kernel-fxtec-pro1x/drivers/hwmon/fschmd.c

1389 lines
41 KiB
C
Raw Normal View History

/*
* fschmd.c
*
* Copyright (C) 2007 - 2009 Hans de Goede <hdegoede@redhat.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* Merged Fujitsu Siemens hwmon driver, supporting the Poseidon, Hermes,
* Scylla, Heracles, Heimdall, Hades and Syleus chips
*
* Based on the original 2.4 fscscy, 2.6 fscpos, 2.6 fscher and 2.6
* (candidate) fschmd drivers:
* Copyright (C) 2006 Thilo Cestonaro
* <thilo.cestonaro.external@fujitsu-siemens.com>
* Copyright (C) 2004, 2005 Stefan Ott <stefan@desire.ch>
* Copyright (C) 2003, 2004 Reinhard Nissl <rnissl@gmx.de>
* Copyright (c) 2001 Martin Knoblauch <mkn@teraport.de, knobi@knobisoft.de>
* Copyright (C) 2000 Hermann Jung <hej@odn.de>
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/sysfs.h>
#include <linux/dmi.h>
#include <linux/fs.h>
#include <linux/watchdog.h>
#include <linux/miscdevice.h>
#include <linux/uaccess.h>
#include <linux/kref.h>
/* Addresses to scan */
static const unsigned short normal_i2c[] = { 0x73, I2C_CLIENT_END };
/* Insmod parameters */
static bool nowayout = WATCHDOG_NOWAYOUT;
module_param(nowayout, bool, 0);
MODULE_PARM_DESC(nowayout, "Watchdog cannot be stopped once started (default="
__MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
enum chips { fscpos, fscher, fscscy, fschrc, fschmd, fschds, fscsyl };
/*
* The FSCHMD registers and other defines
*/
/* chip identification */
#define FSCHMD_REG_IDENT_0 0x00
#define FSCHMD_REG_IDENT_1 0x01
#define FSCHMD_REG_IDENT_2 0x02
#define FSCHMD_REG_REVISION 0x03
/* global control and status */
#define FSCHMD_REG_EVENT_STATE 0x04
#define FSCHMD_REG_CONTROL 0x05
#define FSCHMD_CONTROL_ALERT_LED 0x01
/* watchdog */
static const u8 FSCHMD_REG_WDOG_CONTROL[7] = {
0x21, 0x21, 0x21, 0x21, 0x21, 0x28, 0x28 };
static const u8 FSCHMD_REG_WDOG_STATE[7] = {
0x23, 0x23, 0x23, 0x23, 0x23, 0x29, 0x29 };
static const u8 FSCHMD_REG_WDOG_PRESET[7] = {
0x28, 0x28, 0x28, 0x28, 0x28, 0x2a, 0x2a };
#define FSCHMD_WDOG_CONTROL_TRIGGER 0x10
#define FSCHMD_WDOG_CONTROL_STARTED 0x10 /* the same as trigger */
#define FSCHMD_WDOG_CONTROL_STOP 0x20
#define FSCHMD_WDOG_CONTROL_RESOLUTION 0x40
#define FSCHMD_WDOG_STATE_CARDRESET 0x02
/* voltages, weird order is to keep the same order as the old drivers */
static const u8 FSCHMD_REG_VOLT[7][6] = {
{ 0x45, 0x42, 0x48 }, /* pos */
{ 0x45, 0x42, 0x48 }, /* her */
{ 0x45, 0x42, 0x48 }, /* scy */
{ 0x45, 0x42, 0x48 }, /* hrc */
{ 0x45, 0x42, 0x48 }, /* hmd */
{ 0x21, 0x20, 0x22 }, /* hds */
{ 0x21, 0x20, 0x22, 0x23, 0x24, 0x25 }, /* syl */
};
static const int FSCHMD_NO_VOLT_SENSORS[7] = { 3, 3, 3, 3, 3, 3, 6 };
/*
* minimum pwm at which the fan is driven (pwm can by increased depending on
* the temp. Notice that for the scy some fans share there minimum speed.
* Also notice that with the scy the sensor order is different than with the
* other chips, this order was in the 2.4 driver and kept for consistency.
*/
static const u8 FSCHMD_REG_FAN_MIN[7][7] = {
{ 0x55, 0x65 }, /* pos */
{ 0x55, 0x65, 0xb5 }, /* her */
{ 0x65, 0x65, 0x55, 0xa5, 0x55, 0xa5 }, /* scy */
{ 0x55, 0x65, 0xa5, 0xb5 }, /* hrc */
{ 0x55, 0x65, 0xa5, 0xb5, 0xc5 }, /* hmd */
{ 0x55, 0x65, 0xa5, 0xb5, 0xc5 }, /* hds */
{ 0x54, 0x64, 0x74, 0x84, 0x94, 0xa4, 0xb4 }, /* syl */
};
/* actual fan speed */
static const u8 FSCHMD_REG_FAN_ACT[7][7] = {
{ 0x0e, 0x6b, 0xab }, /* pos */
{ 0x0e, 0x6b, 0xbb }, /* her */
{ 0x6b, 0x6c, 0x0e, 0xab, 0x5c, 0xbb }, /* scy */
{ 0x0e, 0x6b, 0xab, 0xbb }, /* hrc */
{ 0x5b, 0x6b, 0xab, 0xbb, 0xcb }, /* hmd */
{ 0x5b, 0x6b, 0xab, 0xbb, 0xcb }, /* hds */
{ 0x57, 0x67, 0x77, 0x87, 0x97, 0xa7, 0xb7 }, /* syl */
};
/* fan status registers */
static const u8 FSCHMD_REG_FAN_STATE[7][7] = {
{ 0x0d, 0x62, 0xa2 }, /* pos */
{ 0x0d, 0x62, 0xb2 }, /* her */
{ 0x62, 0x61, 0x0d, 0xa2, 0x52, 0xb2 }, /* scy */
{ 0x0d, 0x62, 0xa2, 0xb2 }, /* hrc */
{ 0x52, 0x62, 0xa2, 0xb2, 0xc2 }, /* hmd */
{ 0x52, 0x62, 0xa2, 0xb2, 0xc2 }, /* hds */
{ 0x50, 0x60, 0x70, 0x80, 0x90, 0xa0, 0xb0 }, /* syl */
};
/* fan ripple / divider registers */
static const u8 FSCHMD_REG_FAN_RIPPLE[7][7] = {
{ 0x0f, 0x6f, 0xaf }, /* pos */
{ 0x0f, 0x6f, 0xbf }, /* her */
{ 0x6f, 0x6f, 0x0f, 0xaf, 0x0f, 0xbf }, /* scy */
{ 0x0f, 0x6f, 0xaf, 0xbf }, /* hrc */
{ 0x5f, 0x6f, 0xaf, 0xbf, 0xcf }, /* hmd */
{ 0x5f, 0x6f, 0xaf, 0xbf, 0xcf }, /* hds */
{ 0x56, 0x66, 0x76, 0x86, 0x96, 0xa6, 0xb6 }, /* syl */
};
static const int FSCHMD_NO_FAN_SENSORS[7] = { 3, 3, 6, 4, 5, 5, 7 };
/* Fan status register bitmasks */
#define FSCHMD_FAN_ALARM 0x04 /* called fault by FSC! */
#define FSCHMD_FAN_NOT_PRESENT 0x08
