kernel-fxtec-pro1x/drivers/edac/mpc85xx_edac.c

1224 lines
32 KiB
C
Raw Normal View History

/*
* Freescale MPC85xx Memory Controller kenel module
*
* Author: Dave Jiang <djiang@mvista.com>
*
* 2006-2007 (c) MontaVista Software, Inc. This file is licensed under
* the terms of the GNU General Public License version 2. This program
* is licensed "as is" without any warranty of any kind, whether express
* or implied.
*
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/ctype.h>
#include <linux/io.h>
#include <linux/mod_devicetable.h>
#include <linux/edac.h>
#include <linux/smp.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 02:04:11 -06:00
#include <linux/gfp.h>
#include <linux/of_platform.h>
#include <linux/of_device.h>
#include "edac_module.h"
#include "edac_core.h"
#include "mpc85xx_edac.h"
static int edac_dev_idx;
#ifdef CONFIG_PCI
static int edac_pci_idx;
#endif
static int edac_mc_idx;
static u32 orig_ddr_err_disable;
static u32 orig_ddr_err_sbe;
/*
* PCI Err defines
*/
#ifdef CONFIG_PCI
static u32 orig_pci_err_cap_dr;
static u32 orig_pci_err_en;
#endif
static u32 orig_l2_err_disable;
#ifdef CONFIG_MPC85xx
static u32 orig_hid1[2];
#endif
/************************ MC SYSFS parts ***********************************/
static ssize_t mpc85xx_mc_inject_data_hi_show(struct mem_ctl_info *mci,
char *data)
{
struct mpc85xx_mc_pdata *pdata = mci->pvt_info;
return sprintf(data, "0x%08x",
in_be32(pdata->mc_vbase +
MPC85XX_MC_DATA_ERR_INJECT_HI));
}
static ssize_t mpc85xx_mc_inject_data_lo_show(struct mem_ctl_info *mci,
char *data)
{
struct mpc85xx_mc_pdata *pdata = mci->pvt_info;
return sprintf(data, "0x%08x",
in_be32(pdata->mc_vbase +
MPC85XX_MC_DATA_ERR_INJECT_LO));
}
static ssize_t mpc85xx_mc_inject_ctrl_show(struct mem_ctl_info *mci, char *data)
{
struct mpc85xx_mc_pdata *pdata = mci->pvt_info;
return sprintf(data, "0x%08x",
in_be32(pdata->mc_vbase + MPC85XX_MC_ECC_ERR_INJECT));
}
static ssize_t mpc85xx_mc_inject_data_hi_store(struct mem_ctl_info *mci,
const char *data, size_t count)
{
struct mpc85xx_mc_pdata *pdata = mci->pvt_info;
if (isdigit(*data)) {
out_be32(pdata->mc_vbase + MPC85XX_MC_DATA_ERR_INJECT_HI,
simple_strtoul(data, NULL, 0));
return count;
}
return 0;
}
static ssize_t mpc85xx_mc_inject_data_lo_store(struct mem_ctl_info *mci,
const char *data, size_t count)
{
struct mpc85xx_mc_pdata *pdata = mci->pvt_info;
if (isdigit(*data)) {
out_be32(pdata->mc_vbase + MPC85XX_MC_DATA_ERR_INJECT_LO,
simple_strtoul(data, NULL, 0));
return count;
}
return 0;
}
static ssize_t mpc85xx_mc_inject_ctrl_store(struct mem_ctl_info *mci,
const char *data, size_t count)
{
struct mpc85xx_mc_pdata *pdata = mci->pvt_info;
if (isdigit(*data)) {
out_be32(pdata->mc_vbase + MPC85XX_MC_ECC_ERR_INJECT,
simple_strtoul(data, NULL, 0));
return count;
}
return 0;
}
static struct mcidev_sysfs_attribute mpc85xx_mc_sysfs_attributes[] = {
{
.attr = {
.name = "inject_data_hi",
.mode = (S_IRUGO | S_IWUSR)
},
.show = mpc85xx_mc_inject_data_hi_show,
.store = mpc85xx_mc_inject_data_hi_store},
{
.attr = {
.name = "inject_data_lo",
.mode = (S_IRUGO | S_IWUSR)
},
.show = mpc85xx_mc_inject_data_lo_show,
.store = mpc85xx_mc_inject_data_lo_store},
{
.attr = {
.name = "inject_ctrl",
.mode = (S_IRUGO | S_IWUSR)
},
.show = mpc85xx_mc_inject_ctrl_show,
.store = mpc85xx_mc_inject_ctrl_store},
/* End of list */
{
.attr = {.name = NULL}
}
};
static void mpc85xx_set_mc_sysfs_attributes(struct mem_ctl_info *mci)
{
mci->mc_driver_sysfs_attributes = mpc85xx_mc_sysfs_attributes;
}
/**************************** PCI Err device ***************************/
#ifdef CONFIG_PCI
static void mpc85xx_pci_check(struct edac_pci_ctl_info *pci)
{
struct mpc85xx_pci_pdata *pdata = pci->pvt_info;
u32 err_detect;
