i=0; i<err; ++i)
printk("%02x ", buf[i]);
printk("\n");
}
#endif
} while(!(buf[0x08] & 0x20) && !(err < 0) && ++count < 100);
if (((err > 16) && (buf[0x10] & 0x01)) || count >= 100 || err < 0) {
ds_recv_status(dev, st);
return -1;
} else
return 0;
}
static int ds_reset(struct ds_device *dev, struct ds_status *st)
{
int err;
//err = ds_send_control(dev, COMM_1_WIRE_RESET | COMM_F | COMM_IM | COMM_SE, SPEED_FLEXIBLE);
err = ds_send_control(dev, 0x43, SPEED_NORMAL);
if (err)
return err;
ds_wait_status(dev, st);
#if 0
if (st->command_buffer_status) {
printk(KERN_INFO "Short circuit.\n");
return -EIO;
}
#endif
return 0;
}
#if 0
static int ds_set_speed(struct ds_device *dev, int speed)
{
int err;
if (speed != SPEED_NORMAL && speed != SPEED_FLEXIBLE && speed != SPEED_OVERDRIVE)
return -EINVAL;
if (speed != SPEED_OVERDRIVE)
speed = SPEED_FLEXIBLE;
speed &= 0xff;
err = ds_send_control_mode(dev, MOD_1WIRE_SPEED, speed);
if (err)
return err;
return err;
}
#endif /* 0 */
static int ds_start_pulse(struct ds_device *dev, int delay)
{
int err;
u8 del = 1 + (u8)(delay >> 4);
struct ds_status st;
#if 0
err = ds_stop_pulse(dev, 10);
if (err)
return err;
err = ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_SPUE);
if (err)
return err;
#endif
err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del);
if (err)
return err;
err = ds_send_control(dev, COMM_PULSE | COMM_IM | COMM_F, 0);
if (err)
return err;
mdelay(delay);
ds_wait_status(dev, &st);
return err;
}
static int ds_touch_bit(struct ds_device *dev, u8 bit, u8 *tbit)
{
int err, count;
struct ds_status st;
u16 value = (COMM_BIT_IO | COMM_IM) | ((bit) ? COMM_D : 0);
u16 cmd;
err = ds_send_control(dev, value, 0);
if (err)
return err;
count = 0;
do {
err = ds_wait_status(dev, &st);
if (err)
return err;
cmd = st.command0 | (st.command1 << 8);
} while (cmd != value && ++count < 10);
if (err < 0 || count >= 10) {
printk(KERN_ERR "Failed to obtain status.\n");
return -EINVAL;
}
err = ds_recv_data(dev, tbit, sizeof(*tbit));
if (err < 0)
return err;
return 0;
}
static int ds_write_bit(struct ds_device *dev, u8 bit)
{
int err;
struct ds_status st;
err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | (bit) ? COMM_D : 0, 0);
if (err)
return err;
ds_wait_status(dev, &st);
return 0;
}
static int ds_write_byte(struct ds_device *dev, u8 byte)
{
int err;
struct ds_status st;
u8 rbyte;
err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM | COMM_SPU, byte);
if (err)
return err;
err = ds_wait_status(dev, &st);
if (err)
return err;
err = ds_recv_data(dev, &rbyte, sizeof(rbyte));
if (err < 0)
return err;
ds_start_pulse(dev, PULLUP_PULSE_DURATION);
return !(byte == rbyte);
}
static int ds_read_byte(struct ds_device *dev, u8 *byte)
{
int err;
struct ds_status st;
err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM , 0xff);
if (err)
return err;
ds_wait_status(dev, &st);
err = ds_recv_data(dev, byte, sizeof(*byte));
if (err < 0)
return err;
return 0;
}
static int ds_read_block(struct ds_device *dev, u8 *buf, int len)
{
struct ds_status st;
int err;
if (len > 64*1024)
return -E2BIG;
memset(buf, 0xFF, len);
err = ds_send_data(dev, buf, len);
if (err < 0)
return err;