#define FSCHMD_FAN_DISABLED 0x80
/* actual temperature registers */
static const u8 FSCHMD_REG_TEMP_ACT[7][11] = {
{ 0x64, 0x32, 0x35 }, /* pos */
{ 0x64, 0x32, 0x35 }, /* her */
{ 0x64, 0xD0, 0x32, 0x35 }, /* scy */
{ 0x64, 0x32, 0x35 }, /* hrc */
{ 0x70, 0x80, 0x90, 0xd0, 0xe0 }, /* hmd */
{ 0x70, 0x80, 0x90, 0xd0, 0xe0 }, /* hds */
{ 0x58, 0x68, 0x78, 0x88, 0x98, 0xa8, /* syl */
0xb8, 0xc8, 0xd8, 0xe8, 0xf8 },
};
/* temperature state registers */
static const u8 FSCHMD_REG_TEMP_STATE[7][11] = {
{ 0x71, 0x81, 0x91 }, /* pos */
{ 0x71, 0x81, 0x91 }, /* her */
{ 0x71, 0xd1, 0x81, 0x91 }, /* scy */
{ 0x71, 0x81, 0x91 }, /* hrc */
{ 0x71, 0x81, 0x91, 0xd1, 0xe1 }, /* hmd */
{ 0x71, 0x81, 0x91, 0xd1, 0xe1 }, /* hds */
{ 0x59, 0x69, 0x79, 0x89, 0x99, 0xa9, /* syl */
0xb9, 0xc9, 0xd9, 0xe9, 0xf9 },
};
/*
* temperature high limit registers, FSC does not document these. Proven to be
* there with field testing on the fscher and fschrc, already supported / used
* in the fscscy 2.4 driver. FSC has confirmed that the fschmd has registers
* at these addresses, but doesn't want to confirm they are the same as with
* the fscher??
*/
static const u8 FSCHMD_REG_TEMP_LIMIT[7][11] = {
{ 0, 0, 0 }, /* pos */
{ 0x76, 0x86, 0x96 }, /* her */
{ 0x76, 0xd6, 0x86, 0x96 }, /* scy */
{ 0x76, 0x86, 0x96 }, /* hrc */
{ 0x76, 0x86, 0x96, 0xd6, 0xe6 }, /* hmd */
{ 0x76, 0x86, 0x96, 0xd6, 0xe6 }, /* hds */
{ 0x5a, 0x6a, 0x7a, 0x8a, 0x9a, 0xaa, /* syl */
0xba, 0xca, 0xda, 0xea, 0xfa },
};
/*
* These were found through experimenting with an fscher, currently they are
* not used, but we keep them around for future reference.
* On the fscsyl AUTOP1 lives at 0x#c (so 0x5c for fan1, 0x6c for fan2, etc),
* AUTOP2 lives at 0x#e, and 0x#1 is a bitmask defining which temps influence
* the fan speed.
* static const u8 FSCHER_REG_TEMP_AUTOP1[] = { 0x73, 0x83, 0x93 };
* static const u8 FSCHER_REG_TEMP_AUTOP2[] = { 0x75, 0x85, 0x95 };
*/
static const int FSCHMD_NO_TEMP_SENSORS[7] = { 3, 3, 4, 3, 5, 5, 11 };
/* temp status register bitmasks */
#define FSCHMD_TEMP_WORKING 0x01
#define FSCHMD_TEMP_ALERT 0x02
#define FSCHMD_TEMP_DISABLED 0x80
/* there only really is an alarm if the sensor is working and alert == 1 */
#define FSCHMD_TEMP_ALARM_MASK \
(FSCHMD_TEMP_WORKING | FSCHMD_TEMP_ALERT)
/*
* Functions declarations
*/
static int fschmd_probe(struct i2c_client *client,
const struct i2c_device_id *id);
static int fschmd_detect(struct i2c_client *client,
struct i2c_board_info *info);
static int fschmd_remove(struct i2c_client *client);
static struct fschmd_data *fschmd_update_device(struct device *dev);
/*
* Driver data (common to all clients)
*/
static const struct i2c_device_id fschmd_id[] = {
{ "fscpos", fscpos },
{ "fscher", fscher },
{ "fscscy", fscscy },
{ "fschrc", fschrc },
{ "fschmd", fschmd },
{ "fschds", fschds },
{ "fscsyl", fscsyl },
{ }
};
MODULE_DEVICE_TABLE(i2c, fschmd_id);
static struct i2c_driver fschmd_driver = {
.class = I2C_CLASS_HWMON,
.driver = {
.name = "fschmd",
},
.probe = fschmd_probe,
.remove = fschmd_remove,
.id_table = fschmd_id,
.detect = fschmd_detect,
.address_list = normal_i2c,
};
/*
* Client data (each client gets its own)
*/
struct fschmd_data {
struct i2c_client *client;
struct device *hwmon_dev;
struct mutex update_lock;
struct mutex watchdog_lock;
struct list_head list; /* member of the watchdog_data_list */
struct kref kref;
struct miscdevice watchdog_miscdev;
enum chips kind;
unsigned long watchdog_is_open;
char watchdog_expect_close;
char watchdog_name[10]; /* must be unique to avoid sysfs conflict */
char valid; /* zero until following fields are valid */
unsigned long last_updated; /* in jiffies */
/* register values */
u8 revision; /* chip revision */
u8 global_control; /* global control register */
u8 watchdog_control; /* watchdog control register */
u8 watchdog_state; /* watchdog status register */
u8 watchdog_preset; /* watchdog counter preset on trigger val */
u8 volt[6]; /* voltage */
u8 temp_act[11]; /* temperature */
u8 temp_status[11]; /* status of sensor */
u8 temp_max[11]; /* high temp limit, notice: undocumented! */
u8 fan_act[7]; /* fans revolutions per second */
u8 fan_status[7]; /* fan status */
u8 fan_min[7]; /* fan min value for rps */
u8 fan_ripple[7]; /* divider for rps */
};
/*
* Global variables to hold information read from special DMI tables, which are
* available on FSC machines with an fscher or later chip. There is no need to
* protect these with a lock as they are only modified from our attach function
* which always gets called with the i2c-core lock held and never accessed
* before the attach function is done with them.