err_detect = in_be32(pdata->pci_vbase + MPC85XX_PCI_ERR_DR);
/* master aborts can happen during PCI config cycles */
if (!(err_detect & ~(PCI_EDE_MULTI_ERR | PCI_EDE_MST_ABRT))) {
out_be32(pdata->pci_vbase + MPC85XX_PCI_ERR_DR, err_detect);
return;
}
printk(KERN_ERR "PCI error(s) detected\n");
printk(KERN_ERR "PCI/X ERR_DR register: %#08x\n", err_detect);
printk(KERN_ERR "PCI/X ERR_ATTRIB register: %#08x\n",
in_be32(pdata->pci_vbase + MPC85XX_PCI_ERR_ATTRIB));
printk(KERN_ERR "PCI/X ERR_ADDR register: %#08x\n",
in_be32(pdata->pci_vbase + MPC85XX_PCI_ERR_ADDR));
printk(KERN_ERR "PCI/X ERR_EXT_ADDR register: %#08x\n",
in_be32(pdata->pci_vbase + MPC85XX_PCI_ERR_EXT_ADDR));
printk(KERN_ERR "PCI/X ERR_DL register: %#08x\n",
in_be32(pdata->pci_vbase + MPC85XX_PCI_ERR_DL));
printk(KERN_ERR "PCI/X ERR_DH register: %#08x\n",
in_be32(pdata->pci_vbase + MPC85XX_PCI_ERR_DH));
/* clear error bits */
out_be32(pdata->pci_vbase + MPC85XX_PCI_ERR_DR, err_detect);
if (err_detect & PCI_EDE_PERR_MASK)
edac_pci_handle_pe(pci, pci->ctl_name);
if ((err_detect & ~PCI_EDE_MULTI_ERR) & ~PCI_EDE_PERR_MASK)
edac_pci_handle_npe(pci, pci->ctl_name);
}
static irqreturn_t mpc85xx_pci_isr(int irq, void *dev_id)
{
struct edac_pci_ctl_info *pci = dev_id;
struct mpc85xx_pci_pdata *pdata = pci->pvt_info;
u32 err_detect;
err_detect = in_be32(pdata->pci_vbase + MPC85XX_PCI_ERR_DR);
if (!err_detect)
return IRQ_NONE;
mpc85xx_pci_check(pci);
return IRQ_HANDLED;
}
static int __devinit mpc85xx_pci_err_probe(struct of_device *op,
const struct of_device_id *match)
{
struct edac_pci_ctl_info *pci;
struct mpc85xx_pci_pdata *pdata;
struct resource r;
int res = 0;
if (!devres_open_group(&op->dev, mpc85xx_pci_err_probe, GFP_KERNEL))
return -ENOMEM;
pci = edac_pci_alloc_ctl_info(sizeof(*pdata), "mpc85xx_pci_err");
if (!pci)
return -ENOMEM;
pdata = pci->pvt_info;
pdata->name = "mpc85xx_pci_err";
pdata->irq = NO_IRQ;
dev_set_drvdata(&op->dev, pci);
pci->dev = &op->dev;
pci->mod_name = EDAC_MOD_STR;
pci->ctl_name = pdata->name;
pci->dev_name = dev_name(&op->dev);
if (edac_op_state == EDAC_OPSTATE_POLL)
pci->edac_check = mpc85xx_pci_check;
pdata->edac_idx = edac_pci_idx++;
res = of_address_to_resource(op->node, 0, &r);
if (res) {
printk(KERN_ERR "%s: Unable to get resource for "
"PCI err regs\n", __func__);
goto err;
}
/* we only need the error registers */
r.start += 0xe00;
if (!devm_request_mem_region(&op->dev, r.start, resource_size(&r),
pdata->name)) {
printk(KERN_ERR "%s: Error while requesting mem region\n",
__func__);
res = -EBUSY;
goto err;
}
pdata->pci_vbase = devm_ioremap(&op->dev, r.start, resource_size(&r));
if (!pdata->pci_vbase) {
printk(KERN_ERR "%s: Unable to setup PCI err regs\n", __func__);
res = -ENOMEM;
goto err;
}
orig_pci_err_cap_dr =
in_be32(pdata->pci_vbase + MPC85XX_PCI_ERR_CAP_DR);
/* PCI master abort is expected during config cycles */
out_be32(pdata->pci_vbase + MPC85XX_PCI_ERR_CAP_DR, 0x40);
orig_pci_err_en = in_be32(pdata->pci_vbase + MPC85XX_PCI_ERR_EN);
/* disable master abort reporting */
out_be32(pdata->pci_vbase + MPC85XX_PCI_ERR_EN, ~0x40);
/* clear error bits */
out_be32(pdata->pci_vbase + MPC85XX_PCI_ERR_DR, ~0);
if (edac_pci_add_device(pci, pdata->edac_idx) > 0) {
debugf3("%s(): failed edac_pci_add_device()\n", __func__);
goto err;
}
if (edac_op_state == EDAC_OPSTATE_INT) {
pdata->irq = irq_of_parse_and_map(op->node, 0);
res = devm_request_irq(&op->dev, pdata->irq,
mpc85xx_pci_isr, IRQF_DISABLED,
"[EDAC] PCI err", pci);
if (res < 0) {
printk(KERN_ERR
"%s: Unable to requiest irq %d for "
"MPC85xx PCI err\n", __func__, pdata->irq);
irq_dispose_mapping(pdata->irq);
res = -ENODEV;
goto err2;
}
printk(KERN_INFO EDAC_MOD_STR " acquired irq %d for PCI Err\n",
pdata->irq);
}
