kernel-fxtec-pro1x/net/ipv6/addrconf.c

3614 lines
87 KiB
C
Raw Normal View History

/*
* IPv6 Address [auto]configuration
* Linux INET6 implementation
*
* Authors:
* Pedro Roque <roque@di.fc.ul.pt>
* Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
*
* $Id: addrconf.c,v 1.69 2001/10/31 21:55:54 davem Exp $
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
/*
* Changes:
*
* Janos Farkas : delete timer on ifdown
* <chexum@bankinf.banki.hu>
* Andi Kleen : kill double kfree on module
* unload.
* Maciej W. Rozycki : FDDI support
* sekiya@USAGI : Don't send too many RS
* packets.
* yoshfuji@USAGI : Fixed interval between DAD
* packets.
* YOSHIFUJI Hideaki @USAGI : improved accuracy of
* address validation timer.
* YOSHIFUJI Hideaki @USAGI : Privacy Extensions (RFC3041)
* support.
* Yuji SEKIYA @USAGI : Don't assign a same IPv6
* address on a same interface.
* YOSHIFUJI Hideaki @USAGI : ARCnet support
* YOSHIFUJI Hideaki @USAGI : convert /proc/net/if_inet6 to
* seq_file.
*/
#include <linux/config.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/sched.h>
#include <linux/net.h>
#include <linux/in6.h>
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/if_arcnet.h>
#include <linux/if_infiniband.h>
#include <linux/route.h>
#include <linux/inetdevice.h>
#include <linux/init.h>
#ifdef CONFIG_SYSCTL
#include <linux/sysctl.h>
#endif
#include <linux/delay.h>
#include <linux/notifier.h>
#include <net/sock.h>
#include <net/snmp.h>
#include <net/ipv6.h>
#include <net/protocol.h>
#include <net/ndisc.h>
#include <net/ip6_route.h>
#include <net/addrconf.h>
#include <net/tcp.h>
#include <net/ip.h>
#include <linux/if_tunnel.h>
#include <linux/rtnetlink.h>
#ifdef CONFIG_IPV6_PRIVACY
#include <linux/random.h>
#include <linux/crypto.h>
#include <asm/scatterlist.h>
#endif
#include <asm/uaccess.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
/* Set to 3 to get tracing... */
#define ACONF_DEBUG 2
#if ACONF_DEBUG >= 3
#define ADBG(x) printk x
#else
#define ADBG(x)
#endif
#define INFINITY_LIFE_TIME 0xFFFFFFFF
#define TIME_DELTA(a,b) ((unsigned long)((long)(a) - (long)(b)))
#ifdef CONFIG_SYSCTL
static void addrconf_sysctl_register(struct inet6_dev *idev, struct ipv6_devconf *p);
static void addrconf_sysctl_unregister(struct ipv6_devconf *p);
#endif
#ifdef CONFIG_IPV6_PRIVACY
static int __ipv6_regen_rndid(struct inet6_dev *idev);
static int __ipv6_try_regen_rndid(struct inet6_dev *idev, struct in6_addr *tmpaddr);
static void ipv6_regen_rndid(unsigned long data);
static int desync_factor = MAX_DESYNC_FACTOR * HZ;
static struct crypto_tfm *md5_tfm;
static DEFINE_SPINLOCK(md5_tfm_lock);
#endif
static int ipv6_count_addresses(struct inet6_dev *idev);
/*
* Configured unicast address hash table
*/
static struct inet6_ifaddr *inet6_addr_lst[IN6_ADDR_HSIZE];
static DEFINE_RWLOCK(addrconf_hash_lock);
/* Protects inet6 devices */
DEFINE_RWLOCK(addrconf_lock);
static void addrconf_verify(unsigned long);
static struct timer_list addr_chk_timer =
TIMER_INITIALIZER(addrconf_verify, 0, 0);
static DEFINE_SPINLOCK(addrconf_verify_lock);
static void addrconf_join_anycast(struct inet6_ifaddr *ifp);
static void addrconf_leave_anycast(struct inet6_ifaddr *ifp);
static int addrconf_ifdown(struct net_device *dev, int how);
static void addrconf_dad_start(struct inet6_ifaddr *ifp, u32 flags);
static void addrconf_dad_timer(unsigned long data);
static void addrconf_dad_completed(struct inet6_ifaddr *ifp);
static void addrconf_rs_timer(unsigned long data);
static void __ipv6_ifa_notify(int event, struct inet6_ifaddr *ifa);
static void ipv6_ifa_notify(int event, struct inet6_ifaddr *ifa);
static void inet6_prefix_notify(int event, struct inet6_dev *idev,
struct prefix_info *pinfo);
static int ipv6_chk_same_addr(const struct in6_addr *addr, struct net_device *dev);
static struct notifier_block *inet6addr_chain;
struct ipv6_devconf ipv6_devconf = {
.forwarding = 0,
.hop_limit = IPV6_DEFAULT_HOPLIMIT,
.mtu6 = IPV6_MIN_MTU,
.accept_ra = 1,
.accept_redirects = 1,
.autoconf = 1,
.force_mld_version = 0,
.dad_transmits = 1,
.rtr_solicits = MAX_RTR_SOLICITATIONS,
.rtr_solicit_interval = RTR_SOLICITATION_INTERVAL,
.rtr_solicit_delay = MAX_RTR_SOLICITATION_DELAY,
#ifdef CONFIG_IPV6_PRIVACY
.use_tempaddr = 0,
.temp_valid_lft = TEMP_VALID_LIFETIME,
.temp_prefered_lft = TEMP_PREFERRED_LIFETIME,
.regen_max_retry = REGEN_MAX_RETRY,
.max_desync_factor = MAX_DESYNC_FACTOR,
#endif
.max_addresses = IPV6_MAX_ADDRESSES,
};
static struct ipv6_devconf ipv6_devconf_dflt = {
.forwarding = 0,
.hop_limit = IPV6_DEFAULT_HOPLIMIT,
.mtu6 = IPV6_MIN_MTU,
.accept_ra = 1,
.accept_redirects = 1,
.autoconf = 1,
.dad_transmits = 1,
.rtr_solicits = MAX_RTR_SOLICITATIONS,
.rtr_solicit_interval = RTR_SOLICITATION_INTERVAL,
.rtr_solicit_delay = MAX_RTR_SOLICITATION_DELAY,
#ifdef CONFIG_IPV6_PRIVACY
.use_tempaddr = 0,
.temp_valid_lft = TEMP_VALID_LIFETIME,
.temp_prefered_lft = TEMP_PREFERRED_LIFETIME,
.regen_max_retry = REGEN_MAX_RETRY,
.max_desync_factor = MAX_DESYNC_FACTOR,
#endif
.max_addresses = IPV6_MAX_ADDRESSES,
};
/* IPv6 Wildcard Address and Loopback Address defined by RFC2553 */
#if 0
const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT;
#endif
const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT;
int ipv6_addr_type(const struct in6_addr *addr)
{
int type;
u32 st;
st = addr->s6_addr32[0];
if ((st & htonl(0xFF000000)) == htonl(0xFF000000)) {
type = IPV6_ADDR_MULTICAST;
switch((st & htonl(0x00FF0000))) {
case __constant_htonl(0x00010000):
type |= IPV6_ADDR_LOOPBACK;
break;
case __constant_htonl(0x00020000):
type |= IPV6_ADDR_LINKLOCAL;
break;
case __constant_htonl(0x00050000):
type |= IPV6_ADDR_SITELOCAL;
break;
};
return type;
}
type = IPV6_ADDR_UNICAST;
/* Consider all addresses with the first three bits different of
000 and 111 as finished.
*/
if ((st & htonl(0xE0000000)) != htonl(0x00000000) &&
(st & htonl(0xE0000000)) != htonl(0xE0000000))
return type;
if ((st & htonl(0xFFC00000)) == htonl(0xFE800000))
return (IPV6_ADDR_LINKLOCAL | type);
if ((st & htonl(0xFFC00000)) == htonl(0xFEC00000))
return (IPV6_ADDR_SITELOCAL | type);
if ((addr->s6_addr32[0] | addr->s6_addr32[1]) == 0) {
if (addr->s6_addr32[2] == 0) {
if (addr->s6_addr32[3] == 0)
return IPV6_ADDR_ANY;
if (addr->s6_addr32[3] == htonl(0x00000001))
return (IPV6_ADDR_LOOPBACK | type);
return (IPV6_ADDR_COMPATv4 | type);
}
if (addr->s6_addr32[2] == htonl(0x0000ffff))
return IPV6_ADDR_MAPPED;
}
st &= htonl(0xFF000000);
if (st == 0)
return IPV6_ADDR_RESERVED;
st &= htonl(0xFE000000);
if (st == htonl(0x02000000))
return IPV6_ADDR_RESERVED; /* for NSAP */
if (st == htonl(0x04000000))
return IPV6_ADDR_RESERVED; /* for IPX */
return type;
}
static void addrconf_del_timer(struct inet6_ifaddr *ifp)
{
if (del_timer(&ifp->timer))
__in6_ifa_put(ifp);
}
enum addrconf_timer_t
{
AC_NONE,
AC_DAD,
AC_RS,
};
static void addrconf_mod_timer(struct inet6_ifaddr *ifp,
enum addrconf_timer_t what,
unsigned long when)
{
if (!del_timer(&ifp->timer))
in6_ifa_hold(ifp);
switch (what) {
case AC_DAD:
ifp->timer.function = addrconf_dad_timer;
break;
case AC_RS:
ifp->timer.function = addrconf_rs_timer;
break;
default:;
}
ifp->timer.expires = jiffies + when;
add_timer(&ifp->timer);
}
/* Nobody refers to this device, we may destroy it. */
void in6_dev_finish_destroy(struct inet6_dev *idev)
{
struct net_device *dev = idev->dev;
BUG_TRAP(idev->addr_list==NULL);
BUG_TRAP(idev->mc_list==NULL);
#ifdef NET_REFCNT_DEBUG
printk(KERN_DEBUG "in6_dev_finish_destroy: %s\n", dev ? dev->name : "NIL");
#endif
dev_put(dev);
if (!idev->dead) {
printk("Freeing alive inet6 device %p\n", idev);
return;
}
snmp6_free_dev(idev);
kfree(idev);
}
static struct inet6_dev * ipv6_add_dev(struct net_device *dev)
{
struct inet6_dev *ndev;
ASSERT_RTNL();
if (dev->mtu < IPV6_MIN_MTU)
return NULL;
ndev = kmalloc(sizeof(struct inet6_dev), GFP_KERNEL);
if (ndev) {
memset(ndev, 0, sizeof(struct inet6_dev));
rwlock_init(&ndev->lock);
ndev->dev = dev;
memcpy(&ndev->cnf, &ipv6_devconf_dflt, sizeof(ndev->cnf));
ndev->cnf.mtu6 = dev->mtu;
ndev->cnf.sysctl = NULL;
ndev->nd_parms = neigh_parms_alloc(dev, &nd_tbl);
if (ndev->nd_parms == NULL) {
kfree(ndev);
return NULL;
}
/* We refer to the device */
dev_hold(dev);
if (snmp6_alloc_dev(ndev) < 0) {
ADBG((KERN_WARNING
"%s(): cannot allocate memory for statistics; dev=%s.\n",
__FUNCTION__, dev->name));
neigh_parms_release(&nd_tbl, ndev->nd_parms);
ndev->dead = 1;
in6_dev_finish_destroy(ndev);
return NULL;
}
if (snmp6_register_dev(ndev) < 0) {
ADBG((KERN_WARNING
"%s(): cannot create /proc/net/dev_snmp6/%s\n",
__FUNCTION__, dev->name));
neigh_parms_release(&nd_tbl, ndev->nd_parms);
ndev->dead = 1;
in6_dev_finish_destroy(ndev);
return NULL;
}
/* One reference from device. We must do this before
* we invoke __ipv6_regen_rndid().