err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM | COMM_SPU, len);
if (err)
return err;
ds_wait_status(dev, &st);
memset(buf, 0x00, len);
err = ds_recv_data(dev, buf, len);
return err;
}
static int ds_write_block(struct ds_device *dev, u8 *buf, int len)
{
int err;
struct ds_status st;
err = ds_send_data(dev, buf, len);
if (err < 0)
return err;
ds_wait_status(dev, &st);
err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM | COMM_SPU, len);
if (err)
return err;
ds_wait_status(dev, &st);
err = ds_recv_data(dev, buf, len);
if (err < 0)
return err;
ds_start_pulse(dev, PULLUP_PULSE_DURATION);
return !(err == len);
}
#if 0
static int ds_search(struct ds_device *dev, u64 init, u64 *buf, u8 id_number, int conditional_search)
{
int err;
u16 value, index;
struct ds_status st;
memset(buf, 0, sizeof(buf));
err = ds_send_data(ds_dev, (unsigned char *)&init, 8);
if (err)
return err;
ds_wait_status(ds_dev, &st);
value = COMM_SEARCH_ACCESS | COMM_IM | COMM_SM | COMM_F | COMM_RTS;
index = (conditional_search ? 0xEC : 0xF0) | (id_number << 8);
err = ds_send_control(ds_dev, value, index);
if (err)
return err;
ds_wait_status(ds_dev, &st);
err = ds_recv_data(ds_dev, (unsigned char *)buf, 8*id_number);
if (err < 0)
return err;
return err/8;
}
static int ds_match_access(struct ds_device *dev, u64 init)
{
int err;
struct ds_status st;
err = ds_send_data(dev, (unsigned char *)&init, sizeof(init));
if (err)
return err;
ds_wait_status(dev, &st);
err = ds_send_control(dev, COMM_MATCH_ACCESS | COMM_IM | COMM_RST, 0x0055);
if (err)
return err;
ds_wait_status(dev, &st);
return 0;
}
static int ds_set_path(struct ds_device *dev, u64 init)
{
int err;
struct ds_status st;
u8 buf[9];
memcpy(buf, &init, 8);
buf[8] = BRANCH_MAIN;
err = ds_send_data(dev, buf, sizeof(buf));
if (err)
return err;
ds_wait_status(dev, &st);
err = ds_send_control(dev, COMM_SET_PATH | COMM_IM | COMM_RST, 0);
if (err)
return err;
ds_wait_status(dev, &st);
return 0;
}
#endif /* 0 */
static u8 ds9490r_touch_bit(void *data, u8 bit)
{
u8 ret;
struct ds_device *dev = data;
if (ds_touch_bit(dev, bit, &ret))
return 0;
return ret;
}
static void ds9490r_write_bit(void *data, u8 bit)
{
struct ds_device *dev = data;
ds_write_bit(dev, bit);
}
static void ds9490r_write_byte(void *data, u8 byte)
{
struct ds_device *dev = data;
ds_write_byte(dev, byte);
}
static u8 ds9490r_read_bit(void *data)
{
struct ds_device *dev = data;
int err;
u8 bit = 0;
err = ds_touch_bit(dev, 1, &bit);
if (err)
return 0;
return bit & 1;
}
static u8 ds9490r_read_byte(void *data)
{
struct ds_device *dev = data;
int err;
u8 byte = 0;
err = ds_read_byte(dev, &byte);
if (err)
return 0;
return byte;
}
static void ds9490r_write_block(void *data, const u8 *buf, int len)
{
struct ds_device *dev = data;
ds_write_block(dev, (u8 *)buf, len);
}
static u8 ds9490r_read_block(void *data, u8 *buf, int len)
{
struct ds_device *dev = data;
int err;
err = ds_read_block(dev, buf, len);
if (err < 0)
return 0;
return len;
}
static u8 ds9490r_reset(void *data)
{
struct ds_device *dev = data;
struct ds_status st;
int err;
memset(&st, 0, sizeof(st));
err = ds_reset(dev, &st);
if (err)
return 1;
return 0;
}
static int ds_w1_init(struct ds_device *dev)