devres_remove_group(&op->dev, mpc85xx_pci_err_probe);
debugf3("%s(): success\n", __func__);
printk(KERN_INFO EDAC_MOD_STR " PCI err registered\n");
return 0;
err2:
edac_pci_del_device(&op->dev);
err:
edac_pci_free_ctl_info(pci);
devres_release_group(&op->dev, mpc85xx_pci_err_probe);
return res;
}
static int mpc85xx_pci_err_remove(struct of_device *op)
{
struct edac_pci_ctl_info *pci = dev_get_drvdata(&op->dev);
struct mpc85xx_pci_pdata *pdata = pci->pvt_info;
debugf0("%s()\n", __func__);
out_be32(pdata->pci_vbase + MPC85XX_PCI_ERR_CAP_DR,
orig_pci_err_cap_dr);
out_be32(pdata->pci_vbase + MPC85XX_PCI_ERR_EN, orig_pci_err_en);
edac_pci_del_device(pci->dev);
if (edac_op_state == EDAC_OPSTATE_INT)
irq_dispose_mapping(pdata->irq);
edac_pci_free_ctl_info(pci);
return 0;
}
static struct of_device_id mpc85xx_pci_err_of_match[] = {
{
.compatible = "fsl,mpc8540-pcix",
},
{
.compatible = "fsl,mpc8540-pci",
},
{},
};
static struct of_platform_driver mpc85xx_pci_err_driver = {
.owner = THIS_MODULE,
.name = "mpc85xx_pci_err",
.match_table = mpc85xx_pci_err_of_match,
.probe = mpc85xx_pci_err_probe,
.remove = __devexit_p(mpc85xx_pci_err_remove),
.driver = {
.name = "mpc85xx_pci_err",
.owner = THIS_MODULE,
},
};
#endif /* CONFIG_PCI */
/**************************** L2 Err device ***************************/
/************************ L2 SYSFS parts ***********************************/
static ssize_t mpc85xx_l2_inject_data_hi_show(struct edac_device_ctl_info
*edac_dev, char *data)
{
struct mpc85xx_l2_pdata *pdata = edac_dev->pvt_info;
return sprintf(data, "0x%08x",
in_be32(pdata->l2_vbase + MPC85XX_L2_ERRINJHI));
}
static ssize_t mpc85xx_l2_inject_data_lo_show(struct edac_device_ctl_info
*edac_dev, char *data)
{
struct mpc85xx_l2_pdata *pdata = edac_dev->pvt_info;
return sprintf(data, "0x%08x",
in_be32(pdata->l2_vbase + MPC85XX_L2_ERRINJLO));
}
static ssize_t mpc85xx_l2_inject_ctrl_show(struct edac_device_ctl_info
*edac_dev, char *data)
{
struct mpc85xx_l2_pdata *pdata = edac_dev->pvt_info;
return sprintf(data, "0x%08x",
in_be32(pdata->l2_vbase + MPC85XX_L2_ERRINJCTL));
}
static ssize_t mpc85xx_l2_inject_data_hi_store(struct edac_device_ctl_info
*edac_dev, const char *data,
size_t count)
{
struct mpc85xx_l2_pdata *pdata = edac_dev->pvt_info;
if (isdigit(*data)) {
out_be32(pdata->l2_vbase + MPC85XX_L2_ERRINJHI,
simple_strtoul(data, NULL, 0));
return count;
}
return 0;
}
static ssize_t mpc85xx_l2_inject_data_lo_store(struct edac_device_ctl_info
*edac_dev, const char *data,
size_t count)
{
struct mpc85xx_l2_pdata *pdata = edac_dev->pvt_info;
if (isdigit(*data)) {
out_be32(pdata->l2_vbase + MPC85XX_L2_ERRINJLO,
simple_strtoul(data, NULL, 0));
return count;
}
return 0;
}
static ssize_t mpc85xx_l2_inject_ctrl_store(struct edac_device_ctl_info
*edac_dev, const char *data,
size_t count)
{
struct mpc85xx_l2_pdata *pdata = edac_dev->pvt_info;
if (isdigit(*data)) {
out_be32(pdata->l2_vbase + MPC85XX_L2_ERRINJCTL,
simple_strtoul(data, NULL, 0));
return count;
}
return 0;
}
static struct edac_dev_sysfs_attribute mpc85xx_l2_sysfs_attributes[] = {
{
.attr = {
.name = "inject_data_hi",
.mode = (S_IRUGO | S_IWUSR)
},
.show = mpc85xx_l2_inject_data_hi_show,
.store = mpc85xx_l2_inject_data_hi_store},
{
.attr = {
.name = "inject_data_lo",
.mode = (S_IRUGO | S_IWUSR)
},
.show = mpc85xx_l2_inject_data_lo_show,
.store = mpc85xx_l2_inject_data_lo_store},
{
.attr = {
.name = "inject_ctrl",
.mode = (S_IRUGO | S_IWUSR)
},
.show = mpc85xx_l2_inject_ctrl_show,
.store = mpc85xx_l2_inject_ctrl_store},
/* End of list */
{
.attr = {.name = NULL}
}
};
static void mpc85xx_set_l2_sysfs_attributes(struct edac_device_ctl_info
*edac_dev)
{
edac_dev->sysfs_attributes = mpc85xx_l2_sysfs_attributes;
}
/***************************** L2 ops ***********************************/