*/
in6_dev_hold(ndev);
#ifdef CONFIG_IPV6_PRIVACY
get_random_bytes(ndev->rndid, sizeof(ndev->rndid));
get_random_bytes(ndev->entropy, sizeof(ndev->entropy));
init_timer(&ndev->regen_timer);
ndev->regen_timer.function = ipv6_regen_rndid;
ndev->regen_timer.data = (unsigned long) ndev;
if ((dev->flags&IFF_LOOPBACK) ||
dev->type == ARPHRD_TUNNEL ||
dev->type == ARPHRD_NONE ||
dev->type == ARPHRD_SIT) {
printk(KERN_INFO
"Disabled Privacy Extensions on device %p(%s)\n",
dev, dev->name);
ndev->cnf.use_tempaddr = -1;
} else {
in6_dev_hold(ndev);
ipv6_regen_rndid((unsigned long) ndev);
}
#endif
write_lock_bh(&addrconf_lock);
dev->ip6_ptr = ndev;
write_unlock_bh(&addrconf_lock);
ipv6_mc_init_dev(ndev);
ndev->tstamp = jiffies;
#ifdef CONFIG_SYSCTL
neigh_sysctl_register(dev, ndev->nd_parms, NET_IPV6,
NET_IPV6_NEIGH, "ipv6",
&ndisc_ifinfo_sysctl_change,
NULL);
addrconf_sysctl_register(ndev, &ndev->cnf);
#endif
}
return ndev;
}
static struct inet6_dev * ipv6_find_idev(struct net_device *dev)
{
struct inet6_dev *idev;
ASSERT_RTNL();
if ((idev = __in6_dev_get(dev)) == NULL) {
if ((idev = ipv6_add_dev(dev)) == NULL)
return NULL;
}
if (dev->flags&IFF_UP)
ipv6_mc_up(idev);
return idev;
}
#ifdef CONFIG_SYSCTL
static void dev_forward_change(struct inet6_dev *idev)
{
struct net_device *dev;
struct inet6_ifaddr *ifa;
struct in6_addr addr;
if (!idev)
return;
dev = idev->dev;
if (dev && (dev->flags & IFF_MULTICAST)) {
ipv6_addr_all_routers(&addr);
if (idev->cnf.forwarding)
ipv6_dev_mc_inc(dev, &addr);
else
ipv6_dev_mc_dec(dev, &addr);
}
for (ifa=idev->addr_list; ifa; ifa=ifa->if_next) {
if (idev->cnf.forwarding)
addrconf_join_anycast(ifa);
else
addrconf_leave_anycast(ifa);
}
}
static void addrconf_forward_change(void)
{
struct net_device *dev;
struct inet6_dev *idev;
read_lock(&dev_base_lock);
for (dev=dev_base; dev; dev=dev->next) {
read_lock(&addrconf_lock);
idev = __in6_dev_get(dev);
if (idev) {
int changed = (!idev->cnf.forwarding) ^ (!ipv6_devconf.forwarding);
idev->cnf.forwarding = ipv6_devconf.forwarding;
if (changed)
dev_forward_change(idev);
}
read_unlock(&addrconf_lock);
}
read_unlock(&dev_base_lock);
}
#endif
/* Nobody refers to this ifaddr, destroy it */
void inet6_ifa_finish_destroy(struct inet6_ifaddr *ifp)
{
BUG_TRAP(ifp->if_next==NULL);
BUG_TRAP(ifp->lst_next==NULL);
#ifdef NET_REFCNT_DEBUG
printk(KERN_DEBUG "inet6_ifa_finish_destroy\n");
#endif
in6_dev_put(ifp->idev);
if (del_timer(&ifp->timer))
printk("Timer is still running, when freeing ifa=%p\n", ifp);
if (!ifp->dead) {
printk("Freeing alive inet6 address %p\n", ifp);
return;
}
dst_release(&ifp->rt->u.dst);
kfree(ifp);
}
/* On success it returns ifp with increased reference count */
static struct inet6_ifaddr *
ipv6_add_addr(struct inet6_dev *idev, const struct in6_addr *addr, int pfxlen,
int scope, u32 flags)
{
struct inet6_ifaddr *ifa = NULL;
struct rt6_info *rt;
int hash;
int err = 0;
read_lock_bh(&addrconf_lock);
if (idev->dead) {
err = -ENODEV; /*XXX*/
goto out2;
}
write_lock(&addrconf_hash_lock);
/* Ignore adding duplicate addresses on an interface */
if (ipv6_chk_same_addr(addr, idev->dev)) {
ADBG(("ipv6_add_addr: already assigned\n"));
err = -EEXIST;
goto out;
}
ifa = kmalloc(sizeof(struct inet6_ifaddr), GFP_ATOMIC);
if (ifa == NULL) {
ADBG(("ipv6_add_addr: malloc failed\n"));
err = -ENOBUFS;
goto out;
}
rt = addrconf_dst_alloc(idev, addr, 0);
if (IS_ERR(rt)) {
err = PTR_ERR(rt);
goto out;
}
memset(ifa, 0, sizeof(struct inet6_ifaddr));
ipv6_addr_copy(&ifa->addr, addr);
spin_lock_init(&ifa->lock);
init_timer(&ifa->timer);
ifa->timer.data = (unsigned long) ifa;
ifa->scope = scope;
ifa->prefix_len = pfxlen;
ifa->flags = flags | IFA_F_TENTATIVE;
ifa->cstamp = ifa->tstamp = jiffies;
ifa->idev = idev;
in6_dev_hold(idev);
/* For caller */
in6_ifa_hold(ifa);
/* Add to big hash table */
hash = ipv6_addr_hash(addr);
ifa->lst_next = inet6_addr_lst[hash];
inet6_addr_lst[hash] = ifa;
in6_ifa_hold(ifa);
write_unlock(&addrconf_hash_lock);
write_lock(&idev->lock);
/* Add to inet6_dev unicast addr list. */
ifa->if_next = idev->addr_list;
idev->addr_list = ifa;
#ifdef CONFIG_IPV6_PRIVACY
if (ifa->flags&IFA_F_TEMPORARY) {
ifa->tmp_next = idev->tempaddr_list;
idev->tempaddr_list = ifa;
in6_ifa_hold(ifa);
}
#endif
ifa->rt = rt;
in6_ifa_hold(ifa);
write_unlock(&idev->lock);
out2:
read_unlock_bh(&addrconf_lock);
if (likely(err == 0))
notifier_call_chain(&inet6addr_chain, NETDEV_UP, ifa);
else {
kfree(ifa);
ifa = ERR_PTR(err);
}
return ifa;
out:
write_unlock(&addrconf_hash_lock);
goto out2;
}
/* This function wants to get referenced ifp and releases it before return */
static void ipv6_del_addr(struct inet6_ifaddr *ifp)
{
struct inet6_ifaddr *ifa, **ifap;
struct inet6_dev *idev = ifp->idev;
int hash;
int deleted = 0, onlink = 0;
unsigned long expires = jiffies;
hash = ipv6_addr_hash(&ifp->addr);
ifp->dead = 1;
write_lock_bh(&addrconf_hash_lock);
for (ifap = &inet6_addr_lst[hash]; (ifa=*ifap) != NULL;
ifap = &ifa->lst_next) {
if (ifa == ifp) {
*ifap = ifa->lst_next;
__in6_ifa_put(ifp);
ifa->lst_next = NULL;
break;
}
}
write_unlock_bh(&addrconf_hash_lock);
write_lock_bh(&idev->lock);
#ifdef CONFIG_IPV6_PRIVACY
if (ifp->flags&IFA_F_TEMPORARY) {
for (ifap = &idev->tempaddr_list; (ifa=*ifap) != NULL;
ifap = &ifa->tmp_next) {
if (ifa == ifp) {
*ifap = ifa->tmp_next;
if (ifp->ifpub) {
in6_ifa_put(ifp->ifpub);
ifp->ifpub = NULL;
}
__in6_ifa_put(ifp);
ifa->tmp_next = NULL;
break;
}
}
}
#endif
for (ifap = &idev->addr_list; (ifa=*ifap) != NULL;
ifap = &ifa->if_next) {
if (ifa == ifp) {
*ifap = ifa->if_next;
__in6_ifa_put(ifp);
ifa->if_next = NULL;
if (!(ifp->flags & IFA_F_PERMANENT) || onlink > 0)
break;
deleted = 1;
} else if (ifp->flags & IFA_F_PERMANENT) {
if (ipv6_prefix_equal(&ifa->addr, &ifp->addr,
ifp->prefix_len)) {
if (ifa->flags & IFA_F_PERMANENT) {
onlink = 1;
if (deleted)
break;
} else {
unsigned long lifetime;
if (!onlink)
onlink = -1;
spin_lock(&ifa->lock);
lifetime = min_t(unsigned long,
ifa->valid_lft, 0x7fffffffUL/HZ);
if (time_before(expires,
ifa->tstamp + lifetime * HZ))
expires = ifa->tstamp + lifetime * HZ;
spin_unlock(&ifa->lock);
}
}
}
}
write_unlock_bh(&idev->lock);
ipv6_ifa_notify(RTM_DELADDR, ifp);
notifier_call_chain(&inet6addr_chain,NETDEV_DOWN,ifp);
addrconf_del_timer(ifp);
/*
* Purge or update corresponding prefix
*
* 1) we don't purge prefix here if address was not permanent.
* prefix is managed by its own lifetime.
* 2) if there're no addresses, delete prefix.
* 3) if there're still other permanent address(es),
* corresponding prefix is still permanent.
* 4) otherwise, update prefix lifetime to the
* longest valid lifetime among the corresponding
* addresses on the device.
* Note: subsequent RA will update lifetime.
*
* --yoshfuji
*/
if ((ifp->flags & IFA_F_PERMANENT) && onlink < 1) {
struct in6_addr prefix;
struct rt6_info *rt;
ipv6_addr_prefix(&prefix, &ifp->addr, ifp->prefix_len);
rt = rt6_lookup(&prefix, NULL, ifp->idev->dev->ifindex, 1);
if (rt && ((rt->rt6i_flags & (RTF_GATEWAY | RTF_DEFAULT)) == 0)) {
if (onlink == 0) {
ip6_del_rt(rt, NULL, NULL, NULL);
rt = NULL;
} else if (!(rt->rt6i_flags & RTF_EXPIRES)) {
rt->rt6i_expires = expires;
rt->rt6i_flags |= RTF_EXPIRES;
}
}
dst_release(&rt->u.dst);
}
in6_ifa_put(ifp);
}
#ifdef CONFIG_IPV6_PRIVACY
static int ipv6_create_tempaddr(struct inet6_ifaddr *ifp, struct inet6_ifaddr *ift)
{
struct inet6_dev *idev = ifp->idev;
struct in6_addr addr, *tmpaddr;
unsigned long tmp_prefered_lft, tmp_valid_lft, tmp_cstamp, tmp_tstamp;
int tmp_plen;
int ret = 0;
int max_addresses;
write_lock(&idev->lock);
if (ift) {
spin_lock_bh(&ift->lock);
memcpy(&addr.s6_addr[8], &ift->addr.s6_addr[8], 8);
spin_unlock_bh(&ift->lock);
tmpaddr = &addr;
} else {
tmpaddr = NULL;
}
retry:
in6_dev_hold(idev);
if (idev->cnf.use_tempaddr <= 0) {
write_unlock(&idev->lock);
printk(KERN_INFO
"ipv6_create_tempaddr(): use_tempaddr is disabled.\n");
in6_dev_put(idev);
ret = -1;
goto out;
}
spin_lock_bh(&ifp->lock);
if (ifp->regen_count++ >= idev->cnf.regen_max_retry) {
idev->cnf.use_tempaddr = -1; /*XXX*/
spin_unlock_bh(&ifp->lock);
write_unlock(&idev->lock);
printk(KERN_WARNING
"ipv6_create_tempaddr(): regeneration time exceeded. disabled temporary address support.\n");
in6_dev_put(idev);
ret = -1;
goto out;
}
in6_ifa_hold(ifp);
memcpy(addr.s6_addr, ifp->addr.s6_addr, 8);
if (__ipv6_try_regen_rndid(idev, tmpaddr) < 0) {
spin_unlock_bh(&ifp->lock);
write_unlock(&idev->lock);
printk(KERN_WARNING
"ipv6_create_tempaddr(): regeneration of randomized interface id failed.\n");
in6_ifa_put(ifp);
in6_dev_put(idev);
ret = -1;
goto out;
}
memcpy(&addr.s6_addr[8], idev->rndid, 8);
tmp_valid_lft = min_t(__u32,
ifp->valid_lft,
idev->cnf.temp_valid_lft);
tmp_prefered_lft = min_t(__u32,
ifp->prefered_lft,
idev->cnf.temp_prefered_lft - desync_factor / HZ);
tmp_plen = ifp->prefix_len;
max_addresses = idev->cnf.max_addresses;
tmp_cstamp = ifp->cstamp;
tmp_tstamp = ifp->tstamp;
spin_unlock_bh(&ifp->lock);
write_unlock(&idev->lock);
ift = !max_addresses ||
ipv6_count_addresses(idev) < max_addresses ?