{
memset(&dev->master, 0, sizeof(struct w1_bus_master));
dev->master.data = dev;
dev->master.touch_bit = &ds9490r_touch_bit;
dev->master.read_bit = &ds9490r_read_bit;
dev->master.write_bit = &ds9490r_write_bit;
dev->master.read_byte = &ds9490r_read_byte;
dev->master.write_byte = &ds9490r_write_byte;
dev->master.read_block = &ds9490r_read_block;
dev->master.write_block = &ds9490r_write_block;
dev->master.reset_bus = &ds9490r_reset;
return w1_add_master_device(&dev->master);
}
static void ds_w1_fini(struct ds_device *dev)
{
w1_remove_master_device(&dev->master);
}
static int ds_probe(struct usb_interface *intf,
const struct usb_device_id *udev_id)
{
struct usb_device *udev = interface_to_usbdev(intf);
struct usb_endpoint_descriptor *endpoint;
struct usb_host_interface *iface_desc;
struct ds_device *dev;
int i, err;
dev = kmalloc(sizeof(struct ds_device), GFP_KERNEL);
if (!dev) {
printk(KERN_INFO "Failed to allocate new DS9490R structure.\n");
return -ENOMEM;
}
dev->udev = usb_get_dev(udev);
if (!dev->udev) {
err = -ENOMEM;
goto err_out_free;
}
memset(dev->ep, 0, sizeof(dev->ep));
usb_set_intfdata(intf, dev);
err = usb_set_interface(dev->udev, intf->altsetting[0].desc.bInterfaceNumber, 3);
if (err) {
printk(KERN_ERR "Failed to set alternative setting 3 for %d interface: err=%d.\n",
intf->altsetting[0].desc.bInterfaceNumber, err);
goto err_out_clear;
}
err = usb_reset_configuration(dev->udev);
if (err) {
printk(KERN_ERR "Failed to reset configuration: err=%d.\n", err);
goto err_out_clear;
}
iface_desc = &intf->altsetting[0];
if (iface_desc->desc.bNumEndpoints != NUM_EP-1) {
printk(KERN_INFO "Num endpoints=%d. It is not DS9490R.\n", iface_desc->desc.bNumEndpoints);
err = -EINVAL;
goto err_out_clear;
}
/*
* This loop doesn'd show control 0 endpoint,
* so we will fill only 1-3 endpoints entry.
*/
for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {
endpoint = &iface_desc->endpoint[i].desc;
dev->ep[i+1] = endpoint->bEndpointAddress;
#if 0
printk("%d: addr=%x, size=%d, dir=%s, type=%x\n",
i, endpoint->bEndpointAddress, le16_to_cpu(endpoint->wMaxPacketSize),
(endpoint->bEndpointAddress & USB_DIR_IN)?"IN":"OUT",
endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK);
#endif
}
err = ds_w1_init(dev);
if (err)
goto err_out_clear;
mutex_lock(&ds_mutex);
list_add_tail(&dev->ds_entry, &ds_devices);
mutex_unlock(&ds_mutex);
return 0;
err_out_clear:
usb_set_intfdata(intf, NULL);
usb_put_dev(dev->udev);
err_out_free:
kfree(dev);
return err;
}
static void ds_disconnect(struct usb_interface *intf)
{
struct ds_device *dev;
dev = usb_get_intfdata(intf);
if (!dev)
return;
mutex_lock(&ds_mutex);
list_del(&dev->ds_entry);
mutex_unlock(&ds_mutex);
ds_w1_fini(dev);
usb_set_intfdata(intf, NULL);
usb_put_dev(dev->udev);
kfree(dev);
}
static int ds_init(void)
{
int err;
err = usb_register(&ds_driver);
if (err) {
printk(KERN_INFO "Failed to register DS9490R USB device: err=%d.\n", err);
return err;
}
return 0;
}
static void ds_fini(void)
{
usb_deregister(&ds_driver);
}
module_init(ds_init);
module_exit(ds_fini);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
MODULE_DESCRIPTION("DS2490 USB <-> W1 bus master driver (DS9490*)");