static void mpc85xx_l2_check(struct edac_device_ctl_info *edac_dev)
{
struct mpc85xx_l2_pdata *pdata = edac_dev->pvt_info;
u32 err_detect;
err_detect = in_be32(pdata->l2_vbase + MPC85XX_L2_ERRDET);
if (!(err_detect & L2_EDE_MASK))
return;
printk(KERN_ERR "ECC Error in CPU L2 cache\n");
printk(KERN_ERR "L2 Error Detect Register: 0x%08x\n", err_detect);
printk(KERN_ERR "L2 Error Capture Data High Register: 0x%08x\n",
in_be32(pdata->l2_vbase + MPC85XX_L2_CAPTDATAHI));
printk(KERN_ERR "L2 Error Capture Data Lo Register: 0x%08x\n",
in_be32(pdata->l2_vbase + MPC85XX_L2_CAPTDATALO));
printk(KERN_ERR "L2 Error Syndrome Register: 0x%08x\n",
in_be32(pdata->l2_vbase + MPC85XX_L2_CAPTECC));
printk(KERN_ERR "L2 Error Attributes Capture Register: 0x%08x\n",
in_be32(pdata->l2_vbase + MPC85XX_L2_ERRATTR));
printk(KERN_ERR "L2 Error Address Capture Register: 0x%08x\n",
in_be32(pdata->l2_vbase + MPC85XX_L2_ERRADDR));
/* clear error detect register */
out_be32(pdata->l2_vbase + MPC85XX_L2_ERRDET, err_detect);
if (err_detect & L2_EDE_CE_MASK)
edac_device_handle_ce(edac_dev, 0, 0, edac_dev->ctl_name);
if (err_detect & L2_EDE_UE_MASK)
edac_device_handle_ue(edac_dev, 0, 0, edac_dev->ctl_name);
}
static irqreturn_t mpc85xx_l2_isr(int irq, void *dev_id)
{
struct edac_device_ctl_info *edac_dev = dev_id;
struct mpc85xx_l2_pdata *pdata = edac_dev->pvt_info;
u32 err_detect;
err_detect = in_be32(pdata->l2_vbase + MPC85XX_L2_ERRDET);
if (!(err_detect & L2_EDE_MASK))
return IRQ_NONE;
mpc85xx_l2_check(edac_dev);
return IRQ_HANDLED;
}
static int __devinit mpc85xx_l2_err_probe(struct of_device *op,
const struct of_device_id *match)
{
struct edac_device_ctl_info *edac_dev;
struct mpc85xx_l2_pdata *pdata;
struct resource r;
int res;
if (!devres_open_group(&op->dev, mpc85xx_l2_err_probe, GFP_KERNEL))
return -ENOMEM;
edac_dev = edac_device_alloc_ctl_info(sizeof(*pdata),
"cpu", 1, "L", 1, 2, NULL, 0,
edac_dev_idx);
if (!edac_dev) {
devres_release_group(&op->dev, mpc85xx_l2_err_probe);
return -ENOMEM;
}
pdata = edac_dev->pvt_info;
pdata->name = "mpc85xx_l2_err";
pdata->irq = NO_IRQ;
edac_dev->dev = &op->dev;
dev_set_drvdata(edac_dev->dev, edac_dev);
edac_dev->ctl_name = pdata->name;
edac_dev->dev_name = pdata->name;
res = of_address_to_resource(op->node, 0, &r);
if (res) {
printk(KERN_ERR "%s: Unable to get resource for "
"L2 err regs\n", __func__);
goto err;
}
/* we only need the error registers */
r.start += 0xe00;
if (!devm_request_mem_region(&op->dev, r.start,
r.end - r.start + 1, pdata->name)) {
printk(KERN_ERR "%s: Error while requesting mem region\n",
__func__);
res = -EBUSY;
goto err;
}
pdata->l2_vbase = devm_ioremap(&op->dev, r.start, r.end - r.start + 1);
if (!pdata->l2_vbase) {
printk(KERN_ERR "%s: Unable to setup L2 err regs\n", __func__);
res = -ENOMEM;
goto err;
}
out_be32(pdata->l2_vbase + MPC85XX_L2_ERRDET, ~0);
orig_l2_err_disable = in_be32(pdata->l2_vbase + MPC85XX_L2_ERRDIS);
/* clear the err_dis */
out_be32(pdata->l2_vbase + MPC85XX_L2_ERRDIS, 0);
edac_dev->mod_name = EDAC_MOD_STR;
if (edac_op_state == EDAC_OPSTATE_POLL)
edac_dev->edac_check = mpc85xx_l2_check;
mpc85xx_set_l2_sysfs_attributes(edac_dev);
pdata->edac_idx = edac_dev_idx++;
if (edac_device_add_device(edac_dev) > 0) {
debugf3("%s(): failed edac_device_add_device()\n", __func__);
goto err;
}
if (edac_op_state == EDAC_OPSTATE_INT) {
pdata->irq = irq_of_parse_and_map(op->node, 0);
res = devm_request_irq(&op->dev, pdata->irq,
mpc85xx_l2_isr, IRQF_DISABLED,
"[EDAC] L2 err", edac_dev);
if (res < 0) {
printk(KERN_ERR
"%s: Unable to requiest irq %d for "
"MPC85xx L2 err\n", __func__, pdata->irq);
irq_dispose_mapping(pdata->irq);
res = -ENODEV;
goto err2;
}
printk(KERN_INFO EDAC_MOD_STR " acquired irq %d for L2 Err\n",