ipv6_add_addr(idev, &addr, tmp_plen,
ipv6_addr_type(&addr)&IPV6_ADDR_SCOPE_MASK, IFA_F_TEMPORARY) : NULL;
if (!ift || IS_ERR(ift)) {
in6_ifa_put(ifp);
in6_dev_put(idev);
printk(KERN_INFO
"ipv6_create_tempaddr(): retry temporary address regeneration.\n");
tmpaddr = &addr;
write_lock(&idev->lock);
goto retry;
}
spin_lock_bh(&ift->lock);
ift->ifpub = ifp;
ift->valid_lft = tmp_valid_lft;
ift->prefered_lft = tmp_prefered_lft;
ift->cstamp = tmp_cstamp;
ift->tstamp = tmp_tstamp;
spin_unlock_bh(&ift->lock);
addrconf_dad_start(ift, 0);
in6_ifa_put(ift);
in6_dev_put(idev);
out:
return ret;
}
#endif
/*
* Choose an appropriate source address
* should do:
* i) get an address with an appropriate scope
* ii) see if there is a specific route for the destination and use
* an address of the attached interface
* iii) don't use deprecated addresses
*/
static int inline ipv6_saddr_pref(const struct inet6_ifaddr *ifp, u8 invpref)
{
int pref;
pref = ifp->flags&IFA_F_DEPRECATED ? 0 : 2;
#ifdef CONFIG_IPV6_PRIVACY
pref |= (ifp->flags^invpref)&IFA_F_TEMPORARY ? 0 : 1;
#endif
return pref;
}
#ifdef CONFIG_IPV6_PRIVACY
#define IPV6_GET_SADDR_MAXSCORE(score) ((score) == 3)
#else
#define IPV6_GET_SADDR_MAXSCORE(score) (score)
#endif
int ipv6_dev_get_saddr(struct net_device *dev,
struct in6_addr *daddr, struct in6_addr *saddr)
{
struct inet6_ifaddr *ifp = NULL;
struct inet6_ifaddr *match = NULL;
struct inet6_dev *idev;
int scope;
int err;
int hiscore = -1, score;
scope = ipv6_addr_scope(daddr);
/*
* known dev
* search dev and walk through dev addresses
*/
if (dev) {
if (dev->flags & IFF_LOOPBACK)
scope = IFA_HOST;
read_lock(&addrconf_lock);
idev = __in6_dev_get(dev);
if (idev) {
read_lock_bh(&idev->lock);
for (ifp=idev->addr_list; ifp; ifp=ifp->if_next) {
if (ifp->scope == scope) {
if (ifp->flags&IFA_F_TENTATIVE)
continue;
#ifdef CONFIG_IPV6_PRIVACY
score = ipv6_saddr_pref(ifp, idev->cnf.use_tempaddr > 1 ? IFA_F_TEMPORARY : 0);
#else
score = ipv6_saddr_pref(ifp, 0);
#endif
if (score <= hiscore)
continue;
if (match)
in6_ifa_put(match);
match = ifp;
hiscore = score;
in6_ifa_hold(ifp);
if (IPV6_GET_SADDR_MAXSCORE(score)) {
read_unlock_bh(&idev->lock);
read_unlock(&addrconf_lock);
goto out;
}
}
}
read_unlock_bh(&idev->lock);
}
read_unlock(&addrconf_lock);
}
if (scope == IFA_LINK)
goto out;
/*
* dev == NULL or search failed for specified dev
*/
read_lock(&dev_base_lock);
read_lock(&addrconf_lock);
for (dev = dev_base; dev; dev=dev->next) {
idev = __in6_dev_get(dev);
if (idev) {
read_lock_bh(&idev->lock);
for (ifp=idev->addr_list; ifp; ifp=ifp->if_next) {
if (ifp->scope == scope) {
if (ifp->flags&IFA_F_TENTATIVE)
continue;
#ifdef CONFIG_IPV6_PRIVACY
score = ipv6_saddr_pref(ifp, idev->cnf.use_tempaddr > 1 ? IFA_F_TEMPORARY : 0);
#else
score = ipv6_saddr_pref(ifp, 0);
#endif
if (score <= hiscore)
continue;
if (match)
in6_ifa_put(match);
match = ifp;
hiscore = score;
in6_ifa_hold(ifp);
if (IPV6_GET_SADDR_MAXSCORE(score)) {
read_unlock_bh(&idev->lock);
goto out_unlock_base;
}
}
}
read_unlock_bh(&idev->lock);
}
}
out_unlock_base:
read_unlock(&addrconf_lock);
read_unlock(&dev_base_lock);
out:
err = -EADDRNOTAVAIL;
if (match) {
ipv6_addr_copy(saddr, &match->addr);
err = 0;
in6_ifa_put(match);
}
return err;
}
int ipv6_get_saddr(struct dst_entry *dst,
struct in6_addr *daddr, struct in6_addr *saddr)
{
return ipv6_dev_get_saddr(dst ? ((struct rt6_info *)dst)->rt6i_idev->dev : NULL, daddr, saddr);
}
int ipv6_get_lladdr(struct net_device *dev, struct in6_addr *addr)
{
struct inet6_dev *idev;
int err = -EADDRNOTAVAIL;
read_lock(&addrconf_lock);
if ((idev = __in6_dev_get(dev)) != NULL) {
struct inet6_ifaddr *ifp;
read_lock_bh(&idev->lock);
for (ifp=idev->addr_list; ifp; ifp=ifp->if_next) {
if (ifp->scope == IFA_LINK && !(ifp->flags&IFA_F_TENTATIVE)) {
ipv6_addr_copy(addr, &ifp->addr);
err = 0;
break;
}
}
read_unlock_bh(&idev->lock);
}
read_unlock(&addrconf_lock);
return err;
}
static int ipv6_count_addresses(struct inet6_dev *idev)
{
int cnt = 0;
struct inet6_ifaddr *ifp;
read_lock_bh(&idev->lock);
for (ifp=idev->addr_list; ifp; ifp=ifp->if_next)
cnt++;
read_unlock_bh(&idev->lock);
return cnt;
}
int ipv6_chk_addr(struct in6_addr *addr, struct net_device *dev, int strict)
{
struct inet6_ifaddr * ifp;
u8 hash = ipv6_addr_hash(addr);
read_lock_bh(&addrconf_hash_lock);
for(ifp = inet6_addr_lst[hash]; ifp; ifp=ifp->lst_next) {
if (ipv6_addr_equal(&ifp->addr, addr) &&
!(ifp->flags&IFA_F_TENTATIVE)) {
if (dev == NULL || ifp->idev->dev == dev ||
!(ifp->scope&(IFA_LINK|IFA_HOST) || strict))
break;
}
}
read_unlock_bh(&addrconf_hash_lock);
return ifp != NULL;
}
static
int ipv6_chk_same_addr(const struct in6_addr *addr, struct net_device *dev)
{
struct inet6_ifaddr * ifp;
u8 hash = ipv6_addr_hash(addr);
for(ifp = inet6_addr_lst[hash]; ifp; ifp=ifp->lst_next) {
if (ipv6_addr_equal(&ifp->addr, addr)) {
if (dev == NULL || ifp->idev->dev == dev)
break;
}
}
return ifp != NULL;
}
struct inet6_ifaddr * ipv6_get_ifaddr(struct in6_addr *addr, struct net_device *dev, int strict)
{
struct inet6_ifaddr * ifp;
u8 hash = ipv6_addr_hash(addr);
read_lock_bh(&addrconf_hash_lock);
for(ifp = inet6_addr_lst[hash]; ifp; ifp=ifp->lst_next) {
if (ipv6_addr_equal(&ifp->addr, addr)) {
if (dev == NULL || ifp->idev->dev == dev ||
!(ifp->scope&(IFA_LINK|IFA_HOST) || strict)) {
in6_ifa_hold(ifp);
break;
}
}
}
read_unlock_bh(&addrconf_hash_lock);
return ifp;
}
int ipv6_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2)
{
const struct in6_addr *sk_rcv_saddr6 = &inet6_sk(sk)->rcv_saddr;
const struct in6_addr *sk2_rcv_saddr6 = tcp_v6_rcv_saddr(sk2);
u32 sk_rcv_saddr = inet_sk(sk)->rcv_saddr;
u32 sk2_rcv_saddr = tcp_v4_rcv_saddr(sk2);
int sk_ipv6only = ipv6_only_sock(sk);
int sk2_ipv6only = tcp_v6_ipv6only(sk2);
int addr_type = ipv6_addr_type(sk_rcv_saddr6);
int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
if (!sk2_rcv_saddr && !sk_ipv6only)
return 1;
if (addr_type2 == IPV6_ADDR_ANY &&
!(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
return 1;
if (addr_type == IPV6_ADDR_ANY &&
!(sk_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
return 1;
if (sk2_rcv_saddr6 &&
ipv6_addr_equal(sk_rcv_saddr6, sk2_rcv_saddr6))
return 1;
if (addr_type == IPV6_ADDR_MAPPED &&
!sk2_ipv6only &&
(!sk2_rcv_saddr || !sk_rcv_saddr || sk_rcv_saddr == sk2_rcv_saddr))
return 1;
return 0;
}
/* Gets referenced address, destroys ifaddr */
void addrconf_dad_failure(struct inet6_ifaddr *ifp)
{
if (net_ratelimit())
printk(KERN_INFO "%s: duplicate address detected!\n", ifp->idev->dev->name);
if (ifp->flags&IFA_F_PERMANENT) {
spin_lock_bh(&ifp->lock);
addrconf_del_timer(ifp);
ifp->flags |= IFA_F_TENTATIVE;
spin_unlock_bh(&ifp->lock);
in6_ifa_put(ifp);
#ifdef CONFIG_IPV6_PRIVACY
} else if (ifp->flags&IFA_F_TEMPORARY) {
struct inet6_ifaddr *ifpub;
spin_lock_bh(&ifp->lock);
ifpub = ifp->ifpub;
if (ifpub) {
in6_ifa_hold(ifpub);
spin_unlock_bh(&ifp->lock);
ipv6_create_tempaddr(ifpub, ifp);
in6_ifa_put(ifpub);
} else {
spin_unlock_bh(&ifp->lock);
}
ipv6_del_addr(ifp);
#endif
} else
ipv6_del_addr(ifp);
}
/* Join to solicited addr multicast group. */
void addrconf_join_solict(struct net_device *dev, struct in6_addr *addr)
{
struct in6_addr maddr;
if (dev->flags&(IFF_LOOPBACK|IFF_NOARP))
return;
addrconf_addr_solict_mult(addr, &maddr);
ipv6_dev_mc_inc(dev, &maddr);
}
void addrconf_leave_solict(struct inet6_dev *idev, struct in6_addr *addr)
{
struct in6_addr maddr;
if (idev->dev->flags&(IFF_LOOPBACK|IFF_NOARP))
return;
addrconf_addr_solict_mult(addr, &maddr);
__ipv6_dev_mc_dec(idev, &maddr);
}
void addrconf_join_anycast(struct inet6_ifaddr *ifp)
{
struct in6_addr addr;
ipv6_addr_prefix(&addr, &ifp->addr, ifp->prefix_len);
if (ipv6_addr_any(&addr))
return;
ipv6_dev_ac_inc(ifp->idev->dev, &addr);
}
void addrconf_leave_anycast(struct inet6_ifaddr *ifp)
{
struct in6_addr addr;
ipv6_addr_prefix(&addr, &ifp->addr, ifp->prefix_len);
if (ipv6_addr_any(&addr))
return;
__ipv6_dev_ac_dec(ifp->idev, &addr);
}
static int ipv6_generate_eui64(u8 *eui, struct net_device *dev)
{
switch (dev->type) {
case ARPHRD_ETHER:
case ARPHRD_FDDI:
case ARPHRD_IEEE802_TR:
if (dev->addr_len != ETH_ALEN)
return -1;
memcpy(eui, dev->dev_addr, 3);
memcpy(eui + 5, dev->dev_addr + 3, 3);
/*
* The zSeries OSA network cards can be shared among various
* OS instances, but the OSA cards have only one MAC address.
* This leads to duplicate address conflicts in conjunction
* with IPv6 if more than one instance uses the same card.
*
* The driver for these cards can deliver a unique 16-bit
* identifier for each instance sharing the same card. It is
* placed instead of 0xFFFE in the interface identifier. The
* "u" bit of the interface identifier is not inverted in this
* case. Hence the resulting interface identifier has local
* scope according to RFC2373.
*/
if (dev->dev_id) {
eui[3] = (dev->dev_id >> 8) & 0xFF;
eui[4] = dev->dev_id & 0xFF;
} else {
eui[3] = 0xFF;
eui[4] = 0xFE;
eui[0] ^= 2;
}
return 0;
case ARPHRD_ARCNET:
/* XXX: inherit EUI-64 from other interface -- yoshfuji */
if (dev->addr_len != ARCNET_ALEN)
return -1;
memset(eui, 0, 7);
eui[7] = *(u8*)dev->dev_addr;
return 0;
case ARPHRD_INFINIBAND:
if (dev->addr_len != INFINIBAND_ALEN)
return -1;
memcpy(eui, dev->dev_addr + 12, 8);
eui[0] |= 2;
return 0;
}
return -1;
}
static int ipv6_inherit_eui64(u8 *eui, struct inet6_dev *idev)
{
int err = -1;
struct inet6_ifaddr *ifp;
read_lock_bh(&idev->lock);
for (ifp=idev->addr_list; ifp; ifp=ifp->if_next) {
if (ifp->scope == IFA_LINK && !(ifp->flags&IFA_F_TENTATIVE)) {
memcpy(eui, ifp->addr.s6_addr+8, 8);
err = 0;
break;
}
}
read_unlock_bh(&idev->lock);
return err;
}
#ifdef CONFIG_IPV6_PRIVACY
/* (re)generation of randomized interface identifier (RFC 3041 3.2, 3.5) */
static int __ipv6_regen_rndid(struct inet6_dev *idev)
{
struct net_device *dev;
struct scatterlist sg[2];
sg[0].page = virt_to_page(idev->entropy);
sg[0].offset = offset_in_page(idev->entropy);
sg[0].length = 8;
sg[1].page = virt_to_page(idev->work_eui64);
sg[1].offset = offset_in_page(idev->work_eui64);
sg[1].length = 8;
dev = idev->dev;
if (ipv6_generate_eui64(idev->work_eui64, dev)) {
printk(KERN_INFO
"__ipv6_regen_rndid(idev=%p): cannot get EUI64 identifier; use random bytes.\n",
idev);
get_random_bytes(idev->work_eui64, sizeof(idev->work_eui64));
}
regen:
spin_lock(&md5_tfm_lock);
if (unlikely(md5_tfm == NULL)) {
spin_unlock(&md5_tfm_lock);
return -1;
}
crypto_digest_init(md5_tfm);
crypto_digest_update(md5_tfm, sg, 2);
crypto_digest_final(md5_tfm, idev->work_digest);
spin_unlock(&md5_tfm_lock);
memcpy(idev->rndid, &idev->work_digest[0], 8);
idev->rndid[0] &= ~0x02;
memcpy(idev->entropy, &idev->work_digest[8], 8);
/*
* <draft-ietf-ipngwg-temp-addresses-v2-00.txt>:
* check if generated address is not inappropriate
*
* - Reserved subnet anycast (RFC 2526)
* 11111101 11....11 1xxxxxxx
* - ISATAP (draft-ietf-ngtrans-isatap-13.txt) 5.1
* 00-00-5E-FE-xx-xx-xx-xx
* - value 0
* - XXX: already assigned to an address on the device
*/
if (idev->rndid[0] == 0xfd &&
(idev->rndid[1]&idev->rndid[2]&idev->rndid[3]&idev->rndid[4]&idev->rndid[5]&idev->rndid[6]) == 0xff &&
(idev->rndid[7]&0x80))
goto regen;
if ((idev->rndid[0]|idev->rndid[1]) == 0) {
if (idev->rndid[2] == 0x5e && idev->rndid[3] == 0xfe)
goto regen;
if ((idev->rndid[2]|idev->rndid[3]|idev->rndid[4]|idev->rndid[5]|idev->rndid[6]|idev->rndid[7]) == 0x00)
goto regen;
}
return 0;
}
static void ipv6_regen_rndid(unsigned long data)
{
struct inet6_dev *idev = (struct inet6_dev *) data;
unsigned long expires;
read_lock_bh(&addrconf_lock);
write_lock_bh(&idev->lock);
if (idev->dead)
goto out;
if (__ipv6_regen_rndid(idev) < 0)
goto out;
expires = jiffies +
idev->cnf.temp_prefered_lft * HZ -
idev->cnf.regen_max_retry * idev->cnf.dad_transmits * idev->nd_parms->retrans_time - desync_factor;
if (time_before(expires, jiffies)) {
printk(KERN_WARNING
"ipv6_regen_rndid(): too short regeneration interval; timer disabled for %s.\n",
idev->dev->name);
goto out;
}
if (!mod_timer(&idev->regen_timer, expires))
in6_dev_hold(idev);
out:
write_unlock_bh(&idev->lock);
read_unlock_bh(&addrconf_lock);
in6_dev_put(idev);
}
static int __ipv6_try_regen_rndid(struct inet6_dev *idev, struct in6_addr *tmpaddr) {
int ret = 0;
if (tmpaddr && memcmp(idev->rndid, &tmpaddr->s6_addr[8], 8) == 0)
ret = __ipv6_regen_rndid(idev);
return ret;
}
#endif
/*
* Add prefix route.
*/
static void
addrconf_prefix_route(struct in6_addr *pfx, int plen, struct net_device *dev,
unsigned long expires, u32 flags)
{
struct in6_rtmsg rtmsg;
memset(&rtmsg, 0, sizeof(rtmsg));
ipv6_addr_copy(&rtmsg.rtmsg_dst, pfx);
rtmsg.rtmsg_dst_len = plen;
rtmsg.rtmsg_metric = IP6_RT_PRIO_ADDRCONF;
rtmsg.rtmsg_ifindex = dev->ifindex;
rtmsg.rtmsg_info = expires;
rtmsg.rtmsg_flags = RTF_UP|flags;
rtmsg.rtmsg_type = RTMSG_NEWROUTE;
/* Prevent useless cloning on PtP SIT.
This thing is done here expecting that the whole
class of non-broadcast devices need not cloning.