*/
static int dmi_mult[6] = { 490, 200, 100, 100, 200, 100 };
static int dmi_offset[6] = { 0, 0, 0, 0, 0, 0 };
static int dmi_vref = -1;
/*
* Somewhat ugly :( global data pointer list with all fschmd devices, so that
* we can find our device data as when using misc_register there is no other
* method to get to ones device data from the open fop.
*/
static LIST_HEAD(watchdog_data_list);
/* Note this lock not only protect list access, but also data.kref access */
static DEFINE_MUTEX(watchdog_data_mutex);
/*
* Release our data struct when we're detached from the i2c client *and* all
* references to our watchdog device are released
*/
static void fschmd_release_resources(struct kref *ref)
{
struct fschmd_data *data = container_of(ref, struct fschmd_data, kref);
kfree(data);
}
/*
* Sysfs attr show / store functions
*/
static ssize_t show_in_value(struct device *dev,
struct device_attribute *devattr, char *buf)
{
const int max_reading[3] = { 14200, 6600, 3300 };
int index = to_sensor_dev_attr(devattr)->index;
struct fschmd_data *data = fschmd_update_device(dev);
if (data->kind == fscher || data->kind >= fschrc)
return sprintf(buf, "%d\n", (data->volt[index] * dmi_vref *
dmi_mult[index]) / 255 + dmi_offset[index]);
else
return sprintf(buf, "%d\n", (data->volt[index] *
max_reading[index] + 128) / 255);
}
#define TEMP_FROM_REG(val) (((val) - 128) * 1000)
static ssize_t show_temp_value(struct device *dev,
struct device_attribute *devattr, char *buf)
{
int index = to_sensor_dev_attr(devattr)->index;
struct fschmd_data *data = fschmd_update_device(dev);
return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_act[index]));
}
static ssize_t show_temp_max(struct device *dev,
struct device_attribute *devattr, char *buf)
{
int index = to_sensor_dev_attr(devattr)->index;
struct fschmd_data *data = fschmd_update_device(dev);
return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[index]));
}
static ssize_t store_temp_max(struct device *dev, struct device_attribute
*devattr, const char *buf, size_t count)
{
int index = to_sensor_dev_attr(devattr)->index;
struct fschmd_data *data = dev_get_drvdata(dev);
long v;
int err;
err = kstrtol(buf, 10, &v);
if (err)
return err;
v = SENSORS_LIMIT(v / 1000, -128, 127) + 128;
mutex_lock(&data->update_lock);
i2c_smbus_write_byte_data(to_i2c_client(dev),
FSCHMD_REG_TEMP_LIMIT[data->kind][index], v);
data->temp_max[index] = v;
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_temp_fault(struct device *dev,
struct device_attribute *devattr, char *buf)
{
int index = to_sensor_dev_attr(devattr)->index;
struct fschmd_data *data = fschmd_update_device(dev);
/* bit 0 set means sensor working ok, so no fault! */
if (data->temp_status[index] & FSCHMD_TEMP_WORKING)
return sprintf(buf, "0\n");
else
return sprintf(buf, "1\n");
}
static ssize_t show_temp_alarm(struct device *dev,
struct device_attribute *devattr, char *buf)
{
int index = to_sensor_dev_attr(devattr)->index;
struct fschmd_data *data = fschmd_update_device(dev);
if ((data->temp_status[index] & FSCHMD_TEMP_ALARM_MASK) ==
FSCHMD_TEMP_ALARM_MASK)
return sprintf(buf, "1\n");
else
return sprintf(buf, "0\n");
}
#define RPM_FROM_REG(val) ((val) * 60)
static ssize_t show_fan_value(struct device *dev,
struct device_attribute *devattr, char *buf)
{
int index = to_sensor_dev_attr(devattr)->index;
struct fschmd_data *data = fschmd_update_device(dev);
return sprintf(buf, "%u\n", RPM_FROM_REG(data->fan_act[index]));
}
static ssize_t show_fan_div(struct device *dev,
struct device_attribute *devattr, char *buf)
{
int index = to_sensor_dev_attr(devattr)->index;
struct fschmd_data *data = fschmd_update_device(dev);
/* bits 2..7 reserved => mask with 3 */
return sprintf(buf, "%d\n", 1 << (data->fan_ripple[index] & 3));
}
static ssize_t store_fan_div(struct device *dev, struct device_attribute
*devattr, const char *buf, size_t count)
{
u8 reg;
int index = to_sensor_dev_attr(devattr)->index;
struct fschmd_data *data = dev_get_drvdata(dev);
/* supported values: 2, 4, 8 */
unsigned long v;
int err;
err = kstrtoul(buf, 10, &v);
if (err)
return err;
switch (v) {
case 2:
v = 1;
break;
case 4:
v = 2;
break;
case 8:
v = 3;
break;
default:
dev_err(dev, "fan_div value %lu not supported. "
"Choose one of 2, 4 or 8!\n", v);
return -EINVAL;
}
mutex_lock(&data->update_lock);
reg = i2c_smbus_read_byte_data(to_i2c_client(dev),
FSCHMD_REG_FAN_RIPPLE[data->kind][index]);
/* bits 2..7 reserved => mask with 0x03 */
reg &= ~0x03;
reg |= v;
i2c_smbus_write_byte_data(to_i2c_client(dev),
FSCHMD_REG_FAN_RIPPLE[data->kind][index], reg);
data->fan_ripple[index] = reg;
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_fan_alarm(struct device *dev,
struct device_attribute *devattr, char *buf)
{
int index = to_sensor_dev_attr(devattr)->index;
struct fschmd_data *data = fschmd_update_device(dev);
if (data->fan_status[index] & FSCHMD_FAN_ALARM)
return sprintf(buf, "1\n");
else
return sprintf(buf, "0\n");
}
static ssize_t show_fan_fault(struct device *dev,
struct device_attribute *devattr, char *buf)
{
int index = to_sensor_dev_attr(devattr)->index;
struct fschmd_data *data = fschmd_update_device(dev);