pdata->irq);
edac_dev->op_state = OP_RUNNING_INTERRUPT;
out_be32(pdata->l2_vbase + MPC85XX_L2_ERRINTEN, L2_EIE_MASK);
}
devres_remove_group(&op->dev, mpc85xx_l2_err_probe);
debugf3("%s(): success\n", __func__);
printk(KERN_INFO EDAC_MOD_STR " L2 err registered\n");
return 0;
err2:
edac_device_del_device(&op->dev);
err:
devres_release_group(&op->dev, mpc85xx_l2_err_probe);
edac_device_free_ctl_info(edac_dev);
return res;
}
static int mpc85xx_l2_err_remove(struct of_device *op)
{
struct edac_device_ctl_info *edac_dev = dev_get_drvdata(&op->dev);
struct mpc85xx_l2_pdata *pdata = edac_dev->pvt_info;
debugf0("%s()\n", __func__);
if (edac_op_state == EDAC_OPSTATE_INT) {
out_be32(pdata->l2_vbase + MPC85XX_L2_ERRINTEN, 0);
irq_dispose_mapping(pdata->irq);
}
out_be32(pdata->l2_vbase + MPC85XX_L2_ERRDIS, orig_l2_err_disable);
edac_device_del_device(&op->dev);
edac_device_free_ctl_info(edac_dev);
return 0;
}
static struct of_device_id mpc85xx_l2_err_of_match[] = {
/* deprecate the fsl,85.. forms in the future, 2.6.30? */
{ .compatible = "fsl,8540-l2-cache-controller", },
{ .compatible = "fsl,8541-l2-cache-controller", },
{ .compatible = "fsl,8544-l2-cache-controller", },
{ .compatible = "fsl,8548-l2-cache-controller", },
{ .compatible = "fsl,8555-l2-cache-controller", },
{ .compatible = "fsl,8568-l2-cache-controller", },
{ .compatible = "fsl,mpc8536-l2-cache-controller", },
{ .compatible = "fsl,mpc8540-l2-cache-controller", },
{ .compatible = "fsl,mpc8541-l2-cache-controller", },
{ .compatible = "fsl,mpc8544-l2-cache-controller", },
{ .compatible = "fsl,mpc8548-l2-cache-controller", },
{ .compatible = "fsl,mpc8555-l2-cache-controller", },
{ .compatible = "fsl,mpc8560-l2-cache-controller", },
{ .compatible = "fsl,mpc8568-l2-cache-controller", },
{ .compatible = "fsl,mpc8572-l2-cache-controller", },
{ .compatible = "fsl,p2020-l2-cache-controller", },
{},
};
static struct of_platform_driver mpc85xx_l2_err_driver = {
.owner = THIS_MODULE,
.name = "mpc85xx_l2_err",
.match_table = mpc85xx_l2_err_of_match,
.probe = mpc85xx_l2_err_probe,
.remove = mpc85xx_l2_err_remove,
.driver = {
.name = "mpc85xx_l2_err",
.owner = THIS_MODULE,
},
};
/**************************** MC Err device ***************************/
/*
* Taken from table 8-55 in the MPC8641 User's Manual and/or 9-61 in the
* MPC8572 User's Manual. Each line represents a syndrome bit column as a
* 64-bit value, but split into an upper and lower 32-bit chunk. The labels
* below correspond to Freescale's manuals.
*/
static unsigned int ecc_table[16] = {
/* MSB LSB */
/* [0:31] [32:63] */
0xf00fe11e, 0xc33c0ff7, /* Syndrome bit 7 */
0x00ff00ff, 0x00fff0ff,
0x0f0f0f0f, 0x0f0fff00,
0x11113333, 0x7777000f,
0x22224444, 0x8888222f,
0x44448888, 0xffff4441,
0x8888ffff, 0x11118882,
0xffff1111, 0x22221114, /* Syndrome bit 0 */
};
/*
* Calculate the correct ECC value for a 64-bit value specified by high:low
*/
static u8 calculate_ecc(u32 high, u32 low)
{
u32 mask_low;
u32 mask_high;
int bit_cnt;
u8 ecc = 0;
int i;
int j;
for (i = 0; i < 8; i++) {
mask_high = ecc_table[i * 2];
mask_low = ecc_table[i * 2 + 1];
bit_cnt = 0;
for (j = 0; j < 32; j++) {
if ((mask_high >> j) & 1)
bit_cnt ^= (high >> j) & 1;
if ((mask_low >> j) & 1)
bit_cnt ^= (low >> j) & 1;
}
ecc |= bit_cnt << i;
}
return ecc;
}
/*
* Create the syndrome code which is generated if the data line specified by
* 'bit' failed. Eg generate an 8-bit codes seen in Table 8-55 in the MPC8641
* User's Manual and 9-61 in the MPC8572 User's Manual.
*/
static u8 syndrome_from_bit(unsigned int bit) {
int i;
u8 syndrome = 0;
/*
* Cycle through the upper or lower 32-bit portion of each value in
* ecc_table depending on if 'bit' is in the upper or lower half of
* 64-bit data.