*/
if (dev->type == ARPHRD_SIT && (dev->flags&IFF_POINTOPOINT))
rtmsg.rtmsg_flags |= RTF_NONEXTHOP;
ip6_route_add(&rtmsg, NULL, NULL, NULL);
}
/* Create "default" multicast route to the interface */
static void addrconf_add_mroute(struct net_device *dev)
{
struct in6_rtmsg rtmsg;
memset(&rtmsg, 0, sizeof(rtmsg));
ipv6_addr_set(&rtmsg.rtmsg_dst,
htonl(0xFF000000), 0, 0, 0);
rtmsg.rtmsg_dst_len = 8;
rtmsg.rtmsg_metric = IP6_RT_PRIO_ADDRCONF;
rtmsg.rtmsg_ifindex = dev->ifindex;
rtmsg.rtmsg_flags = RTF_UP;
rtmsg.rtmsg_type = RTMSG_NEWROUTE;
ip6_route_add(&rtmsg, NULL, NULL, NULL);
}
static void sit_route_add(struct net_device *dev)
{
struct in6_rtmsg rtmsg;
memset(&rtmsg, 0, sizeof(rtmsg));
rtmsg.rtmsg_type = RTMSG_NEWROUTE;
rtmsg.rtmsg_metric = IP6_RT_PRIO_ADDRCONF;
/* prefix length - 96 bits "::d.d.d.d" */
rtmsg.rtmsg_dst_len = 96;
rtmsg.rtmsg_flags = RTF_UP|RTF_NONEXTHOP;
rtmsg.rtmsg_ifindex = dev->ifindex;
ip6_route_add(&rtmsg, NULL, NULL, NULL);
}
static void addrconf_add_lroute(struct net_device *dev)
{
struct in6_addr addr;
ipv6_addr_set(&addr, htonl(0xFE800000), 0, 0, 0);
addrconf_prefix_route(&addr, 64, dev, 0, 0);
}
static struct inet6_dev *addrconf_add_dev(struct net_device *dev)
{
struct inet6_dev *idev;
ASSERT_RTNL();
if ((idev = ipv6_find_idev(dev)) == NULL)
return NULL;
/* Add default multicast route */
addrconf_add_mroute(dev);
/* Add link local route */
addrconf_add_lroute(dev);
return idev;
}
void addrconf_prefix_rcv(struct net_device *dev, u8 *opt, int len)
{
struct prefix_info *pinfo;
__u32 valid_lft;
__u32 prefered_lft;
int addr_type;
unsigned long rt_expires;
struct inet6_dev *in6_dev;
pinfo = (struct prefix_info *) opt;
if (len < sizeof(struct prefix_info)) {
ADBG(("addrconf: prefix option too short\n"));
return;
}
/*
* Validation checks ([ADDRCONF], page 19)
*/
addr_type = ipv6_addr_type(&pinfo->prefix);
if (addr_type & (IPV6_ADDR_MULTICAST|IPV6_ADDR_LINKLOCAL))
return;
valid_lft = ntohl(pinfo->valid);
prefered_lft = ntohl(pinfo->prefered);
if (prefered_lft > valid_lft) {
if (net_ratelimit())
printk(KERN_WARNING "addrconf: prefix option has invalid lifetime\n");
return;
}
in6_dev = in6_dev_get(dev);
if (in6_dev == NULL) {
if (net_ratelimit())
printk(KERN_DEBUG "addrconf: device %s not configured\n", dev->name);
return;
}
/*
* Two things going on here:
* 1) Add routes for on-link prefixes
* 2) Configure prefixes with the auto flag set
*/
/* Avoid arithmetic overflow. Really, we could
save rt_expires in seconds, likely valid_lft,
but it would require division in fib gc, that it
not good.
*/
if (valid_lft >= 0x7FFFFFFF/HZ)
rt_expires = 0;
else
rt_expires = jiffies + valid_lft * HZ;
if (pinfo->onlink) {
struct rt6_info *rt;
rt = rt6_lookup(&pinfo->prefix, NULL, dev->ifindex, 1);
if (rt && ((rt->rt6i_flags & (RTF_GATEWAY | RTF_DEFAULT)) == 0)) {
if (rt->rt6i_flags&RTF_EXPIRES) {
if (valid_lft == 0) {
ip6_del_rt(rt, NULL, NULL, NULL);
rt = NULL;
} else {
rt->rt6i_expires = rt_expires;
}
}
} else if (valid_lft) {
addrconf_prefix_route(&pinfo->prefix, pinfo->prefix_len,
dev, rt_expires, RTF_ADDRCONF|RTF_EXPIRES|RTF_PREFIX_RT);
}
if (rt)
dst_release(&rt->u.dst);
}
/* Try to figure out our local address for this prefix */
if (pinfo->autoconf && in6_dev->cnf.autoconf) {
struct inet6_ifaddr * ifp;
struct in6_addr addr;
int create = 0, update_lft = 0;
if (pinfo->prefix_len == 64) {
memcpy(&addr, &pinfo->prefix, 8);
if (ipv6_generate_eui64(addr.s6_addr + 8, dev) &&
ipv6_inherit_eui64(addr.s6_addr + 8, in6_dev)) {
in6_dev_put(in6_dev);
return;
}
goto ok;
}
if (net_ratelimit())
printk(KERN_DEBUG "IPv6 addrconf: prefix with wrong length %d\n",
pinfo->prefix_len);
in6_dev_put(in6_dev);
return;
ok:
ifp = ipv6_get_ifaddr(&addr, dev, 1);
if (ifp == NULL && valid_lft) {
int max_addresses = in6_dev->cnf.max_addresses;
/* Do not allow to create too much of autoconfigured
* addresses; this would be too easy way to crash kernel.
*/
if (!max_addresses ||
ipv6_count_addresses(in6_dev) < max_addresses)
ifp = ipv6_add_addr(in6_dev, &addr, pinfo->prefix_len,
addr_type&IPV6_ADDR_SCOPE_MASK, 0);
if (!ifp || IS_ERR(ifp)) {
in6_dev_put(in6_dev);
return;
}
update_lft = create = 1;
ifp->cstamp = jiffies;
addrconf_dad_start(ifp, RTF_ADDRCONF|RTF_PREFIX_RT);
}
if (ifp) {
int flags;
unsigned long now;
#ifdef CONFIG_IPV6_PRIVACY
struct inet6_ifaddr *ift;
#endif
u32 stored_lft;
/* update lifetime (RFC2462 5.5.3 e) */
spin_lock(&ifp->lock);
now = jiffies;
if (ifp->valid_lft > (now - ifp->tstamp) / HZ)
stored_lft = ifp->valid_lft - (now - ifp->tstamp) / HZ;
else
stored_lft = 0;
if (!update_lft && stored_lft) {
if (valid_lft > MIN_VALID_LIFETIME ||
valid_lft > stored_lft)
update_lft = 1;
else if (stored_lft <= MIN_VALID_LIFETIME) {
/* valid_lft <= stored_lft is always true */
/* XXX: IPsec */
update_lft = 0;
} else {
valid_lft = MIN_VALID_LIFETIME;
if (valid_lft < prefered_lft)
prefered_lft = valid_lft;
update_lft = 1;
}
}
if (update_lft) {
ifp->valid_lft = valid_lft;
ifp->prefered_lft = prefered_lft;
ifp->tstamp = now;
flags = ifp->flags;
ifp->flags &= ~IFA_F_DEPRECATED;
spin_unlock(&ifp->lock);
if (!(flags&IFA_F_TENTATIVE))
ipv6_ifa_notify(0, ifp);
} else
spin_unlock(&ifp->lock);
#ifdef CONFIG_IPV6_PRIVACY
read_lock_bh(&in6_dev->lock);
/* update all temporary addresses in the list */
for (ift=in6_dev->tempaddr_list; ift; ift=ift->tmp_next) {
/*
* When adjusting the lifetimes of an existing
* temporary address, only lower the lifetimes.
* Implementations must not increase the
* lifetimes of an existing temporary address
* when processing a Prefix Information Option.
*/
spin_lock(&ift->lock);
flags = ift->flags;
if (ift->valid_lft > valid_lft &&
ift->valid_lft - valid_lft > (jiffies - ift->tstamp) / HZ)
ift->valid_lft = valid_lft + (jiffies - ift->tstamp) / HZ;
if (ift->prefered_lft > prefered_lft &&
ift->prefered_lft - prefered_lft > (jiffies - ift->tstamp) / HZ)
ift->prefered_lft = prefered_lft + (jiffies - ift->tstamp) / HZ;
spin_unlock(&ift->lock);
if (!(flags&IFA_F_TENTATIVE))
ipv6_ifa_notify(0, ift);
}
if (create && in6_dev->cnf.use_tempaddr > 0) {
/*
* When a new public address is created as described in [ADDRCONF],
* also create a new temporary address.
*/
read_unlock_bh(&in6_dev->lock);
ipv6_create_tempaddr(ifp, NULL);
} else {
read_unlock_bh(&in6_dev->lock);
}
#endif
in6_ifa_put(ifp);
addrconf_verify(0);
}
}
inet6_prefix_notify(RTM_NEWPREFIX, in6_dev, pinfo);
in6_dev_put(in6_dev);
}
/*
* Set destination address.
* Special case for SIT interfaces where we create a new "virtual"
* device.
*/
int addrconf_set_dstaddr(void __user *arg)
{
struct in6_ifreq ireq;
struct net_device *dev;
int err = -EINVAL;
rtnl_lock();
err = -EFAULT;
if (copy_from_user(&ireq, arg, sizeof(struct in6_ifreq)))
goto err_exit;
dev = __dev_get_by_index(ireq.ifr6_ifindex);
err = -ENODEV;
if (dev == NULL)
goto err_exit;
if (dev->type == ARPHRD_SIT) {
struct ifreq ifr;
mm_segment_t oldfs;
struct ip_tunnel_parm p;
err = -EADDRNOTAVAIL;
if (!(ipv6_addr_type(&ireq.ifr6_addr) & IPV6_ADDR_COMPATv4))
goto err_exit;
memset(&p, 0, sizeof(p));
p.iph.daddr = ireq.ifr6_addr.s6_addr32[3];
p.iph.saddr = 0;
p.iph.version = 4;
p.iph.ihl = 5;
p.iph.protocol = IPPROTO_IPV6;
p.iph.ttl = 64;
ifr.ifr_ifru.ifru_data = (void __user *)&p;
oldfs = get_fs(); set_fs(KERNEL_DS);
err = dev->do_ioctl(dev, &ifr, SIOCADDTUNNEL);
set_fs(oldfs);
if (err == 0) {
err = -ENOBUFS;
if ((dev = __dev_get_by_name(p.name)) == NULL)
goto err_exit;
err = dev_open(dev);
}
}
err_exit:
rtnl_unlock();
return err;
}
/*
* Manual configuration of address on an interface
*/
static int inet6_addr_add(int ifindex, struct in6_addr *pfx, int plen)
{
struct inet6_ifaddr *ifp;
struct inet6_dev *idev;
struct net_device *dev;
int scope;
ASSERT_RTNL();
if ((dev = __dev_get_by_index(ifindex)) == NULL)
return -ENODEV;
if (!(dev->flags&IFF_UP))
return -ENETDOWN;
if ((idev = addrconf_add_dev(dev)) == NULL)
return -ENOBUFS;
scope = ipv6_addr_scope(pfx);
ifp = ipv6_add_addr(idev, pfx, plen, scope, IFA_F_PERMANENT);
if (!IS_ERR(ifp)) {
addrconf_dad_start(ifp, 0);
in6_ifa_put(ifp);
return 0;
}
return PTR_ERR(ifp);
}
static int inet6_addr_del(int ifindex, struct in6_addr *pfx, int plen)
{
struct inet6_ifaddr *ifp;
struct inet6_dev *idev;
struct net_device *dev;
if ((dev = __dev_get_by_index(ifindex)) == NULL)
return -ENODEV;
if ((idev = __in6_dev_get(dev)) == NULL)
return -ENXIO;
read_lock_bh(&idev->lock);
for (ifp = idev->addr_list; ifp; ifp=ifp->if_next) {
if (ifp->prefix_len == plen &&
ipv6_addr_equal(pfx, &ifp->addr)) {
in6_ifa_hold(ifp);
read_unlock_bh(&idev->lock);
ipv6_del_addr(ifp);
/* If the last address is deleted administratively,
disable IPv6 on this interface.