if (data->fan_status[index] & FSCHMD_FAN_NOT_PRESENT)
return sprintf(buf, "1\n");
else
return sprintf(buf, "0\n");
}
static ssize_t show_pwm_auto_point1_pwm(struct device *dev,
struct device_attribute *devattr, char *buf)
{
int index = to_sensor_dev_attr(devattr)->index;
struct fschmd_data *data = fschmd_update_device(dev);
int val = data->fan_min[index];
/* 0 = allow turning off (except on the syl), 1-255 = 50-100% */
if (val || data->kind == fscsyl)
val = val / 2 + 128;
return sprintf(buf, "%d\n", val);
}
static ssize_t store_pwm_auto_point1_pwm(struct device *dev,
struct device_attribute *devattr, const char *buf, size_t count)
{
int index = to_sensor_dev_attr(devattr)->index;
struct fschmd_data *data = dev_get_drvdata(dev);
unsigned long v;
int err;
err = kstrtoul(buf, 10, &v);
if (err)
return err;
/* reg: 0 = allow turning off (except on the syl), 1-255 = 50-100% */
if (v || data->kind == fscsyl) {
v = SENSORS_LIMIT(v, 128, 255);
v = (v - 128) * 2 + 1;
}
mutex_lock(&data->update_lock);
i2c_smbus_write_byte_data(to_i2c_client(dev),
FSCHMD_REG_FAN_MIN[data->kind][index], v);
data->fan_min[index] = v;
mutex_unlock(&data->update_lock);
return count;
}
/*
* The FSC hwmon family has the ability to force an attached alert led to flash
* from software, we export this as an alert_led sysfs attr
*/
static ssize_t show_alert_led(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct fschmd_data *data = fschmd_update_device(dev);
if (data->global_control & FSCHMD_CONTROL_ALERT_LED)
return sprintf(buf, "1\n");
else
return sprintf(buf, "0\n");
}
static ssize_t store_alert_led(struct device *dev,
struct device_attribute *devattr, const char *buf, size_t count)
{
u8 reg;
struct fschmd_data *data = dev_get_drvdata(dev);
unsigned long v;
int err;
err = kstrtoul(buf, 10, &v);
if (err)
return err;
mutex_lock(&data->update_lock);
reg = i2c_smbus_read_byte_data(to_i2c_client(dev), FSCHMD_REG_CONTROL);
if (v)
reg |= FSCHMD_CONTROL_ALERT_LED;
else
reg &= ~FSCHMD_CONTROL_ALERT_LED;
i2c_smbus_write_byte_data(to_i2c_client(dev), FSCHMD_REG_CONTROL, reg);
data->global_control = reg;
mutex_unlock(&data->update_lock);
return count;
}
static DEVICE_ATTR(alert_led, 0644, show_alert_led, store_alert_led);
static struct sensor_device_attribute fschmd_attr[] = {
SENSOR_ATTR(in0_input, 0444, show_in_value, NULL, 0),
SENSOR_ATTR(in1_input, 0444, show_in_value, NULL, 1),
SENSOR_ATTR(in2_input, 0444, show_in_value, NULL, 2),
SENSOR_ATTR(in3_input, 0444, show_in_value, NULL, 3),
SENSOR_ATTR(in4_input, 0444, show_in_value, NULL, 4),
SENSOR_ATTR(in5_input, 0444, show_in_value, NULL, 5),
};
static struct sensor_device_attribute fschmd_temp_attr[] = {
SENSOR_ATTR(temp1_input, 0444, show_temp_value, NULL, 0),
SENSOR_ATTR(temp1_max, 0644, show_temp_max, store_temp_max, 0),
SENSOR_ATTR(temp1_fault, 0444, show_temp_fault, NULL, 0),
SENSOR_ATTR(temp1_alarm, 0444, show_temp_alarm, NULL, 0),
SENSOR_ATTR(temp2_input, 0444, show_temp_value, NULL, 1),
SENSOR_ATTR(temp2_max, 0644, show_temp_max, store_temp_max, 1),
SENSOR_ATTR(temp2_fault, 0444, show_temp_fault, NULL, 1),
SENSOR_ATTR(temp2_alarm, 0444, show_temp_alarm, NULL, 1),
SENSOR_ATTR(temp3_input, 0444, show_temp_value, NULL, 2),
SENSOR_ATTR(temp3_max, 0644, show_temp_max, store_temp_max, 2),
SENSOR_ATTR(temp3_fault, 0444, show_temp_fault, NULL, 2),
SENSOR_ATTR(temp3_alarm, 0444, show_temp_alarm, NULL, 2),
SENSOR_ATTR(temp4_input, 0444, show_temp_value, NULL, 3),
SENSOR_ATTR(temp4_max, 0644, show_temp_max, store_temp_max, 3),
SENSOR_ATTR(temp4_fault, 0444, show_temp_fault, NULL, 3),
SENSOR_ATTR(temp4_alarm, 0444, show_temp_alarm, NULL, 3),
SENSOR_ATTR(temp5_input, 0444, show_temp_value, NULL, 4),
SENSOR_ATTR(temp5_max, 0644, show_temp_max, store_temp_max, 4),
SENSOR_ATTR(temp5_fault, 0444, show_temp_fault, NULL, 4),
SENSOR_ATTR(temp5_alarm, 0444, show_temp_alarm, NULL, 4),
SENSOR_ATTR(temp6_input, 0444, show_temp_value, NULL, 5),
SENSOR_ATTR(temp6_max, 0644, show_temp_max, store_temp_max, 5),
SENSOR_ATTR(temp6_fault, 0444, show_temp_fault, NULL, 5),
SENSOR_ATTR(temp6_alarm, 0444, show_temp_alarm, NULL, 5),
SENSOR_ATTR(temp7_input, 0444, show_temp_value, NULL, 6),
SENSOR_ATTR(temp7_max, 0644, show_temp_max, store_temp_max, 6),
SENSOR_ATTR(temp7_fault, 0444, show_temp_fault, NULL, 6),
SENSOR_ATTR(temp7_alarm, 0444, show_temp_alarm, NULL, 6),
SENSOR_ATTR(temp8_input, 0444, show_temp_value, NULL, 7),
SENSOR_ATTR(temp8_max, 0644, show_temp_max, store_temp_max, 7),
SENSOR_ATTR(temp8_fault, 0444, show_temp_fault, NULL, 7),
SENSOR_ATTR(temp8_alarm, 0444, show_temp_alarm, NULL, 7),
SENSOR_ATTR(temp9_input, 0444, show_temp_value, NULL, 8),
SENSOR_ATTR(temp9_max, 0644, show_temp_max, store_temp_max, 8),
SENSOR_ATTR(temp9_fault, 0444, show_temp_fault, NULL, 8),
SENSOR_ATTR(temp9_alarm, 0444, show_temp_alarm, NULL, 8),
SENSOR_ATTR(temp10_input, 0444, show_temp_value, NULL, 9),
SENSOR_ATTR(temp10_max, 0644, show_temp_max, store_temp_max, 9),
SENSOR_ATTR(temp10_fault, 0444, show_temp_fault, NULL, 9),
SENSOR_ATTR(temp10_alarm, 0444, show_temp_alarm, NULL, 9),
SENSOR_ATTR(temp11_input, 0444, show_temp_value, NULL, 10),
SENSOR_ATTR(temp11_max, 0644, show_temp_max, store_temp_max, 10),