*/
for (i = bit < 32; i < 16; i += 2)
syndrome |= ((ecc_table[i] >> (bit % 32)) & 1) << (i / 2);
return syndrome;
}
/*
* Decode data and ecc syndrome to determine what went wrong
* Note: This can only decode single-bit errors
*/
static void sbe_ecc_decode(u32 cap_high, u32 cap_low, u32 cap_ecc,
int *bad_data_bit, int *bad_ecc_bit)
{
int i;
u8 syndrome;
*bad_data_bit = -1;
*bad_ecc_bit = -1;
/*
* Calculate the ECC of the captured data and XOR it with the captured
* ECC to find an ECC syndrome value we can search for
*/
syndrome = calculate_ecc(cap_high, cap_low) ^ cap_ecc;
/* Check if a data line is stuck... */
for (i = 0; i < 64; i++) {
if (syndrome == syndrome_from_bit(i)) {
*bad_data_bit = i;
return;
}
}
/* If data is correct, check ECC bits for errors... */
for (i = 0; i < 8; i++) {
if ((syndrome >> i) & 0x1) {
*bad_ecc_bit = i;
return;
}
}
}
static void mpc85xx_mc_check(struct mem_ctl_info *mci)
{
struct mpc85xx_mc_pdata *pdata = mci->pvt_info;
struct csrow_info *csrow;
u32 bus_width;
u32 err_detect;
u32 syndrome;
u32 err_addr;
u32 pfn;
int row_index;
u32 cap_high;
u32 cap_low;
int bad_data_bit;
int bad_ecc_bit;
err_detect = in_be32(pdata->mc_vbase + MPC85XX_MC_ERR_DETECT);
if (!err_detect)
return;
mpc85xx_mc_printk(mci, KERN_ERR, "Err Detect Register: %#8.8x\n",
err_detect);
/* no more processing if not ECC bit errors */
if (!(err_detect & (DDR_EDE_SBE | DDR_EDE_MBE))) {
out_be32(pdata->mc_vbase + MPC85XX_MC_ERR_DETECT, err_detect);
return;
}
syndrome = in_be32(pdata->mc_vbase + MPC85XX_MC_CAPTURE_ECC);
/* Mask off appropriate bits of syndrome based on bus width */
bus_width = (in_be32(pdata->mc_vbase + MPC85XX_MC_DDR_SDRAM_CFG) &
DSC_DBW_MASK) ? 32 : 64;
if (bus_width == 64)
syndrome &= 0xff;
else
syndrome &= 0xffff;
err_addr = in_be32(pdata->mc_vbase + MPC85XX_MC_CAPTURE_ADDRESS);
pfn = err_addr >> PAGE_SHIFT;
for (row_index = 0; row_index < mci->nr_csrows; row_index++) {
csrow = &mci->csrows[row_index];
if ((pfn >= csrow->first_page) && (pfn <= csrow->last_page))
break;
}
cap_high = in_be32(pdata->mc_vbase + MPC85XX_MC_CAPTURE_DATA_HI);
cap_low = in_be32(pdata->mc_vbase + MPC85XX_MC_CAPTURE_DATA_LO);
/*
* Analyze single-bit errors on 64-bit wide buses
* TODO: Add support for 32-bit wide buses
*/
if ((err_detect & DDR_EDE_SBE) && (bus_width == 64)) {
sbe_ecc_decode(cap_high, cap_low, syndrome,
&bad_data_bit, &bad_ecc_bit);
if (bad_data_bit != -1)
mpc85xx_mc_printk(mci, KERN_ERR,
"Faulty Data bit: %d\n", bad_data_bit);
if (bad_ecc_bit != -1)
mpc85xx_mc_printk(mci, KERN_ERR,
"Faulty ECC bit: %d\n", bad_ecc_bit);
mpc85xx_mc_printk(mci, KERN_ERR,
"Expected Data / ECC:\t%#8.8x_%08x / %#2.2x\n",
cap_high ^ (1 << (bad_data_bit - 32)),
cap_low ^ (1 << bad_data_bit),
syndrome ^ (1 << bad_ecc_bit));
}
mpc85xx_mc_printk(mci, KERN_ERR,
"Captured Data / ECC:\t%#8.8x_%08x / %#2.2x\n",
cap_high, cap_low, syndrome);
mpc85xx_mc_printk(mci, KERN_ERR, "Err addr: %#8.8x\n", err_addr);
mpc85xx_mc_printk(mci, KERN_ERR, "PFN: %#8.8x\n", pfn);
/* we are out of range */
if (row_index == mci->nr_csrows)
mpc85xx_mc_printk(mci, KERN_ERR, "PFN out of range!\n");
if (err_detect & DDR_EDE_SBE)
edac_mc_handle_ce(mci, pfn, err_addr & PAGE_MASK,
syndrome, row_index, 0, mci->ctl_name);
if (err_detect & DDR_EDE_MBE)
edac_mc_handle_ue(mci, pfn, err_addr & PAGE_MASK,
row_index, mci->ctl_name);
out_be32(pdata->mc_vbase + MPC85XX_MC_ERR_DETECT, err_detect);
}
static irqreturn_t mpc85xx_mc_isr(int irq, void *dev_id)
{
struct mem_ctl_info *mci = dev_id;
struct mpc85xx_mc_pdata *pdata = mci->pvt_info;
u32 err_detect;
err_detect = in_be32(pdata->mc_vbase + MPC85XX_MC_ERR_DETECT);
if (!err_detect)
return IRQ_NONE;
mpc85xx_mc_check(mci);
return IRQ_HANDLED;
}
static void __devinit mpc85xx_init_csrows(struct mem_ctl_info *mci)
{
struct mpc85xx_mc_pdata *pdata = mci->pvt_info;
struct csrow_info *csrow;
u32 sdram_ctl;
u32 sdtype;
enum mem_type mtype;
u32 cs_bnds;
int index;
sdram_ctl = in_be32(pdata->mc_vbase + MPC85XX_MC_DDR_SDRAM_CFG);