*/
if (idev->addr_list == NULL)
addrconf_ifdown(idev->dev, 1);
return 0;
}
}
read_unlock_bh(&idev->lock);
return -EADDRNOTAVAIL;
}
int addrconf_add_ifaddr(void __user *arg)
{
struct in6_ifreq ireq;
int err;
if (!capable(CAP_NET_ADMIN))
return -EPERM;
if (copy_from_user(&ireq, arg, sizeof(struct in6_ifreq)))
return -EFAULT;
rtnl_lock();
err = inet6_addr_add(ireq.ifr6_ifindex, &ireq.ifr6_addr, ireq.ifr6_prefixlen);
rtnl_unlock();
return err;
}
int addrconf_del_ifaddr(void __user *arg)
{
struct in6_ifreq ireq;
int err;
if (!capable(CAP_NET_ADMIN))
return -EPERM;
if (copy_from_user(&ireq, arg, sizeof(struct in6_ifreq)))
return -EFAULT;
rtnl_lock();
err = inet6_addr_del(ireq.ifr6_ifindex, &ireq.ifr6_addr, ireq.ifr6_prefixlen);
rtnl_unlock();
return err;
}
static void sit_add_v4_addrs(struct inet6_dev *idev)
{
struct inet6_ifaddr * ifp;
struct in6_addr addr;
struct net_device *dev;
int scope;
ASSERT_RTNL();
memset(&addr, 0, sizeof(struct in6_addr));
memcpy(&addr.s6_addr32[3], idev->dev->dev_addr, 4);
if (idev->dev->flags&IFF_POINTOPOINT) {
addr.s6_addr32[0] = htonl(0xfe800000);
scope = IFA_LINK;
} else {
scope = IPV6_ADDR_COMPATv4;
}
if (addr.s6_addr32[3]) {
ifp = ipv6_add_addr(idev, &addr, 128, scope, IFA_F_PERMANENT);
if (!IS_ERR(ifp)) {
spin_lock_bh(&ifp->lock);
ifp->flags &= ~IFA_F_TENTATIVE;
spin_unlock_bh(&ifp->lock);
ipv6_ifa_notify(RTM_NEWADDR, ifp);
in6_ifa_put(ifp);
}
return;
}
for (dev = dev_base; dev != NULL; dev = dev->next) {
struct in_device * in_dev = __in_dev_get(dev);
if (in_dev && (dev->flags & IFF_UP)) {
struct in_ifaddr * ifa;
int flag = scope;
for (ifa = in_dev->ifa_list; ifa; ifa = ifa->ifa_next) {
int plen;
addr.s6_addr32[3] = ifa->ifa_local;
if (ifa->ifa_scope == RT_SCOPE_LINK)
continue;
if (ifa->ifa_scope >= RT_SCOPE_HOST) {
if (idev->dev->flags&IFF_POINTOPOINT)
continue;
flag |= IFA_HOST;
}
if (idev->dev->flags&IFF_POINTOPOINT)
plen = 64;
else
plen = 96;
ifp = ipv6_add_addr(idev, &addr, plen, flag,
IFA_F_PERMANENT);
if (!IS_ERR(ifp)) {
spin_lock_bh(&ifp->lock);
ifp->flags &= ~IFA_F_TENTATIVE;
spin_unlock_bh(&ifp->lock);
ipv6_ifa_notify(RTM_NEWADDR, ifp);
in6_ifa_put(ifp);
}
}
}
}
}
static void init_loopback(struct net_device *dev)
{
struct inet6_dev *idev;
struct inet6_ifaddr * ifp;
/* ::1 */
ASSERT_RTNL();
if ((idev = ipv6_find_idev(dev)) == NULL) {
printk(KERN_DEBUG "init loopback: add_dev failed\n");
return;
}
ifp = ipv6_add_addr(idev, &in6addr_loopback, 128, IFA_HOST, IFA_F_PERMANENT);
if (!IS_ERR(ifp)) {
spin_lock_bh(&ifp->lock);
ifp->flags &= ~IFA_F_TENTATIVE;
spin_unlock_bh(&ifp->lock);
ipv6_ifa_notify(RTM_NEWADDR, ifp);
in6_ifa_put(ifp);
}
}
static void addrconf_add_linklocal(struct inet6_dev *idev, struct in6_addr *addr)
{
struct inet6_ifaddr * ifp;
ifp = ipv6_add_addr(idev, addr, 64, IFA_LINK, IFA_F_PERMANENT);
if (!IS_ERR(ifp)) {
addrconf_dad_start(ifp, 0);
in6_ifa_put(ifp);
}
}
static void addrconf_dev_config(struct net_device *dev)
{
struct in6_addr addr;
struct inet6_dev * idev;
ASSERT_RTNL();
if ((dev->type != ARPHRD_ETHER) &&
(dev->type != ARPHRD_FDDI) &&
(dev->type != ARPHRD_IEEE802_TR) &&
(dev->type != ARPHRD_ARCNET) &&
(dev->type != ARPHRD_INFINIBAND)) {
/* Alas, we support only Ethernet autoconfiguration. */
return;
}
idev = addrconf_add_dev(dev);
if (idev == NULL)
return;
memset(&addr, 0, sizeof(struct in6_addr));
addr.s6_addr32[0] = htonl(0xFE800000);
if (ipv6_generate_eui64(addr.s6_addr + 8, dev) == 0)
addrconf_add_linklocal(idev, &addr);
}
static void addrconf_sit_config(struct net_device *dev)
{
struct inet6_dev *idev;
ASSERT_RTNL();
/*
* Configure the tunnel with one of our IPv4
* addresses... we should configure all of
* our v4 addrs in the tunnel
*/
if ((idev = ipv6_find_idev(dev)) == NULL) {
printk(KERN_DEBUG "init sit: add_dev failed\n");
return;
}
sit_add_v4_addrs(idev);
if (dev->flags&IFF_POINTOPOINT) {
addrconf_add_mroute(dev);
addrconf_add_lroute(dev);
} else
sit_route_add(dev);
}
static inline int
ipv6_inherit_linklocal(struct inet6_dev *idev, struct net_device *link_dev)
{
struct in6_addr lladdr;
if (!ipv6_get_lladdr(link_dev, &lladdr)) {
addrconf_add_linklocal(idev, &lladdr);
return 0;
}
return -1;
}
static void ip6_tnl_add_linklocal(struct inet6_dev *idev)
{
struct net_device *link_dev;
/* first try to inherit the link-local address from the link device */
if (idev->dev->iflink &&
(link_dev = __dev_get_by_index(idev->dev->iflink))) {
if (!ipv6_inherit_linklocal(idev, link_dev))
return;
}
/* then try to inherit it from any device */
for (link_dev = dev_base; link_dev; link_dev = link_dev->next) {
if (!ipv6_inherit_linklocal(idev, link_dev))
return;
}
printk(KERN_DEBUG "init ip6-ip6: add_linklocal failed\n");
}
/*
* Autoconfigure tunnel with a link-local address so routing protocols,
* DHCPv6, MLD etc. can be run over the virtual link
*/
static void addrconf_ip6_tnl_config(struct net_device *dev)
{
struct inet6_dev *idev;
ASSERT_RTNL();
if ((idev = addrconf_add_dev(dev)) == NULL) {
printk(KERN_DEBUG "init ip6-ip6: add_dev failed\n");
return;
}
ip6_tnl_add_linklocal(idev);
addrconf_add_mroute(dev);
}
static int addrconf_notify(struct notifier_block *this, unsigned long event,
void * data)
{
struct net_device *dev = (struct net_device *) data;
struct inet6_dev *idev = __in6_dev_get(dev);
switch(event) {
case NETDEV_UP:
switch(dev->type) {
case ARPHRD_SIT:
addrconf_sit_config(dev);
break;
case ARPHRD_TUNNEL6:
addrconf_ip6_tnl_config(dev);
break;
case ARPHRD_LOOPBACK:
init_loopback(dev);
break;
default:
addrconf_dev_config(dev);
break;
};
if (idev) {
/* If the MTU changed during the interface down, when the
interface up, the changed MTU must be reflected in the
idev as well as routers.
*/
if (idev->cnf.mtu6 != dev->mtu && dev->mtu >= IPV6_MIN_MTU) {
rt6_mtu_change(dev, dev->mtu);
idev->cnf.mtu6 = dev->mtu;
}
idev->tstamp = jiffies;
inet6_ifinfo_notify(RTM_NEWLINK, idev);
/* If the changed mtu during down is lower than IPV6_MIN_MTU
stop IPv6 on this interface.
*/
if (dev->mtu < IPV6_MIN_MTU)
addrconf_ifdown(dev, event != NETDEV_DOWN);
}
break;
case NETDEV_CHANGEMTU:
if ( idev && dev->mtu >= IPV6_MIN_MTU) {
rt6_mtu_change(dev, dev->mtu);
idev->cnf.mtu6 = dev->mtu;
break;
}
/* MTU falled under IPV6_MIN_MTU. Stop IPv6 on this interface. */
case NETDEV_DOWN:
case NETDEV_UNREGISTER:
/*
* Remove all addresses from this interface.
*/
addrconf_ifdown(dev, event != NETDEV_DOWN);
break;
case NETDEV_CHANGE:
break;
case NETDEV_CHANGENAME:
#ifdef CONFIG_SYSCTL
if (idev) {
addrconf_sysctl_unregister(&idev->cnf);
neigh_sysctl_unregister(idev->nd_parms);
neigh_sysctl_register(dev, idev->nd_parms,
NET_IPV6, NET_IPV6_NEIGH, "ipv6",
&ndisc_ifinfo_sysctl_change,
NULL);
addrconf_sysctl_register(idev, &idev->cnf);
}
#endif
break;
};
return NOTIFY_OK;
}
/*
* addrconf module should be notified of a device going up
*/
static struct notifier_block ipv6_dev_notf = {
.notifier_call = addrconf_notify,
.priority = 0
};
static int addrconf_ifdown(struct net_device *dev, int how)
{
struct inet6_dev *idev;
struct inet6_ifaddr *ifa, **bifa;
int i;
ASSERT_RTNL();
if (dev == &loopback_dev && how == 1)
how = 0;
rt6_ifdown(dev);
neigh_ifdown(&nd_tbl, dev);
idev = __in6_dev_get(dev);
if (idev == NULL)
return -ENODEV;
/* Step 1: remove reference to ipv6 device from parent device.
Do not dev_put!
*/
if (how == 1) {
write_lock_bh(&addrconf_lock);
dev->ip6_ptr = NULL;
idev->dead = 1;
write_unlock_bh(&addrconf_lock);
/* Step 1.5: remove snmp6 entry */
snmp6_unregister_dev(idev);
}
/* Step 2: clear hash table */
for (i=0; i<IN6_ADDR_HSIZE; i++) {
bifa = &inet6_addr_lst[i];
write_lock_bh(&addrconf_hash_lock);
while ((ifa = *bifa) != NULL) {
if (ifa->idev == idev) {
*bifa = ifa->lst_next;
ifa->lst_next = NULL;
addrconf_del_timer(ifa);
in6_ifa_put(ifa);
continue;
}
bifa = &ifa->lst_next;
}
write_unlock_bh(&addrconf_hash_lock);
}
write_lock_bh(&idev->lock);
/* Step 3: clear flags for stateless addrconf */
if (how != 1)
idev->if_flags &= ~(IF_RS_SENT|IF_RA_RCVD);
/* Step 4: clear address list */
#ifdef CONFIG_IPV6_PRIVACY
if (how == 1 && del_timer(&idev->regen_timer))
in6_dev_put(idev);
/* clear tempaddr list */
while ((ifa = idev->tempaddr_list) != NULL) {
idev->tempaddr_list = ifa->tmp_next;
ifa->tmp_next = NULL;
ifa->dead = 1;
write_unlock_bh(&idev->lock);
spin_lock_bh(&ifa->lock);
if (ifa->ifpub) {
in6_ifa_put(ifa->ifpub);
ifa->ifpub = NULL;
}
spin_unlock_bh(&ifa->lock);
in6_ifa_put(ifa);
write_lock_bh(&idev->lock);
}
#endif
while ((ifa = idev->addr_list) != NULL) {
idev->addr_list = ifa->if_next;
ifa->if_next = NULL;
ifa->dead = 1;
addrconf_del_timer(ifa);
write_unlock_bh(&idev->lock);
__ipv6_ifa_notify(RTM_DELADDR, ifa);
in6_ifa_put(ifa);
write_lock_bh(&idev->lock);
}
write_unlock_bh(&idev->lock);
/* Step 5: Discard multicast list */
if (how == 1)
ipv6_mc_destroy_dev(idev);
else
ipv6_mc_down(idev);
/* Step 5: netlink notification of this interface */
idev->tstamp = jiffies;
inet6_ifinfo_notify(RTM_NEWLINK, idev);
/* Shot the device (if unregistered) */
if (how == 1) {
#ifdef CONFIG_SYSCTL
addrconf_sysctl_unregister(&idev->cnf);
neigh_sysctl_unregister(idev->nd_parms);
#endif
neigh_parms_release(&nd_tbl, idev->nd_parms);
neigh_ifdown(&nd_tbl, dev);
in6_dev_put(idev);
}
return 0;
}
static void addrconf_rs_timer(unsigned long data)
{
struct inet6_ifaddr *ifp = (struct inet6_ifaddr *) data;
if (ifp->idev->cnf.forwarding)
goto out;
if (ifp->idev->if_flags & IF_RA_RCVD) {
/*
* Announcement received after solicitation
* was sent
*/
goto out;
}
spin_lock(&ifp->lock);
if (ifp->probes++ < ifp->idev->cnf.rtr_solicits) {
struct in6_addr all_routers;
/* The wait after the last probe can be shorter */
addrconf_mod_timer(ifp, AC_RS,
(ifp->probes == ifp->idev->cnf.rtr_solicits) ?
ifp->idev->cnf.rtr_solicit_delay :
ifp->idev->cnf.rtr_solicit_interval);
spin_unlock(&ifp->lock);
ipv6_addr_all_routers(&all_routers);
ndisc_send_rs(ifp->idev->dev, &ifp->addr, &all_routers);
} else {
spin_unlock(&ifp->lock);
/*
* Note: we do not support deprecated "all on-link"
* assumption any longer.
*/
printk(KERN_DEBUG "%s: no IPv6 routers present\n",
ifp->idev->dev->name);
}
out:
in6_ifa_put(ifp);
}
/*
* Duplicate Address Detection
*/
static void addrconf_dad_start(struct inet6_ifaddr *ifp, u32 flags)
{
struct inet6_dev *idev = ifp->idev;
struct net_device *dev = idev->dev;
unsigned long rand_num;
addrconf_join_solict(dev, &ifp->addr);
if (ifp->prefix_len != 128 && (ifp->flags&IFA_F_PERMANENT))
addrconf_prefix_route(&ifp->addr, ifp->prefix_len, dev, 0,
flags);
net_srandom(ifp->addr.s6_addr32[3]);
rand_num = net_random() % (idev->cnf.rtr_solicit_delay ? : 1);
read_lock_bh(&idev->lock);
if (ifp->dead)
goto out;
spin_lock_bh(&ifp->lock);
if (dev->flags&(IFF_NOARP|IFF_LOOPBACK) ||
!(ifp->flags&IFA_F_TENTATIVE)) {
ifp->flags &= ~IFA_F_TENTATIVE;
spin_unlock_bh(&ifp->lock);
read_unlock_bh(&idev->lock);
addrconf_dad_completed(ifp);
return;
}
ifp->probes = idev->cnf.dad_transmits;
addrconf_mod_timer(ifp, AC_DAD, rand_num);
spin_unlock_bh(&ifp->lock);
out:
read_unlock_bh(&idev->lock);
}
static void addrconf_dad_timer(unsigned long data)
{
struct inet6_ifaddr *ifp = (struct inet6_ifaddr *) data;
struct inet6_dev *idev = ifp->idev;
struct in6_addr unspec;
struct in6_addr mcaddr;
read_lock_bh(&idev->lock);
if (idev->dead) {
read_unlock_bh(&idev->lock);
goto out;
}
spin_lock_bh(&ifp->lock);
if (ifp->probes == 0) {
/*
* DAD was successful
*/
ifp->flags &= ~IFA_F_TENTATIVE;
spin_unlock_bh(&ifp->lock);
read_unlock_bh(&idev->lock);
addrconf_dad_completed(ifp);
goto out;
}
ifp->probes--;
addrconf_mod_timer(ifp, AC_DAD, ifp->idev->nd_parms->retrans_time);
spin_unlock_bh(&ifp->lock);
read_unlock_bh(&idev->lock);
/* send a neighbour solicitation for our addr */
memset(&unspec, 0, sizeof(unspec));
addrconf_addr_solict_mult(&ifp->addr, &mcaddr);
ndisc_send_ns(ifp->idev->dev, NULL, &ifp->addr, &mcaddr, &unspec);
out:
in6_ifa_put(ifp);
}
static void addrconf_dad_completed(struct inet6_ifaddr *ifp)
{
struct net_device * dev = ifp->idev->dev;
/*
* Configure the address for reception. Now it is valid.
*/
ipv6_ifa_notify(RTM_NEWADDR, ifp);
/* If added prefix is link local and forwarding is off,
start sending router solicitations.