SENSOR_ATTR(temp11_fault, 0444, show_temp_fault, NULL, 10),
SENSOR_ATTR(temp11_alarm, 0444, show_temp_alarm, NULL, 10),
};
static struct sensor_device_attribute fschmd_fan_attr[] = {
SENSOR_ATTR(fan1_input, 0444, show_fan_value, NULL, 0),
SENSOR_ATTR(fan1_div, 0644, show_fan_div, store_fan_div, 0),
SENSOR_ATTR(fan1_alarm, 0444, show_fan_alarm, NULL, 0),
SENSOR_ATTR(fan1_fault, 0444, show_fan_fault, NULL, 0),
SENSOR_ATTR(pwm1_auto_point1_pwm, 0644, show_pwm_auto_point1_pwm,
store_pwm_auto_point1_pwm, 0),
SENSOR_ATTR(fan2_input, 0444, show_fan_value, NULL, 1),
SENSOR_ATTR(fan2_div, 0644, show_fan_div, store_fan_div, 1),
SENSOR_ATTR(fan2_alarm, 0444, show_fan_alarm, NULL, 1),
SENSOR_ATTR(fan2_fault, 0444, show_fan_fault, NULL, 1),
SENSOR_ATTR(pwm2_auto_point1_pwm, 0644, show_pwm_auto_point1_pwm,
store_pwm_auto_point1_pwm, 1),
SENSOR_ATTR(fan3_input, 0444, show_fan_value, NULL, 2),
SENSOR_ATTR(fan3_div, 0644, show_fan_div, store_fan_div, 2),
SENSOR_ATTR(fan3_alarm, 0444, show_fan_alarm, NULL, 2),
SENSOR_ATTR(fan3_fault, 0444, show_fan_fault, NULL, 2),
SENSOR_ATTR(pwm3_auto_point1_pwm, 0644, show_pwm_auto_point1_pwm,
store_pwm_auto_point1_pwm, 2),
SENSOR_ATTR(fan4_input, 0444, show_fan_value, NULL, 3),
SENSOR_ATTR(fan4_div, 0644, show_fan_div, store_fan_div, 3),
SENSOR_ATTR(fan4_alarm, 0444, show_fan_alarm, NULL, 3),
SENSOR_ATTR(fan4_fault, 0444, show_fan_fault, NULL, 3),
SENSOR_ATTR(pwm4_auto_point1_pwm, 0644, show_pwm_auto_point1_pwm,
store_pwm_auto_point1_pwm, 3),
SENSOR_ATTR(fan5_input, 0444, show_fan_value, NULL, 4),
SENSOR_ATTR(fan5_div, 0644, show_fan_div, store_fan_div, 4),
SENSOR_ATTR(fan5_alarm, 0444, show_fan_alarm, NULL, 4),
SENSOR_ATTR(fan5_fault, 0444, show_fan_fault, NULL, 4),
SENSOR_ATTR(pwm5_auto_point1_pwm, 0644, show_pwm_auto_point1_pwm,
store_pwm_auto_point1_pwm, 4),
SENSOR_ATTR(fan6_input, 0444, show_fan_value, NULL, 5),
SENSOR_ATTR(fan6_div, 0644, show_fan_div, store_fan_div, 5),
SENSOR_ATTR(fan6_alarm, 0444, show_fan_alarm, NULL, 5),
SENSOR_ATTR(fan6_fault, 0444, show_fan_fault, NULL, 5),
SENSOR_ATTR(pwm6_auto_point1_pwm, 0644, show_pwm_auto_point1_pwm,
store_pwm_auto_point1_pwm, 5),
SENSOR_ATTR(fan7_input, 0444, show_fan_value, NULL, 6),
SENSOR_ATTR(fan7_div, 0644, show_fan_div, store_fan_div, 6),
SENSOR_ATTR(fan7_alarm, 0444, show_fan_alarm, NULL, 6),
SENSOR_ATTR(fan7_fault, 0444, show_fan_fault, NULL, 6),
SENSOR_ATTR(pwm7_auto_point1_pwm, 0644, show_pwm_auto_point1_pwm,
store_pwm_auto_point1_pwm, 6),
};
/*
* Watchdog routines
*/
static int watchdog_set_timeout(struct fschmd_data *data, int timeout)
{
int ret, resolution;
int kind = data->kind + 1; /* 0-x array index -> 1-x module param */
/* 2 second or 60 second resolution? */
if (timeout <= 510 || kind == fscpos || kind == fscscy)
resolution = 2;
else
resolution = 60;
if (timeout < resolution || timeout > (resolution * 255))
return -EINVAL;
mutex_lock(&data->watchdog_lock);
if (!data->client) {
ret = -ENODEV;
goto leave;
}
if (resolution == 2)
data->watchdog_control &= ~FSCHMD_WDOG_CONTROL_RESOLUTION;
else
data->watchdog_control |= FSCHMD_WDOG_CONTROL_RESOLUTION;
data->watchdog_preset = DIV_ROUND_UP(timeout, resolution);
/* Write new timeout value */
i2c_smbus_write_byte_data(data->client,
FSCHMD_REG_WDOG_PRESET[data->kind], data->watchdog_preset);
/* Write new control register, do not trigger! */
i2c_smbus_write_byte_data(data->client,
FSCHMD_REG_WDOG_CONTROL[data->kind],
data->watchdog_control & ~FSCHMD_WDOG_CONTROL_TRIGGER);
ret = data->watchdog_preset * resolution;
leave:
mutex_unlock(&data->watchdog_lock);
return ret;
}
static int watchdog_get_timeout(struct fschmd_data *data)
{
int timeout;
mutex_lock(&data->watchdog_lock);
if (data->watchdog_control & FSCHMD_WDOG_CONTROL_RESOLUTION)
timeout = data->watchdog_preset * 60;
else
timeout = data->watchdog_preset * 2;
mutex_unlock(&data->watchdog_lock);
return timeout;
}
static int watchdog_trigger(struct fschmd_data *data)
{
int ret = 0;
mutex_lock(&data->watchdog_lock);
if (!data->client) {
ret = -ENODEV;
goto leave;
}
data->watchdog_control |= FSCHMD_WDOG_CONTROL_TRIGGER;
i2c_smbus_write_byte_data(data->client,
FSCHMD_REG_WDOG_CONTROL[data->kind],
data->watchdog_control);
leave:
mutex_unlock(&data->watchdog_lock);
return ret;
}
static int watchdog_stop(struct fschmd_data *data)
{
int ret = 0;
mutex_lock(&data->watchdog_lock);
if (!data->client) {
ret = -ENODEV;
goto leave;
}
data->watchdog_control &= ~FSCHMD_WDOG_CONTROL_STARTED;
/*
* Don't store the stop flag in our watchdog control register copy, as
* its a write only bit (read always returns 0)
*/
i2c_smbus_write_byte_data(data->client,
FSCHMD_REG_WDOG_CONTROL[data->kind],
data->watchdog_control | FSCHMD_WDOG_CONTROL_STOP);
leave:
mutex_unlock(&data->watchdog_lock);
return ret;
}
static int watchdog_open(struct inode *inode, struct file *filp)
{
struct fschmd_data *pos, *data = NULL;
int watchdog_is_open;
/*
* We get called from drivers/char/misc.c with misc_mtx hold, and we
* call misc_register() from fschmd_probe() with watchdog_data_mutex
* hold, as misc_register() takes the misc_mtx lock, this is a possible
* deadlock, so we use mutex_trylock here.