sdtype = sdram_ctl & DSC_SDTYPE_MASK;
if (sdram_ctl & DSC_RD_EN) {
switch (sdtype) {
case DSC_SDTYPE_DDR:
mtype = MEM_RDDR;
break;
case DSC_SDTYPE_DDR2:
mtype = MEM_RDDR2;
break;
case DSC_SDTYPE_DDR3:
mtype = MEM_RDDR3;
break;
default:
mtype = MEM_UNKNOWN;
break;
}
} else {
switch (sdtype) {
case DSC_SDTYPE_DDR:
mtype = MEM_DDR;
break;
case DSC_SDTYPE_DDR2:
mtype = MEM_DDR2;
break;
case DSC_SDTYPE_DDR3:
mtype = MEM_DDR3;
break;
default:
mtype = MEM_UNKNOWN;
break;
}
}
for (index = 0; index < mci->nr_csrows; index++) {
u32 start;
u32 end;
csrow = &mci->csrows[index];
cs_bnds = in_be32(pdata->mc_vbase + MPC85XX_MC_CS_BNDS_0 +
(index * MPC85XX_MC_CS_BNDS_OFS));
start = (cs_bnds & 0xffff0000) >> 16;
end = (cs_bnds & 0x0000ffff);
if (start == end)
continue; /* not populated */
start <<= (24 - PAGE_SHIFT);
end <<= (24 - PAGE_SHIFT);
end |= (1 << (24 - PAGE_SHIFT)) - 1;
csrow->first_page = start;
csrow->last_page = end;
csrow->nr_pages = end + 1 - start;
csrow->grain = 8;
csrow->mtype = mtype;
csrow->dtype = DEV_UNKNOWN;
if (sdram_ctl & DSC_X32_EN)
csrow->dtype = DEV_X32;
csrow->edac_mode = EDAC_SECDED;
}
}
static int __devinit mpc85xx_mc_err_probe(struct of_device *op,
const struct of_device_id *match)
{
struct mem_ctl_info *mci;
struct mpc85xx_mc_pdata *pdata;
struct resource r;
u32 sdram_ctl;
int res;
if (!devres_open_group(&op->dev, mpc85xx_mc_err_probe, GFP_KERNEL))
return -ENOMEM;
mci = edac_mc_alloc(sizeof(*pdata), 4, 1, edac_mc_idx);
if (!mci) {
devres_release_group(&op->dev, mpc85xx_mc_err_probe);
return -ENOMEM;
}
pdata = mci->pvt_info;
pdata->name = "mpc85xx_mc_err";
pdata->irq = NO_IRQ;
mci->dev = &op->dev;
pdata->edac_idx = edac_mc_idx++;
dev_set_drvdata(mci->dev, mci);
mci->ctl_name = pdata->name;
mci->dev_name = pdata->name;
res = of_address_to_resource(op->node, 0, &r);
if (res) {
printk(KERN_ERR "%s: Unable to get resource for MC err regs\n",
__func__);
goto err;
}
if (!devm_request_mem_region(&op->dev, r.start,
r.end - r.start + 1, pdata->name)) {
printk(KERN_ERR "%s: Error while requesting mem region\n",
__func__);
res = -EBUSY;
goto err;
}
pdata->mc_vbase = devm_ioremap(&op->dev, r.start, r.end - r.start + 1);
if (!pdata->mc_vbase) {
printk(KERN_ERR "%s: Unable to setup MC err regs\n", __func__);
res = -ENOMEM;
goto err;
}
sdram_ctl = in_be32(pdata->mc_vbase + MPC85XX_MC_DDR_SDRAM_CFG);
if (!(sdram_ctl & DSC_ECC_EN)) {
/* no ECC */
printk(KERN_WARNING "%s: No ECC DIMMs discovered\n", __func__);
res = -ENODEV;
goto err;
}
debugf3("%s(): init mci\n", __func__);
mci->mtype_cap = MEM_FLAG_RDDR | MEM_FLAG_RDDR2 |
MEM_FLAG_DDR | MEM_FLAG_DDR2;
mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
mci->edac_cap = EDAC_FLAG_SECDED;
mci->mod_name = EDAC_MOD_STR;
mci->mod_ver = MPC85XX_REVISION;
if (edac_op_state == EDAC_OPSTATE_POLL)
mci->edac_check = mpc85xx_mc_check;
mci->ctl_page_to_phys = NULL;
mci->scrub_mode = SCRUB_SW_SRC;
mpc85xx_set_mc_sysfs_attributes(mci);
mpc85xx_init_csrows(mci);
/* store the original error disable bits */
orig_ddr_err_disable =
in_be32(pdata->mc_vbase + MPC85XX_MC_ERR_DISABLE);
out_be32(pdata->mc_vbase + MPC85XX_MC_ERR_DISABLE, 0);
/* clear all error bits */
out_be32(pdata->mc_vbase + MPC85XX_MC_ERR_DETECT, ~0);
if (edac_mc_add_mc(mci)) {
debugf3("%s(): failed edac_mc_add_mc()\n", __func__);
goto err;
}
if (edac_op_state == EDAC_OPSTATE_INT) {
out_be32(pdata->mc_vbase + MPC85XX_MC_ERR_INT_EN,
DDR_EIE_MBEE | DDR_EIE_SBEE);
/* store the original error management threshold */
orig_ddr_err_sbe = in_be32(pdata->mc_vbase +
MPC85XX_MC_ERR_SBE) & 0xff0000;
/* set threshold to 1 error per interrupt */
out_be32(pdata->mc_vbase + MPC85XX_MC_ERR_SBE, 0x10000);
/* register interrupts */
pdata->irq = irq_of_parse_and_map(op->node, 0);
res = devm_request_irq(&op->dev, pdata->irq,
mpc85xx_mc_isr,
IRQF_DISABLED | IRQF_SHARED,
"[EDAC] MC err", mci);
if (res < 0) {
printk(KERN_ERR "%s: Unable to request irq %d for "
"MPC85xx DRAM ERR\n", __func__, pdata->irq);
irq_dispose_mapping(pdata->irq);
res = -ENODEV;