*/
if (ifp->idev->cnf.forwarding == 0 &&
ifp->idev->cnf.rtr_solicits > 0 &&
(dev->flags&IFF_LOOPBACK) == 0 &&
(ipv6_addr_type(&ifp->addr) & IPV6_ADDR_LINKLOCAL)) {
struct in6_addr all_routers;
ipv6_addr_all_routers(&all_routers);
/*
* If a host as already performed a random delay
* [...] as part of DAD [...] there is no need
* to delay again before sending the first RS
*/
ndisc_send_rs(ifp->idev->dev, &ifp->addr, &all_routers);
spin_lock_bh(&ifp->lock);
ifp->probes = 1;
ifp->idev->if_flags |= IF_RS_SENT;
addrconf_mod_timer(ifp, AC_RS, ifp->idev->cnf.rtr_solicit_interval);
spin_unlock_bh(&ifp->lock);
}
}
#ifdef CONFIG_PROC_FS
struct if6_iter_state {
int bucket;
};
static struct inet6_ifaddr *if6_get_first(struct seq_file *seq)
{
struct inet6_ifaddr *ifa = NULL;
struct if6_iter_state *state = seq->private;
for (state->bucket = 0; state->bucket < IN6_ADDR_HSIZE; ++state->bucket) {
ifa = inet6_addr_lst[state->bucket];
if (ifa)
break;
}
return ifa;
}
static struct inet6_ifaddr *if6_get_next(struct seq_file *seq, struct inet6_ifaddr *ifa)
{
struct if6_iter_state *state = seq->private;
ifa = ifa->lst_next;
try_again:
if (!ifa && ++state->bucket < IN6_ADDR_HSIZE) {
ifa = inet6_addr_lst[state->bucket];
goto try_again;
}
return ifa;
}
static struct inet6_ifaddr *if6_get_idx(struct seq_file *seq, loff_t pos)
{
struct inet6_ifaddr *ifa = if6_get_first(seq);
if (ifa)
while(pos && (ifa = if6_get_next(seq, ifa)) != NULL)
--pos;
return pos ? NULL : ifa;
}
static void *if6_seq_start(struct seq_file *seq, loff_t *pos)
{
read_lock_bh(&addrconf_hash_lock);
return if6_get_idx(seq, *pos);
}
static void *if6_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
struct inet6_ifaddr *ifa;
ifa = if6_get_next(seq, v);
++*pos;
return ifa;
}
static void if6_seq_stop(struct seq_file *seq, void *v)
{
read_unlock_bh(&addrconf_hash_lock);
}
static int if6_seq_show(struct seq_file *seq, void *v)
{
struct inet6_ifaddr *ifp = (struct inet6_ifaddr *)v;
seq_printf(seq,
"%04x%04x%04x%04x%04x%04x%04x%04x %02x %02x %02x %02x %8s\n",
NIP6(ifp->addr),
ifp->idev->dev->ifindex,
ifp->prefix_len,
ifp->scope,
ifp->flags,
ifp->idev->dev->name);
return 0;
}
static struct seq_operations if6_seq_ops = {
.start = if6_seq_start,
.next = if6_seq_next,
.show = if6_seq_show,
.stop = if6_seq_stop,
};
static int if6_seq_open(struct inode *inode, struct file *file)
{
struct seq_file *seq;
int rc = -ENOMEM;
struct if6_iter_state *s = kmalloc(sizeof(*s), GFP_KERNEL);
if (!s)
goto out;
memset(s, 0, sizeof(*s));
rc = seq_open(file, &if6_seq_ops);
if (rc)
goto out_kfree;
seq = file->private_data;
seq->private = s;
out:
return rc;
out_kfree:
kfree(s);
goto out;
}
static struct file_operations if6_fops = {
.owner = THIS_MODULE,
.open = if6_seq_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release_private,
};
int __init if6_proc_init(void)
{
if (!proc_net_fops_create("if_inet6", S_IRUGO, &if6_fops))
return -ENOMEM;
return 0;
}
void if6_proc_exit(void)
{
proc_net_remove("if_inet6");
}
#endif /* CONFIG_PROC_FS */
/*
* Periodic address status verification
*/
static void addrconf_verify(unsigned long foo)
{
struct inet6_ifaddr *ifp;
unsigned long now, next;
int i;
spin_lock_bh(&addrconf_verify_lock);
now = jiffies;
next = now + ADDR_CHECK_FREQUENCY;
del_timer(&addr_chk_timer);
for (i=0; i < IN6_ADDR_HSIZE; i++) {
restart:
write_lock(&addrconf_hash_lock);
for (ifp=inet6_addr_lst[i]; ifp; ifp=ifp->lst_next) {
unsigned long age;
#ifdef CONFIG_IPV6_PRIVACY
unsigned long regen_advance;
#endif
if (ifp->flags & IFA_F_PERMANENT)
continue;
spin_lock(&ifp->lock);
age = (now - ifp->tstamp) / HZ;
#ifdef CONFIG_IPV6_PRIVACY
regen_advance = ifp->idev->cnf.regen_max_retry *
ifp->idev->cnf.dad_transmits *
ifp->idev->nd_parms->retrans_time / HZ;
#endif
if (age >= ifp->valid_lft) {
spin_unlock(&ifp->lock);
in6_ifa_hold(ifp);
write_unlock(&addrconf_hash_lock);
ipv6_del_addr(ifp);
goto restart;
} else if (age >= ifp->prefered_lft) {
/* jiffies - ifp->tsamp > age >= ifp->prefered_lft */
int deprecate = 0;
if (!(ifp->flags&IFA_F_DEPRECATED)) {
deprecate = 1;
ifp->flags |= IFA_F_DEPRECATED;
}
if (time_before(ifp->tstamp + ifp->valid_lft * HZ, next))
next = ifp->tstamp + ifp->valid_lft * HZ;
spin_unlock(&ifp->lock);
if (deprecate) {
in6_ifa_hold(ifp);
write_unlock(&addrconf_hash_lock);
ipv6_ifa_notify(0, ifp);
in6_ifa_put(ifp);
goto restart;
}
#ifdef CONFIG_IPV6_PRIVACY
} else if ((ifp->flags&IFA_F_TEMPORARY) &&
!(ifp->flags&IFA_F_TENTATIVE)) {
if (age >= ifp->prefered_lft - regen_advance) {
struct inet6_ifaddr *ifpub = ifp->ifpub;
if (time_before(ifp->tstamp + ifp->prefered_lft * HZ, next))
next = ifp->tstamp + ifp->prefered_lft * HZ;
if (!ifp->regen_count && ifpub) {
ifp->regen_count++;
in6_ifa_hold(ifp);
in6_ifa_hold(ifpub);
spin_unlock(&ifp->lock);
write_unlock(&addrconf_hash_lock);
ipv6_create_tempaddr(ifpub, ifp);
in6_ifa_put(ifpub);
in6_ifa_put(ifp);
goto restart;
}
} else if (time_before(ifp->tstamp + ifp->prefered_lft * HZ - regen_advance * HZ, next))
next = ifp->tstamp + ifp->prefered_lft * HZ - regen_advance * HZ;
spin_unlock(&ifp->lock);
#endif
} else {
/* ifp->prefered_lft <= ifp->valid_lft */
if (time_before(ifp->tstamp + ifp->prefered_lft * HZ, next))
next = ifp->tstamp + ifp->prefered_lft * HZ;
spin_unlock(&ifp->lock);
}
}
write_unlock(&addrconf_hash_lock);
}
addr_chk_timer.expires = time_before(next, jiffies + HZ) ? jiffies + HZ : next;
add_timer(&addr_chk_timer);
spin_unlock_bh(&addrconf_verify_lock);
}
static int
inet6_rtm_deladdr(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
{
struct rtattr **rta = arg;
struct ifaddrmsg *ifm = NLMSG_DATA(nlh);
struct in6_addr *pfx;
pfx = NULL;
if (rta[IFA_ADDRESS-1]) {
if (RTA_PAYLOAD(rta[IFA_ADDRESS-1]) < sizeof(*pfx))
return -EINVAL;
pfx = RTA_DATA(rta[IFA_ADDRESS-1]);
}
if (rta[IFA_LOCAL-1]) {
if (pfx && memcmp(pfx, RTA_DATA(rta[IFA_LOCAL-1]), sizeof(*pfx)))
return -EINVAL;
pfx = RTA_DATA(rta[IFA_LOCAL-1]);
}
if (pfx == NULL)
return -EINVAL;
return inet6_addr_del(ifm->ifa_index, pfx, ifm->ifa_prefixlen);
}
static int
inet6_rtm_newaddr(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
{
struct rtattr **rta = arg;
struct ifaddrmsg *ifm = NLMSG_DATA(nlh);
struct in6_addr *pfx;
pfx = NULL;
if (rta[IFA_ADDRESS-1]) {
if (RTA_PAYLOAD(rta[IFA_ADDRESS-1]) < sizeof(*pfx))
return -EINVAL;
pfx = RTA_DATA(rta[IFA_ADDRESS-1]);
}
if (rta[IFA_LOCAL-1]) {
if (pfx && memcmp(pfx, RTA_DATA(rta[IFA_LOCAL-1]), sizeof(*pfx)))
return -EINVAL;
pfx = RTA_DATA(rta[IFA_LOCAL-1]);
}
if (pfx == NULL)
return -EINVAL;
return inet6_addr_add(ifm->ifa_index, pfx, ifm->ifa_prefixlen);
}
static int inet6_fill_ifaddr(struct sk_buff *skb, struct inet6_ifaddr *ifa,
u32 pid, u32 seq, int event, unsigned int flags)
{
struct ifaddrmsg *ifm;
struct nlmsghdr *nlh;
struct ifa_cacheinfo ci;
unsigned char *b = skb->tail;
nlh = NLMSG_NEW(skb, pid, seq, event, sizeof(*ifm), flags);
ifm = NLMSG_DATA(nlh);
ifm->ifa_family = AF_INET6;
ifm->ifa_prefixlen = ifa->prefix_len;
ifm->ifa_flags = ifa->flags;
ifm->ifa_scope = RT_SCOPE_UNIVERSE;
if (ifa->scope&IFA_HOST)
ifm->ifa_scope = RT_SCOPE_HOST;
else if (ifa->scope&IFA_LINK)
ifm->ifa_scope = RT_SCOPE_LINK;
else if (ifa->scope&IFA_SITE)
ifm->ifa_scope = RT_SCOPE_SITE;
ifm->ifa_index = ifa->idev->dev->ifindex;
RTA_PUT(skb, IFA_ADDRESS, 16, &ifa->addr);
if (!(ifa->flags&IFA_F_PERMANENT)) {
ci.ifa_prefered = ifa->prefered_lft;
ci.ifa_valid = ifa->valid_lft;
if (ci.ifa_prefered != INFINITY_LIFE_TIME) {
long tval = (jiffies - ifa->tstamp)/HZ;
ci.ifa_prefered -= tval;
if (ci.ifa_valid != INFINITY_LIFE_TIME)
ci.ifa_valid -= tval;
}
} else {
ci.ifa_prefered = INFINITY_LIFE_TIME;
ci.ifa_valid = INFINITY_LIFE_TIME;
}
ci.cstamp = (__u32)(TIME_DELTA(ifa->cstamp, INITIAL_JIFFIES) / HZ * 100
+ TIME_DELTA(ifa->cstamp, INITIAL_JIFFIES) % HZ * 100 / HZ);
ci.tstamp = (__u32)(TIME_DELTA(ifa->tstamp, INITIAL_JIFFIES) / HZ * 100
+ TIME_DELTA(ifa->tstamp, INITIAL_JIFFIES) % HZ * 100 / HZ);
RTA_PUT(skb, IFA_CACHEINFO, sizeof(ci), &ci);
nlh->nlmsg_len = skb->tail - b;
return skb->len;
nlmsg_failure:
rtattr_failure:
skb_trim(skb, b - skb->data);
return -1;
}
static int inet6_fill_ifmcaddr(struct sk_buff *skb, struct ifmcaddr6 *ifmca,
u32 pid, u32 seq, int event, u16 flags)
{
struct ifaddrmsg *ifm;
struct nlmsghdr *nlh;
struct ifa_cacheinfo ci;
unsigned char *b = skb->tail;
nlh = NLMSG_NEW(skb, pid, seq, event, sizeof(*ifm), flags);
ifm = NLMSG_DATA(nlh);
ifm->ifa_family = AF_INET6;
ifm->ifa_prefixlen = 128;
ifm->ifa_flags = IFA_F_PERMANENT;
ifm->ifa_scope = RT_SCOPE_UNIVERSE;
if (ipv6_addr_scope(&ifmca->mca_addr)&IFA_SITE)
ifm->ifa_scope = RT_SCOPE_SITE;
ifm->ifa_index = ifmca->idev->dev->ifindex;
RTA_PUT(skb, IFA_MULTICAST, 16, &ifmca->mca_addr);
ci.cstamp = (__u32)(TIME_DELTA(ifmca->mca_cstamp, INITIAL_JIFFIES) / HZ
* 100 + TIME_DELTA(ifmca->mca_cstamp, INITIAL_JIFFIES) % HZ
* 100 / HZ);
ci.tstamp = (__u32)(TIME_DELTA(ifmca->mca_tstamp, INITIAL_JIFFIES) / HZ
* 100 + TIME_DELTA(ifmca->mca_tstamp, INITIAL_JIFFIES) % HZ
* 100 / HZ);
ci.ifa_prefered = INFINITY_LIFE_TIME;
ci.ifa_valid = INFINITY_LIFE_TIME;
RTA_PUT(skb, IFA_CACHEINFO, sizeof(ci), &ci);
nlh->nlmsg_len = skb->tail - b;
return skb->len;
nlmsg_failure:
rtattr_failure:
skb_trim(skb, b - skb->data);
return -1;
}
static int inet6_fill_ifacaddr(struct sk_buff *skb, struct ifacaddr6 *ifaca,
u32 pid, u32 seq, int event, unsigned int flags)
{
struct ifaddrmsg *ifm;
struct nlmsghdr *nlh;
struct ifa_cacheinfo ci;
unsigned char *b = skb->tail;
nlh = NLMSG_NEW(skb, pid, seq, event, sizeof(*ifm), flags);
ifm = NLMSG_DATA(nlh);
ifm->ifa_family = AF_INET6;
ifm->ifa_prefixlen = 128;
ifm->ifa_flags = IFA_F_PERMANENT;
ifm->ifa_scope = RT_SCOPE_UNIVERSE;
if (ipv6_addr_scope(&ifaca->aca_addr)&IFA_SITE)
ifm->ifa_scope = RT_SCOPE_SITE;
ifm->ifa_index = ifaca->aca_idev->dev->ifindex;
RTA_PUT(skb, IFA_ANYCAST, 16, &ifaca->aca_addr);
ci.cstamp = (__u32)(TIME_DELTA(ifaca->aca_cstamp, INITIAL_JIFFIES) / HZ
* 100 + TIME_DELTA(ifaca->aca_cstamp, INITIAL_JIFFIES) % HZ
* 100 / HZ);
ci.tstamp = (__u32)(TIME_DELTA(ifaca->aca_tstamp, INITIAL_JIFFIES) / HZ
* 100 + TIME_DELTA(ifaca->aca_tstamp, INITIAL_JIFFIES) % HZ
* 100 / HZ);
ci.ifa_prefered = INFINITY_LIFE_TIME;
ci.ifa_valid = INFINITY_LIFE_TIME;
RTA_PUT(skb, IFA_CACHEINFO, sizeof(ci), &ci);