*/
if (!mutex_trylock(&watchdog_data_mutex))
return -ERESTARTSYS;
list_for_each_entry(pos, &watchdog_data_list, list) {
if (pos->watchdog_miscdev.minor == iminor(inode)) {
data = pos;
break;
}
}
/* Note we can never not have found data, so we don't check for this */
watchdog_is_open = test_and_set_bit(0, &data->watchdog_is_open);
if (!watchdog_is_open)
kref_get(&data->kref);
mutex_unlock(&watchdog_data_mutex);
if (watchdog_is_open)
return -EBUSY;
/* Start the watchdog */
watchdog_trigger(data);
filp->private_data = data;
return nonseekable_open(inode, filp);
}
static int watchdog_release(struct inode *inode, struct file *filp)
{
struct fschmd_data *data = filp->private_data;
if (data->watchdog_expect_close) {
watchdog_stop(data);
data->watchdog_expect_close = 0;
} else {
watchdog_trigger(data);
dev_crit(&data->client->dev,
"unexpected close, not stopping watchdog!\n");
}
clear_bit(0, &data->watchdog_is_open);
mutex_lock(&watchdog_data_mutex);
kref_put(&data->kref, fschmd_release_resources);
mutex_unlock(&watchdog_data_mutex);
return 0;
}
static ssize_t watchdog_write(struct file *filp, const char __user *buf,
size_t count, loff_t *offset)
{
int ret;
struct fschmd_data *data = filp->private_data;
if (count) {
if (!nowayout) {
size_t i;
/* Clear it in case it was set with a previous write */
data->watchdog_expect_close = 0;
for (i = 0; i != count; i++) {
char c;
if (get_user(c, buf + i))
return -EFAULT;
if (c == 'V')
data->watchdog_expect_close = 1;
}
}
ret = watchdog_trigger(data);
if (ret < 0)
return ret;
}
return count;
}
static long watchdog_ioctl(struct file *filp, unsigned int cmd,
unsigned long arg)
{
struct watchdog_info ident = {
.options = WDIOF_KEEPALIVEPING | WDIOF_SETTIMEOUT |
WDIOF_CARDRESET,
.identity = "FSC watchdog"
};
int i, ret = 0;
struct fschmd_data *data = filp->private_data;
switch (cmd) {
case WDIOC_GETSUPPORT:
ident.firmware_version = data->revision;
if (!nowayout)
ident.options |= WDIOF_MAGICCLOSE;
if (copy_to_user((void __user *)arg, &ident, sizeof(ident)))
ret = -EFAULT;
break;
case WDIOC_GETSTATUS:
ret = put_user(0, (int __user *)arg);
break;
case WDIOC_GETBOOTSTATUS:
if (data->watchdog_state & FSCHMD_WDOG_STATE_CARDRESET)
ret = put_user(WDIOF_CARDRESET, (int __user *)arg);
else
ret = put_user(0, (int __user *)arg);
break;
case WDIOC_KEEPALIVE:
ret = watchdog_trigger(data);
break;
case WDIOC_GETTIMEOUT:
i = watchdog_get_timeout(data);
ret = put_user(i, (int __user *)arg);
break;
case WDIOC_SETTIMEOUT:
if (get_user(i, (int __user *)arg)) {
ret = -EFAULT;
break;
}
ret = watchdog_set_timeout(data, i);
if (ret > 0)
ret = put_user(ret, (int __user *)arg);
break;
case WDIOC_SETOPTIONS:
if (get_user(i, (int __user *)arg)) {
ret = -EFAULT;
break;
}
if (i & WDIOS_DISABLECARD)
ret = watchdog_stop(data);
else if (i & WDIOS_ENABLECARD)
ret = watchdog_trigger(data);
else
ret = -EINVAL;
break;
default:
ret = -ENOTTY;
}
return ret;
}
static const struct file_operations watchdog_fops = {
.owner = THIS_MODULE,
.llseek = no_llseek,
.open = watchdog_open,
.release = watchdog_release,
.write = watchdog_write,
.unlocked_ioctl = watchdog_ioctl,
};
/*
* Detect, register, unregister and update device functions
*/
/*
* DMI decode routine to read voltage scaling factors from special DMI tables,
* which are available on FSC machines with an fscher or later chip.