goto err2;
}
printk(KERN_INFO EDAC_MOD_STR " acquired irq %d for MC\n",
pdata->irq);
}
devres_remove_group(&op->dev, mpc85xx_mc_err_probe);
debugf3("%s(): success\n", __func__);
printk(KERN_INFO EDAC_MOD_STR " MC err registered\n");
return 0;
err2:
edac_mc_del_mc(&op->dev);
err:
devres_release_group(&op->dev, mpc85xx_mc_err_probe);
edac_mc_free(mci);
return res;
}
static int mpc85xx_mc_err_remove(struct of_device *op)
{
struct mem_ctl_info *mci = dev_get_drvdata(&op->dev);
struct mpc85xx_mc_pdata *pdata = mci->pvt_info;
debugf0("%s()\n", __func__);
if (edac_op_state == EDAC_OPSTATE_INT) {
out_be32(pdata->mc_vbase + MPC85XX_MC_ERR_INT_EN, 0);
irq_dispose_mapping(pdata->irq);
}
out_be32(pdata->mc_vbase + MPC85XX_MC_ERR_DISABLE,
orig_ddr_err_disable);
out_be32(pdata->mc_vbase + MPC85XX_MC_ERR_SBE, orig_ddr_err_sbe);
edac_mc_del_mc(&op->dev);
edac_mc_free(mci);
return 0;
}
static struct of_device_id mpc85xx_mc_err_of_match[] = {
/* deprecate the fsl,85.. forms in the future, 2.6.30? */
{ .compatible = "fsl,8540-memory-controller", },
{ .compatible = "fsl,8541-memory-controller", },
{ .compatible = "fsl,8544-memory-controller", },
{ .compatible = "fsl,8548-memory-controller", },
{ .compatible = "fsl,8555-memory-controller", },
{ .compatible = "fsl,8568-memory-controller", },
{ .compatible = "fsl,mpc8536-memory-controller", },
{ .compatible = "fsl,mpc8540-memory-controller", },
{ .compatible = "fsl,mpc8541-memory-controller", },
{ .compatible = "fsl,mpc8544-memory-controller", },
{ .compatible = "fsl,mpc8548-memory-controller", },
{ .compatible = "fsl,mpc8555-memory-controller", },
{ .compatible = "fsl,mpc8560-memory-controller", },
{ .compatible = "fsl,mpc8568-memory-controller", },
{ .compatible = "fsl,mpc8572-memory-controller", },
{ .compatible = "fsl,mpc8349-memory-controller", },
{ .compatible = "fsl,p2020-memory-controller", },
{},
};
static struct of_platform_driver mpc85xx_mc_err_driver = {
.owner = THIS_MODULE,
.name = "mpc85xx_mc_err",
.match_table = mpc85xx_mc_err_of_match,
.probe = mpc85xx_mc_err_probe,
.remove = mpc85xx_mc_err_remove,
.driver = {
.name = "mpc85xx_mc_err",
.owner = THIS_MODULE,
},
};
#ifdef CONFIG_MPC85xx
static void __init mpc85xx_mc_clear_rfxe(void *data)
{
orig_hid1[smp_processor_id()] = mfspr(SPRN_HID1);
mtspr(SPRN_HID1, (orig_hid1[smp_processor_id()] & ~0x20000));
}
#endif
static int __init mpc85xx_mc_init(void)
{
int res = 0;
printk(KERN_INFO "Freescale(R) MPC85xx EDAC driver, "
"(C) 2006 Montavista Software\n");
/* make sure error reporting method is sane */
switch (edac_op_state) {
case EDAC_OPSTATE_POLL:
case EDAC_OPSTATE_INT:
break;
default:
edac_op_state = EDAC_OPSTATE_INT;
break;
}
res = of_register_platform_driver(&mpc85xx_mc_err_driver);
if (res)
printk(KERN_WARNING EDAC_MOD_STR "MC fails to register\n");
res = of_register_platform_driver(&mpc85xx_l2_err_driver);
if (res)
printk(KERN_WARNING EDAC_MOD_STR "L2 fails to register\n");
#ifdef CONFIG_PCI
res = of_register_platform_driver(&mpc85xx_pci_err_driver);
if (res)
printk(KERN_WARNING EDAC_MOD_STR "PCI fails to register\n");
#endif
#ifdef CONFIG_MPC85xx
/*
* need to clear HID1[RFXE] to disable machine check int
* so we can catch it
*/
if (edac_op_state == EDAC_OPSTATE_INT)
on_each_cpu(mpc85xx_mc_clear_rfxe, NULL, 0);
#endif
return 0;
}
module_init(mpc85xx_mc_init);
#ifdef CONFIG_MPC85xx
static void __exit mpc85xx_mc_restore_hid1(void *data)
{
mtspr(SPRN_HID1, orig_hid1[smp_processor_id()]);
}
#endif
static void __exit mpc85xx_mc_exit(void)
{
#ifdef CONFIG_MPC85xx
on_each_cpu(mpc85xx_mc_restore_hid1, NULL, 0);
#endif
#ifdef CONFIG_PCI
of_unregister_platform_driver(&mpc85xx_pci_err_driver);
#endif
of_unregister_platform_driver(&mpc85xx_l2_err_driver);
of_unregister_platform_driver(&mpc85xx_mc_err_driver);
}
module_exit(mpc85xx_mc_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Montavista Software, Inc.");
module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state,
"EDAC Error Reporting state: 0=Poll, 2=Interrupt");