nlh->nlmsg_len = skb->tail - b;
return skb->len;
nlmsg_failure:
rtattr_failure:
skb_trim(skb, b - skb->data);
return -1;
}
enum addr_type_t
{
UNICAST_ADDR,
MULTICAST_ADDR,
ANYCAST_ADDR,
};
static int inet6_dump_addr(struct sk_buff *skb, struct netlink_callback *cb,
enum addr_type_t type)
{
int idx, ip_idx;
int s_idx, s_ip_idx;
int err = 1;
struct net_device *dev;
struct inet6_dev *idev = NULL;
struct inet6_ifaddr *ifa;
struct ifmcaddr6 *ifmca;
struct ifacaddr6 *ifaca;
s_idx = cb->args[0];
s_ip_idx = ip_idx = cb->args[1];
read_lock(&dev_base_lock);
for (dev = dev_base, idx = 0; dev; dev = dev->next, idx++) {
if (idx < s_idx)
continue;
if (idx > s_idx)
s_ip_idx = 0;
ip_idx = 0;
if ((idev = in6_dev_get(dev)) == NULL)
continue;
read_lock_bh(&idev->lock);
switch (type) {
case UNICAST_ADDR:
/* unicast address */
for (ifa = idev->addr_list; ifa;
ifa = ifa->if_next, ip_idx++) {
if (ip_idx < s_ip_idx)
continue;
if ((err = inet6_fill_ifaddr(skb, ifa,
NETLINK_CB(cb->skb).pid,
cb->nlh->nlmsg_seq, RTM_NEWADDR,
NLM_F_MULTI)) <= 0)
goto done;
}
/* temp addr */
#ifdef CONFIG_IPV6_PRIVACY
for (ifa = idev->tempaddr_list; ifa;
ifa = ifa->tmp_next, ip_idx++) {
if (ip_idx < s_ip_idx)
continue;
if ((err = inet6_fill_ifaddr(skb, ifa,
NETLINK_CB(cb->skb).pid,
cb->nlh->nlmsg_seq, RTM_NEWADDR,
NLM_F_MULTI)) <= 0)
goto done;
}
#endif
break;
case MULTICAST_ADDR:
/* multicast address */
for (ifmca = idev->mc_list; ifmca;
ifmca = ifmca->next, ip_idx++) {
if (ip_idx < s_ip_idx)
continue;
if ((err = inet6_fill_ifmcaddr(skb, ifmca,
NETLINK_CB(cb->skb).pid,
cb->nlh->nlmsg_seq, RTM_GETMULTICAST,
NLM_F_MULTI)) <= 0)
goto done;
}
break;
case ANYCAST_ADDR:
/* anycast address */
for (ifaca = idev->ac_list; ifaca;
ifaca = ifaca->aca_next, ip_idx++) {
if (ip_idx < s_ip_idx)
continue;
if ((err = inet6_fill_ifacaddr(skb, ifaca,
NETLINK_CB(cb->skb).pid,
cb->nlh->nlmsg_seq, RTM_GETANYCAST,
NLM_F_MULTI)) <= 0)
goto done;
}
break;
default:
break;
}
read_unlock_bh(&idev->lock);
in6_dev_put(idev);
}
done:
if (err <= 0) {
read_unlock_bh(&idev->lock);
in6_dev_put(idev);
}
read_unlock(&dev_base_lock);
cb->args[0] = idx;
cb->args[1] = ip_idx;
return skb->len;
}
static int inet6_dump_ifaddr(struct sk_buff *skb, struct netlink_callback *cb)
{
enum addr_type_t type = UNICAST_ADDR;
return inet6_dump_addr(skb, cb, type);
}
static int inet6_dump_ifmcaddr(struct sk_buff *skb, struct netlink_callback *cb)
{
enum addr_type_t type = MULTICAST_ADDR;
return inet6_dump_addr(skb, cb, type);
}
static int inet6_dump_ifacaddr(struct sk_buff *skb, struct netlink_callback *cb)
{
enum addr_type_t type = ANYCAST_ADDR;
return inet6_dump_addr(skb, cb, type);
}
static void inet6_ifa_notify(int event, struct inet6_ifaddr *ifa)
{
struct sk_buff *skb;
int size = NLMSG_SPACE(sizeof(struct ifaddrmsg)+128);
skb = alloc_skb(size, GFP_ATOMIC);
if (!skb) {
netlink_set_err(rtnl, 0, RTMGRP_IPV6_IFADDR, ENOBUFS);
return;
}
if (inet6_fill_ifaddr(skb, ifa, current->pid, 0, event, 0) < 0) {
kfree_skb(skb);
netlink_set_err(rtnl, 0, RTMGRP_IPV6_IFADDR, EINVAL);
return;
}
NETLINK_CB(skb).dst_groups = RTMGRP_IPV6_IFADDR;
netlink_broadcast(rtnl, skb, 0, RTMGRP_IPV6_IFADDR, GFP_ATOMIC);
}
static void inline ipv6_store_devconf(struct ipv6_devconf *cnf,
__s32 *array, int bytes)
{
memset(array, 0, bytes);
array[DEVCONF_FORWARDING] = cnf->forwarding;
array[DEVCONF_HOPLIMIT] = cnf->hop_limit;
array[DEVCONF_MTU6] = cnf->mtu6;
array[DEVCONF_ACCEPT_RA] = cnf->accept_ra;
array[DEVCONF_ACCEPT_REDIRECTS] = cnf->accept_redirects;
array[DEVCONF_AUTOCONF] = cnf->autoconf;
array[DEVCONF_DAD_TRANSMITS] = cnf->dad_transmits;
array[DEVCONF_RTR_SOLICITS] = cnf->rtr_solicits;
array[DEVCONF_RTR_SOLICIT_INTERVAL] = cnf->rtr_solicit_interval;
array[DEVCONF_RTR_SOLICIT_DELAY] = cnf->rtr_solicit_delay;
array[DEVCONF_FORCE_MLD_VERSION] = cnf->force_mld_version;
#ifdef CONFIG_IPV6_PRIVACY
array[DEVCONF_USE_TEMPADDR] = cnf->use_tempaddr;
array[DEVCONF_TEMP_VALID_LFT] = cnf->temp_valid_lft;
array[DEVCONF_TEMP_PREFERED_LFT] = cnf->temp_prefered_lft;
array[DEVCONF_REGEN_MAX_RETRY] = cnf->regen_max_retry;
array[DEVCONF_MAX_DESYNC_FACTOR] = cnf->max_desync_factor;
#endif
array[DEVCONF_MAX_ADDRESSES] = cnf->max_addresses;
}
static int inet6_fill_ifinfo(struct sk_buff *skb, struct inet6_dev *idev,
u32 pid, u32 seq, int event, unsigned int flags)
{
struct net_device *dev = idev->dev;
__s32 *array = NULL;
struct ifinfomsg *r;
struct nlmsghdr *nlh;
unsigned char *b = skb->tail;
struct rtattr *subattr;
__u32 mtu = dev->mtu;
struct ifla_cacheinfo ci;
nlh = NLMSG_NEW(skb, pid, seq, event, sizeof(*r), flags);
r = NLMSG_DATA(nlh);
r->ifi_family = AF_INET6;
r->ifi_type = dev->type;
r->ifi_index = dev->ifindex;
r->ifi_flags = dev_get_flags(dev);
r->ifi_change = 0;
RTA_PUT(skb, IFLA_IFNAME, strlen(dev->name)+1, dev->name);
if (dev->addr_len)
RTA_PUT(skb, IFLA_ADDRESS, dev->addr_len, dev->dev_addr);
RTA_PUT(skb, IFLA_MTU, sizeof(mtu), &mtu);
if (dev->ifindex != dev->iflink)
RTA_PUT(skb, IFLA_LINK, sizeof(int), &dev->iflink);
subattr = (struct rtattr*)skb->tail;
RTA_PUT(skb, IFLA_PROTINFO, 0, NULL);
/* return the device flags */
RTA_PUT(skb, IFLA_INET6_FLAGS, sizeof(__u32), &idev->if_flags);
/* return interface cacheinfo */
ci.max_reasm_len = IPV6_MAXPLEN;
ci.tstamp = (__u32)(TIME_DELTA(idev->tstamp, INITIAL_JIFFIES) / HZ * 100
+ TIME_DELTA(idev->tstamp, INITIAL_JIFFIES) % HZ * 100 / HZ);
ci.reachable_time = idev->nd_parms->reachable_time;
ci.retrans_time = idev->nd_parms->retrans_time;
RTA_PUT(skb, IFLA_INET6_CACHEINFO, sizeof(ci), &ci);
/* return the device sysctl params */
if ((array = kmalloc(DEVCONF_MAX * sizeof(*array), GFP_ATOMIC)) == NULL)
goto rtattr_failure;
ipv6_store_devconf(&idev->cnf, array, DEVCONF_MAX * sizeof(*array));
RTA_PUT(skb, IFLA_INET6_CONF, DEVCONF_MAX * sizeof(*array), array);
/* XXX - Statistics/MC not implemented */
subattr->rta_len = skb->tail - (u8*)subattr;
nlh->nlmsg_len = skb->tail - b;
kfree(array);
return skb->len;
nlmsg_failure:
rtattr_failure:
if (array)
kfree(array);
skb_trim(skb, b - skb->data);
return -1;
}
static int inet6_dump_ifinfo(struct sk_buff *skb, struct netlink_callback *cb)
{
int idx, err;
int s_idx = cb->args[0];
struct net_device *dev;
struct inet6_dev *idev;
read_lock(&dev_base_lock);
for (dev=dev_base, idx=0; dev; dev = dev->next, idx++) {
if (idx < s_idx)
continue;
if ((idev = in6_dev_get(dev)) == NULL)
continue;
err = inet6_fill_ifinfo(skb, idev, NETLINK_CB(cb->skb).pid,
cb->nlh->nlmsg_seq, RTM_NEWLINK, NLM_F_MULTI);
in6_dev_put(idev);
if (err <= 0)
break;
}
read_unlock(&dev_base_lock);
cb->args[0] = idx;
return skb->len;
}
void inet6_ifinfo_notify(int event, struct inet6_dev *idev)
{
struct sk_buff *skb;
/* 128 bytes ?? */
int size = NLMSG_SPACE(sizeof(struct ifinfomsg)+128);
skb = alloc_skb(size, GFP_ATOMIC);
if (!skb) {
netlink_set_err(rtnl, 0, RTMGRP_IPV6_IFINFO, ENOBUFS);
return;
}
if (inet6_fill_ifinfo(skb, idev, current->pid, 0, event, 0) < 0) {
kfree_skb(skb);
netlink_set_err(rtnl, 0, RTMGRP_IPV6_IFINFO, EINVAL);
return;
}
NETLINK_CB(skb).dst_groups = RTMGRP_IPV6_IFINFO;
netlink_broadcast(rtnl, skb, 0, RTMGRP_IPV6_IFINFO, GFP_ATOMIC);
}
static int inet6_fill_prefix(struct sk_buff *skb, struct inet6_dev *idev,
struct prefix_info *pinfo, u32 pid, u32 seq,
int event, unsigned int flags)
{
struct prefixmsg *pmsg;
struct nlmsghdr *nlh;
unsigned char *b = skb->tail;
struct prefix_cacheinfo ci;
nlh = NLMSG_NEW(skb, pid, seq, event, sizeof(*pmsg), flags);
pmsg = NLMSG_DATA(nlh);
pmsg->prefix_family = AF_INET6;
pmsg->prefix_ifindex = idev->dev->ifindex;
pmsg->prefix_len = pinfo->prefix_len;
pmsg->prefix_type = pinfo->type;
pmsg->prefix_flags = 0;
if (pinfo->onlink)
pmsg->prefix_flags |= IF_PREFIX_ONLINK;
if (pinfo->autoconf)
pmsg->prefix_flags |= IF_PREFIX_AUTOCONF;
RTA_PUT(skb, PREFIX_ADDRESS, sizeof(pinfo->prefix), &pinfo->prefix);
ci.preferred_time = ntohl(pinfo->prefered);
ci.valid_time = ntohl(pinfo->valid);
RTA_PUT(skb, PREFIX_CACHEINFO, sizeof(ci), &ci);
nlh->nlmsg_len = skb->tail - b;
return skb->len;
nlmsg_failure:
rtattr_failure:
skb_trim(skb, b - skb->data);
return -1;
}
static void inet6_prefix_notify(int event, struct inet6_dev *idev,
struct prefix_info *pinfo)
{
struct sk_buff *skb;
int size = NLMSG_SPACE(sizeof(struct prefixmsg)+128);
skb = alloc_skb(size, GFP_ATOMIC);
if (!skb) {
netlink_set_err(rtnl, 0, RTMGRP_IPV6_PREFIX, ENOBUFS);
return;
}
if (inet6_fill_prefix(skb, idev, pinfo, current->pid, 0, event, 0) < 0) {
kfree_skb(skb);
netlink_set_err(rtnl, 0, RTMGRP_IPV6_PREFIX, EINVAL);
return;
}
NETLINK_CB(skb).dst_groups = RTMGRP_IPV6_PREFIX;
netlink_broadcast(rtnl, skb, 0, RTMGRP_IPV6_PREFIX, GFP_ATOMIC);
}
static struct rtnetlink_link inet6_rtnetlink_table[RTM_NR_MSGTYPES] = {
[RTM_GETLINK - RTM_BASE] = { .dumpit = inet6_dump_ifinfo, },
[RTM_NEWADDR - RTM_BASE] = { .doit = inet6_rtm_newaddr, },
[RTM_DELADDR - RTM_BASE] = { .doit = inet6_rtm_deladdr, },
[RTM_GETADDR - RTM_BASE] = { .dumpit = inet6_dump_ifaddr, },
[RTM_GETMULTICAST - RTM_BASE] = { .dumpit = inet6_dump_ifmcaddr, },
[RTM_GETANYCAST - RTM_BASE] = { .dumpit = inet6_dump_ifacaddr, },
[RTM_NEWROUTE - RTM_BASE] = { .doit = inet6_rtm_newroute, },
[RTM_DELROUTE - RTM_BASE] = { .doit = inet6_rtm_delroute, },
[RTM_GETROUTE - RTM_BASE] = { .doit = inet6_rtm_getroute,
.dumpit = inet6_dump_fib, },
};
static void __ipv6_ifa_notify(int event, struct inet6_ifaddr *ifp)
{
inet6_ifa_notify(event ? : RTM_NEWADDR, ifp);
switch (event) {
case RTM_NEWADDR:
dst_hold(&ifp->rt->u.dst);
if (ip6_ins_rt(ifp->rt, NULL, NULL, NULL))
dst_release(&ifp->rt->u.dst);
if (ifp->idev->cnf.forwarding)
addrconf_join_anycast(ifp);
break;
case RTM_DELADDR:
if (ifp->idev->cnf.forwarding)
addrconf_leave_anycast(ifp);
addrconf_leave_solict(ifp->idev, &ifp->addr);
dst_hold(&ifp->rt->u.dst);
if (ip6_del_rt(ifp->rt, NULL, NULL, NULL))
dst_free(&ifp->rt->u.dst);
else
dst_release(&ifp->rt->u.dst);
break;
}
}
static void ipv6_ifa_notify(int event, struct inet6_ifaddr *ifp)
{
read_lock_bh(&addrconf_lock);
if (likely(ifp->idev->dead == 0))
__ipv6_ifa_notify(event, ifp);
read_unlock_bh(&addrconf_lock);
}
#ifdef CONFIG_SYSCTL
static
int addrconf_sysctl_forward(ctl_table *ctl, int write, struct file * filp,
void __user *buffer, size_t *lenp, loff_t *ppos)
{
int *valp = ctl->data;
int val = *valp;