*/
static void fschmd_dmi_decode(const struct dmi_header *header, void *dummy)
{
int i, mult[3] = { 0 }, offset[3] = { 0 }, vref = 0, found = 0;
/*
* dmi code ugliness, we get passed the address of the contents of
* a complete DMI record, but in the form of a dmi_header pointer, in
* reality this address holds header->length bytes of which the header
* are the first 4 bytes
*/
u8 *dmi_data = (u8 *)header;
/* We are looking for OEM-specific type 185 */
if (header->type != 185)
return;
/*
* we are looking for what Siemens calls "subtype" 19, the subtype
* is stored in byte 5 of the dmi block
*/
if (header->length < 5 || dmi_data[4] != 19)
return;
/*
* After the subtype comes 1 unknown byte and then blocks of 5 bytes,
* consisting of what Siemens calls an "Entity" number, followed by
* 2 16-bit words in LSB first order
*/
for (i = 6; (i + 4) < header->length; i += 5) {
/* entity 1 - 3: voltage multiplier and offset */
if (dmi_data[i] >= 1 && dmi_data[i] <= 3) {
/* Our in sensors order and the DMI order differ */
const int shuffle[3] = { 1, 0, 2 };
int in = shuffle[dmi_data[i] - 1];
/* Check for twice the same entity */
if (found & (1 << in))
return;
mult[in] = dmi_data[i + 1] | (dmi_data[i + 2] << 8);
offset[in] = dmi_data[i + 3] | (dmi_data[i + 4] << 8);
found |= 1 << in;
}
/* entity 7: reference voltage */
if (dmi_data[i] == 7) {
/* Check for twice the same entity */
if (found & 0x08)
return;
vref = dmi_data[i + 1] | (dmi_data[i + 2] << 8);
found |= 0x08;
}
}
if (found == 0x0F) {
for (i = 0; i < 3; i++) {
dmi_mult[i] = mult[i] * 10;
dmi_offset[i] = offset[i] * 10;
}
/*
* According to the docs there should be separate dmi entries
* for the mult's and offsets of in3-5 of the syl, but on
* my test machine these are not present
*/
dmi_mult[3] = dmi_mult[2];
dmi_mult[4] = dmi_mult[1];
dmi_mult[5] = dmi_mult[2];
dmi_offset[3] = dmi_offset[2];
dmi_offset[4] = dmi_offset[1];
dmi_offset[5] = dmi_offset[2];
dmi_vref = vref;
}
}
static int fschmd_detect(struct i2c_client *client,
struct i2c_board_info *info)
{
enum chips kind;
struct i2c_adapter *adapter = client->adapter;
char id[4];
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
return -ENODEV;
/* Detect & Identify the chip */
id[0] = i2c_smbus_read_byte_data(client, FSCHMD_REG_IDENT_0);
id[1] = i2c_smbus_read_byte_data(client, FSCHMD_REG_IDENT_1);
id[2] = i2c_smbus_read_byte_data(client, FSCHMD_REG_IDENT_2);
id[3] = '\0';
if (!strcmp(id, "PEG"))
kind = fscpos;
else if (!strcmp(id, "HER"))
kind = fscher;
else if (!strcmp(id, "SCY"))
kind = fscscy;
else if (!strcmp(id, "HRC"))
kind = fschrc;
else if (!strcmp(id, "HMD"))
kind = fschmd;
else if (!strcmp(id, "HDS"))
kind = fschds;
else if (!strcmp(id, "SYL"))
kind = fscsyl;
else
return -ENODEV;
strlcpy(info->type, fschmd_id[kind].name, I2C_NAME_SIZE);
return 0;
}
static int fschmd_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct fschmd_data *data;
const char * const names[7] = { "Poseidon", "Hermes", "Scylla",
"Heracles", "Heimdall", "Hades", "Syleus" };
const int watchdog_minors[] = { WATCHDOG_MINOR, 212, 213, 214, 215 };
int i, err;
enum chips kind = id->driver_data;
data = kzalloc(sizeof(struct fschmd_data), GFP_KERNEL);
if (!data)
return -ENOMEM;
i2c_set_clientdata(client, data);
mutex_init(&data->update_lock);
mutex_init(&data->watchdog_lock);
INIT_LIST_HEAD(&data->list);
kref_init(&data->kref);
/*
* Store client pointer in our data struct for watchdog usage
* (where the client is found through a data ptr instead of the
* otherway around)
*/
data->client = client;
data->kind = kind;
if (kind == fscpos) {
/*
* The Poseidon has hardwired temp limits, fill these
* in for the alarm resetting code
*/
data->temp_max[0] = 70 + 128;
data->temp_max[1] = 50 + 128;
data->temp_max[2] = 50 + 128;
}
/* Read the special DMI table for fscher and newer chips */
if ((kind == fscher || kind >= fschrc) && dmi_vref == -1) {
dmi_walk(fschmd_dmi_decode, NULL);
if (dmi_vref == -1) {
dev_warn(&client->dev,
"Couldn't get voltage scaling factors from "
"BIOS DMI table, using builtin defaults\n");
dmi_vref = 33;
}
}
/* Read in some never changing registers */
data->revision = i2c_smbus_read_byte_data(client, FSCHMD_REG_REVISION);
data->global_control = i2c_smbus_read_byte_data(client,
FSCHMD_REG_CONTROL);
data->watchdog_control = i2c_smbus_read_byte_data(client,
FSCHMD_REG_WDOG_CONTROL[data->kind]);
data->watchdog_state = i2c_smbus_read_byte_data(client,
FSCHMD_REG_WDOG_STATE[data->kind]);
data->watchdog_preset = i2c_smbus_read_byte_data(client,
FSCHMD_REG_WDOG_PRESET[data->kind]);
err = device_create_file(&client->dev, &dev_attr_alert_led);
if (err)
goto exit_detach;
for (i = 0; i < FSCHMD_NO_VOLT_SENSORS[data->kind]; i++) {
err = device_create_file(&client->dev,
&fschmd_attr[i].dev_attr);
if (err)
goto exit_detach;
}
for (i = 0; i < (FSCHMD_NO_TEMP_SENSORS[data->kind] * 4); i++) {
/* Poseidon doesn't have TEMP_LIMIT registers */
if (kind == fscpos && fschmd_temp_attr[i].dev_attr.show ==
show_temp_max)
continue;
if (kind == fscsyl) {
if (i % 4 == 0)
data->temp_status[i / 4] =
i2c_smbus_read_byte_data(client,
FSCHMD_REG_TEMP_STATE
[data->kind][i / 4]);
if (data->temp_status[i / 4] & FSCHMD_TEMP_DISABLED)
continue;
}
err = device_create_file(&client->dev,
&fschmd_temp_attr[i].dev_attr);
if (err)
goto exit_detach;
}
for (i = 0; i < (FSCHMD_NO_FAN_SENSORS[data->kind] * 5); i++) {
/* Poseidon doesn't have a FAN_MIN register for its 3rd fan */
