kernel-fxtec-pro1x/include/linux/wireless.h

45 lines
1.4 KiB
C
Raw Normal View History

/*
* This file define a set of standard wireless extensions
*
* Version : 22 16.3.07
*
* Authors : Jean Tourrilhes - HPL - <jt@hpl.hp.com>
* Copyright (c) 1997-2007 Jean Tourrilhes, All Rights Reserved.
*/
#ifndef _LINUX_WIRELESS_H
#define _LINUX_WIRELESS_H
#include <uapi/linux/wireless.h>
#ifdef CONFIG_COMPAT
#include <linux/compat.h>
struct compat_iw_point {
compat_caddr_t pointer;
__u16 length;
__u16 flags;
};
#endif
#ifdef CONFIG_COMPAT
struct __compat_iw_event {
__u16 len; /* Real length of this stuff */
__u16 cmd; /* Wireless IOCTL */
compat_caddr_t pointer;
};
#define IW_EV_COMPAT_LCP_LEN offsetof(struct __compat_iw_event, pointer)
#define IW_EV_COMPAT_POINT_OFF offsetof(struct compat_iw_point, length)
net/compat/wext: send different messages to compat tasks Wireless extensions have the unfortunate problem that events are multicast netlink messages, and are not independent of pointer size. Thus, currently 32-bit tasks on 64-bit platforms cannot properly receive events and fail with all kinds of strange problems, for instance wpa_supplicant never notices disassociations, due to the way the 64-bit event looks (to a 32-bit process), the fact that the address is all zeroes is lost, it thinks instead it is 00:00:00:00:01:00. The same problem existed with the ioctls, until David Miller fixed those some time ago in an heroic effort. A different problem caused by this is that we cannot send the ASSOCREQIE/ASSOCRESPIE events because sending them causes a 32-bit wpa_supplicant on a 64-bit system to overwrite its internal information, which is worse than it not getting the information at all -- so we currently resort to sending a custom string event that it then parses. This, however, has a severe size limitation we are frequently hitting with modern access points; this limitation would can be lifted after this patch by sending the correct binary, not custom, event. A similar problem apparently happens for some other netlink users on x86_64 with 32-bit tasks due to the alignment for 64-bit quantities. In order to fix these problems, I have implemented a way to send compat messages to tasks. When sending an event, we send the non-compat event data together with a compat event data in skb_shinfo(main_skb)->frag_list. Then, when the event is read from the socket, the netlink code makes sure to pass out only the skb that is compatible with the task. This approach was suggested by David Miller, my original approach required always sending two skbs but that had various small problems. To determine whether compat is needed or not, I have used the MSG_CMSG_COMPAT flag, and adjusted the call path for recv and recvfrom to include it, even if those calls do not have a cmsg parameter. I have not solved one small part of the problem, and I don't think it is necessary to: if a 32-bit application uses read() rather than any form of recvmsg() it will still get the wrong (64-bit) event. However, neither do applications actually do this, nor would it be a regression. Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-07-01 05:26:02 -06:00
/* Size of the various events for compat */
#define IW_EV_COMPAT_CHAR_LEN (IW_EV_COMPAT_LCP_LEN + IFNAMSIZ)
#define IW_EV_COMPAT_UINT_LEN (IW_EV_COMPAT_LCP_LEN + sizeof(__u32))
#define IW_EV_COMPAT_FREQ_LEN (IW_EV_COMPAT_LCP_LEN + sizeof(struct iw_freq))
#define IW_EV_COMPAT_PARAM_LEN (IW_EV_COMPAT_LCP_LEN + sizeof(struct iw_param))
#define IW_EV_COMPAT_ADDR_LEN (IW_EV_COMPAT_LCP_LEN + sizeof(struct sockaddr))
#define IW_EV_COMPAT_QUAL_LEN (IW_EV_COMPAT_LCP_LEN + sizeof(struct iw_quality))
#define IW_EV_COMPAT_POINT_LEN \
(IW_EV_COMPAT_LCP_LEN + sizeof(struct compat_iw_point) - \
IW_EV_COMPAT_POINT_OFF)
#endif
#endif /* _LINUX_WIRELESS_H */