int ret;
ret = proc_dointvec(ctl, write, filp, buffer, lenp, ppos);
if (write && valp != &ipv6_devconf_dflt.forwarding) {
if (valp != &ipv6_devconf.forwarding) {
if ((!*valp) ^ (!val)) {
struct inet6_dev *idev = (struct inet6_dev *)ctl->extra1;
if (idev == NULL)
return ret;
dev_forward_change(idev);
}
} else {
ipv6_devconf_dflt.forwarding = ipv6_devconf.forwarding;
addrconf_forward_change();
}
if (*valp)
rt6_purge_dflt_routers();
}
return ret;
}
static int addrconf_sysctl_forward_strategy(ctl_table *table,
int __user *name, int nlen,
void __user *oldval,
size_t __user *oldlenp,
void __user *newval, size_t newlen,
void **context)
{
int *valp = table->data;
int new;
if (!newval || !newlen)
return 0;
if (newlen != sizeof(int))
return -EINVAL;
if (get_user(new, (int __user *)newval))
return -EFAULT;
if (new == *valp)
return 0;
if (oldval && oldlenp) {
size_t len;
if (get_user(len, oldlenp))
return -EFAULT;
if (len) {
if (len > table->maxlen)
len = table->maxlen;
if (copy_to_user(oldval, valp, len))
return -EFAULT;
if (put_user(len, oldlenp))
return -EFAULT;
}
}
if (valp != &ipv6_devconf_dflt.forwarding) {
if (valp != &ipv6_devconf.forwarding) {
struct inet6_dev *idev = (struct inet6_dev *)table->extra1;
int changed;
if (unlikely(idev == NULL))
return -ENODEV;
changed = (!*valp) ^ (!new);
*valp = new;
if (changed)
dev_forward_change(idev);
} else {
*valp = new;
addrconf_forward_change();
}
if (*valp)
rt6_purge_dflt_routers();
} else
*valp = new;
return 1;
}
static struct addrconf_sysctl_table
{
struct ctl_table_header *sysctl_header;
ctl_table addrconf_vars[__NET_IPV6_MAX];
ctl_table addrconf_dev[2];
ctl_table addrconf_conf_dir[2];
ctl_table addrconf_proto_dir[2];
ctl_table addrconf_root_dir[2];
} addrconf_sysctl = {
.sysctl_header = NULL,
.addrconf_vars = {
{
.ctl_name = NET_IPV6_FORWARDING,
.procname = "forwarding",
.data = &ipv6_devconf.forwarding,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = &addrconf_sysctl_forward,
.strategy = &addrconf_sysctl_forward_strategy,
},
{
.ctl_name = NET_IPV6_HOP_LIMIT,
.procname = "hop_limit",
.data = &ipv6_devconf.hop_limit,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.ctl_name = NET_IPV6_MTU,
.procname = "mtu",
.data = &ipv6_devconf.mtu6,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = &proc_dointvec,
},
{
.ctl_name = NET_IPV6_ACCEPT_RA,
.procname = "accept_ra",
.data = &ipv6_devconf.accept_ra,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = &proc_dointvec,
},
{
.ctl_name = NET_IPV6_ACCEPT_REDIRECTS,
.procname = "accept_redirects",
.data = &ipv6_devconf.accept_redirects,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = &proc_dointvec,
},
{
.ctl_name = NET_IPV6_AUTOCONF,
.procname = "autoconf",
.data = &ipv6_devconf.autoconf,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = &proc_dointvec,
},
{
.ctl_name = NET_IPV6_DAD_TRANSMITS,
.procname = "dad_transmits",
.data = &ipv6_devconf.dad_transmits,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = &proc_dointvec,
},
{
.ctl_name = NET_IPV6_RTR_SOLICITS,
.procname = "router_solicitations",
.data = &ipv6_devconf.rtr_solicits,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = &proc_dointvec,
},
{
.ctl_name = NET_IPV6_RTR_SOLICIT_INTERVAL,
.procname = "router_solicitation_interval",
.data = &ipv6_devconf.rtr_solicit_interval,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = &proc_dointvec_jiffies,
.strategy = &sysctl_jiffies,
},
{
.ctl_name = NET_IPV6_RTR_SOLICIT_DELAY,
.procname = "router_solicitation_delay",
.data = &ipv6_devconf.rtr_solicit_delay,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = &proc_dointvec_jiffies,
.strategy = &sysctl_jiffies,
},
{
.ctl_name = NET_IPV6_FORCE_MLD_VERSION,
.procname = "force_mld_version",
.data = &ipv6_devconf.force_mld_version,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = &proc_dointvec,
},
#ifdef CONFIG_IPV6_PRIVACY
{
.ctl_name = NET_IPV6_USE_TEMPADDR,
.procname = "use_tempaddr",
.data = &ipv6_devconf.use_tempaddr,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = &proc_dointvec,
},
{
.ctl_name = NET_IPV6_TEMP_VALID_LFT,
.procname = "temp_valid_lft",
.data = &ipv6_devconf.temp_valid_lft,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = &proc_dointvec,
},
{
.ctl_name = NET_IPV6_TEMP_PREFERED_LFT,
.procname = "temp_prefered_lft",
.data = &ipv6_devconf.temp_prefered_lft,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = &proc_dointvec,
},
{
.ctl_name = NET_IPV6_REGEN_MAX_RETRY,
.procname = "regen_max_retry",
.data = &ipv6_devconf.regen_max_retry,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = &proc_dointvec,
},
{
.ctl_name = NET_IPV6_MAX_DESYNC_FACTOR,
.procname = "max_desync_factor",
.data = &ipv6_devconf.max_desync_factor,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = &proc_dointvec,
},
#endif
{
.ctl_name = NET_IPV6_MAX_ADDRESSES,
.procname = "max_addresses",
.data = &ipv6_devconf.max_addresses,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = &proc_dointvec,
},
{
.ctl_name = 0, /* sentinel */
}
},
.addrconf_dev = {
{
.ctl_name = NET_PROTO_CONF_ALL,
.procname = "all",
.mode = 0555,
.child = addrconf_sysctl.addrconf_vars,
},
{
.ctl_name = 0, /* sentinel */
}
},
.addrconf_conf_dir = {
{
.ctl_name = NET_IPV6_CONF,
.procname = "conf",
.mode = 0555,
.child = addrconf_sysctl.addrconf_dev,
},
{
.ctl_name = 0, /* sentinel */
}
},
.addrconf_proto_dir = {
{
.ctl_name = NET_IPV6,
.procname = "ipv6",
.mode = 0555,
.child = addrconf_sysctl.addrconf_conf_dir,
},
{
.ctl_name = 0, /* sentinel */
}
},
.addrconf_root_dir = {
{
.ctl_name = CTL_NET,
.procname = "net",
.mode = 0555,
.child = addrconf_sysctl.addrconf_proto_dir,
},
{
.ctl_name = 0, /* sentinel */
}
},
};
static void addrconf_sysctl_register(struct inet6_dev *idev, struct ipv6_devconf *p)
{
int i;
struct net_device *dev = idev ? idev->dev : NULL;
struct addrconf_sysctl_table *t;
char *dev_name = NULL;
t = kmalloc(sizeof(*t), GFP_KERNEL);
if (t == NULL)
return;
memcpy(t, &addrconf_sysctl, sizeof(*t));
for (i=0; t->addrconf_vars[i].data; i++) {
t->addrconf_vars[i].data += (char*)p - (char*)&ipv6_devconf;
t->addrconf_vars[i].de = NULL;
t->addrconf_vars[i].extra1 = idev; /* embedded; no ref */
}
if (dev) {
dev_name = dev->name;
t->addrconf_dev[0].ctl_name = dev->ifindex;
} else {
dev_name = "default";
t->addrconf_dev[0].ctl_name = NET_PROTO_CONF_DEFAULT;
}
/*
* Make a copy of dev_name, because '.procname' is regarded as const
* by sysctl and we wouldn't want anyone to change it under our feet
* (see SIOCSIFNAME).
*/
dev_name = net_sysctl_strdup(dev_name);
if (!dev_name)
goto free;
t->addrconf_dev[0].procname = dev_name;
t->addrconf_dev[0].child = t->addrconf_vars;
t->addrconf_dev[0].de = NULL;
t->addrconf_conf_dir[0].child = t->addrconf_dev;
t->addrconf_conf_dir[0].de = NULL;
t->addrconf_proto_dir[0].child = t->addrconf_conf_dir;
t->addrconf_proto_dir[0].de = NULL;
t->addrconf_root_dir[0].child = t->addrconf_proto_dir;
t->addrconf_root_dir[0].de = NULL;
t->sysctl_header = register_sysctl_table(t->addrconf_root_dir, 0);
if (t->sysctl_header == NULL)
goto free_procname;
else
p->sysctl = t;
return;
/* error path */
free_procname:
kfree(dev_name);
free:
kfree(t);
return;
}
static void addrconf_sysctl_unregister(struct ipv6_devconf *p)
{
if (p->sysctl) {
struct addrconf_sysctl_table *t = p->sysctl;
p->sysctl = NULL;
unregister_sysctl_table(t->sysctl_header);
kfree(t->addrconf_dev[0].procname);
kfree(t);
}
}
#endif
/*
* Device notifier
*/
int register_inet6addr_notifier(struct notifier_block *nb)
{
return notifier_chain_register(&inet6addr_chain, nb);
}
int unregister_inet6addr_notifier(struct notifier_block *nb)
{
return notifier_chain_unregister(&inet6addr_chain,nb);
}
/*
* Init / cleanup code
*/
int __init addrconf_init(void)
{
int err = 0;
/* The addrconf netdev notifier requires that loopback_dev
* has it's ipv6 private information allocated and setup
* before it can bring up and give link-local addresses
* to other devices which are up.
*
* Unfortunately, loopback_dev is not necessarily the first
* entry in the global dev_base list of net devices. In fact,
* it is likely to be the very last entry on that list.
* So this causes the notifier registry below to try and
* give link-local addresses to all devices besides loopback_dev
* first, then loopback_dev, which cases all the non-loopback_dev
* devices to fail to get a link-local address.
*
* So, as a temporary fix, allocate the ipv6 structure for
* loopback_dev first by hand.
* Longer term, all of the dependencies ipv6 has upon the loopback
* device and it being up should be removed.
*/
rtnl_lock();
if (!ipv6_add_dev(&loopback_dev))
err = -ENOMEM;
rtnl_unlock();
if (err)
return err;
register_netdevice_notifier(&ipv6_dev_notf);
#ifdef CONFIG_IPV6_PRIVACY
md5_tfm = crypto_alloc_tfm("md5", 0);
if (unlikely(md5_tfm == NULL))
printk(KERN_WARNING
"failed to load transform for md5\n");
#endif
addrconf_verify(0);
rtnetlink_links[PF_INET6] = inet6_rtnetlink_table;
#ifdef CONFIG_SYSCTL
addrconf_sysctl.sysctl_header =
register_sysctl_table(addrconf_sysctl.addrconf_root_dir, 0);
addrconf_sysctl_register(NULL, &ipv6_devconf_dflt);
#endif
return 0;
}
void __exit addrconf_cleanup(void)
{
struct net_device *dev;
struct inet6_dev *idev;
struct inet6_ifaddr *ifa;
int i;
unregister_netdevice_notifier(&ipv6_dev_notf);
rtnetlink_links[PF_INET6] = NULL;
#ifdef CONFIG_SYSCTL
addrconf_sysctl_unregister(&ipv6_devconf_dflt);
addrconf_sysctl_unregister(&ipv6_devconf);
#endif
rtnl_lock();
/*
* clean dev list.
*/
for (dev=dev_base; dev; dev=dev->next) {
if ((idev = __in6_dev_get(dev)) == NULL)
continue;
addrconf_ifdown(dev, 1);
}
addrconf_ifdown(&loopback_dev, 2);
/*
* Check hash table.
*/
write_lock_bh(&addrconf_hash_lock);
for (i=0; i < IN6_ADDR_HSIZE; i++) {
for (ifa=inet6_addr_lst[i]; ifa; ) {
struct inet6_ifaddr *bifa;
bifa = ifa;
ifa = ifa->lst_next;
printk(KERN_DEBUG "bug: IPv6 address leakage detected: ifa=%p\n", bifa);
/* Do not free it; something is wrong.
Now we can investigate it with debugger.
*/
}
}
write_unlock_bh(&addrconf_hash_lock);
del_timer(&addr_chk_timer);
rtnl_unlock();
#ifdef CONFIG_IPV6_PRIVACY
if (likely(md5_tfm != NULL)) {
crypto_free_tfm(md5_tfm);
md5_tfm = NULL;
}
#endif
#ifdef CONFIG_PROC_FS
proc_net_remove("if_inet6");
#endif
}