if (kind == fscpos &&
!strcmp(fschmd_fan_attr[i].dev_attr.attr.name,
"pwm3_auto_point1_pwm"))
continue;
if (kind == fscsyl) {
if (i % 5 == 0)
data->fan_status[i / 5] =
i2c_smbus_read_byte_data(client,
FSCHMD_REG_FAN_STATE
[data->kind][i / 5]);
if (data->fan_status[i / 5] & FSCHMD_FAN_DISABLED)
continue;
}
err = device_create_file(&client->dev,
&fschmd_fan_attr[i].dev_attr);
if (err)
goto exit_detach;
}
data->hwmon_dev = hwmon_device_register(&client->dev);
if (IS_ERR(data->hwmon_dev)) {
err = PTR_ERR(data->hwmon_dev);
data->hwmon_dev = NULL;
goto exit_detach;
}
/*
* We take the data_mutex lock early so that watchdog_open() cannot
* run when misc_register() has completed, but we've not yet added
* our data to the watchdog_data_list (and set the default timeout)
*/
mutex_lock(&watchdog_data_mutex);
for (i = 0; i < ARRAY_SIZE(watchdog_minors); i++) {
/* Register our watchdog part */
snprintf(data->watchdog_name, sizeof(data->watchdog_name),
"watchdog%c", (i == 0) ? '\0' : ('0' + i));
data->watchdog_miscdev.name = data->watchdog_name;
data->watchdog_miscdev.fops = &watchdog_fops;
data->watchdog_miscdev.minor = watchdog_minors[i];
err = misc_register(&data->watchdog_miscdev);
if (err == -EBUSY)
continue;
if (err) {
data->watchdog_miscdev.minor = 0;
dev_err(&client->dev,
"Registering watchdog chardev: %d\n", err);
break;
}
list_add(&data->list, &watchdog_data_list);
watchdog_set_timeout(data, 60);
dev_info(&client->dev,
"Registered watchdog chardev major 10, minor: %d\n",
watchdog_minors[i]);
break;
}
if (i == ARRAY_SIZE(watchdog_minors)) {
data->watchdog_miscdev.minor = 0;
dev_warn(&client->dev, "Couldn't register watchdog chardev "
"(due to no free minor)\n");
}
mutex_unlock(&watchdog_data_mutex);
dev_info(&client->dev, "Detected FSC %s chip, revision: %d\n",
names[data->kind], (int) data->revision);
return 0;
exit_detach:
fschmd_remove(client); /* will also free data for us */
return err;
}
static int fschmd_remove(struct i2c_client *client)
{
struct fschmd_data *data = i2c_get_clientdata(client);
int i;
/* Unregister the watchdog (if registered) */
if (data->watchdog_miscdev.minor) {
misc_deregister(&data->watchdog_miscdev);
if (data->watchdog_is_open) {
dev_warn(&client->dev,
"i2c client detached with watchdog open! "
"Stopping watchdog.\n");
watchdog_stop(data);
}
mutex_lock(&watchdog_data_mutex);
list_del(&data->list);
mutex_unlock(&watchdog_data_mutex);
/* Tell the watchdog code the client is gone */
mutex_lock(&data->watchdog_lock);
data->client = NULL;
mutex_unlock(&data->watchdog_lock);
}
/*
* Check if registered in case we're called from fschmd_detect
* to cleanup after an error
*/
if (data->hwmon_dev)
hwmon_device_unregister(data->hwmon_dev);
device_remove_file(&client->dev, &dev_attr_alert_led);
for (i = 0; i < (FSCHMD_NO_VOLT_SENSORS[data->kind]); i++)
device_remove_file(&client->dev, &fschmd_attr[i].dev_attr);
for (i = 0; i < (FSCHMD_NO_TEMP_SENSORS[data->kind] * 4); i++)
device_remove_file(&client->dev,
&fschmd_temp_attr[i].dev_attr);
for (i = 0; i < (FSCHMD_NO_FAN_SENSORS[data->kind] * 5); i++)
device_remove_file(&client->dev,
&fschmd_fan_attr[i].dev_attr);
mutex_lock(&watchdog_data_mutex);
kref_put(&data->kref, fschmd_release_resources);
mutex_unlock(&watchdog_data_mutex);
return 0;
}
static struct fschmd_data *fschmd_update_device(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct fschmd_data *data = i2c_get_clientdata(client);
int i;
mutex_lock(&data->update_lock);
if (time_after(jiffies, data->last_updated + 2 * HZ) || !data->valid) {
for (i = 0; i < FSCHMD_NO_TEMP_SENSORS[data->kind]; i++) {
data->temp_act[i] = i2c_smbus_read_byte_data(client,
FSCHMD_REG_TEMP_ACT[data->kind][i]);
data->temp_status[i] = i2c_smbus_read_byte_data(client,
FSCHMD_REG_TEMP_STATE[data->kind][i]);
/* The fscpos doesn't have TEMP_LIMIT registers */
if (FSCHMD_REG_TEMP_LIMIT[data->kind][i])
data->temp_max[i] = i2c_smbus_read_byte_data(
client,
FSCHMD_REG_TEMP_LIMIT[data->kind][i]);
/*
* reset alarm if the alarm condition is gone,
* the chip doesn't do this itself
*/
if ((data->temp_status[i] & FSCHMD_TEMP_ALARM_MASK) ==
FSCHMD_TEMP_ALARM_MASK &&
data->temp_act[i] < data->temp_max[i])
i2c_smbus_write_byte_data(client,
FSCHMD_REG_TEMP_STATE[data->kind][i],
data->temp_status[i]);
}
for (i = 0; i < FSCHMD_NO_FAN_SENSORS[data->kind]; i++) {
data->fan_act[i] = i2c_smbus_read_byte_data(client,
FSCHMD_REG_FAN_ACT[data->kind][i]);
data->fan_status[i] = i2c_smbus_read_byte_data(client,
FSCHMD_REG_FAN_STATE[data->kind][i]);
data->fan_ripple[i] = i2c_smbus_read_byte_data(client,
FSCHMD_REG_FAN_RIPPLE[data->kind][i]);
/* The fscpos third fan doesn't have a fan_min */
if (FSCHMD_REG_FAN_MIN[data->kind][i])
data->fan_min[i] = i2c_smbus_read_byte_data(
client,
FSCHMD_REG_FAN_MIN[data->kind][i]);
/* reset fan status if speed is back to > 0 */
if ((data->fan_status[i] & FSCHMD_FAN_ALARM) &&
data->fan_act[i])
i2c_smbus_write_byte_data(client,
FSCHMD_REG_FAN_STATE[data->kind][i],
data->fan_status[i]);
}
for (i = 0; i < FSCHMD_NO_VOLT_SENSORS[data->kind]; i++)
data->volt[i] = i2c_smbus_read_byte_data(client,
FSCHMD_REG_VOLT[data->kind][i]);
data->last_updated = jiffies;
data->valid = 1;
}
mutex_unlock(&data->update_lock);
return data;
}
module_i2c_driver(fschmd_driver);
MODULE_AUTHOR("Hans de Goede <hdegoede@redhat.com>");
MODULE_DESCRIPTION("FSC Poseidon, Hermes, Scylla, Heracles, Heimdall, Hades "
"and Syleus driver");
MODULE_LICENSE("GPL");